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Abstract. In this article we consider the Euler equations of an ideal incompressible
fluid in a 2D and 3D channel and we prove the existence and uniqueness of classical
solutions for all time for the 2D case and the local in time existence for the 3D case. For
the 2D case, the proof makes use of the Schauder fixed point, and specific properties of
the Green function in a channel are derived. For the 3D case, we use a priori estimates
on some appropriate Sobolev spaces and the existence of solution follows by the Galerkin
method.
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1. Introduction

In this article we consider the Euler equations in a 2D and 3D channel with the non-
penetration boundary condition and we are interested in proving the existence and unique-
ness of the solutions.

The case of the 3D channel with nonhomogeneous boundary conditions will be consid-
ered in a companion paper [10].
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We mention here that the study of the Euler equations in various spaces with various
boundary conditions, is a problem of significant interest in mathematical physics. Let us
recall the pioneering work in this field of Kato [7], of Lichtenstein [8], of Wolibner [16],
and among more recent references the works of Beale, Kato and Majda [1], of Ebin and
Marsden [3], [4], of Temam [12], [11] and Vishik [14].

In this article we prove first the existence and uniqueness of classical solutions for
all time in a 2D channel corresponding to the nonpenetration condition in the direction
normal to the wall and space periodicity in the other direction. The proof extends that
of Kato [7] who considered the case of a bounded domain with regular boundary and
homogeneous boundary conditions. The form and the properties of the Green function for
a two dimensional channel with homogeneous Dirichlet boundary conditions are provided
in an Appendix.

We also prove the local existence of the solutions for the Euler equations in a 3D
channel. The idea is to obtain a priori estimates in certain Sobolev spaces and then, by
standard methods, we prove the existence and uniqueness of solution, locally in time.

2. Euler equation in a 2D channel

The Euler equation in a 2D channel Ω∞ = R× (0, L2) considered here reads:

∂u

∂t
+ (u · ∇)u + grad p = f ,(2.1a)

div u = 0,(2.1b)

where u = (u1, u2) is the two dimensional velocity of the fluid and p is the pressure. We
also consider Ω = (0, L1) × (0, L2), where L1 is the period in the 0x1 direction. For a
function given in Ω, we denote by ũ its periodic extension to Ω∞.

We supplement the system (2.1) with the initial condition:

(2.2) u(x, 0) = u0(x), ∀x ∈ Ω.

The boundary conditions for this system are:

u · n = 0 on Γ2 = {x2 = 0, x2 = L2},
and the functions are periodic in x1.

(2.3)

Remark 2.1. Because of the periodicity in the x1 direction, it is convenient to introduce
the average of u1 over Ω,

mu1(t) =
1

L1L2

∫

Ω

u1(x, t) dΩ,

and we set

ū1 = u1 −mu1 .

The average mu1 is determined explicitly in terms of the data. We write equation (2.1a)
for u1 and integrate over Ω. Integrating by parts and using (2.3), and the divergence-free
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condition, we obtain:

(2.4)
d

dt
mu1(t) = mf1(t),

which leads to:

mu1(t) = mu1,0 +

∫ t

0

mf1(s) ds.

By substitution to (2.1a), we find:

(2.5)
∂ū1

∂t
+ ū1

∂ū1

∂x1

+ u2
∂ū1

∂x2

+ mu1

∂ū1

∂x1

+
∂p

∂x1

= f̄1.

Since the quantity mu1 is known, equation (2.5) has a behavior very similar to the
initial equation (2.1), so we can suppose from the beginning that we work with flows
having mu1 = 0.

The main result of the paper is the following:

Theorem 2.1. Let L1, L2, T be given positive and arbitrary, and let Ω = (0, L1)×(0, L2).
Let u0 be given such that its periodic extension ũ0 belongs to C1+α(Ω∞) and satisfies
div ũ0 = 0 and ũ0 · n = 0 at x2 = 0 and x2 = L2. Let f be a given function on
QT = Ω̄ × [0, T ] such that its periodic extension f̃ on Q∞,T = Ω∞ × [0, T ] belongs to
C1+α,0(Q∞,T ), with 0 < α < 1. Then there exists a unique solution (u, p) of problem
(2.1)–(2.3) such that:

u ∈ C1(QT ), ∇p ∈ C(QT ).

We recall here the definition of the Hölder spaces and of their norms. The norm is
defined as:

(2.6) |f |α,QT
= |f |0,QT

+ Hα
x (f) + Hα

t (f),

where | · |0,QT
is the norm of C(QT ) and

Hα
x (f) = sup

x1, x2 ∈ Ω
t ∈ (0, T )

{|f(x1, t)− f(x2, t)| · |x1 − x2|−α},

Hα
t (f) = sup

x ∈ Ω
t1, t2 ∈ (0, T )

{|f(x, t1)− f(x, t2)| · |t1 − t2|−α}.

3. Existence and uniqueness of the solution for all time

In this section we prove Theorem 2.1 using an auxiliary independent result regarding
the properties of the Green function, proven in Section 3. The proof of existence of
solutions is based on Schauder’s fixed point theorem.
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We start by explaining the general plan of the proof, and give then the rigorous ar-
guments. We apply the curl operator to equation (2.1a) and we obtain the following
problems; for the vorticity the equation reads as:

∂ω

∂t
+ (u · grad)ω = curl f ,(3.1a)

ω is periodic in x1,(3.1b)

ω(x, 0) = ω0(x) = curl u0;(3.1c)

and, for the velocity:

curl u = ω,(3.2a)

div u = 0,(3.2b)

u is periodic in x1, u · n = 0 at x2 = 0 and x2 = L2,(3.2c)

mu1 = 0.(3.2d)

Note here that without the condition mu1 = 0, the flow u would be determined up to
a constant.

3.1. The general approach and preliminary results. In this section we will show
that problem (3.1)–(3.2) is equivalent to (2.1)–(2.3) and we will find the solution u of
(3.1)–(3.2) as the fixed point of the mapping Λ defined below.

In order to define the mapping Λ, we start with a given function ω0 and determine a
function u1 from (3.2); then, setting u = u1 in (3.1), we find the vorticity ω1 from (3.1).
We thus define the function Λ by:

(3.3) Λ :
⋃

0<ε<1

Cε,0(QT ) → C(QT ), Λ(ω0) = ω1,

and, as mentioned before, we want to prove that Λ has a fixed point ω which is the
solution of our problem (2.1).

Equation (3.1) is a first-order partial differential equation for ω, which is equivalent to
solving the ordinary differential equation:

dx

dt
= u(x, t),

x(s) = y,
(3.4)

where 0 ≤ s ≤ t, x = x(t; y, s). The solutions of (3.4) are the streamlines (or the
trajectories) of the flow u.

Then the solution of (3.1) is determined from the formula:

(3.5) ω(x(t; y, s), t) = ω0(x(0; y, s)) +

∫ t

0

curl f(x(t′; y, s), t′) dt′.
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For problem (3.2), we look for solutions of the form u = curl ϕ since div u = 0. We
thus need to determine ϕ as the solution of the equation −∆ϕ = curl u = ω, with ϕ
periodic in x1 and equal to zero on the boundary x2 = 0 and x2 = L2

1. We find:

(3.6) u(x, t) = curl x

∫

Ω

G(x, y)ω(y, t) dy,

where G is the Green function of the Dirichlet problem for the channel. We recall here
some properties of the Green function we need to use and we give the proof in the Ap-
pendix (see Theorem 5.1):

(a) The Green function G is continuous on Ω̄× Ω̄, except at x = y.
(b) G has continuous first-order partial derivatives with respect to x, except at x = y,

in the neighborhood of which the following estimate holds:

(3.7) |DxG(x, y)| ≤ K|x− y|−1.

(c) G is symmetrical in x and y.
We now study the behavior of the function u given by (3.6). The quasi-Lipschitz

condition satisfied by the velocity reads:

Lemma 3.1. If ω ∈ L∞(Ω), then the two following inequalities hold for every x, x′ in Ω:

|u(x)| ≤ K‖ω‖∞,(3.8a)

|u(x)− u(x′)| ≤ K‖ω‖∞χ(|x− x′|),(3.8b)

where ‖ · ‖∞ is the L∞(Ω)-norm, K is a constant depending only on Ω, not the same at
each occurrence, and the function χ is:

χ(r) =

{
r(1− ln r), if r < 1,
1, if r ≥ 1.

Proof. The proof for (3.8a) is easy since:

|u(x)| =|
∫

Ω

curl G(x, y)ω(y) dy| ≤ ‖ω‖∞
∫

Ω

|curl xG(x, y)| dy

≤ ‖ω‖∞
∫

Ω

K

|x− y| dy < ∞;

here we used the property (3.7) of the Green function G.

1Conditions (3.2c) imply that ϕ = 0 at x2 = 0 and ϕ is constant at x2 = L2. Condition (3.2d) implies
that this constant vanishes.
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In order to prove (3.8b), we set r = |x− x′|. If r ≥ 1, then:

|u(x)− u(x′)| ≤ ‖ω‖∞
∫

Ω

|curl xG(x, y)− curl xG(x′, y)| dy

≤ K‖ω‖∞
{ ∫

Ω

1

|x− y| dy +

∫

Ω

1

|x′ − y| dy
}
≤ K‖ω‖∞.

(3.9)

If r < 1, we consider B = B(x, 2r) the ball centered at x of radius 2r and write:∫

Ω

|curl xG(x, y)− curl xG(x′, y)| dy =

∫

Ω∩B

|curl xG(x, y)− curl xG(x′, y)| dy

+

∫

Ω\B
|curl xG(x, y)− curl xG(x′, y)| dy.

(3.10)

For the first integral from (3.10), we use (3.7):∫

Ω∩B

|curl xG(x, y)− curl xG(x′, y)| dy ≤ K

∫

Ω∩B

{ 1

|x− y| +
1

|x′ − y|
}

dy

≤ K

∫

|x−y|≤2r

1

|x− y| dy + K

∫

|x′−y|≤3r

1

|x′ − y| dy

≤ K2r.

In order to estimate the second integral from (3.10), we choose a particular point x̄ =
x̄(xx′) on the segment xx′, such that:∫

Ω\B
|curl xG(x, y)− curl xG(x′, y)| dy =

∫

Ω\B
|x− x′||∇(xx′)curl xG(x̄, y)| dy

≤ rK

∫

Ω\B

1

|x̄− y|2 dy,

where ∇(xx′) is the derivative in the direction (x, x′). Since x̄ belongs to the segment xx′

we see that for y outside the ball B, |x̄− y| ≥ |x− y|/2 so the integral is bounded by:

4rK

∫

Ω\B

1

|x− y|2 dy ≤ 4rK

∫

2r≤|x−y|≤R

1

|x− y|2 dy ≤ 8πrK log(R/2r),

where R is the diameter of the domain Ω.
Gathering the above relations we find (3.8b). ¤
We need also to establish some regularity results for the function u given by (3.6). We

have:

Lemma 3.2. Let 0 < β < 1. If ω ∈ Cβ,0(QT ), then u ∈ C1+β′,0(QT ) for any β′ < β. If
ω ∈ Cβ,ε(QT ), then u ∈ C1+β′,ε′(QT ) for any β′ < β, ε′ < ε.

Proof. Since this result is a classical one, we do not give the proof here. For details, we
refer the interested reader to [7], [9] and the references herein. ¤
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We now need to study the existence of the fluid trajectories and their properties. Firstly,
we prove the following lemma:

Lemma 3.3. Let us consider the Cauchy problem in Rn:

dx

dt
= b(x, t),

x(0) = x0,
(3.11)

with b ∈ C(Rn × [0, T ]), uniformly bounded and satisfying the condition

(3.12) |b(x, t)− b(y, t)| ≤ K0χ(|x− y|),
where K0 is a positive constant independent of t and χ is the function defined above.

Then problem (3.11) has a unique solution x = x(t).

Proof. The proof makes use of the usual Picard iterative method. We define:

(3.13) xn(t) = x0 +

∫ t

0

b(xn−1(s), s) ds, x0(t) = x0.

One can check that, for all r > 0 and 0 < ε < 1,

(3.14) χ(r) ≤ (− ln ε)r + ε;

we then compute:

|xn(t)− xn−1(t)| = |
∫ t

0

b(xn−1(s), s)− b(xn−2(s), s) ds|

≤ K0

∫ t

0

χ(|xn−1(s)− xn−2(s)|) ds

≤ K0

∫ t

0

Lε|xn−1(s)− xn−2(s)| ds + K0εt,

(3.15)

where Lε = − ln ε, for ε < 1.
We iterate relation (3.15) and we obtain, for any 0 ≤ t ≤ T and n ≥ 2 that:

(3.16) |xn(t)− xn−1(t)| ≤ CTε

n−2∑

k=0

Kk
0 Lk

ε t
k

k!
+

tn−1Kn−1
0 Ln−1

ε

(n− 1)!
sup
t≤T

|x1(t)− x0|.

Since b is bounded, we have:

|x1(t)− x0| ≤ CT ;

here C is the bound of b, and in the sequel C is a constant depending on the domain but
not on the initial data, which can vary at different occurrences. Choosing ε = exp(−n)
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and a time T sufficiently small so that 1 − K0T > 1/2, (T < 1/2K0), we obtain (with
K0 ≤ C):

(3.17) |xn(t)− xn−1(t)| ≤ CT exp(−n/2) + Cn T nnn−1

(n− 1)!
.

Using the Stirling formula nn ≤ n! exp(Cn), we find:

(3.18) |xn(t)− xn−1(t)| ≤ CT exp(−n/2) + {CTeC}n;

finally, choosing T small enough (more exactly such that CTeC < 1, and taking into
account the assumption above, we find T < min(1/2K0, 1/CeC)) we see that |xn(t) −
xn−1(t)| is bounded by the terms of a convergent geometrical series. This means that
{xn(t)}n for 0 < t < T , is a uniformly convergent Cauchy sequence. The limit x = x(t) of
the sequence is a solution of equation (3.11). In the proof above the time T was imposed
small but it does not depend on the initial data x0, so the procedure can be iterated until
arriving at arbitrary large times.

The uniqueness of solutions is proven in a similar way. We consider two different
solutions x, y of equation (3.11) with the same initial data. We write the solutions x, y
in the integral form:

(3.19) y(t) = x0 +

∫ t

0

b(y(s), s) ds, x(t) = x0 +

∫ t

0

b(x(s), s) ds;

then the difference y(t)− x(t) satisfies:

|y(t)− x(t)| ≤
∫ t

0

|b(y(s), s)− b(x(s), s)| ds ≤ K0

∫ t

0

χ(|y(s)− x(s)|) ds

≤ K0Lε

∫ t

0

|y(s)− x(s)| ds + K0tε.

(3.20)

Applying the Gronwall lemma to the integral inequality (3.20), we find:

(3.21) |y(t)− x(t)| ≤ K0tε +
ε

K0L2
ε

eK0Lεt.

We take ε = e−n and find:

(3.22) |y(t)− x(t)| ≤ K0te
−n +

1

n
e−n+K0nt,

which implies that, for T chosen such that 1 −K0T > 0, |x(t) − y(t)| is arbitrary small
so |x(t)− y(t)| = 0 on the interval (0, T ). Since T chosen before does not depend on the
initial data, we can repeat the argument for arbitrary large times. This implies that the
solution is unique. ¤
Remark 3.1. Note that we can change t to −t and solve problem (3.11) on the interval
[−T, 0] if b is defined on the interval [−T, 0]. In fact this means that we can also solve
problem (3.11) backward in time.
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With the above lemma, we can now prove that equation (3.4) is satisfied:

Lemma 3.4. The differential equation (3.4) has a unique global solution x(t; y, s), existing
for 0 ≤ t ≤ T , for any initial condition x(s) = y, where 0 ≤ s ≤ T and y ∈ Ω.

Proof. The proof of this result is based on the previous lemma. Because of (3.8), the
property (3.12) is satisfied. The velocity u, given by (3.6), is a continuous function,
jointly in x and in t, by Lemma 3.2.

In order to conclude that equation (3.4) is satisfied, we need to prove that the trajec-
tories do not leave the domain because the velocity u is only acting inside the domain Ω.
Since u is periodic in the 0x1-direction, the problem appears only on the walls x2 = 0 and
x2 = L2.

Let us prove that if a trajectory touches the boundary, then it remains there.
We take a point x0 of the boundary, with x0,2 = 0. We consider the equation:

dx1

dt
= u1(x1(t), 0, t),

x1(s) = x0,1,
(3.23)

and we see that the pair (x1(t), 0) solves equation (3.4). Since the function u is in C1,0(QT ),
the equation has a unique solution, which does not leave the domain; if the trajectory
touches the boundary, it stays there. ¤
Lemma 3.5. Let x = x(t; y, s) be the solution of (3.4). Then x is continuously differen-
tiable as a function of the three variables. For s and t fixed, the function x is a one-to-one,
measure preserving map of the domain into itself, with:

x(t; x(s; y, t), s) = x(t; y, t) = y,

x(s; x(t; y, r), t) = x(s; y, r).
(3.24)

Proof. The properties follows from the theory of ordinary differential equations and from
the fact that div u = 0. The result is a classical one (also known as the Liouville theorem).

Note here that by x(t; y, s) with t < s we understand the trajectory backward in time,
which exists as we mentioned in Remark 3.1. ¤
Remark 3.2. The trajectories x(·) are periodic in x1, i.e. they satisfy the property:

x(t; y1 + L1, y2, s) = x(t; y1, y2, s) + (L1, 0).

Proof. Using the fact that u is periodic in x1, we see that x(t; y1, y2, s) + (L1, 0) verifies
equation (3.4) with initial condition x(s) = (y1 + L1, x2). The result follows from the
uniqueness of the solution. ¤

We also need to see in what sense the vorticity given by formula (3.5) is a solution of
equation (3.1). We prove the following result:
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Lemma 3.6. If ω0 ∈ C(Ω̄), curl f ∈ C(QT ), then ω is a weak solution of equation (3.1),
meaning that for every ψ ∈ C1(Ω̄) we have:

(3.25)
d

dt
(ω, ψ) = (curl f , ψ) + (ω,u · grad ψ).

Proof. From formula (3.5) we see that ω can be written as:

(3.26) ω(y, t) = ω0(x(0; y, t)) +

∫ t

0

curl f(x(t′; y, t), t′) dt′.

We write ω = ω1 + ω2 where ω1 and ω2 are respectively the first and the second term in
the right-hand side of (3.26). We have, using Lemma 3.5:

(3.27) (ω1, ψ) =

∫

Ω

ω0(x(0; y′, t))ψ(y′) dy′ =
∫

Ω

ω0(y)ψ(x(t; y, 0)) dy,

where we performed the change of variable y′ = x(t; y, 0). Taking the derivative in time
of (3.27), which is legitimate, we find:

d

dt
(ω1, ψ) =

∫

Ω

ω0(y)
d

dt
ψ(x(t; y, 0)) dy

=

∫

Ω

ω0(y)gradψ(x(t; y, 0)) · u(x(t; y, 0), t) dy

=

∫

Ω

ω0(x(0; y′, t))gradψ(y′) · u(y′, t) dy′ = (ω1, u · grad ψ),

(3.28)

where on the last line we used the change of variable y = x(0; y′, t).
For the term in ω2 we write:

(3.29)

(ω2, ψ) =

∫ t

0

∫

Ω

curl f(x(t′, y′, t), t′)ψ(y′) dy′ dt′ =
∫ t

0

∫

Ω

curl f(y, t′)ψ(x(t; y, t′)) dy dt′.

Taking the derivative in time of (3.29), we find in the same way as before, that:

d

dt
(ω2, ψ) =

∫

Ω

curl f(y, t)ψ(y) dy

+

∫ t

0

∫

Ω

curl f(y, t′)grad ψ(x(t; y, t′)) · u(x(t; y, t′), t′) dy dt′

=(curl f , ψ) + (ω2,u · grad ψ).

(3.30)

By gathering the results above, we find that ω is indeed a weak solution of equation
(3.1). ¤



EULER EQUATION IN A CHANNEL 11

3.2. A priori estimates. In this section we are interested in deducing some a priori
estimates for the velocity, the trajectories and the vorticity, in order to prove that we can
apply the fixed point theorem to the function Λ defined by (3.3).

The estimates for the velocity were already given in (3.8).
For the trajectories, we have the following estimates:

Lemma 3.7. Let x = x(t; y, s) be the solution of equation (3.4). Then the following
estimate holds for |y1 − y2| ≤ 1, |t1 − t2| ≤ 1, |s1 − s2| ≤ 1:

(3.31) |x(t1; y1, s1)− x(t2; y2, s2)| ≤ C5(ω
0)(|t1 − t2|δ + |y1 − y2|δ + |s1 − s2|δ),

for a constant δ less than 1, which depends on the L∞(QT ) norm of ω0.

Proof. (i) We start by deriving the Hölder estimates in space. Let us consider two arbitrary
points y1 and y2 and the corresponding trajectories x(t; y1, s) and x(t; y2, s). Setting
z(t) = x(t; y1, s)− x(t; y2, s), z satisfies the equation:

dz

dt
= u(x(t; y1, s), t)− u(x(t; y2, s), t),

z(s) = y1 − y2.
(3.32)

We assume that |y1 − y2| < 1, which means |z(s)| < 1. Then, there exists a maximal
subinterval I in [0, T ] containing s such that |z(t)| < 1 for all t ∈ I. Since z is a continuous
function, the interval I is open.

From (3.32) one can deduce, using (3.8b):
∣∣∣dz

dt

∣∣∣ = |u(x(t; y1, s), t)− u(x(t; y2, s), t)|
≤ K‖ω0‖∞χ(|x(t; y1, s)− x(t; y2, s)|)
= C1χ(|z(t)|),

(3.33)

where C1 = K‖ω0‖∞. We also have

(3.34)
d

dt
|z(t)| ≤ C1χ(|z(t)|),

since by Stampacchia’s Theorem (see e.g. [6]) we know that:

(3.35)
∣∣∣d|z(t)|

dt

∣∣∣ =
∣∣∣dz(t)

dt

∣∣∣ a.e..

In view of Lemma 3.8 below, we need the solution of the following ordinary differential
equation:

dm

dt
= C1m(1− ln m),

m(s) = |y1 − y2|,
(3.36)

which is found to be m(t) = e1−eC1(s−t)|y1 − y2|eC1(s−t)
.
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We can apply Lemma 3.8 below as long as m(t) < 1 and we obtain:

(3.37) |z(t)| ≤ e1−eC1(s−t) |y1 − y2|eC1(s−t) ≤ e|y1 − y2|eC1(s−t)

< 1, for 0 < s, t < T,

if |y1 − y2| < e−eC1T
< 1.

The interval I coincides with [0, T ]. Indeed, if I = (t0, t1) with 0 ≤ t0 < t1 < T is the
maximal interval containing s on which |z(t)| < 1, then by the continuity of the solution,
we have:

(3.38) |z(t1)| ≤ e1−e−C1T |y1 − y2|e−|s−t1|C1 < 1.

This contradicts the maximality of the interval I.
Finally the restriction |y1−y2| < e−eC1T

< 1 can be removed by increasing the constant

C5 and thus (3.31) is valid for t1 = t2, s1 = s2, |y1 − y2| ≤ 1, and δ = e−KT‖ω0‖∞ .
(ii) We need to estimate the trajectories in t. Let us consider two arbitrary points t1

and t2 and the corresponding trajectories x(t1; y, s) and x(t2; y, s). Taking the difference
between these functions, we find:

|x(t1; y, s)− x(t2; y, s)| = |
∫ t1

s

u(x(r; y, s), r) dr −
∫ t2

s

u(x(r; y, s), r) dr|

= |
∫ t2

t1

u(x(r; y, s), r) dr|

≤ ‖u‖∞|t1 − t2| ≤ K‖ω0‖∞|t1 − t2|,

(3.39)

where we used (3.8a) for the last inequality.
(iii) It now remains to estimate the trajectories in s. As before, let us consider two

arbitrary instants of time s1 and s2 and the corresponding trajectories x(t; y, s1) and
x(t; y, s2). We set a = x(t; y, s1), b = x(t; y, s2) and c = x(s1; y, s2). Then, by Lemma 3.5,
we also know that b = x(t; c, s1), and we find:

(3.40) |a− b| = |x(t; y, s1)− x(t; y, s2)| = |x(t; y, s1)− x(t; c, s1)| ≤ C3(ω
0)|y − c|δ,

where for the last inequality we used (3.37) obtained at point (i); δ = e−C1T .
Using now (3.39) from point (ii), we compute:

(3.41) |y − c| = |x(s2; y, s2)− x(s1; y, s2)| ≤ C2(ω
0)|s2 − s1|.

Equations (3.40) and (3.41) lead to:

(3.42) |x(t; y, s1)− x(t; y, s2)| ≤ C4(ω
0)|s1 − s2|δ,

where δ = e−C1T .
Taking into account (i), (ii) and (iii), we obtain:

(3.43) |x(t1; y1, s1)− x(t2; y2, s2)| ≤ C5(ω
0)(|t1 − t2|δ + |y1 − y2|δ + |s1 − s2|δ),

which proves the Lemma. ¤
In the proof above, we used the following result borrowed from [9] (see Appendix 2.1):
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Lemma 3.8. Let u ∈ C([0, T ];R+) and let ϕ ∈ C(R+,R+) be a nondecreasing function,
such that:

(3.44) u(t) ≤ u(0) +

∫ t

0

ϕ(u(s)) ds, t ≤ T,

and let v = v(t) be the solution of the initial value problem:

d

dt
v = ϕ(v),

v(0) = u(0).
(3.45)

Then:

(3.46) u(t) ≤ v(t) for any t ∈ [0, T ].

It remains to estimate the vorticity. For the vorticity, the following result holds:

Lemma 3.9. If ω1 = Λ(ω0), ω0 ∈ Cα(Ω̄), f ∈ C1+α,0(QT ), then the following inequalities
hold:

(3.47) |ω1(x, t)| ≤ ‖ω0‖∞ + T‖curl f‖∞,

(3.48) |ω1(x1, t1)− ω1(x2, t2)| ≤ C6(‖ω0‖∞)(|x1 − x2|δ′ + |t1 − t2|δ′),
for |x1 − x2| ≤ 1, |t1 − t2| ≤ 1, where δ′ = αδ, and δ is the same as in Lemma 3.7.

Proof. Let us consider two points x1 and x2 and the corresponding trajectories x(t; x1, s)
and x(t; x2, s). We find:

|ω1(x1, t)− ω1(x2, t)| ≤|ω0(x(0; x1, t))− ω0(x(0; x2, t))|

+

∫ t

0

|curl f(x(t′; x1, t), t
′)− curl f(x(t′; x2, t), t

′)| dt′.
(3.49)

Since ω0 ∈ Cα(Ω̄), we can estimate the first term of (3.49) as:

|ω0(x(0; x1, t))− ω0(x(0; x2, t))| ≤ Hα
x (ω0)|x(0; x1, t)− x(0; x2, t)|α

≤ Hα
x (ω0)C5(ω

0)|x1 − x2|δα,
(3.50)

where in the last inequality we made use of Lemma 3.7.
For the second term we use the fact that curl f ∈ Cα,0(QT ) and find:

∫ t

0

|curl f(x(t′; x1, t), t
′)− curl f(x(t′; x2, t), t

′)| dt′

≤
∫ t

0

Hα
x (curl f)|x(t′; x1, t)− x(t′; x2, t)|α dt′ ≤ Hα

x (curl f)|x1 − x2|αδT.

(3.51)

We then have, with the same δ as in Lemma 3.7:

(3.52) |ω1(x1, t)− ω1(x2, t)| ≤ C(|ω0|α, ‖ω0‖∞, |curl f |α, T )|x1 − x2|αδ.
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We also need to derive Hölder estimates in time. Let us consider two arbitrary instants
of time t1 and t2. We write:

|ω1(y, t1)− ω1(y, t2)| ≤ I1 + I2,(3.53)

where

(3.54) I1 = |ω0(x(0; y, t1))− ω0(x(0; y, t2))|,
and

(3.55) I2 = |
∫ t1

0

curl f(x(t′; y, t1), t
′) dt′ −

∫ t2

0

curl f(x(t′; y, t2), t
′) dt′|.

Using Lemma 3.7 and ω0 ∈ Cα(Ω̄), the term I1 can be bounded as follows:

I1 ≤ Hα
x (ω0)|x(0; y, t1)− x(0; y, t2)|α

≤ Hα
x (ω0)C5(ω

0)|t1 − t2|αδ.
(3.56)

Assuming t1 < t2, the term I2 is also estimated as:

I2 ≤
∫ t1

0

|curl f(x(t′; y, t1), t
′)− curl f(x(t′; y, t2), t

′)| dt′

+

∫ t2

t1

|curl f(x(t′; y, t2), t
′)| dt′

≤Hα
x (curl f)

∫ t1

0

|x(t′; y, t1)− x(t′; y, t2)|α dt′ + ‖curl f‖∞(t2 − t1)

≤with(3.31) ≤ C(‖ω0‖∞, |curl f |α,0) |t1 − t2|αδ.

(3.57)

Gathering the estimates for I1 and I2, we find:

(3.58) |ω1(y, t1)− ω1(y, t2)| ≤ C(‖ω0‖∞, |ω0|α, |curl f |α,0)|t1 − t2|αδ,

and we set δ′ = αδ.
The lemma follows from (3.52) and (3.58). ¤

3.3. Application of the fixed point theorem. It follows from (3.47) that:

(3.59) ‖ω1‖∞ ≤ ‖ω0‖∞ + T‖curl f‖∞ = M.

We define S as the subset of C(QT ) consisting of the functions ω satisfying ‖ω‖∞ ≤ M
and

(3.60) |ω(x1, t1)− ω(x2, t2)| ≤ C(M)(|t1 − t2|δ′′ + |x1 − x2|δ′′),
when |x1 − x2| ≤ 1, |t1 − t2| ≤ 1; δ′′ was obtained by replacing ‖ω0‖∞ by M in the
definition of δ′ and C(M) was obtained by the same manner from (3.48).

The set S is a convex compact subset of C(QT ) and the function Λ defined by (3.3)
maps the set S into itself.

In order to apply the the Schauder fixed point theorem, we observe the following:
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Lemma 3.10. The function Λ is continuous on S for the topology of C(QT ).

Proof. Consider a sequence ω0
n, n ∈ N and ω0, all belonging to S and assume that ω0

n

converges to ω0 in the topology of C(QT ). Lemma 3.1 implies that the corresponding un

converge to u in the topology of C(QT ).
We need to study the behavior of the trajectories corresponding respectively to un and

u. We write, assuming s < t:

|xn(t; y, s)− x(t; y, s)| ≤
∫ t

s

|un(xn(t′; y, s), t′)− u(x(t′; y, s), t′)| dt′

≤
∫ t

s

|un(xn(t′; y, s), t′)− un(x(t′; y, s), t′)| dt′

+

∫ t

s

|un(x(t′; y, s), t′)− u(x(t′; y, s), t′)| dt′.

(3.61)

For the last term in the right hand side of (3.61), we write:

(3.62)

∫ t

s

|un(x(t′; y, s), t′)− u(x(t′; y, s), t′)| dt′ ≤ T‖un − u‖∞.

Using (3.8) in the term J =
∫ t

s
|un(xn(t′; y, s), t′)− un(x(t′; y, s), t′)| dt′, we obtain:

(3.63) J ≤ K‖ω0
n‖∞

∫ t

s

χ(|xn(t′; y, s)− x(t′; y, s)|) dt′.

Using (3.14), we obtain an estimate similar to (3.15):

(3.64) |xn(t; y, s)− x(t; y, s)| ≤ T (‖un − u‖∞ + C ′ε)
eC′LεT

C ′Lε

,

where C ′ is a constant depending only on ‖ω0‖∞.
Taking the limit when n → 0, we find:

lim
n→∞

sup
t,y,s

|xn(t; y, s)− x(t; y, s)| ≤ C
ε1−C′T

Lε

, ∀ ε > 0.

For T small enough (T < C ′−1), this quantity is arbitrary small, so that, for n →∞
(3.65) |xn(t; y, s)− x(t; y, s)| → 0,

uniformly in t, y and s. The argument can be extended for arbitrary large times because
C ′ depends only on the L∞ norm of ω0.

Since ω1
n = Λ(ω0

n) and ω1 = Λ(ω0), we find by (3.5) that ω1
n converges to ω1 in the

topology of C(QT ). ¤
We can now apply the Schauder fixed point theorem, and conclude that there exists a

unique fixed point ω ∈ S of Λ, Λ(ω) = ω.
Since ω ∈ Cδ′′(QT ), we apply Lemma 3.2 and obtain u ∈ C1+ε,ε(Ω×[0, T ]) for 0 < ε < δ′′.
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Moreover, the following result holds true:

Lemma 3.11. The derivative in time of the velocity u exists and belongs to C(QT ).

Proof. By the definition of u we have:

(3.66) u(t, x) =

∫

Ω

curl G(x, y)ω(y) dy.

For the convenience of notation we set G(ω) =
∫
Ω

G(x, y)ω(y) dy; u = curl G(ω).
For a function ψ ∈ C2(Ω), ψ periodic in x1, we have:

(3.67) (u, ψ) = (curl G(ω), ψ) = (G(ω), curl ψ) = (ω,G(curl ψ)).

Taking the time derivative of (3.67) and using Lemma 3.6, we find:

Dt(u, ψ) = Dt(ω,G(curl ψ)) = (curl f ,G(curl ψ)) + (ω,u · gradG(curl ψ))

= (curl G(curl f), ψ) + (ω,u · gradG(curl ψ)).
(3.68)

It remains to estimate the second term from the right hand side of (3.68):

(3.69) (ω,u · gradG(curl ψ)) = (uω, gradG(curl ψ)) = −(curl G(div (uω)), ψ),

where by G(div f) we understand the function which, for f ∈ C1(Ω), gives:

(3.70) G(div f)(x) = −
∫

Ω

gradyG(x, y) · f(y) dy.

For the details regarding the validity of the last relation in (3.69), we refer the interested
reader to [7] and the references herein.

We thus find:

(3.71) Dtu = curl G(div (uω)) + curl G(curl f),

and the right-hand-side of (3.71) belongs to C(QT ). ¤
We also need to prove the existence of the pressure. This result is given by the following

Lemma:

Lemma 3.12. There exists a scalar function p ∈ C1,0(QT ) such that (u, p) is solution of
equation (2.1).

Proof. For a function θ ∈ C1(Ω), θ periodic in x1 with θ = 0 at x2 = 0 and x2 = L2, we
write, using (3.25):

Dt(u, curl θ) = Dt(curl u, θ) = (curl f , θ) + (ω,u · grad θ)

= (f , curl θ)− ((u · grad)u, curl θ),
(3.72)

which can be also written as:

(3.73) (Dtu + (u · grad)u− f , curl θ) = 0.
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We obtain, by the Hopf theorem, that there exists a function p ∈ C1,0(Ω) such that:

(3.74) Dtu + (u · grad)u + grad p = f .

¤
As we announced in Theorem 2.1, the solution (u, p) is unique. The proof of the

uniqueness is classical, one can chose two different solutions and taking the difference
between them, prove that the difference vanishes.

4. Euler equation in a 3D channel

As we already mentioned at the beginning of this article, in this section we prove
the existence and uniqueness of solution for the Euler equations in a three dimensional
channel. The proof extends the approach of Temam [12].

The Euler equation in a 3D channel Ω∞ = R2 × (0, L3) reads:

∂u

∂t
+ (u · ∇)u + grad p = f ,(4.1a)

div u = 0,(4.1b)

where u = (u1, u2, u3) is the velocity of the fluid and p is the pressure. As for the 2D
case, we also consider Ω = (0, L1) × (0, L2) × (0, L3), where L1, L2 are respectively the
periods in the 0x1 and 0x2 directions.

We supplement the system (4.1) with the following boundary conditions:

u · n = 0 on Γ3 = {x3 = 0, x3 = L3},
and the functions are periodic in x1 and x2,

(4.2)

where n is the outward normal on Γ3.

Remark 4.1. As for the 2D case, we can suppose that the horizontal velocity is of average
zero. However, taking into account the method adopted here, this does not represent a
simplification, and this hypothesis is not made here. See a different situation in [10].

We introduce here the following function spaces:

Xm ={v ∈ (Hm(Ω))3; div v = 0, v · n = 0 on Γ3,

∂jv

∂xj
i

∣∣∣
xi=0

=
∂jv

∂xj
i

∣∣∣
xi=Li

for i = 1, 2, j = 1, .., m},(4.3)

(4.4) Hm = {v ∈ (Hm(Ω))3;
∂jv

∂xj
i

∣∣∣
xi=0

=
∂jv

∂xj
i

∣∣∣
xi=Li

for i = 1, 2, j = 1, ..,m},

where m is a positive number.
The spaces Xm and Hm are endowed with the usual norm on Hm, denoted here by

‖ · ‖m. We recall that if m > 3/2 then Hm is an algebra for the pointwise multiplication
of functions.
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The main result of this section is:

Theorem 4.1. Let L1, L2, L3, T be given positive and arbitrary, and let Ω = (0, L1) ×
(0, L2)× (0, L3). For m > 5/2, let u0 be in Xm and f in L2(0, t; Hm). Then there exists
T? depending on the initial data, T? ≤ T , and there exists a unique solution u and p of
problem (4.1) such that:

u ∈ L∞(0, T?; Xm), p ∈ L∞(0, T?; Hm+1).

Remark 4.2. Theorem 4.1 is in fact valid in any space dimension, taking m > 1 + N/2,
where N is the dimension of the space.

The proof of existence of solutions stated in Theorem 4.1 is based on a priori estimates.
It is useful to express the pressure p in terms of u, the result needed is given by the
following Lemma:

Lemma 4.1. If u and p satisfy (4.1), then:

∆p = div f −
∑
i,j

DiujDjui,(4.5a)

∂p

∂n
= f · n on Γ3,(4.5b)

p periodic in x1 and x2.(4.5c)

Proof. Equation (4.5) is immediately obtained by applying the divergence operator to
both sides of (4.5a) and taking the scalar product of (4.5a) with n on Γ3. ¤

We can then estimate the pressure p in terms of u:

Lemma 4.2. If u and p satisfy (4.1), then for m > 5/2 the following estimate holds:

(4.6) ‖gradp(t)‖m ≤ c1{‖f(t)‖m + ‖u(t)‖2
m},

where c1 is a constant depending only on m and Ω.

Proof. By classical regularity results for elliptic problems, we have:

(4.7) ‖gradp(t)‖m ≤ c0{‖div f −
∑
i,j

DiujDjui‖m−1 + ‖f · n‖m−1/2,Γ3}.

We need to estimate ‖∑
i,j DiujDjui‖m−1. Since m > 5/2, Hm−1(Ω) is an algebra, and:

(4.8) ‖DiujDjui‖m−1 ≤ c2‖Diuj‖m−1‖Djui‖m−1,

and this leads to:

(4.9) ‖
∑
i,j

DiujDjui‖m−1 ≤ c′2‖u‖2
m.

Using the trace theorem, we also have:

(4.10) ‖f · n‖m−1/2,Γ3 ≤ ‖f‖m.
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Estimate (4.6) then follows. ¤
We now derive the necessary estimates for the velocity.

A priori estimates for the velocity:

Let α be a multi-index, α = (α1, α2, α3), αi ∈ R, with |α| ≤ m, where |α| = α1+α2+α3.
We apply the operator Dα on each side of (4.1a). We then multiply the resulting equation
by Dαu, integrate over Ω and add these equations for |α| ≤ m. We find:

(4.11)
1

2

d

dt
‖u‖2

m = −
3∑

j=1

((uj
u

xj

,u))m − ((gradp,u))m + ((f ,u))m.

For the last term of (4.11), we have:

((f ,u))m ≤ ‖f‖m‖u‖m.

For the second term from the right hand side of (4.11), we use (4.6) and we find:

(4.12) ((gradp,u))m ≤ ‖gradp‖m‖u‖m ≤ c1{‖f‖m + ‖u‖2
m}‖u‖m.

It now remains to estimate the first term from the right hand side of (4.11). We set
ψ =

∑
j uj∂u/∂xj and we write:

(4.13) (((u · ∇)u,u))m =
∑

|α|≤m

(Dαφ, Dαu).

Applying the Leibnitz rule for φ, we find:

(4.14) Dαψ = (u · grad)Dαu +
∑

0<β≤α

cα,β(Dβu · grad)Dα−βu.

The contribution of the first term from (4.14) is zero, since u ∈ Xm.
It remains to estimate the second term from (4.14):

|
∑

0<β≤α

cα,β((Dβu · grad)Dα−βu, Dαu)|

≤
∑

0<α≤β

|cα,β||(Dβu · grad)Dα−βu|L2|Dαu|L2 .
(4.15)

We will show that:

(4.16) |(Dβu · grad)Dα−βu|L2 ≤ c‖u‖2
m.

We set g = Dβui and h = DiD
α−βuj and we need to bound |gh|L2 . We will use the

Sobolev embeddings Hm(Ω) ⊂ Lr(Ω), where 1/r = 1/2 −m/3 if m < 3/2, 1 ≤ r < ∞
arbitrary if m = 3/2 and r = ∞ if m > 3/2.

We have:

(4.17) g ∈ Hm−|β|(Ω) ⊂ Lp(Ω), |g|Lp ≤ c‖g‖m−|β| ≤ c‖u‖m,
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and

(4.18) h ∈ Hm−|α|+|β|−1(Ω) ⊂ Lq(Ω), |h|Lq ≤ c‖h‖m−|α|+|β|−1 ≤ c‖u‖m,

where p and q are given by the Sobolev inclusion theorems.
If p or q is infinite (we take for example p = ∞, since the case q = ∞ is similar), then:

|gh|L2 ≤ |g|L∞|h|L2 ≤ c‖u‖m|h|L2 ≤ c‖u‖2
m.

If |β| = m− 3/2, then p ≥ 1 is arbitrary. On the other hand,

m− |α|+ |β| − 1 = 2m− |α| − 5/2 ≥ m− 5/2 > 0,

so q > 2 from the Sobolev embedding. Choosing p such that 1/2 = 1/p + 1/q, we write:

|gh|L2 ≤ |g|Lp|h|Lq ≤ c‖u‖2
m.

We apply the same reasoning for the case m − |α| + |β| − 1 = 3/2, and we obtain
|gh|L2 ≤ c‖u‖2

m.
The last case we need to consider is when both p and q are finite and given by:

1

p
=

1

2
− m− |β|

3
,

1

q
=

1

2
− m− |α|+ |β| − 1

3
.

We then have 1/p + 1/q ≤ 1/2, since m ≥ 5/2 and |α| ≤ m. We can apply the Hölder
inequality and find again |gh|L2 ≤ c‖u‖2

m.
At this point we can conclude that:

(4.19) (((u · ∇)u,u))m ≤ c‖u‖3
m.

Returning now to (4.11), we obtain the following a priori estimate:

(4.20)
1

2

d

dt
‖u‖2

m ≤ c′1‖u‖3
m + c′2‖f‖m‖u‖m,

which implies that there exists a time T? with T? ≤ T , depending on ‖u0‖m and ‖f‖ such
that:

(4.21) ‖u‖2
m ≤ 2‖u0‖2

m, ∀ t ≤ T?.

The proof of the existence of solution is obtained by classical methods (Galerkin
method), following the same arguments as in [12]. As observed in [13], we need a regular-
ity result for the spectral Galerkin functions and this regularity result can be proved by
the methods used by Ghidaglia, see [5], as for the bounded case. The uniqueness of the
solution is standard.

Remark 4.3. The a priori estimate proved above can be improved by noticing that the
time T? depends only on the norm H3 of u0 but not on the higher norm Hm of the
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initial data u0. The new estimate leads us to the existence of C∞ solution for the Euler
equations. The main point in the proof is to use the following inequalities,

|fg|L2(Ω) ≤ c1|f |H2(Ω)|g|L2(Ω),

|fg|L2(Ω) ≤ c1|f |H1(Ω)|g|H1(Ω),
(4.22)

so that we obtain, instead of (4.19), the following estimate:

(4.23) (((u · ∇)u,u))m ≤ c{‖u‖2
m‖u‖3 + ‖u‖m‖u‖2

m−1}.
For more details we refer the interested reader to [11].

5. Appendix: Properties of the Green function for a 2D channel

In order to prove the existence of solutions for the Euler equation, we must prove the
properties of the Green function, as stated in Theorem 5.1 below. We know that the
Green function depends on the form of the domain. In our case, as we will see, the Green
function can be written in terms of a series of trigonometric functions in x1 and x2.

The Green function for the channel is the solution G = G(x, y) of the following system:

∆G = δ(x− y) in Ω,

G is periodic in the 0x1 direction,

G = 0 at x2 = 0 and x2 = L2,

(5.1)

where the Laplacian ∆ operates in the x variable and y ∈ Ω is fixed, δ is the Dirac
function on Ω.

We will express the solution in terms of a series of spectral functions corresponding to
the eigenvalue problem:

∆G + λG = 0 in Ω,

G is periodic in the 0x1 direction,

G = 0 at x2 = 0 and x2 = L2.

(5.2)

We classically solve (5.2) by separation of variables meaning that, for y fixed, we look
for G = G(x1, x2) = X(x1)Y (x2); we find that there exist a constant κ such that:

X ′′ + (λ− κ2)X = 0,

X(0) = X(L1), X ′(0) = X ′(L1),
(5.3)

and

Y ′′ + κ2Y = 0,

Y (0) = Y (L2) = 0.
(5.4)

The well–known solutions of (5.3) and (5.4) read:

(5.5) X(x1) = M sin
(2mπ

L1

x1

)
+ N cos

(2mπ

L1

x1

)
, with m ≥ 0,
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and

(5.6) Y (x2) = P sin(
nπx2

L2

) with n ≥ 1;

as usual κ2 = (nπ/L2)
2 and λ from relation (5.3) is:

(5.7) λ = λm,n =
(2mπ

L1

)2
+

(nπ

L2

)2
, where m ≥ 0, n ≥ 1.

From the computations above, we deduce that the eigenfunctions corresponding to the
eigenvalue problem (5.2) are:

(5.8) φm,n(x) = sin
(2mπx1

L1

)
sin

(nπx2

L2

)
, m ≥ 1, n ≥ 1,

and

(5.9) φ̃m,n(x) = cos
(2mπx1

L1

)
sin

(nπx2

L2

)
, m ≥ 0, n ≥ 1.

We then expand G in terms of these eigenfunctions:

(5.10) G(x, y) =
∞∑

m=1

∞∑
n=1

am,n(y1, y2)φm,n(x1, x2) +
∞∑

m=0

∞∑
n=1

bm,n(y1, y2)φ̃m,n(x1, x2).

The Dirac function δ(x− y) = δ(x1 − y1)⊗ δ(x2 − y2) is also expanded as:

(5.11) δ(x− y) =
∞∑

m=1

∞∑
n=1

cm,n(y1, y2)φm,n(x1, x2) +
∞∑

m=0

∞∑
n=1

dm,n(y1, y2)φ̃m,n(x1, x2),

these series converging in the space of distributions (or measures). The cm,n and dm,n are
computed as follows:

(5.12) cm,n =
(δ, φm,n)

(φm,n, φm,n)
=

φm,n

(φm,n, φm,n)
, dm,n =

φ̃m,n

(φ̃m,n, φ̃m,n)
.

By elementary computations we find:

(φm,n, φm,n) =
L1L2

4
,

(φ̃m,n, φ̃m,n) =
L1L2

4
when m > 0 and (φ̃m,n, φ̃m,n) =

L1L2

2
when m = 0.

(5.13)

We now substitute these expressions of G and δ in the first equation (5.1) and identify

the coefficients (using the fact that ∆φm,n = λm,nφm,n and ∆φ̃m,n = λm,nφ̃m,n). We find:

am,n(y1, y2) =
1

λm,n

cm,n(y1, y2) =
1

λm,n

φm,n(y1, y2),(5.14a)

bm,n(y1, y2) =
1

λm,n

dm,n(y1, y2) =
1

λm,n

φ̃m,n(y1, y2).(5.14b)
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Introducing these coefficients in (5.10), we obtain the following expansion of the Green
function G:

(5.15) G(x, y) =
∞∑

m=0

∞∑
n=1

εm
4

L1L2

1

λm,n

cos
(2mπ

L1

(x1 − y1)
)
sin

(nπx2

L2

)
sin

(nπy2

L2

)
,

where we define εm as being equal to 1 when m ≥ 1 and to 1/2 when m = 0. From (5.15)
we notice that the function G is symmetrical in x and y. The double series in(5.15), is
convergent in the classical sense for x1 6= y1 and x2 6= y2. To prove the convergence of the
double series, we use a lemma of Hardy (see for example [2]), which we now recall:

Lemma 5.1. If in a double series
∑

αm,n the partial sums sm,n is bounded in absolute
value by a constant C for all values of m and n, the double series

∑
αm,num,n converges,

provided that the expressions

um,n − um+1,n, um,n − um,n+1, um,n − um+1,n − um,n+1 + um+1,n+1,

are all positive and that um,n tends to zero as either m or n tends to ∞.

We apply Lemma 5.1 with:

αm,n = εm cos
(2mπ

L1

(x1 − y1)
)
sin

(nπx2

L2

)
sin

(nπy2

L2

)
,

um,n =
1

λm,n

.

One can easily check that the assumptions on um,n are satisfied. For αm,n we can also
see that:

∣∣∣
m2, n2∑

m=m1, n=n1

εm cos
(2mπ

L1

(x1 − y1)
)
sin

(nπx2

L2

)
sin

(nπy2

L2

)∣∣∣

=
∣∣∣

m2∑
m=m1

εm cos
(2mπ

L1

(x1 − y1)
)∣∣∣

∣∣∣
n2∑

n=n1

sin
(nπx2

L2

)
sin

(nπy2

L2

)∣∣∣ ≤ C,

(5.16)

since
∑m2

m=m1
εm cos

(
2mπ(x1−y1)/L1

)
and

∑n2

n=n1
sin

(
nπx2/L2

)
sin

(
nπy2/L2

)
are bounded

for all m1, m2, n1, n2, if x 6= y. In fact, by classical trigonometrical computations, we
recall that, for example, for m1 ≥ 1 we have:

m2∑
m=m1

cos
(2mπ

L1

(x1 − y1)
)

=
sin

( π

L1

(m2 −m1 + 1)(x1 − y1)
)

sin
( π

L1

(x1 − y1)
) cos

( π

L1

(m1 + m2)(x1 − y1)
)
,

so, for x1 6= y1 we have:

(5.17)
∣∣

m2∑
m=m1

cos
(2mπ

L1

(x1 − y1)
)∣∣ ≤ 1

sin
( π

L1

(x1 − y1)
) .
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By the same kind of reasoning, we find a bound for
∑n2

n=n1
sin

(
nπx2/L2

)
sin

(
nπy2/L2

)
.

We now have this expression of G and we need to determine the properties of the Green
function in a channel, as stated in Theorem 5.1.

We write the Green function (5.15) as:

G(x, y) =
∞∑

m=0

∞∑
n=1

εm
4

L1L2

(

∫ ∞

0

e−λm,ns ds)

cos
(2mπ

L1

(x1 − y1)
)
sin

(nπx2

L2

)
sin

(nπy2

L2

)

=

∫ ∞

0

θ1(x1, y1, s)θ2(x2, y2, s) ds,

(5.18)

where we used the expression (5.7) of λm,n and where we have set:

(5.19) θ1(x1, y1, s) =
2

L1

∞∑
m=0

εm cos
(2mπ

L1

(x1 − y1)
)
e−(2mπ/L1)2s,

(5.20) θ2(x2, y2, s) =
2

L2

∞∑
n=1

sin
(nπx2

L2

)
sin

(nπy2

L2

)
e−(nπ/L2)2s.

We will need below alternative expressions of θ1 and θ2. For θ1 we write:

θ1(x1, y1, s) =
2

L1

∞∑
m=0

εm cos
2mπ(x1 − y1)

L1

exp
{− (2mπ

L1

)2
s
}

=
1

L1

∞∑
m=−∞

cos
2mπ(x1 − y1)

L1

exp
{− (2mπ

L1

)2
s
}

=
1

2L1

∞∑
m=−∞

exp
{2mπi

L1

(x1 − y1)−
(2mπ

L1

)2
s
}

=
1

4(πs)1/2

∞∑
p=−∞

exp
{
− (x1 − y1 − pL1)

2

4s

}
.

(5.21)

On the last line we used as argument the Jacobi imaginary transformation, since the
function θ1(x1, y1, s) is an elliptic theta-function. We recall that the Jacobi imaginary
transformation relates elliptic functions to other elliptic functions of the same type but
having different arguments. In our case we used the fact that, by the Jacobi imaginary
transform, the Jacobi theta function

ν(z, r) =
∞∑

n=−∞
eiπrn2

e2nπiz, with z ∈ C,
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becomes:

ν(z, r) = (−ir)−1/2eir′z2/πν(zr′, r′), where r′ = 1/r′.

For more details regarding the elliptic theta-functions and the Jacobi imaginary transfor-
mation, we refer the interested reader to Whittaker and Watson [15] (pp. 474-476 and
505).

For θ2 we similarly obtain that:

θ2(x2, y2, s) =
2

L2

∞∑
n=1

sin
nπx2

L2

sin
nπy2

L2

exp
{
− (nπ

L2

)2
s
}

=
1

2(πs)1/2

∞∑
p=−∞

[
exp

{
− (x2 − y2 − 2pL2)

2

4s

}
− exp

{
− (x2 + y2 − 2pL2)

2

4s

}]
.

(5.22)

We need to study the behavior of the Green function G, when ρ = |x − y| → 0. We
split the integral in (5.18) into two integrals:

(5.23) G(x, y) = G(1)(x, y) + G(2)(x, y),

where

(5.24) G(1)(x, y) =

∫ 1

0

θ1(x1, y1, s)θ2(x2, y2, s) ds,

and

(5.25) G(2)(x, y) =

∫ ∞

1

θ1(x1, y1, s)θ2(x2, y2, s) ds.

Using the expressions (5.19) and (5.20) of θ1, θ2, the term G(2) is bounded by:

|G(2)| ≤
∣∣∣
∞∑

m=0

∞∑
n=1

εm
4

L1L2

∫ ∞

1

eλm,ns ds cos
2mπ

L1

(x1 − y1) sin
nπx2

L2

sin
nπy2

L2

∣∣∣

≤
∞∑

m=0

∞∑
n=1

4

L1L2

exp{−(
2mπ
L1

)2 − (
nπ
L1

)2}
(

2mπ
L1

)2
+

(
nπ
L1

)2 ,

(5.26)

and the series from the right hand side of (5.26) is absolutely convergent.
It remains to study the behavior of G(1). It appears from (5.21) that θ1 is a periodic

function of x1 − y1 (and thus of x1 and y1) of period L1. We want to study the behavior
on a period which we choose for convenience to be (−L1/2, L1/2), and using (5.21) we
write:

(5.27) θ1(x1, y1, s) =
1

2(πs)1/2
exp{−(x1 − y1)

2

4s
}+ θ̃1(x1, y1, s),
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with

θ̃1(x1, y1, s) =
1

2(πs)1/2

p=∞∑

p=−∞, p 6=0

exp{−(x1 − y1 − pL1)

4s
}.

Since e−x ≤ 1/x for all x > 0, we see that

(5.28) θ̃1(x1, y1, s) ≤ 1

2(πs)1/2

p=∞∑

p=−∞, p 6=0

4s

(x1 − y1 − pL1)2
≤ s1/2θ̄1(x1, y1),

where

θ̄1(x1, y1) =
2

π1/2

p=∞∑

p=−∞, p 6=0

1

(x1 − y1 − pL1)2
≤ 4

π1/2L2
1

∞∑
p=1

1

(p− 1
2
)2

,

is a bounded C∞ function of x1 − y1, for |x1 − y1| ≤ L1/2.
Similarly for θ2, we write:

(5.29) θ2(x2, y2, s) =
1

2(πs)1/2
exp{−(x2 − y2)

2

4s
}+ θ̃2(x2, y2, s),

where θ̃2 is a function which can be bounded like θ̃1 by

θ̃2(x2, y2, s) ≤ s1/2θ̄2(x2, y2).

We can now return to G(1) and write:

G(1)(x, y) =

∫ 1

0

θ1(x1, y1, s)θ2(x2, y2, s) ds +

∫ 1

0

θ1(x1, y1, s)θ̃2(x2, y2, s) ds

+

∫ 1

0

θ̃1(x1, y1, s)θ2(x2, y2, s) ds +

∫ 1

0

θ̃1(x1, y1, s)θ̃2(x2, y2, s) ds.

(5.30)

The last term from (5.30) is bounded, since:

(5.31) |
∫ 1

0

θ̃(x1, y1, s)θ̃2(x2, y2, s) ds| ≤ θ̄(x1, y1)θ̄(x2, y2)

∫ 1

0

s ds.

The second and the third terms from (5.30) are of the same type, and we estimate only
one of them:

|
∫ 1

0

θ1(x1, y1, s)θ̃2(x2, y2, s) ds| ≤ θ̄2(x2, y2)
1

2π1/2

∫ 1

0

exp{−(x2 − y2)
2

4s
} ds,

which is also a bounded term, for all x, y in Ω with |x2 − y2| ≤ L2/2.
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For the first term from (5.30), we have:

∫ 1

0

θ1(x1, y1, s)θ2(x2, y2, s) ds =

∫ 1

0

1

4πs
exp{−|x− y|2

4s
} ds

=
1

4π

∫ 1

0

1

s
exp{−ρ2

4s
} ds

=
1

4π

∫ 1

ρ2/4

1

t
dt +

1

4π

∫ 1

ρ2/4

e−t − 1

t
dt +

1

4π

∫ ∞

1

e−tt−1 dt

=
1

2π
log

1

ρ
+ A,

(5.32)

where A is the sum of the two last integrals from (5.32) and it is bounded as ρ → 0.
Thus, as ρ → 0, the behavior of the Green function G is the same as the behavior of

log 1/ρ, that is:

(5.33) G(x, y) ∼ 1

2π
log

1

|x− y| .

We also need to study the behavior of ∂G/∂ρ, in absolute value, as ρ → 0. Proceeding
as before we find that, as ρ → 0, we have:

∂G

∂ρ
(x, y) ∼ − 1

2πρ
.

We conclude by stating the main result of the section:

Theorem 5.1. (a) The Green function G for the 2D channel with periodic and homoge-
neous Dirichlet boundary conditions is continuous on Ω̄× Ω̄, except at x = y.

(b) G has continuous first-order partial derivatives with respect to x, except at x = y,
in the neighborhood of which the following estimate holds:

(5.34) |DxG(x, y)| ≤ K|x− y|−1.

(c) G is symmetrical in x and y.
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