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1. Introduction

We consider the damped sine-Gordon equation with non-homogenous Dirichlet
boundary conditions, namely

utt + α ut − uxx + β sin u = 0, in Ω×R+, Ω = (0, L),

u(0, t) = g0(t), u(L, t) = g1(t),(1.1)

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = u1(x).

In physics the sine-Gordon equation is used to model for instance the dynamics of
the Josephson junction driven by a current source. This equation has been studied
from the point of view of stability of the equation (boundness of trajectories), the
existence of absorbing sets and the existence of a global attractor, see e.g. [11].

In this article we would like to study the optimal and robust control problems for
this equation, when the control is given by the boundary conditions, namely g0, g1,
in (1.1), see [4], [5], [1] and [2] for related problems in fluid mechanics.

We are interested in some issues regarding the control of (1.1) when the control
is g = (g0, g1). We will first consider the optimal control problem formulated as
follows:

Find a control g minimizing the cost function

(1.2) J (g) =
1
2

∫ T

0

∣∣∣∂ug

∂t

∣∣∣
2

L2(Ω)
dt +

1
2

∫ T

0

∣∣∣∂ug

∂x

∣∣∣
2

L2(Ω)
dt +

l

2
|g|2H3(0,T ),

where g = (g0, g1) and ug is the solution of (1.1) associated with g; by H3(0, T ) we
denoted (H3(0, T ))2. To guarantee the solvability of (1.1) we require g(0) = g′(0) = 0
and we set

(1.3) H3
Γ(0, T ) = {g ∈ H3(0, T ), g(0) = g′(0) = 0}.

We obtain the existence of an optimal control in a suitable class and we determine
a necessary condition for optimality. This optimal control may not be unique because
the optimization problem is nonconvex.

To ensure the uniqueness of the optimal control we find an l0 depending on the
set on which g is defined and on the initial data such that, for any l ≥ l0 the cost
function will be strictly convex, thus leading to uniqueness.

We also consider a robust control problem for this equation. In this case we write
the equation in the form
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∂2u

∂t2 + α
∂u

∂t
− ∂2u

∂x2 + β sin u = 0, in Ω×R+,

u(0, t) = g0(t) + h0(t), u(L, t) = g1(t) + h1(t),(1.4)

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = u1(x), x ∈ Ω,

where the boundary values have been decomposed into the disturbance h = (h0, h1)
and the control g = (g0, g1); the solution u of (1.4) is also denoted u(g, h) to empha-
size its dependence on g and h. Mathematically we arrive at a non-differential game
for the robust control setting in which a saddle point is sought. Our approach is
based on classical existence and characterization results of saddle points in infinite
dimensions as given e.g. in [3]. The considered cost function (Lagrangian) reads

J (g, h) =
1
2

∫ T

0

∣∣∣∂u(g, h)
∂t

∣∣∣
2

L2(Ω)
dt +

1
2

∫ T

0

∣∣∣∂u(g, h)
∂x

∣∣∣
2

L2(Ω)
dt

+
l

2
|g|2H3(0,T ) −

m

2
|h|2H3(0,T ),(1.5)

where l measures the relative price of the control and m measures the relative price
of the disturbance. As we explain later on, the aim is now to find the best control
g corresponding to the worse disturbance h, that is we consider the problem

(1.6) inf
g

sup
h
J (g, h),

g and h belonging to suitable feasible sets.
The content of the article is as follows: in Section 1 we give a short overview

of some useful classical results concerning the existence and uniqueness of solution
of the sine-Gordon equation. In Subsection 2.1 we prove the existence, without
uniqueness, of a solution for the optimal control problem. In Subsection 2.2 we
derive a necessary condition for optimality using the adjoint state equation; in Sub-
section 2.3 we show that by taking l large enough in the cost function (1.2) we obtain
the uniqueness of solution of the optimal control problem. Finally, in Section 3, we
will see that the robust control problem has a unique solution when l and m appear-
ing in (1.5) are sufficiently large. In the last section we obtain the characterization
of the solution of the robust control problem.

We conclude this introduction by recalling well-known results concerning the sine-
Gordon equation. We first consider the sine-Gordon equation in the open bounded
interval Ω = (0, L) with homogeneous Dirichlet boundary conditions
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∂2u

∂t2 + α
∂u

∂t
− ∂2u

∂x2 + β sin u = f, in Ω×R,

u(0, t) = 0, u(L, t) = 0,(1.7)

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = u1(x), x ∈ Ω,

where f and α are given, α > 0.
We set H = L2(Ω), V = H1

0 (Ω) and we endow these spaces with the usual scalar
products and norms.

We write D(A) = H1
0 (Ω) ∩ H2(Ω) and, for u ∈ D(A), we set Au = −∂2u/∂x2.

Then the problem (1.1) is equivalent to the following one:

u′′ + αu′ + Au + β sin u = f,(1.8)

u(0) = u0, u′(0) = u1,

where ψ′ := ∂ψ/∂t.
The existence and uniqueness of solution of (1.8) is given by the following result

(see e.g. [11]):

Theorem 1.1. Let α ∈ R and let f , u0 and u1 be given satisfying

f ∈ L2([0, T ]; H), u0 ∈ V, u1 ∈ H.

Then there exists a unique solution u of (1.8) such that

u ∈ L2([0, T ]; V ), u′ ∈ L2([0, T ]; H).

If furthermore, f ′ ∈ L2([0, T ]; H), u0 ∈ D(A) and u1 ∈ V , then u satisfies

u ∈ L2([0, T ]; D(A)), u′ ∈ L2([0, T ]; V ).

For the nonhomogeneous problem (1.1), we have:

Theorem 1.2. Assume that g ∈ H3
Γ(0, T ), u0 ∈ D(A) and u1 ∈ V . Then there

exists a unique solution u of (1.1) with

u ∈ L2([0, T ]; H2(0, L)), u′ ∈ L2([0, T ]; H1(0, L)).

Proof. We construct a lifting function for the boundary conditions, φ(x, t) = g0(t) +
(g1(t)− g0(t))(x/L), and we set v(x, t) = u(x, t)− φ(x, t). Then the system (1.1) is
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equivalent to the following one:

∂2v

∂t2 + α
∂v

∂t
− ∂2v

∂x2 + β sin(v + φ) = F (x, t),

v(0, t) = 0, v(L, t) = 0,(1.9)

v(x, 0) = u0(x),
∂v

∂t
(x, 0) = u1(x),

where

(1.10) F (x, t) = −
[∂2φ

∂t2
+ α

∂φ

∂t
− ∂2φ

∂x2

]
= −

[∂2φ

∂t2
+ α

∂φ

∂t

]
.

We derive the a priori estimates on the solutions and using these a priori estimates
and the Galerkin method, the proof of the theorem follows.

We multiply (1.9)1 by ∂v/∂t and integrate over Ω. We obtain:

1
2

d
dt

∣∣∣∂v

∂t

∣∣∣
2

L2(Ω)
+ α

∣∣∣∂v

∂t

∣∣∣
2

L2(Ω)
+

1
2

d
dt

∣∣∣∂v

∂x

∣∣∣
2

L2(Ω)
=

∫

Ω
F (x, t)

∂v

∂t
dx(1.11)

− β

∫

Ω
sin(v + φ)

∂v

∂t
dx.

Using Hölder’s inequality and Young’s inequality we find:
∣∣∣
∫

Ω
F (x, t)

∂v

∂t
dx

∣∣∣ ≤ c|F (·, t)|2L2(Ω) +
α

4

∣∣∣∂v

∂t

∣∣∣
2

L2(Ω)
,

∣∣∣
∫

Ω
β sin(v + φ)

∂v

∂t
dx

∣∣∣ ≤ α

4

∣∣∣∂v

∂t

∣∣∣
2

L2(Ω)
+ cβ2;

here and in the sequel c denotes a constant which may be different at different places.
This yields:

d
dt

[∣∣∣∂v

∂t

∣∣∣
2

L2(Ω)
+

∣∣∣∂v

∂x

∣∣∣
2

L2(Ω)

]
+ α

∣∣∣∂v

∂t

∣∣∣
2

L2(Ω)
≤ c + c|F (·, t)|2L2(Ω).

By Gronwall’s inequality and some simple computations, we finally obtain:
[∣∣∣∂v

∂t
(t)

∣∣∣
2

L2(Ω)
+

∣∣∣∂v

∂x
(t)

∣∣∣
2

L2(Ω)

]
≤ c(T ), ∀ 0 < t ≤ T,

where c(T ) is a constant depending on T . Further estimates are obtained as follows:
we substract β sin φ from both sides of the first equation (1.9) and write F1(x, t) =
F (x, t)− β sin φ.

We call w = v′ + εv, where ε > 0 will be chosen later on and we take the scalar
product of the first equation (1.9) with Aw. After some easy computations we
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obtain:
1
2

d
dt

[‖w‖2 + |Av|2] + ε|Av|2 + (α− ε)‖w‖2 − ε(α− ε)(v, Aw)(1.12)

+ β((sin(v + φ)− sin φ,w)) = (F1, Aw).

We know that |v| ≤ c1‖v‖ for all v ∈ V ; using this relation we can write:

ε|Av|2 + (α− ε)‖w‖2 − ε(α− ε)(v, Aw) ≥ε|Av|2 + (α− ε)‖w‖2(1.13)

− ε(α− ε)c1|Av|‖w‖.
Thus we can choose 0 < ε ≤ α/2 sufficiently small such that

(1.14) ε|Av|2 + (α− ε)‖w‖2 − ε(α− ε)(v, Aw) ≥ ε

2
|Av|2 +

α

2
‖w‖2.

Applying Young’s inequality we see also that:

|β((sin(v + φ)− sin φ,w))| ≤ |β|‖ sin(v + φ)− sin φ‖ ‖w‖(1.15)

≤ α

4
‖w‖2 + c

[∣∣∣∂v

∂x
+

∂φ

∂x

∣∣∣
2

+
∣∣∣∂φ

∂x

∣∣∣
2]

.

Writing (F1, Aw) =
d
dt

(F1, Av) + (εF1 − F ′
1, Av), returning to (1.12), and using

again Young’s inequality we obtain:

d
dt

[‖w‖2 + |Av − F1|2] +
ε

2
|Av|2 +

α

2
‖w‖2 ≤|F ′

1||F1|+ |F1 − 1/εF ′
1|2(1.16)

+ c
[∣∣∣∂v

∂x
+

∂φ

∂x

∣∣∣
2

+
∣∣∂φ

∂x

∣∣∣
2]

.

Integrating (1.16) over (0, t), with 0 ≤ t ≤ T , and taking into account the previous
estimates, we obtain:

‖w(t)‖2 + |(Av − F1)(t)|2 ≤ ‖w(0)‖2 + |(Av − F1)(0)|2 + c(1.17)

= ‖u1 + εu0‖2 + |Au0 − F (0)|2 + c,

for all t > 0. In (1.17) c depends on the data but not on T . We obtained a priori
estimates for u in L2(0, T ; H2(0, L)) and u′ in L2(0, T ; H1(0, L)). ¤

2. The Optimal Control Problem

We consider equation (1.1) as the state equation where g(t) = (g0(t), g1(t)) is the
control function. We formulate the control problem as follows:
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Find a function g ∈ H3
Γ(0, T ) minimizing the cost function defined as

P J (g) =
1
2

∫ T

0

∣∣∣∂ug

∂t

∣∣∣
2

L2(Ω)
dt +

1
2

∫ T

0

∣∣∣∂ug

∂x

∣∣∣
2

L2(Ω)
dt +

l

2
|g|2H3

Γ(0,T ).

2.1. Existence of solutions. Problem P is a nonconvex optimization problem;
existence of an optimal pair (ḡ, ūg) is stated as follows:

Theorem 2.1. Let there be given u0 ∈ D(A), u1 ∈ V . Then there exists at least one
pair ḡ ∈ H3

Γ(0, T ) and ū := uḡ ∈ L2([0, T ]; H2(Ω)) with ū′ ∈ L2([0, T ]; H1(Ω)), such
that the functional J (g) attains its minimum at ḡ and ū is the solution of system
(1.1) corresponding to ḡ.

Proof. Let λ = infg∈H3
Γ(0,T ) J (g) and let (gn)n be a minimizing sequence for problem

P . We denote by un = ugn and vn = vgn the corresponding solutions of systems
(1.1) and respectively (1.9).

We observe that |gn|2H3(0,T ) ≤ J (gn), which implies that (gn)n ⊂ H3
Γ(0, T ) is a

bounded sequence in H3(0, T ). Hence there exist ḡ ∈ H3
Γ(0, T ) and a subsequence,

still denoted gn, such that

(2.1) gn → ḡ weakly in H3(0, T ).

We call φn(x, t) = gn,0(t) + (gn,1(t)− gn,0(t)) (x/L) and φ̄(x, t) = ḡ0(t) + (ḡ1(t)−
ḡ0(t)) (x/L) the corresponding lifting functions and we know that vn satisfies the
following equations:

∂2vn

∂t2 + α
∂vn

∂t
− ∂2vn

∂x2 + β sin(vn + φn) = Fn(x, t),

vn(0, t) = 0, vn(L, t) = 0,(2.2)

vn(x, 0) = u0(x),
∂vn

∂t
(x, 0) = u1(x),

where

Fn(x, t) = −
[∂2φn

∂t2
+ α

∂φn

∂t
− ∂2φn

∂x2

]
= −

[∂2φn

∂t2
+ α

∂φn

∂t

]
.

Using the fact that gn is bounded in H3(0, T ), we derive the same kind of estimates
as in the proof of Theorem 1.2 by exactly the same method, namely we multiply
(2.2)1 by ∂vn/∂t, integrate over Ω and apply Gronwall’s inequality. We obtain:

(2.3) (vn)n is bounded in L∞(0, T ; V ),

(2.4)
(∂vn

∂t

)
n

is bounded in L∞(0, T ; H).

For stronger estimates we substract β sin φn from each side of (2.2), set F1,n(x, t) =
Fn(x, t)− β sin φn, we introduce wn = v′n + εvn, where ε is exactly as in (1.13) and
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take the scalar product in H of the equation obtained with Awn. After computations
identical to those of Theorem 1.2 and remembering that φn is bounded in H3(0, T )
we see that, as n →∞,

(wn)n remains bounded in L∞(0, T ; V ),(2.5)

(Avn − F1,n)n remains bounded in L∞(0, T ; L2(Ω));(2.6)

taking into account the form of F1,n and (2.3) we deduce that, as n →∞,

(vn)n remains bounded in L∞(0, T ; D(A)),(2.7)

(v′n)n remains is bounded in L∞(0, T ; V ).(2.8)

Passing to a subsequence, still denoted vn we see that:

(2.9) vn ⇀ v̄ in L∞(0, T ; D(A)) weak-star,

(2.10)
∂vn

∂t
⇀

∂v̄

∂t
in L∞(0, T ; V ) weak-star,

where v̄ ∈ L∞(0, T ; D(A)), v′ ∈ L∞(0, T ; V ).
We infer from (2.9), (2.10) and a compactness theorem in [7] (see also [11]),

that vn → v̄ strongly in L2(0, T ; H). Also, since the sequence (gn)n is bounded in
(H1

0 (0, T ))2, we can choose the subsequence n so that gn → ḡ strongly in (L2(0, T ))2.
By the expression of φn we see that φn → φ̄ strongly in L2(0, T ; H) and thus

un → ū strongly in L2(0, T ; H).
We also notice that

∂un

∂t
⇀

∂ū

∂t
weakly in L2(0, T ; H1(Ω)),(2.11)

∂un

∂x
⇀

∂ū

∂x
weakly in L2(0, T ; H1(Ω)).(2.12)

It is easy to see that ū is a solution of system (1.1) corresponding to ḡ or equiva-
lently that v̄ is solution of the corresponding system (1.9): indeed since vn → v̄ and
φn → φ̄ strongly in L2(0, T ; H) we see that:

(2.13) sin(vn + φn) → sin(v̄ + φ̄) strongly in L2(0, T ; H).

Next we pass to the limit in (2.2); we find that v̄ is solution of (1.9) with F replaced
by F̄ where F̄ = −[∂2φ̄/∂t2 + α∂φ̄/∂t]. To conclude the proof we use the lower
semi-continuity of the norm and we obtain that
J (ḡ) ≤ lim infn J (gn) = λ and thus, J (ḡ) = λ. ¤
Remark 2.2. Although this result is not relevant to our purpose, let us note (see
e.g. [9]) that stronger convergence results than those inferred from (2.9) and (2.10)
hold; in particular vn converges to v̄ strongly in L2(0, T ; V ) and ∂vn/∂t converges
to ∂v/∂t strongly in L2(0, T ; H) (and more).
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2.2. The adjoint state. In this section we observe that the cost function J is
Gâteaux differentiable and using the fact that J ′(ḡ) = 0 we derive the Necessary
Condition for Optimality (NCO) for the control problem P . We set

H := {u ∈ L2(0, T ; H2(Ω)), u′ ∈ L2(0, T ; H1(Ω))};
H is endowed with the norm

(2.14) |u|H := {|u|2L2(0,T ;H2(Ω)) + |u′|2L2(0,T ;H1(Ω))}1/2.

Lemma 2.1. Let u0 ∈ D(A) and u1 ∈ V . Then the mapping g 7→ ug from
H3

Γ(0, T ) into H is Gâteaux differentiable. Furthermore its directional derivative
(Dug/Dg)(ϕ) := w(ϕ) at g in direction ϕ = (ϕ0, ϕ1) is the solution of the linearized
problem:

∂2w

∂t2 + α
∂w

∂t
− ∂2w

∂x2 + βw cos ug = 0,

w(0, t) = ϕ0, w(L, t) = ϕ1,(2.15)

w(x, 0) = 0,
∂w

∂t
(x, 0) = 0.

Proof. We fix u0 ∈ D(A), u1 ∈ V and let g, ϕ ∈ F . We need to prove the following:

lim
λ→0

|ug+λϕ − ug − λw(ϕ)|H
|λ| = 0.

We set R = ug+λϕ − ug − λw(ϕ); R is solution of the following problem:

∂2R

∂t2 + α
∂R

∂t
− ∂2R

∂x2 + β[sin ug+λϕ − sin ug − λw cos ug] = 0,

R(0, t) = 0, R(L, t) = 0,(2.16)

R(x, 0) = 0,
∂R

∂t
(x, 0) = 0.

We take the scalar product in L2(Ω) of the first equation (2.16) with ∂R/∂t; we
obtain:

1
2

d
dt

[∣∣∣∂R

∂t

∣∣∣
2

L2(Ω)
+

∣∣∣∂R

∂x

∣∣∣
2

L2(Ω)

]
+ α

∣∣∣∂R

∂t

∣∣∣
2

L2(Ω)
= I1 + I2,(2.17)

where we denoted:

I1 = −
∫

Ω
[sin ug+λϕ − sin ug − cos ug(ug+λϕ − ug)]

∂R

∂t
dx,

I2 = −β

∫

Ω
(ug+λϕ − ug − λw(ϕ)) cos ug

∂R

∂t
dx.
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We estimate I2 as:

(2.18) |I2| ≤ α

4

∣∣∣∂R

∂t

∣∣∣
2

L2(Ω)
+ c|R|2L2(Ω).

To estimate I1, we first prove that

(2.19) |ug+λϕ − ug|C(Ω̄) ≤ c |λ|.
We know that

|ug+λϕ − ug|C(Ω̄) = |vg+λϕ − vg + φg+λϕ − φg|C(Ω̄)(2.20)

≤ |vg+λϕ − vg|C(Ω̄) + |φλϕ|C(Ω̄)

= |v̂|C(Ω̄) + λ|φϕ|C(Ω̄),

where we denoted v̂ := vg+λϕ − vg.
The function v̂ satisfies the equations:

∂2v̂

∂t2 + α
∂v̂

∂t
− ∂2v̂

∂x2 + β [sin vg+λϕ − sin vg] = λFϕ,

v̂(0, t) = 0, v̂(L, t) = 0,(2.21)

v̂(x, 0) = λφϕ,
∂v̂

∂t
(x, 0) = λ

∂φϕ

∂t
.

We take the scalar product in L2(Ω) of the first equation (2.21) with ∂v̂/∂t and
we obtain:

1
2

d
dt

[∣∣∣∂v̂

∂t

∣∣∣
2

L2(Ω)
+

∣∣∣∂v̂

∂x

∣∣∣
2

L2(Ω)

]
+ α

∣∣∣∂v̂

∂t

∣∣∣
2

L2(Ω)
+ β

∫

Ω
[sin vg+λϕ − sin vg]

∂v̂

∂t
dx(2.22)

= λ

∫

Ω
Fϕ

∂v̂

∂t
dx.

Hence using the Poincaré inequality we find:

∣∣∣β
∫

Ω
[sin vg+λϕ − sin vg]

∂v̂

∂t
dx

∣∣∣ ≤ |β|
∫

Ω
|vg+λϕ − vg|

∣∣∣∂v̂

∂t

∣∣∣ dx(2.23)

≤ |β|
∫

Ω
|v̂|

∣∣∣∂v̂

∂t

∣∣∣ dx

≤ α

4

∣∣∣∂v̂

∂t

∣∣∣
2

L2(Ω)
+ c

∣∣∣∂v̂

∂x

2∣∣∣
L2(Ω)

.

We also estimate:

(2.24)
∣∣∣λ

∫

Ω
Fϕ

∂v̂

∂t
dx

∣∣∣ ≤ α

4

∣∣∣∂v̂

∂t

∣∣∣
2

L2(Ω)
+ λ2c|Fϕ|2L2(Ω).
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Returning to (2.22) we write

(2.25)
1
2

d
dt

[∣∣∣∂v̂

∂t

∣∣∣
2

L2(Ω)
+

∣∣∣∂v̂

∂x

∣∣∣
2

L2(Ω)

]
+

α

2

∣∣∣∂v̂

∂t

∣∣∣
2

L2(Ω)
≤ c

∣∣∣∂v̂

∂x

∣∣∣
2

L2(Ω)
+ λ2 c |Fϕ|2L2(Ω).

Using the Gronwall’s lemma we obtain

(2.26)
∣∣∣∂v̂

∂t
(t)

∣∣∣
2

L2(Ω)
+

∣∣∣∂v̂

∂x
(t)

∣∣∣
2

L2(Ω)
≤ λ2 c

∫ T

0
|Fϕ|2L2(Ω) dt,

for all t ≤ T . Here
∫ T

0 |Fϕ|2L2(Ω) dt is a constant independent of λ, so we have
∣∣∣∂v̂

∂x
(t)

∣∣∣
L2(Ω)

≤ c λ.

Remembering that v̂ ∈ H1
0 (Ω) ⊂ C(Ω̄

)
, we obtain |v̂(x, t)| ≤ cλ for all x ∈ Ω̄, and

0 < t < T . Returning to (2.20) we see that

(2.27) |ug+λϕ(x, t)− ug(x, t)| ≤ λc, ∀x ∈ Ω̄, 0 < t < T.

We know that

(2.28) | sin ug+λϕ − sin ug − (ug+λϕ − ug) cos ug| ≤ |ug+λϕ − ug|2,
for all x ∈ Ω, and 0 < t < T :

|I1| ≤ c

∫

Ω
|ug+λϕ − ug|2

∣∣∣∂R

∂t

∣∣∣ dx(2.29)

≤ c |ug+λϕ − ug|L∞(Ω)|ug+λϕ − ug|L2(Ω)

∣∣∣∂R

∂t

∣∣∣
L2(Ω)

≤ c λ4 +
∣∣∣∂R

∂t

∣∣∣
2

L2(Ω)
.

With these estimates (2.17) becomes:

(2.30)
1
2

d
dt

[∣∣∣∂R

∂t

∣∣∣
2

L2(Ω)
+

∣∣∣∂R

∂x

∣∣∣
2

L2(Ω)

]
+α

∣∣∣∂R

∂t

∣∣∣
2

L2(Ω)
≤ cλ4 +c

[∣∣∣∂R

∂t

∣∣∣
2

L2(Ω)
+

∣∣∣∂R

∂x

∣∣∣
2

L2(Ω)

]
.

Hence, using Gronwall’s inequality we obtain:
∣∣∣∂R

∂t
(t)

∣∣∣
2

L2(Ω)
+

∣∣∣∂R

∂x
(t)

∣∣∣
2

L2(Ω)
≤ cλ4, for all t ≤ T.

For stronger estimates we multiply (2.16) by ∂3R/∂x2∂t, integrate over Ω and
obtain:

1
2

d
dt

[∣∣∣ ∂2R

∂x∂t

∣∣∣
2

L2
+

∣∣∣∂
2R

∂x2

∣∣∣
2

L2

]
+ α

∣∣∣ ∂2R

∂x∂t

∣∣∣
2

L2

+ β

∫

Ω
[sin ug+λϕ − sin ug − λw cos ug]

∂3R

∂2x∂t
dx = 0.

(2.31)
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We notice that:
∫

Ω
[sin ug+λϕ − sin ug − λw cos ug]

∂3R

∂2x∂t
dx

=
d
dt

(
sin ug+λϕ − sin ug − λw cos ug,

∂2R

∂x2

)
L2

−
∫

Ω
[u′g+λϕ cos ug+λϕ − u′g cos ug − λw′ cos ug + λwu′g sin ug]

∂2R

∂x2
dx.

(2.32)

Using (2.32) in (2.31) we find:

d
dt

[1
2

∣∣∣ ∂2R

∂x∂t

∣∣∣
2

L2
+

1
2

∣∣∣∂
2R

∂x2

∣∣∣
2

L2
+ β

(
sin ug+λϕ − sin ug − λw cos ug,

∂2R

∂x2

)
L2

]
+ α

∣∣∣ ∂2R

∂x∂t

∣∣∣
2

L2

= β

∫

Ω
[cos ug+λϕu′g+λϕ − cos ugu

′
g − λw′ cos ug + λwu′g sin ug]

∂2R

∂x2
dx.

(2.33)

We remark that:

∣∣( sin ug+λϕ − sin ug − λw cos ug,
∂2R

∂x2

)
L2

∣∣

≤
∣∣( sin ug+λϕ − sin ug − cos ug(ug+λϕ − ug),

∂2R

∂x2

)
L2

∣∣

+
∣∣( cos ug(ug+λϕ − ug − λw),

∂2R

∂x2

)∣∣.

(2.34)

Using the same arguments as before we find:

(2.35)
∣∣( sin ug+λϕ − sin ug − λw cos ug,

∂2R

∂x2

)
L2

∣∣ ≤ c′0λ
2
∣∣∣∂

2R

∂x2

∣∣∣
L2

.

We notice that

1
2

∣∣∣ ∂2R

∂x∂t

∣∣∣
2

L2
+

1
2

∣∣∣∂
2R

∂x2

∣∣∣
2

L2
+ β

(
sin ug+λϕ − sin ug − λw cos ug,

∂2R

∂x2

)
L2 + c′21λ

4

≥ 1
2

∣∣∣ ∂2R

∂x∂t

∣∣∣
2

L2
+

1
4

∣∣∣∂
2R

∂x2

∣∣∣
2

L2
,

(2.36)

so we write

d
dt

[1
2

∣∣∣ ∂2R

∂x∂t

∣∣∣
2

L2
+

1
2

∣∣∣∂
2R

∂x2

∣∣∣
2

L2
+ β

(
sin ug+λϕ − sin ug − λw cos ug,

∂2R

∂x2

)
L2 + c′21λ

4
]

+ α
∣∣∣ ∂2R

∂x∂t

∣∣∣
2

L2
= β

∫

Ω
[cos ug+λϕu′g+λϕ − cos ugu

′
g − λw′ cos ug + λwu′g sin ug]

∂2R

∂x2
dx.

(2.37)
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We now need to estimate the RHS of (2.37). We notice that:

u′g+λϕ cos ug+λϕ − u′g cos ug + λwu′g sin ug

= u′g+λϕ[cos ug+λϕ − cos ug + (ug+λϕ − ug) sin ug]

− (ug+λϕ − ug)(u′g+λϕ − u′g) sin ug − u′g(ug+λϕ − ug − λw) sin ug + R′ cos ug,

(2.38)

where R′ = ∂R/∂t. Using the same kind of estimates as before we find:

|RHS| ≤ cλ4 +
1
4

∣∣∣∂
2R

∂x2

∣∣∣
2

L2
+ c|R′|2L2 .

Using Gronwall’s lemma we obtain:

(2.39)
∣∣∣ ∂2R

∂x∂t

∣∣∣
2

L2
+

∣∣∣∂
2R

∂x2

∣∣∣
2

L2
≤ cλ4.

This implies that |R|H ≤ cλ2, H as in (2.14), and thus

lim
λ→0

|R|H
λ

= 0.

¤
We can now state and prove our main result from this section:

Theorem 2.3. (Necessary condition of optimality-NCO) Let (ḡ, ū) be an optimal
pair of problem (P ); then the following NCO holds in (H3

Γ(0, T ))′ that is the dual of
(H3

Γ(0, T )):

(2.40) τ ū + τ ˆ̄w + lΛḡ = 0,

where Λ is the canonical isomorphism of H3
Γ(0, T ) onto (H3

Γ(0, T ))′ 1.
In (2.40), (ū, ˆ̄w) is the solution of the following system

∂2u

∂t2 + α
∂u

∂t
− ∂2u

∂x2 + β sin u = 0,

∂2ŵ

∂t2 − α
∂ŵ

∂t
− ∂2ŵ

∂x2 + βŵ cos u =
∂2u

∂t2 +
∂2u

∂x2 ,(2.41)

u(0, t) = g0, u(L, t) = g1, ŵ(0, t) = 0, ŵ(L, t) = 0,

u(x, 0) = u0,
∂u

∂t
(x, 0) = u1, ŵ(x, T ) = 0,

∂ŵ

∂t
(x, T ) =

∂u

∂t
(x, T );

1The operator Λ can be ”explicitly” defined by the solution of a boundary value problem which
depends on the norm endowing H3

Γ(0, T ); which could be the norm of H3(0, T ) or

g → (|g′′(0)|2 + |g′′′|2L2(0,T ))
1/2.
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τ is the linear operator from H2(Ω) into R2 defined by:

(2.42) u → τu =
(
− ∂u

∂x
(0),

∂u

∂x
(L)

)
,

Proof. Let (ḡ, ū) be an optimal pair. We know then that (DJ /Dg)(ḡ) = 0.

DJ
Dg

(g) · ϕ =
∫ T

0

(∂u

∂t
,
∂w

∂t

)
L2(Ω)

dt +
∫ T

0

(∂u

∂x
,
∂w

∂x

)
L2(Ω)

dt(2.43)

+ l

∫ T

0

(
g · ϕ +

dg

dt
· dϕ

dt
+

d2g

dt2 ·
d2ϕ

dt2 +
d3g

dt3 ·
d3ϕ

dt3

)
dt,

where w(ϕ) = (DJ /Dg)(ϕ) is the solution of (2.15).
Integrating by parts we obtain:

∫ T

0

(∂u

∂x
,
∂w

∂x

)
L2(Ω)

dt =
∫ T

0

∫ L

0

∂u

∂x
· ∂w

∂x
dx dt =

∫ T

0

∂u

∂x
(L) · ϕ1 dt(2.44)

−
∫ T

0

∂u

∂x
(0) · ϕ0 dt−

∫ T

0

∫ L

0

∂2u

∂x2 · w dx dt

=(τu)(ϕ)−
∫ T

0

(∂2u

∂x2 , w
)

L2(Ω)
dt.

We also have:

∫ T

0

(∂u

∂t
,
∂w

∂t

)
L2(Ω)

dt =
∫ L

0

∂u

∂t
(T )w(T ) dx−

∫ T

0

(∂2u

∂t2 , w
)

L2(Ω)
dt.

With (2.41), using Fubini’s theorem and integration by parts we write:

∫ T

0

(∂2u

∂x2 +
∂2u

∂t2 , w
)

L2(Ω)
dt =

∫ T

0

(∂2ŵ

∂t2 − α
∂ŵ

∂t
− ∂2ŵ

∂x2 + βŵ cos u,w
)

L2(Ω)
dt

=
∫ T

0

(
ŵ,

∂2w

∂t2 + α
∂w

∂t
− ∂2w

∂x2 + β w cos u
)

L2(Ω)
dt

+
∫

Ω

∂ŵ

∂t
(T ) w(T ) dx−

∫ T

0

∂ŵ

∂x
(L)ϕ1 dt +

∫ T

0

∂ŵ

∂x
(0) ϕ0 dt

=
∫

Ω

∂ŵ

∂t
(T )w(T ) dx−

∫ T

0

∂ŵ

∂x
(L) ϕ1 dt +

∫ T

0

∂ŵ

∂x
(0)ϕ0 dt.
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Returning to (2.43) we find:

DJ
Dg

(g) · ϕ =
∫ T

0
(τu)ϕ dt +

∫

Ω

∂u

∂t
(T ) w(T ) dx−

∫

Ω

∂ŵ

∂t
(T ) w(T ) dx(2.45)

+
∫ T

0

∂ŵ

∂x
(L) ϕ1 dt−

∫ T

0

∂ŵ

∂x
(0) ϕ0 dt + l(g, ϕ)H3(0,T )

=〈τu + τŵ + lΛg, ϕ〉(H3
Γ(0,T ))′,H3

Γ(0,T ).

Hence,

(2.46) (DJ /Dg)(g) = (τu + τŵ + lΛg).

and since, for an optimal pair (ḡ, ū), we have (DJ /Dg)(ḡ) = 0, (2.40) follows. ¤
2.3. A uniqueness result for the optimal control problem. We know that if
J is strictly convex the solution of the optimal problem is unique, see e.g. [3]. Our
aim is now to show that for l sufficiently large, the cost function

J (g) =
1
2

∫ T

0

∣∣∣∂ug

∂t

∣∣∣
2

L2(Ω)
dt +

1
2

∫ T

0

∣∣∣∂ug

∂x

∣∣∣
2

L2(Ω)
dt +

l

2
|g|2H3(0,T ),

is indeed strictly convex.

Theorem 2.4. Let u0 ∈ D(A), u1 ∈ V and let J be defined on a bounded, convex,
closed, non-empty subset C of H3

Γ(0, T ). Then there exists l0 = l(u0, u1, C, T ), such
that for any l ≥ l0, J is a strictly convex, lower semi-continuous function on C.

Proof. We showed that g 7→ J (g) is lower semi-continuous when we proved the
existence result for the control problem and it remains to prove that J is strictly
convex. To prove this it is sufficient to prove that the function

f(ρ) = J (g + ρϕ) (g, ϕ arbitrarily chosen in H3
Γ(0, T )),

is strictly convex with respect to ρ near ρ = 0, i.e. f ′′(0) > 0.
We know that (Dug/Dg)(ϕ) := w(ϕ) is the solution of (2.41). We then compute:

f ′(ρ) =
DJ
Dg

(g + ρϕ) · ϕ =
∫ T

0

(∂u

∂t
,
∂w

∂t

)
L2(Ω)

dt +
∫ T

0

(∂u

∂x
,
∂w

∂x

)
L2(Ω)

dt

+ l(g + ρϕ, ϕ)H3(0,T ).

We then consider ω = (D2u/Dg2) · ϕ · q and w1 = (Du/Dg) · q. One can show, as
in Lemma 2.1, that ω is the solution of :

∂2ω

∂t2 + α
∂ω

∂t
− ∂2ω

∂x2 + βω cos ug = βww1 sin ug,

ω(0, t) = 0, ω(L, t) = 0,(2.47)

ω(x, 0) = 0,
∂ω

∂t
(x, 0) = 0.
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We take q = ϕ, so that w1 = w. We then write

f ′′(0) =
∫ T

0

∣∣∣∂w

∂t

∣∣∣
2

L2(Ω)
dt +

∫ T

0

∣∣∣∂w

∂x

∣∣∣
2

L2(Ω)
dt +

∫ T

0

(∂u

∂x
,
∂ω

∂x

)
L2(Ω)

dt(2.48)

+
∫ T

0

(∂u

∂t
,
∂ω

∂t

)
L2(Ω)

dt + l|ϕ|2H3(0,T ).

We know that

∣∣∣
∫ T

0

(∂u

∂x
,
∂ω

∂x

)
L2(Ω)

dt
∣∣∣ ≤

∣∣∣∂u

∂x

∣∣∣
L2(0,T ;L2(Ω))

∣∣∣∂ω

∂x

∣∣∣
L2(0,T ;L2(Ω))

,

∣∣∣
∫ T

0

(∂u

∂t
,
∂ω

∂t

)
L2(Ω)

dt
∣∣∣ ≤

∣∣∣∂u

∂t

∣∣∣
L2(0,T ;L2(Ω))

∣∣∣∂ω

∂t

∣∣∣
L2(0,T ;L2(Ω))

,

and so we obtain

f ′′(0) ≥−
∣∣∣∂u

∂x

∣∣∣
L2(0,T ;L2(Ω))

∣∣∣∂ω

∂x

∣∣∣
L2(0,T ;L2(Ω))

−
∣∣∣∂u

∂t

∣∣∣
L2(0,T ;L2(Ω))

∣∣∣∂ω

∂t

∣∣∣
L2(0,T ;L2(Ω))

+ l |ϕ|2H3(0,T ).

We need to estimate ω, so we multiply equation (2.47)1 by ∂ω/∂t and we obtain:

1
2

d
dt

[∣∣∣∂ω

∂t

∣∣∣
2

L2(Ω)
+

∣∣∣∂ω

∂x

∣∣∣
2

L2(Ω)

]
+ α

∣∣∣∂ω

∂t

∣∣∣
2

L2(Ω)
=β

∫

Ω
w2 ∂ω

∂t
sin ug dx(2.49)

− β

∫

Ω

∂ω

∂t
ω cos ug dx.

We can easily estimate the terms from the RHS of (2.49), using Poincaré’s inequality:

|β
∫

Ω
w2 ∂ω

∂t
sin ug dx| ≤ |β|

∫

Ω
|w|2

∣∣∣∂ω

∂t

∣∣∣ dx ≤ c

∫

Ω
|w|4 dx +

α

4

∫

Ω

∣∣∣∂ω

∂t

∣∣∣
2

dx,

|β
∫

Ω

∂ω

∂t
ω cos ug dx| ≤ |β|

∫

Ω
|ω|

∣∣∣∂ω

∂t

∣∣∣ dx ≤ α

4

∣∣∣∂ω

∂t

∣∣∣
2

L2(Ω)
+ c

∣∣∣∂ω

∂x

∣∣∣
2

L2(Ω)
.

Returning to (2.49) we find

(2.50)
d
dt

[∣∣∣∂ω

∂t

∣∣∣
2

L2(Ω)
+

∣∣∣∂ω

∂x

∣∣∣
2

L2(Ω)

]
+ α

∣∣∣∂ω

∂t

∣∣∣
2

L2(Ω)
≤ c

∫

Ω
|w|4 dx + c

∣∣∣∂ω

∂x

∣∣∣
2

L2(Ω)
.

We then need to estimate w. We use the lifting function and write w(x, t) =
γ(x, t) + φϕ(x, t) where φϕ(x, t) = ϕ0(t) + (x/L)(ϕ1(t)− ϕ0(t)). Then γ satisfies:
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∂2γ

∂t2 + α
∂γ

∂t
− ∂2γ

∂x2 + βγ cos ug = F̃ (x, t),

γ(0, t) = 0, γ(L, t) = 0,(2.51)

γ(x, 0) = 0,
∂γ

∂t
(x, 0) = 0,

where F̃ (x, t) = −[∂2φ/∂t2 + α ∂φ/∂t + βφ cos ug].
We make the same kind of calculations as before, multiply the first equation of

(2.51) by ∂φ/∂t and integrate over Ω. We use as before the Gronwall lemma and
we obtain:

(2.52)
∣∣∣∂ω

∂t
(t)

∣∣∣
2

L2(Ω)
+

∣∣∣∂ω

∂x
(t)

∣∣∣
2

L2(Ω)
≤ c

∫ T

0
|w|2L2(Ω)|w|2L∞(Ω) dt,

for all t ≤ T .
We notice that

|w|2L∞(Ω) ≤ c
(|γ|2H0

1 (Ω) + |φϕ|2L∞(Ω)

)
, |w|2L2(Ω) ≤ c

(|γ|2L2(Ω) + |φϕ|2L2(Ω)

)
,(2.53)

and so we obtain

(2.54)
∫ T

0
|w|2L2(Ω)|w|2L∞(Ω) dt ≤ c|ϕ|4H3(0,T ).

We return to (2.52) and we see that:

(2.55)
∫ T

0

[∣∣∣∂ω

∂t
(t)

∣∣∣
2

L2(Ω)
+

∣∣∣∂ω

∂x
(t)

∣∣∣
2

L2(Ω)

]
dt ≤ c|ϕ|4H3(0,T ).

We return to f ′′(0) and using (2.55) we obtain:

f ′′(0) ≥− c
∣∣∣∂u

∂t

∣∣∣
L2(0,T ;L2(Ω))

|ϕ|2H3(0,T ) − c
∣∣∣∂u

∂x

∣∣∣
L2(0,T ;L2(Ω))

|ϕ|2H3(0,T )(2.56)

+ l|ϕ|2H3(0,T ) =
(
l − c

∣∣∣∂u

∂t

∣∣∣
L2(0,T ;L2(Ω))

− c
∣∣∣∂u

∂x

∣∣∣
L2(0,T ;L2(Ω))

)
|ϕ|2H3(0,T ).

The next step consists in bounding |∂u/∂t|L2(0,T ;L2(Ω)) and |∂u/∂x|L2(0,T ;L2(Ω)).
Using the same estimates as for the proof of Theorem 1.2 we obtain

∣∣∣∂v

∂t

∣∣∣
2

L2(Ω)
+

∣∣∣∂v

∂x

∣∣∣
2

L2(Ω)
≤ c

∫ T

0
|F (x, t)|2L2(Ω) dt + cT

≤ c|g|2H3(0,T ) + cT,
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for all t ≤ T . From the estimates above and from the fact that J is defined on a
bounded set C we obtain that:

(2.57)
∣∣∣∂u

∂t

∣∣∣
L2(0,T ;L2(Ω))

≤ c,
∣∣∣∂u

∂x

∣∣∣
L2(0,T ;L2(Ω))

≤ c.

Looking to (2.56), we see that for l big enough, f ′′(0) > 0, which is what we
needed. ¤

Theorem 2.5. Assume that C and l0 are as in Theorem 2.4. Then, for l ≥ l0, the
optimal control problem P has a unique solution.

3. Robust Control

In this section the boundary values are decomposed into the disturbance h =
(h0, h1) ∈ H3

Γ(0, T ) and the control g = (g0, g1) ∈ H3
Γ(0, T ). The objective in the

robust control problem is to find the best control g in the presence of the worse
disturbance h which maximally spoils the control objective. The flow u is related
to the disturbance h and the control g through the system:

∂2u

∂t2 + α
∂u

∂t
− ∂2u

∂x2 + β sin u = 0, in Ω×R+,

u(0, t) = g0(t) + h0(t), u(L, t) = g1(t) + h1(t),(3.1)

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = u1(x), x ∈ Ω.

The cost functional (Lagrangian) considered here is given by:

J (g, h) =
1
2

∫ T

0

∣∣∣∂u(g, h)
∂t

∣∣∣
2

L2(Ω)
dt +

1
2

∫ T

0

∣∣∣∂u(g, h)
∂x

∣∣∣
2

L2(Ω)
dt

+
l

2
|g|2H3(0,T ) −

m

2
|h|2H3(0,T ),

where the scalar parameters l, m > 0 are given. The parameter l may be interpreted
as a measure of the ”price” of the control and m as a measure of the ”price” of the
disturbance.

Definition 3.1. If (ḡ, h̄) is a saddle point of the cost functional J defined above,
then the disturbance h̄ ∈ H3

Γ(0, T ), the control ḡ ∈ H3
Γ(0, T ) and the corresponding

solution ū(ḡ, h̄) of (3.1) associated to (ḡ, h̄) are said to solve the robust control
problem.

We can solve the robust control problem by using, for instance, the following
general result (see e.g., [3]):
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Theorem 3.1. Let J be a functional defined on X × Y, where X ⊂ X and Y ⊂ Y
are nonempty, closed, bounded, convex subsets, and X, Y are reflexive Banach spaces.
If J satisfies

(a) ∀ g ∈ X , h 7→ J (g, h) is concave and upper semi-continuous,

(b) ∀ h ∈ Y , g 7→ J (g, h) is convex and lower semi-continuous,

then the functional J has at least one saddle point (ḡ, h̄) on X × Y, such that

J (ḡ, h̄) = min
g∈X

max
h∈Y

J (g, h) = max
h∈Y

min
g∈X

J (g, h).

Moreover, if J is strictly convex with respect to g for each h and strictly concave
with respect to h for each g, then (ḡ, h̄) is unique.

Proposition 3.1. We assume, in addition to the hypotheses (a) and (b), that

(a′) ∀ g ∈ X , h 7→ J (g, h) is Gâteaux-differentiable ,

(b′) ∀ h ∈ Y , g 7→ J (g, h) is Gâteaux-differentiable .

Then (ḡ, h̄) ∈ X × Y is a saddle point of J if and only if
(DJ

Dg
(ḡ, h̄), g − ḡ

) ≥ 0, ∀ g ∈ X ,(3.2)

(DJ
Dh

(ḡ, h̄), h− h̄
) ≤ 0, ∀ h ∈ Y .(3.3)

If there is no constraint, i.e. X = X, Y = Y, the above inequalities become equalities.

¤
We now return to the robust control problem and we prove that we can apply

Theorem 3.1.

Theorem 3.2. Let there be given u0 ∈ D(A), u1 ∈ V and assume that the cost
functional J is defined on X × Y, where X ,Y ⊂ H3

Γ(0, T ) are non-empty, closed,
convex, bounded sets. Then there exists l0 and m0 depending on the initial data and
on the sets X ,Y such that, for any l ≥ l0 and m ≥ m0 we have:

(A) ∀ g ∈ X , h 7→ J (g, h) is strictly concave and upper semi-continuous,

(B) ∀ h ∈ Y , g 7→ J (g, h) is strictly convex and lower semi-continuous.

Proof. Since the norm is continuous, in order to prove the continuity we only need
to verify the continuity of the first two terms in J with respect to (g, h). Let
u = u(g, h), u? = u(g?, h?) be the solutions of (3.1) associated with the corresponding
boundary conditions.

Let δg = g − g?, δh = h− h?, δu = u− u?. The lifting function is:

φ(g, h)(x, t) = g0(t) + h0(t) +
x

L
(g1(t) + h1(t)− g0(t)− h0(t)).
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We know that u(g, h) = v(g, h) + φ(g, h). We denote

δv = v(g, h)− v(g?, h?) = u(g, h)− u(g?, h?)− φ(g, h) + φ(g?, h?)

= δu− φ(δg, δh).

We notice that δv is solution of the following system:

∂2(δv)

∂t2 + α
∂(δv)

∂t
− ∂2(δv)

∂x2 + β sin(v + φ(g, h))− β sin(v? + φ(g? + h?))

= F̃ ,

(δv)(0, t) = 0, (δv)(L, t) = 0,(3.4)

(δv)(x, 0) = 0,
∂(δv)

∂t
(x, 0) = 0,

where F̃ (x, t) = −[
(∂2φ(δg, δh)/∂t2)(x, t) + α(∂φ(δg, δh)/∂t)(x, t)

]
.

We perform the same kind of estimates as in the previous sections and we obtain:

(3.5)
∣∣∣∂(δv)

∂t
(t)

∣∣∣
2

L2(Ω)
+

∣∣∣∂(δv)
∂x

(t)
∣∣∣
2

L2(Ω)
≤ c

∫ T

0

[|F̃ |2L2(Ω) + |φ(δg, δh)|2L2(Ω)

]
ds.

Taking into account the definition of F̃ and φ(δg, δh) we easily find:

(3.6)
∫ T

0

[∣∣∣∂(δv)
∂t

(t)
∣∣∣
2

L2(Ω)
+

∣∣∣∂(δv)
∂x

(t)
∣∣∣
2

L2(Ω)

]
dt ≤ c[|δg|2H3(0,T ) + |δh|2H3(0,T )].

From (3.6) we obtain that

∀ g ∈ X , h 7→ J (g, h) is upper semi-continuous,

∀ h ∈ Y , g 7→ J (g, h) is lower semi-continuous.

It now remains to prove that

∀ g ∈ X , h 7→ J (g, h) is strictly concave ,

∀ h ∈ Y , g 7→ J (g, h) is strictly convex .

Because the proofs are similar, we only prove that h 7→ J (g, h) is strictly concave
∀ g ∈ X .

We introduce the function f(ρ) = J (g, h+ρh?), where g, h, h? ∈ F are arbitrarily
chosen. In order to prove the concavity, it is sufficient to show that f is concave

with respect to ρ near ρ = 0, i.e. f ′′(0) < 0. Let w?(0, h?) =
Du

Dh
· h?, which is
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solution of the system:

(3.7)





∂2w?

∂t2 + α
∂w?

∂t
− ∂2w?

∂x2 + βw? cos ug,h = 0,

w?(0, t) = h? 0(t), w?(L, t) = h? 1(t),

w?(x, 0) = 0,
∂w?

∂t
(x, 0) = 0.

We then compute:

f ′(ρ) =
DJ
Dh

(g, h + ρh?) · h? =
∫ T

0

(∂u

∂t
,
∂w?

∂t

)
L2(Ω)

dt +
∫ T

0

(∂u

∂x
,
∂w?

∂x

)
L2(Ω)

dt

−m(h + ρh?, h?)H3(0,T ).

We also consider w̃(0, h??) = (D2u/Dh2) · h? · h??, which is solution of the system:

∂2w̃

∂t2 + α
∂w̃

∂t
− ∂2w̃

∂x2 + βw̃ cos u(g, h) = βw?w?? sin u(g, h),

w̃(0, t) = 0, w̃(L, t) = 0,(3.8)

w̃(x, 0) = 0,
∂w̃

∂t
(x, 0) = 0,

where w?? = (Du/Dh) · h??. Taking h? = h?? we obtain w? = w?? and we can see
that w̃(0, h?) = (D2u/Dh2) · h? · h? is solution of the system:

∂2w̃

∂t2 + α
∂w̃

∂t
− ∂2w̃

∂x2 + βw̃ cos u(g, h) = βw2
? sin u(g, h),

w̃(0, t) = 0, w̃(L, t) = 0,(3.9)

w̃(x, 0) = 0,
∂w̃

∂t
(x, 0) = 0.

We can now compute:

f ′′(0) =
∫ T

0

∣∣∣∂w?

∂t

∣∣∣
2

L2(Ω)
dt +

∫ T

0

(∂u

∂t
,
∂w̃

∂t

)
L2(Ω)

dt +
∫ T

0

∣∣∣∂w?

∂x

∣∣∣
2

L2(Ω)
dt

+
∫ T

0

(∂u

∂x
,
∂w̃

∂x

)
L2(Ω)

dt−m |h?|2H3(0,T ).(3.10)

We show that for m large enough, the last term dominates the expression (3.10) and
we obtain f ′′(0) < 0. To estimate the first terms of f ′′(0) we need to estimate w?

and w̃.
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We first estimate w?. We write w?(x, t) = γ(x, t)+φ(x, t) where φ(x, t) = h?0(t)+
(x/L)(h?1(t)− h?0(t)). Then γ is solution of the system:

∂2γ

∂t2 + α
∂γ

∂t
− ∂2γ

∂x2 + βγ cos u(g, h) = F̃ ,

γ(0, t) = 0, γ(L, t) = 0,(3.11)

γ(x, 0) = 0,
∂γ

∂t
(x, 0) = 0,

where F̃ (x, t) = −[
∂2φ/∂t2 + α∂φ/∂t + βφ cos u(g, h)

]
.

By the usual methods we find:

(3.12)
∣∣∣∂γ

∂t
(t)

∣∣∣
2

L2(Ω)
+

∣∣∣∂γ

∂x
(t)

∣∣∣
2

L2(Ω)
≤ c

∫ T

0
|F̃ (x, t)|2L2(Ω) dt ≤ c|h?|2H3(0,T ),

for all t ≤ T . Remembering that w? = γ + φ, we easily infer from (3.12) that

(3.13)
∫ T

0

∣∣∣∂w?

∂t
(t)

∣∣∣
2

L2(Ω)
dt +

∫ T

0

∣∣∣∂w?

∂x
(t)

∣∣∣
2

L2(Ω)
dt ≤ c|h?|2H3(0,T ).

Next step is to estimate

(3.14)
∣∣∣
∫ T

0

(∂u

∂t
,
∂w̃

∂t

)
L2(Ω)

dt
∣∣∣ and

∣∣∣
∫ T

0

(∂u

∂x
,
∂w̃

∂x

)
L2(Ω)

dt
∣∣∣.

By Schwarz’s inequality, it suffices to estimate ∂u/∂t, ∂w̃/∂t, ∂u/∂x, ∂w̃/∂x in
L2(0, T ; L2(Ω)).

For w̃, we multiply the first equation of (3.9) by ∂w̃/∂t and integrate over Ω. We
obtain after some elementary computations:

(3.15)
d
dt

[∣∣∣∂w̃

∂t

∣∣∣
2

L2(Ω)
+

∣∣∣∂w̃

∂x

∣∣∣
2

L2(Ω)

]
+ α

∣∣∣∂w̃

∂t

∣∣∣
2

L2(Ω)
≤ c

∣∣∣∂w̃

∂x

∣∣∣
2

L2(Ω)
+ c

∫

Ω
w4 dx.

Noticing that w? = γ + φh? , where γ ∈ H 1
0 (Ω) ⊂ L∞(Ω) and φh? ∈ L∞(Ω), we find

∫ T

0

∫

Ω
w4

?dx dt ≤
∫ T

0
|w?|2L∞(Ω)|w?|2L2(Ω) dt ≤ c|h?|4H3(0,T ).

Using the Gronwall lemma we obtain:

(3.16)
∫ T

0

[∣∣∣∂w̃

∂t
(t)

∣∣∣
2

L2(Ω)
+

∣∣∣∂w̃

∂x
(t)

∣∣∣
2

L2(Ω)

]
dt ≤ c|h?|4H3(0,T ).

We now return to f ′′(0) and we find:

(3.17) f ′′(0) ≤ |h?|2H3(0,T )

(
c + c

∣∣∣∂u

∂x

∣∣∣
L2(0,T ;L2(Ω))

+ c
∣∣∣∂u

∂t

∣∣∣
L2(0,T ;L2(Ω))

−m
)
.
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For the estimates of ∂u/∂t and ∂u/∂x we can repeat the calculations made in
Subsection 2.3 and we obtain the following estimates:

∣∣∣∂u

∂t

∣∣∣
2

L2(Ω)
≤ c|g|2H3(0,T ) + c|h|2H3(0,T ) + cT,

∣∣∣∂u

∂x

∣∣∣
2

L2(Ω)
≤ c|g|2H3(0,T ) + c|h|2H3(0,T ) + cT.

We assumed that J is defined on X × Y where X and Y are both bounded. We
obtain immediately:

∣∣∣∂u

∂t

∣∣∣
L2(0,T ;L2(Ω))

≤ c(T,X ,Y),
∣∣∣∂u

∂x

∣∣∣
L2(0,T ;L2(Ω))

≤ c(T,X ,Y).

Returning to (3.17) we see that there exists an m0 such that, for m ≥ m0, f ′′(0) < 0.
Hence h 7→ J (g, h) is strictly concave for any g ∈ X . ¤

We conclude by stating the main result of this section:

Theorem 3.3. (Existence and uniqueness of the solution to the robust control prob-
lem) Assume that X and Y are non-empty, closed, convex, bounded sets; X ,Y ⊂
H3

Γ(0, T ) and that l ≥ l0, m ≥ m0, where m0, l0 are like in the previous lemma. Then
there exists a unique saddle point (ḡ, h̄) ∈ X ×Y and the corresponding ū = u(ḡ, h̄)
such that

J (ḡ, h̄) = min
g∈X

max
h∈Y

J (g, h).

4. Miscellaneous Remarks

We conclude with a remark in the following subsection and an auxiliary result in
the next one.

4.1. Remark concerning the weak solutions of the sine-Gordon equation.
Much of what was done in the previous sections, is valid for weaker solutions of
system (1.7), that is u ∈ L2([0, T ], V ) with u′ ∈ L2([0, T ], H). We assume u0 ∈ V ,
u1 ∈ H and that the boundary conditions are given functions from H2

Γ(0, T ) = {v ∈
H2(0, T ), v(0) = 0} instead of functions from H3

Γ(0, T ). All the estimates made for
strong solutions are still true because of a technical result from [11]:

Lemma 4.1. Assume that w ∈ L2(0, T ; V ), w′ ∈ L2(0, T ; H) and w′′ + Aw ∈
L2(0, T ; H). Then, after modification on a set of measure zero, w is continuous from
[0, T ] into V , w′ is continuous from [0, T ] into H and in the sense of distributions
on (0, T )

2(w′′ + Aw, w′) =
d
dt
{|w′|2 + a(w, w)}.
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However, when working with weak solutions, we are not able to obtain a necessary
condition for optimality nor the characterization of the gradient as obtained in the
next subsection; hence our choice to work with strong solutions.

4.2. Identification of the gradients and characterization of the solutions
of the robust control problem. In this section we characterize the gradients of
the cost functional with respect to the control g and the disturbance h. In Section 3
we saw that the existence of a saddle point (ḡ, h̄) of the functional J implies

(DJ
Dg

(ḡ, h̄), g − ḡ
) ≥ 0, ∀ g ∈ X ,(4.1)

(DJ
Dh

(ḡ, h̄), h− h̄
) ≤ 0,∀h ∈ Y .

We should notice that for a solution (ḡ, h̄) to the robust control problem we may
not have (DJ /Dg)(ḡ, h̄) = (DJ /Dh)(ḡ, h̄) = 0, as they may be located on the
boundary of the domain X ×Y . We obtain this relation if (ḡ, h̄) is in the interior of
X × Y or if X and Y are all of H3

Γ(0, T ) but for this second variant we do not have
the existence of a solution of the robust control problem, as it is essential that X
and Y are bounded sets.

Differentiation of J leads to the following expressions:

DJ
Dg

(g, h) · g̃ =
∫ T

0

(∂u

∂t
,
∂w?

∂t

)
L2(Ω)

dt +
∫ T

0

(∂u

∂x
,
∂w?

∂x

)
L2(Ω)

dt(4.2)

+ l(g, g̃)H3(0,T ),

DJ
Dh

(g, h) · h̃ =
∫ T

0

(∂u

∂t
,
∂w̃

∂t

)
L2(Ω)

dt +
∫ T

0

(∂u

∂x
,
∂w̃

∂x

)
L2(Ω)

dt(4.3)

−m(h, h̃)H3(0,T ),

where w? = (Du/Dg) · g̃ and w̃ = (Du/Dh) · h̃.
We also introduce the following adjoint state equation:

∂2ŵ

∂t2 − α
∂ŵ

∂t
− ∂2ŵ

∂x2 + βŵ cos u =
∂2u

∂t2 +
∂2u

∂x2 ,

ŵ(0, t) = 0, ŵ(L, t) = 0,(4.4)

ŵ(x, T ) = 0,
∂ŵ

∂t
(x, T ) =

∂u

∂t
(x, T ).
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Proposition 4.1. Let u(g, h) be the solution of system (3.1) and let w = (Du/Dg) ·
g̃ + (Du/Dh) · h̃ be the solution of the following system:

∂2w

∂t2 + α
∂w

∂t
− ∂2w

∂x2 + βw cos u = 0,

w(0, t) = g̃0 + h̃0, w(L, t) = g̃1 + h̃1,(4.5)

w(x, 0) = 0,
∂w

∂t
(x, 0) = 0.

Let ŵ be the solution of the adjoint state equation (4.4). Then we obtain:
∫ T

0

(∂2u

∂t2 +
∂2u

∂x2 , w
)

L2(Ω)
dt =

∫

Ω

∂u

∂t
(T )w(T ) dx−

∫ T

0

∂ŵ

∂x
(L)(g̃1 + h̃1) dt(4.6)

+
∫ T

0

∂ŵ

∂x
(0)(g̃0 + h̃0) dt.

Proof. The proof follows immediately using elementary computations based on in-
tegrations by parts. ¤

As in Subsection 2.3, we introduce the operator τ defined on H2(Ω),

τu =
(
− ∂u

∂x
(0),

∂u

∂x
(L)

)
. With this notation we can rewrite (4.6) as

(4.7)
∫ T

0

(∂2u

∂t2 +
∂2u

∂x2 , w
)

L2(Ω)
dt =

∫

Ω

∂u

∂t
(T )w(T ) dx−

∫ T

0
τ(ŵ) · (g̃ + h̃) dt.

Returning to (4.2) and noticing that w? = w(g̃, 0) we obtain:

DJ
Dg

(g, h) · g̃ =
∫ T

0

(∂u

∂t
,
∂w?

∂t

)
L2(Ω)

dt +
∫ T

0

(∂u

∂x
,
∂w?

∂x

)
L2(Ω)

dt + l(g, g̃)H3(0,T )

=
∫

Ω

∂u

∂t
(T ) w?(T ) dx +

∫ T

0

∂u

∂x
(L)g̃1 dt−

∫ T

0

∂u

∂x
(0)g̃0 dt

−
∫ T

0

(∂2u

∂t2 +
∂2u

∂x2 , w?

)
L2(Ω)

dt + l (g, g̃)H3(0,T ).

Taking h̃ = 0 in (4.7) we obtain:

DJ
Dg

(g, h) · g̃ =
∫ T

0
(τu) g̃ dt +

∫ T

0
(τŵ)g̃ dt + l(g, g̃)H3(0,T ).

Taking an arbitrary g̃ we find the expression for the gradient DJ /Dg:

DJ
Dg

(g, h) = τu + τŵ + lΛg.
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Similarly we find:
DJ
Dh

(g, h) = τu + τŵ −mΛh.

We can now state the main result of this section:

Theorem 4.1. For m and l large enough, the solution to the robust control exists
and is unique. Furthermore, the gradients of the cost functional are given by
(DJ /Dg)(g, h) = τu + τŵ + lΛg and (DJ /Dh)(g, h) = τu + τŵ −mΛh,
where (u, ŵ) is the solution of the following system:

∂2u

∂t2 + α
∂u

∂t
− ∂2u

∂x2 + β sin u = 0,

∂2ŵ

∂t2 − α
∂ŵ

∂t
− ∂2ŵ

∂x2 + βŵ cos u =
∂2u

∂t2 +
∂2u

∂x2 ,(4.8)

u(0, t) = g0 + h0, u(L, t) = g1 + h1, ŵ(0, t) = 0, ŵ(L, t) = 0,

u(x, 0) = u0,
∂u

∂t
(x, 0) = u1, ŵ(x, T ) = 0,

∂ŵ

∂t
(x, T ) =

∂u

∂t
(x, T ).

Proof. The existence and uniqueness of the solution to the robust control problem
are given in Section 3. The other statements have been already proven in this
section. ¤
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L’Université de Montreal, 1965, reedited in 2002 as part of [8]



CONTROL FOR THE SINE-GORDON EQUATION 27

[8] J. L. Lions: Selected work, 3 volumes, EDP Sciences, Paris, France, 2003
[9] J. Simon: Compact sets in space Lp(0, T ; B), Ann. Math. Pura Appl., 4, 1987, 67-96

[10] R. Temam: Navier-Stokes Equations, North-Holland, Amsterdam, 1977, reedited in the series:
AMS Chelsea, AMS Providence 2001

[11] R. Temam: Infinite Dimensional Dynamical Systems in Mechanics and Physics, Applied
Math. Science, 68, Second augmented edition, Springer-Verlag, New-York, 1997

[12] M. Green and D. J. N. Limebeer: Linear robust control, Pretice-Hall, 1995
[13] M. Marion: Attractors for reaction-diffusion equations; Existence and estimate of their di-

mension, Appl. Anal., 25(1987), 101-147.
[14] G. P. Agrawal: Nonlinear Fiber Optics, 2nd ed., Academic, San Diego, Calif., 1995
[15] R. W. Boyd: Nonlinear Optics, Academic, Boston, 1992


