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Abstract. In this article we prove the backward uniqueness (as well as the uniqueness)
for a class, defined in the article, of solutions of the two dimensional Primitive Equations
that we call z−weak solutions. We also prove the backward uniqueness for the strong
solutions in the two and three dimensional cases. By backward uniqueness we understand
that once we know that two solutions are equal at a time t > 0, then we can conclude
that they are equal everywhere on the interval (0, t).

Résumé. On considère les équations primitives en dimension deux et trois d’espace et
on étudie l’unicité rétrograde des solutions. Pour l’unicité rétrograde on prouve que si
deux solutions coincident à un instant t > 0, alors elles sont égales sur tout l’intervalle
(0, t). Pour le système 2D, on montre l’unicité rétrograde des solutions z-faibles . On
montre aussi l’unicité rétrograde des solutions fortes pour le cas 2D et 3D.

1. Introduction

In this article we consider the primitive equations of the ocean, in a two dimensional
and then a three dimensional domain, with periodic boundary conditions. The question
to which we want to respond is: for which kind of solutions can we prove the backward
uniqueness. Lions and Malgrange treated the problem of the backward uniqueness in [6]
for certain parabolic problems and later Bardos and Tartar in [1] proved in particular that
the weak solutions for the 2D Navier-Stokes equations have this property. In this article
we will prove that the 2D primitive equations possess the backward uniqueness property
for a special class of weak solutions, that we call the z-weak solutions. The terminology
here is the standard one for fluid mechanics: the weak solutions are those bounded in
the L2−norm, and the strong solutions are those bounded in the H1−norm. Below we
call z−weak solutions the weak solutions for which the z derivative is also bounded in
L2 for all finite time; we also call z−strong solutions the strong solutions for which the z
derivative is bounded in H1 for all finite time.

Key words and phrases. Primitive equations for the ocean, backward uniqueness, z-weak solutions.
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The primitive equations are the equations modelling the motion of the ocean and of
the atmosphere, and they are deduced from the fundamental law of physics with simple
hypotheses.

On the subject of the well-posedness of the primitive equations much work has been
done: we cite here the pioneering work of Lions, Temam and Wang, where they started
to study in a mathematical framework the behavior of the solutions for the primitive
equations (see e.g. [7], [8]). In this work the authors considered the primitive equations
in a three-dimensional domain and they proved the existence, globally in time, of a weak
solution. The existence and uniqueness, locally in time of a strong solution was proved by
Guillén-González, Masmoudi and Rodŕıguez-Bellido [3] (see also [17]). On a thin domain,
Hu, Temam and Ziane [4], proved the global existence of strong solutions for the primitive
equations. The same result but working in a cylindrical domain of arbitrary depth, has
recently been proved by Cao and Titi [2] and independently, by Kobelkov [5].

For a 2D domain, Petcu, Temam and Wirosoetisno [12] proved the existence, globally
in time, of very regular solutions, in fact they proved the existence of absorbing sets in
each Sobolev space Hm, and in [11] the Gevrey regularity of such solutions was proved in
the space periodic case.

The model we are working with reads:

∂u

∂t
+ u

∂u

∂x1

+ v
∂u

∂x2

+ w
∂u

∂x3

− fv +
1

ρ0

∂p

∂x1

= ν∆u + Fu,(1.1a)

∂v

∂t
+ u

∂v

∂x1

+ v
∂v

∂x2

+ w
∂v

∂x3

+ fu +
1

ρ0

∂p

∂x2

= ν∆v + Fv,(1.1b)

∂p

∂x3

= −ρg,(1.1c)

∂u

∂x1

+
∂v

∂x2

+
∂w

∂x3

= 0,(1.1d)

∂ρ

∂t
+ u

∂ρ

∂x1

+ v
∂ρ

∂x2

+ w
∂ρ

∂x3

− ρ0N
2

g
w = µ∆ρ + Fρ.(1.1e)

Here, (u, v, w) are the three components of the velocity vector. In order to obtain this
model we wrote the full density ρfull as

(1.2) ρfull(x1, x2, x3, t) = ρ0 + ρ̄(x3) + ρ(x1, x2, x3, t),

where ρ0 is the reference (average) value of the density and ρ̄ = ρ̄(x3) is a stratification
profile of the density. Similarly, we wrote the pressure as,

(1.3) pfull(x1, x2, x3, t) = p0 + p̄(x3) + p(x1, x2, x3, t),

where p0 is a ∂p0/∂x3 = −gρ0 and ∂p̄/∂x3 = −gρ̄. From here we obtained (1.1c).
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In equation (1.1e) we introduced the (constant) Brunt–Väisälä frequency N , defined by

(1.4) N2 = − g

ρref

dρ̄

dx3

.

The constant g is the gravitational acceleration and f the Coriolis parameter, ν and µ
are the eddy diffusivity coefficients, (Fu, Fv) represent body forces per unit of mass and
Fρ represents a heating source. In the applications Fu and Fv vanish for the ocean, but
we consider here nonzero forces for mathematical generality. We denote by F the vector
(Fu, Fv, Fρ). For more details regarding the derivation of these equations, we refer the
interested reader to [9] or the physical appendix of [13].

In what follows we work in a bounded domain:

(1.5) M = (0, L1)× (0, L2)× (−L3/2, L3/2),

and we assume space periodicity with period M, meaning that all functions are taken to
satisfy:

(1.6) f(x1, x2, x3, t) = f(x1 + L1, x2, x3, t) = f(x1, x2 + L2, x3, t) = f(x1, x2, x3 + L3, t),

when extended to R3.
Working with periodic functions, all functions admit a Fourier series expansion:

(1.7) f(x1, x2, x3, t) =
∑

k∈R3

fk(t)e
i(k′1x1+k′2x2+k′3x3),

where, for notational conciseness, we set k′j = 2πkj/Lj for j = 1, 2, 3.
We also assume as in [15], [12], that the functions have the following symmetries:

u(x1, x2, x3, t) = u(x1, x2,−x3, t), Fu(x1, x2, x3, t) = Fu(x1, x2, x3, t),

v(x1, x2, x3, t) = v(x1, x2,−x3, t), Fv(x1, x2, x3, t) = Fv(x1, x2,−x3, t),

ρ(x1, x2, x3, t) = −ρ(x1, x2,−x3, t), Fρ(x1, x2, x3, t) = −Fρ(x1, x2,−x3, t),(1.8)

w(x1, x2, x3, t) = −w(x1, x2,−x3, t), p(x1, x2, x3, t) = p(x1, x2,−x3, t);

and we say that u, v, p are even and w, ρ odd in x3. As explained in [12], these symmetry
properties are necessary for the space periodicity to be consistent with (1.1). Space peri-
odicity in x1 and x2 only (and without the symmetry properties (1.8)) will be considered
elsewhere.

The variational formulation of the problem

We start by introducing the natural function spaces for this problem:
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V = {U = (u, v, ρ) ∈ (Ḣ1
per(M))3, u, v even in x3, ρ odd in x3,(1.9)

∫ L3/2

−L3/2

(ux1(x1, x2, x
′
3) + vx2(x1, x2, x

′
3)) dx′3 = 0},

H = closure of V in (L̇2(M))3,

V2 = the closure of V ∩ (Ḣ2
per(M))3 in (Ḣ2

per(M))3.(1.10)

As in [15], we endow these spaces with the following scalar products:
on H we consider:

(1.11) (U, Ũ)H = (u, ũ)L2 + (v, ṽ)L2 + κ(ρ, ρ̃)L2 ,

and on V :

(1.12) ((U, Ũ))V = ((u, ũ)) + ((v, ṽ)) + κ((T, T̃ )).

Here the dots above Ḣ1
per and L̇2 denote the functions with zero average over M. Since

we work with functions with zero average over M, we can use the generalized Poincaré
inequality:

(1.13) c0|U |H ≤ ‖U‖V , ∀U ∈ V,

where c0 is a constant related to the Poincaré constant.
The variational formulation of this problem is obtained classically by considering a test

function U [ = (u[, v[, ρ[) in V , multiplying (1.1a) by u[, (1.1b) by v[, (1.1e) by κρ[, adding
and integrating over M. We find the following problem:

Find U : [0, t0] → V , such that,

d

dt
(U,U [)H + a(U,U [) + b(U,U, U [) + e(U,U [) = (F, U [)H , ∀U [ ∈ V,

U(0) = U0.
(1.14)

In (1.14) we introduced the following forms:
a : V × V → R bilinear, continuous, coercive:

(1.15) a(U,U [) = ν((u, u[)) + ν((v, v[)) + κµ((ρ, ρ[)),
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with κ = g2/N2ρ2
0,

b : V × V × V2 → R trilinear:

b(U,U ], U [) =

∫

M

(u
∂u]

∂x
u[ + v

∂u]

∂y
u[ + w(U)

∂u]

∂z
u[) dM

+

∫

M

(u
∂v]

∂x
v[ + v

∂v]

∂y
v[ + w(U)

∂v]

∂z
v[) dM

+ κ

∫

M

(u
∂ρ]

∂x
ρ[ + v

∂ρ]

∂y
ρ[ + w(U)

∂ρ]

∂z
ρ̃) dM,

(1.16)

e : V × V → R bilinear, continuous:

(1.17) e(U,U [) = f

∫

M

(uv[ − vu[) dM +
g

ρ0

∫

M

ρw(U [) dM− g

ρ0

∫

M

ρ[w(U) dM,

with e(U,U) = 0 for all U ∈ V .
We also have the following properties for b:

Lemma 1.1. The form b is trilinear continuous from V×V2×V into R and from V×V×V2

into R, and

(1.18) |b(U,U ], U [)| ≤ c2‖U‖|U ]|1/2
H ‖U ]‖1/2‖U [‖V2 , ∀U,U ] ∈ V, U [ ∈ V2.

Furthermore,
b(U,U [, U [) = 0 ∀U ∈ V, U [ ∈ V2,

and
b(U,U [, U ]) = −b(U,U ], U [), ∀U,U [, U ] ∈ V with U [ or U ] ∈ V2.

These properties and other properties of these forms are proved in detail in [12] and
[13].

Problem (1.14) can also be written as an operator evolution equation in V ′
2 :

dU

dt
+ AU + B(U,U) + EU = F,

U(0) = U0,
(1.19)

where we introduced the following operators:

A linear continuous from V into V ′, defined by

〈AU,U [〉 = a(U,U [), ∀U,U [ ∈ V,

B bilinear, continuous from V × V into V ′
2 , defined by

〈B(U,U [), U ]〉 = b(U,U [, U ]) ∀U,U [ ∈ V, ∀U ] ∈ V2,

E linear continuous from V into V ′, defined by

〈EU,U [〉 = e(U,U [), ∀U,U [ ∈ V, with 〈EU,U〉 = 0.
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In this article we would like to know in what class of solutions we have the backward
uniqueness. That is, when can we conclude that two solutions that are equal at a time
t > 0, are equal everywhere on the interval (0, t). In what follows we will prove that for
the two-dimensional model of primitive equations we have the backward uniqueness for
a class of solutions which are weak in the horizontal direction and strong in the vertical
direction, solutions that we call z−weak. For the three dimensional model, the backward
uniqueness of (usual) strong solutions is proved.

We start, in Section 2 and 3, by proving the necessary results of existence and (forward)
uniqueness in space dimensions 2 and 3. Then, in Section 4 and 5, we address the question
of backward uniqueness in dimension 2 and then 3.

2. Existence and uniqueness of z-weak solutions in dimension 2

In this section, we consider the 2D version of (1.1): all the functions are independent
of the x2-variable but the velocity v is not zero, so we still model a three dimensional
motion. The equations read:

∂u

∂t
+ u

∂u

∂x1

+ w
∂u

∂x3

− fv +
1

ρ0

∂p

∂x1

= νv ∆u + Fu,(2.1a)

∂v

∂t
+ u

∂v

∂x1

+ w
∂v

∂x3

+ fu = νv ∆v + Fv,(2.1b)

∂p

∂x3

= −gρ,(2.1c)

∂u

∂x1

+
∂w

∂x3

= 0,(2.1d)

∂ρ

∂t
+ u

∂ρ

∂x1

+ w
∂ρ

∂x3

− ρ0N
2

g
w = νρ ∆ρ + Fρ.(2.1e)

In [12] we proved the existence, globally in time, of a weak solution for this model, as
well as the existence and uniqueness of a strong solution. In this section we prove an
intermediate result, that is the existence and uniqueness, globally in time, of solutions
which are weak in the horizontal direction and strong in the vertical direction (the so-
called z−weak solutions). We start by introducing the function spaces necessary for this
problem:

V = {U = (u, v, ρ) ∈ V,
∂U

∂x3

∈ (Ḣ1
per(M))3},

which is a Hilbert space when endowed with the following norm:

|U |2V = ‖U‖2 +
∥∥ ∂U

∂x3

∥∥2
.
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Another useful function space is:

H = {U = (u, v, ρ) ∈ H,
∂U

∂x3

∈ (L̇2
per(M))3},

which is a Hilbert space when endowed with the norm:

|U |2H = |U |2L2 +
∣∣ ∂U

∂x3

∣∣2
L2 .

We now prove the existence and uniqueness, globally in time, of a z-weak solution for
(2.1) (see [14] and [18]).

Theorem 2.1. (z-weak solutions in dimension two) Given U0 ∈ H and F ∈ L∞(0, T ;H),
there exists a unique solution U of problem (2.1) satisfying the initial condition U(0) = U0

and:

(2.2) U ∈ C([0, T ];H) ∩ L2(0, T ;V).

Proof. The existence of a weak solution for problem (2.1) was proved in [12] and [18]. It
remains to prove that starting with an initial data and a forcing more regular (satisfying
the hypotheses of Theorem 2.1), the solution is strong in the vertical direction. In order
to prove that, we need to obtain a priori estimates for Ux3 = ∂U/∂x3. We formally
differentiate (2.1a), (2.1b) and (2.1e) in x3 and then multiply respectively by ux3 , vx3 and
ρx3 , and integrate over M. We find:

1

2

d

dt
|Ux3|2L2 +

∫

M

(ux1 + wx3)u
2
x3

dM +
1

ρ0

∫

M

px1x3ux3 dM

+

∫

M

(ux3vx1 + vx3wx3)vx3 dM +

∫

M

(ux3ρx1 + wx3ρx3)ρx3 dM + ν‖Ux3‖2

= (Fx3 , Ux3)L2 .

(2.3)

The second term of (2.3) is zero because of the mass conservation equation. The
pressure term can be estimated, using the hydrostatic equation (2.1c) and integrating by
parts:

(2.4)

∫

M

px1x3ux3 dM = −g

∫

M

ρx1ux3 dM ≤ g|ρ|‖Ux3‖.

We also estimate:∫

M

(ux3vx1 + vx3wx3)vx3 dM ≤ |ux3|L4|vx1|L2|vx3|L4 + |ux1|L2|vx3|2L4 ≤ c|Ux3|L2‖Ux3‖‖U‖,

and∫

M

(ux3ρx1 + wx3ρx3)ρx3 dM ≤ |ux3|L4|ρx1|L2|ρx3|L4 + |ux1|L2|ρx3|2L4 ≤ c|Ux3|‖Ux3‖‖U‖.
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Using the above estimates into (2.3), we find:

1

2

d

dt
|Ux3|2L2 + ν‖Ux3‖2 ≤ |F |L2‖Ux3‖+ c|ρ|L2‖Ux3‖+ c|Ux3|L2‖Ux3‖‖U‖,

which, by the Young inequality, implies:

(2.5)
1

2

d

dt
|Ux3|2L2 +

ν

2
‖Ux3‖2 ≤ c|S|2L2 + c|Ux3|2L2‖U‖2 + c|U |2L2 .

Applying the Gronwall lemma to (2.5) and using the estimates valid for weak solutions
(U in L2(0, T, V ) ∀T ), we find a bound for Ux3 in L∞(0, T ; L2(M)) and L2(0, T ; Ḣ1

per(M)).
Using all these estimates and the Galerkin method, we can prove the existence of a

z−weak solution that is with U and Ux3 belonging to L∞(0, T ; L2(M))∩L2(0, T ; Ḣ1
per(M)).

The forward uniqueness of a z−weak solution is then proved classically: we suppose
that U1 and U2 are two z−weak solutions for (2.1), satisfying the same initial condition.
Then, Ũ = U1 − U2 satisfies the following equation:

(2.6) Ũ ′ + AŨ + EŨ + B(U1, Ũ) + B(Ũ , U2) = 0,

with Ũ(0) = 0.
We take the (V ′, V )−duality product of (2.6) with Ũ . We find:

(2.7)
d

dt
|Ũ |2H + c0‖Ũ‖2

V + b(U1, Ũ , Ũ) + b(Ũ , U2, Ũ) ≤ 0.

From the orthogonality property we know that b(U1, Ũ , Ũ) = 0, under the hypotheses
of Lemma 1.1. But we note here that in our case U1 and Ũ do not satisfy the conditions
in Lemma 1.1; however, the same result can be easily obtained for the case U1 ∈ V and
Ũ ∈ V , using the same kind of reasoning as before. It remains to estimate b(Ũ , U2, Ũ):

(2.8) b(Ũ , U2, Ũ) =

∫

M

ũ
∂U2

∂x1

· Ũ dM +

∫

M

w(Ũ)
∂U2

∂x3

· Ũ dM.

The first term of (2.8) is estimated using the Holder inequality and the Sobolev em-
beddings:

(2.9)
∣∣∣
∫

M

ũ
∂U2

∂x1

· Ũ dM
∣∣∣ ≤ |ũ|L4

∣∣∣∂U2

∂x1

∣∣∣
L2
|Ũ |L4 ≤ c|Ũ |‖Ũ‖‖U2‖.

For the second term, we find:
(2.10)∣∣∣

∫

M

w(Ũ)
∂U2

∂x3

· Ũ dM
∣∣∣ ≤ |w(Ũ)|L2

∣∣∣∂U2

∂x3

∣∣∣
L4
|Ũ |L4 ≤ c|Ũ |1/2‖Ũ‖3/2

∣∣∣∂U2

∂x3

∣∣∣
1/2∥∥∥∂U2

∂x3

∥∥∥
1/2

.

Using the above estimates into (2.8), we find:

(2.11)
d

dt
|Ũ |2H + c0‖Ũ‖2

V ≤ g(t)|Ũ |2H ,
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where

g(t) = c‖U2‖2 + c
∣∣∣∂U2

∂x3

∣∣∣
2∥∥∥∂U2

∂x3

∥∥∥
2

.

Since U2 is a z−weak solution, the function g belongs to L1(0, T ) for any T > 0. So
applying the Gronwall lemma to (2.11), we find that Ũ(t) = 0 for all t > 0.

It remains to prove that the z−weak solution U belongs to C([0, T ],H). We start by
proving that B(U,U) belongs to L2(0, T,V ′). Let Ũ be in V . Then:

(2.12) < B(U,U), Ũ >V ′,V= b(U,U, Ũ) =

∫

M

u
∂U

∂x1

· Ũ dM +

∫

M

w(U)
∂U

∂x3

· Ũ dM.

The first term is estimated as:

∫

M

u
∂U

∂x1

· Ũ dM =

∫ L1

0

∫ L3/2

−L3/2

u
∂U

∂x1

· Ũ dx3 dx1 ≤
∫ L1

0

|u|L2
x3

∣∣∣ ∂U

∂x1

∣∣∣
L4

x3

|Ũ |L4
x3

dx1

≤
∫ L1

0

|U |L2
x3

(∣∣∣ ∂U

∂x1

∣∣∣
1/2

L2
x3

+
∣∣∣ ∂2U

∂x1∂x3

∣∣∣
1/2

L2
x3

)
|Ũ |1/2

L2
x3

(
|Ũ |1/2

L2
x3

+
∣∣∣ ∂Ũ

∂x3

∣∣∣
1/2

L2
x3

)
.

(2.13)

Here and below Lq
x1

is Lq(0, L1) and Lq
x3

is Lq(−L3/2, L3/2).
The most difficult term of (2.13) is:

∫ L1

0

|U |L2
x3

∣∣∣ ∂U

∂x1

∣∣∣
1/2

L2
x3

∣∣∣ ∂2U

∂x1∂x3

∣∣∣
1/2

L2
x3

|Ũ |1/2

L2
x3

∣∣∣ ∂Ũ

∂x3

∣∣∣
1/2

L2
x3

dx1

≤ c|U |L2(M)

∣∣∣ ∂U

∂x1

∣∣∣
1/2

L2(M)

∣∣∣ ∂2U

∂x1∂x3

∣∣∣
1/2

L2(M)
||Ũ |L2

x3
|1/2
L∞x1

∣∣∣
∣∣∣ ∂Ũ

∂x3

∣∣∣
L2

x3

∣∣∣
1/2

L∞x1

≤ c|U |L2(M)

∣∣∣ ∂U

∂x1

∣∣∣
1/2

L2(M)

∣∣∣ ∂2U

∂x1∂x3

∣∣∣
1/2

L2(M)
‖Ũ‖1/2

∥∥∥ ∂Ũ

∂x3

∥∥∥
1/2

≤ c|U |L2(M)‖U‖V‖Ũ‖V ;

(2.14)

we used the fact that, in dimension one, we have the Sobolev embedding H1
x1
⊂ L∞x1

,
which implies that:

(2.15) |Ũ |L∞x1
(L2

x3
) ≤ c|Ũ |H1

x1
(L2

x3
) ≤ c‖Ũ‖.
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We also need to estimate the second term from (2.12):

∣∣∣
∫

M

w(U)
∂U

∂x3

· Ũ dM
∣∣∣ ≤

∫ L1

0

|w(U)|L∞x3

∣∣∣ ∂U

∂x3

∣∣∣
L2

x3

|Ũ |L2
x3

dx1

≤ c

∫ L1

0

|Ux1|L2
x3

∣∣∣ ∂U

∂x3

∣∣∣
L2

x3

|Ũ |L2
x3

dx1

≤ c|Ux1|L2
x1

(L2
x3

)

∣∣∣ ∂U

∂x3

∣∣∣
L2

x1
(L2

x3
)
|Ũ |L∞x1

(L2
x3

)

≤ c|Ux1|L2(M)

∣∣∣ ∂U

∂x3

∣∣∣
L2(M)

|Ũ |H1
x1

(L2
x3

)

≤ c|Ux1|L2(M)

∣∣∣ ∂U

∂x3

∣∣∣
L2(M)

‖Ũ‖.

(2.16)

Combining (2.14) and (2.16), we find that:

(2.17) ‖B(U,U)‖V ′ ≤ c|U |L2(M)‖U‖V + c|Ux1|L2(M)

∣∣∣ ∂U

∂x3

∣∣∣
L2(M)

,

which, taking into account that U ∈ L2(0, T,V), implies that B(U,U) ∈ L2(0, T,V ′).
Then one can easily conclude from (1.19) that U ′ ∈ L2(0, T,V ′). We know that U ∈

L2(0, T,V) and V ⊂ V ⊂ H ⊂ V ′ ⊂ V ′ where each space is dense into the other. We
can then conclude, using a technical result (see [16] for more details), that U belongs to
C([0, T ],H), observing that H = [V ,V ′]1/2 is the 1/2−interpolate between V and V ′. ¤

3. Existence and uniqueness of z−strong solutions in dimension 3

In what follows, we also need the existence globally in time as well as the uniqueness
of z−strong solutions. We can prove the following result:

Theorem 3.1. (z-strong solution in dimension two and three) Given U0 ∈ V and F ∈
L∞(0, T ;V), there exists a unique solution U of problem (2.1), satisfying the initial con-
dition U(0) = U0 and:

(3.1) U ∈ L∞([0, T ];V) ∩ L2(0, T ; Ḣ2
per(M)),

∂U

∂x3

∈ L2(0, T ; Ḣ2
per(M)).

Proof. We start by mentioning that the following reasoning is related to dimension 3; the
dimension 2 is similar and much easier.

In [17] the authors proved, using the Galerkin approximation, the existence and unique-
ness of a strong solution, locally in time. We are now interested in obtaining a priori esti-
mates for the z-strong solution, so that, using the Galerkin method, to prove the existence
locally in time and the uniqueness of a z-strong solution.
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We assume U is a smooth solution for the primitive equations and we first derive here
some a priori estimates on Ux3 . At the end of the proof we explain how these estimates
provide the existence of the z-strong solution, globally in time.

We start by differentiating the evolution equation (1.19) in x3; we find:

(3.2) U ′
x3

+ AUx3 + EUx3 + (B(U,U))x3 = Fx3 .

Multiplying (3.2) by −∆Ux3 and integrating over M, we find:

1

2

d

dt
‖Ux3‖2 + c0|∆Ux3|2 ≤

∣∣∣
∫

M

ux3Ux1 ·∆Ux3 dM
∣∣∣ +

∣∣∣
∫

M

vx3Ux2 ·∆Ux3 dM
∣∣∣

+
∣∣∣
∫

M

w(U)x3Ux3 ·∆Ux3 dM
∣∣∣ +

∣∣∣
∫

M

uUx1x3 ·∆Ux3 dM

+

∫

M

vUx2x3 ·∆Ux3 dM +

∫

M

w(U)Ux3x3 ·∆Ux3 dM
∣∣∣ +

∣∣∣
∫

M

Fx3∆Ux3 dM
∣∣∣.

(3.3)

We need to estimate the terms from the right-hand-side of (3.3). The first three terms
are similar so we will estimate just one of them:

∣∣∣
∫

M

ux3Ux1 ·∆Ux3 dM
∣∣∣ ≤ |Ux3|L4|Ux1|L4|∆Ux3|L2

≤ c|∆Ux3||Ux1|1/4‖Ux1‖3/4|Ux3|1/4‖Ux3‖3/4

≤ c|∆Ux3|‖U‖1/4|U |3/4

H2 |Ux3|1/4‖Ux3‖3/4

≤ c0

8
|∆Ux3|2 + c|U |1/2

H1 |U |3/2

H2 |Ux3|1/2‖Ux3‖3/2.

(3.4)

By integration by parts we also find for the other terms:
∫

M

(uUx1x3 + vUx2x3 + w(U)Ux3x3) ·∆Ux3 dM = −
∫

M

u∇Ux1x3 · ∇Ux3 dM

−
∫

M

v∇Ux2x3 · ∇Ux3 dM−
∫

M

w(U)∇Ux3x3 · ∇Ux3 dM

−
∫

M

[(∇u · ∇)Ux3 ] · Ux1x3 dM−
∫

M

[(∇v · ∇)Ux3 ] · Ux2x3 dM

−
∫

M

[(∇w(U) · ∇)Ux3 ] · Ux3x3 dM.

(3.5)

We first notice that by integration by parts and using the mass conservation, we find:

(3.6)

∫

M

u∇Ux1x3 · ∇Ux3 dM +

∫

M

v∇Ux2x3 · ∇Ux3 dM +

∫

M

w(U)∇Ux3x3 · ∇Ux3 dM = 0.
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We need to estimate the remaining terms, which are of two types: containing or not
w(U). We find:

∣∣∣
∫

M

[(∇u · ∇)Ux3 ] · Ux1x3 dM
∣∣∣ ≤ |∇U |L2|∇Ux3|2L4 ≤ c‖U‖‖Ux3‖1/2|Ux3|3/2

H2

≤ c0

8
|∆Ux3|2L2 + c‖U‖4‖Ux3‖2,

(3.7)

and
∫

M

[(∇w(U) · ∇)Ux3 ] · Ux3x3 dM =

∫

M′

∫ L3/2

−L3/2

[(∇w(U) · ∇)Ux3 ] · Ux3x3 dx3 dM′

≤
∫

M′
|∇w(U)|L∞x3

|∇Ux3|2L2
x3

dM′ ≤ c

∫

M′
|∆U |L2

x3
|∇Ux3|2L2

x3
dM′

≤ c||∆U |L2
x3
|L2(M′)||∇Ux3|L2

x3
|2L4(M′)

≤ c|∆U |L2(M)||∇Ux3|L2
x3
|L2(M′)||∇Ux3|L2

x3
|H1(M′),

(3.8)

where M′ = (0, L1)× (0, L2).
One can easily show, by direct differentiation and classical estimates, that:

(3.9) ||∇Ux3|L2
x3
|2H1(M′) ≤ c(|∇Ux3|2L2(M) + |Ux3|2H2(M)) ≤ c|Ux3|2H2(M).

Using (3.9) into (3.8), we find:
∫

M

[(∇w(U) · ∇)Ux3 ] · Ux3x3 dM ≤ c|∆U ||∇Ux3||∆Ux3|

≤ c0

8
|∆Ux3|2 + c|∆U |2|∇Ux3|2.

(3.10)

The forcing term is easy to estimate, and gathering all the above estimates we find:

(3.11)
d

dt
‖Ux3‖2 + c0|∆Ux3|2 ≤ f(t)‖Ux3‖2 + g(t),

with

f(t) = c(‖U‖2 + |∆U |2L2), g(t) = |Fx3|2L2 .

Using these a priori estimates and the Galerkin method, we prove that the z-weak
solution exists on an interval (0, t?), with t? ≤ T . But the recent improvements due to
C. Cao and E. Titi [2] and to G. Kobelkov [5] showed the existence of a global strong
solution (meaning t? = T ) and since the estimates in (3.11) depend only on ∆U , we
conclude that the z-strong solution exists globally in time.

¤
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4. Backward uniqueness for the z−weak solutions in dimension two

In what follows we prove that the z−weak solutions for the 2D primitive equations
have the backward uniqueness property. This means that if two z−weak solutions U1 and
U2 defined on the interval [0, T ] coincide at a point t? ∈ (0, T ), then we can conclude that
the solutions coincide on the whole interval [0, t?]. The arguments we use are similar to
the case of Navier-Stokes equations considered in [1], [6].

In fact we can prove that:

Theorem 4.1. (z-weak solutions in dimension two) Let F be in L2(0, T,V) and let
U1, U2 be two z−weak solutions for the primitive equations (2.1), U1, U2 belonging to
C([0, T ];H) ∩ L2(0, T,V), such that U1(t?) = U2(t?). Then U1 = U2 on the interval [0, t?].

Before starting to prove the result announced, we give the following useful result:

Proposition 4.1. Let F be in L2(0, T ;V) and U0 in V. Let us also consider U solution
of the linear primitive equations:

U ′(t) + AU(t) + EU(t) = F,

U(0) = U0.
(4.1)

For all time t such that U(t) 6= 0, we define the following function:

(4.2) φ(t) =
((A + E)U(t), U(t))H

|U(t)|2H
.

Then, φ is differentiable for almost every t where it is defined (meaning where U(t) 6= 0)
and

(4.3) φ′(t) ≤ |F (t)|2H
|U(t)|2H

.

Proof. By classical methods, one can immediately show (compare to Theorem 3.1) that
the solutions U of the linear primitive equations satisfy:

U ∈ L∞(0, T ;V) ∩ L2(0, T ; Ḣ2
per(M)),

∂U

∂x3

∈ L2(0, T ; Ḣ2
per(M)), U ∈ C([0, T ],H).

We first note that the function φ is defined on the open subset of (0, T ) where |U(t)|H >
0; the set where |U(t)|H > 0 is open because U ∈ C([0, T ],H).

Then, all the computations below, performed formally, can be fully justified by using
a Galerkin approximation. We first note that, since E is an skewsymmetric operator, we
have:

φ(t) =
((A + E)U(t), U(t))H

|U(t)|2H
=

(AU(t), U(t))H
|U(t)|2H

.
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We find:

φ′(t) =2
< AU ′(t), U(t) >V ′,V + < AU ′

x3
(t), Ux3(t) >V ′,V

|U(t)|2H
− 2

(AU(t), U(t))H
|U(t)|4H

{< U ′(t), U(t) >V ′,V + < U ′
x3

(t), Ux3(t) >V ′,V }

=2
(F − AU(t)− EU(t), AU(t))H

|U(t)|2H
− 2

(AU(t), U(t))H
|U(t)|4H

(F − AU(t)− EU(t), U(t))H

=2
(F, AU(t))H
|U(t)|2H

− 2
|AU(t)|2H
|U(t)|2H

− 2
(AU(t), U(t))H

|U(t)|4H
(F, U(t))H

+ 2
|(AU(t), U(t))H|2

|U(t)|4H
,

(4.4)

where, in the computations above, we used the fact that:

< AU(t), EU(t) >V ′,V = 0.

The relation above can be formally checked as follows (rigorous justifications can be
derived):

< AU(t), EU(t) >V ′,V =− f

∫

M

(u∆v − v∆u)dM

− g

ρ0

∫

M

ρw(∆U)dM +
g

ρ0

∫

M

∆ρw(U)dM

=− g

ρ0

∑

l+m=0,l3 6=0

|l|2ρl
m1

m3

um +
g

ρ0

∑

l+m=0,m3 6=0

ρl
m1

m3

|m|2um

=0,

(4.5)

where we used the definition of w(U) as −k1/k3uk for k3 6= 0, and 0 when k3 = 0.
We have the following relation:

|(AU(t),U(t))H|2 − (AU(t), U(t))H(F, U(t))H +
1

4
|(F, U(t))H|2

= |(AU(t)− F/2, U(t))H|2 ≤ |AU(t)− F/2|2H|U |2H.
(4.6)
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Continuing to estimate φ′ in (4.4), we can conclude:

φ′(t) ≤2
(F, AU(t))H
|U(t)|2H

− 2
|AU(t)|2H
|U(t)|2H

+ 2
|AU(t)− F/2|2H

|U(t)|2H
− 1

2

|(F, U(t))H|2
|U(t)|4H

≤2
(F, AU(t))H
|U(t)|2H

− 2
|AU(t)|2H
|U(t)|2H

− 1

2

|(F, U(t))H|2
|U(t)|4H

+
2

|U |2H
{|AU |2H − (F, AU(t))H +

1

4
|F |2H}

≤|F (t)|2H
|U(t)|2H

.

(4.7)

¤

We can now start to prove the main result of this section.

Remark 4.1. A similar result is also true in dimension three but in other spaces. More
exactly, let F be in L2(0, T ; V ) and U0 in V . Let us also consider U as the solution of the
linear primitive equations:

U ′(t) + AU(t) + EU(t) = F,

U(0) = U0.
(4.8)

For all time t such that U(t) 6= 0, we define the following function:

φ(t) =
((A + E)U(t), U(t))H

|U(t)|2H
.

Then, φ is differentiable for almost all t where it is defined and

(4.9) φ′(t) ≤ |F (t)|2H
|U(t)|2H

.

Proof of Theorem 4.1. We notice that since U1 and U2 are z−weak solutions, U1 and
U2 belong to L2(0, T,V) and we can thus find a δ arbitrarily small such that U1(δ) and
U2(δ) belong to V . Considering the primitive equations having U1(δ) and U2(δ) as initial
condition at t = δ, one obtains, using Theorem 3.1 (for the dimension 2), the existence
of z−strong solutions Ũ1 and Ũ2. We note here that Theorem 3.1 was stated in a more
general case, for the three dimensional primitive equations, but in this article we need just
the two dimensional case. By the uniqueness of the solution we conclude that Ũ1 = U1

and Ũ2 = U2 on the interval [δ, T ], so U1, U2 belong to L∞(δ, T,V) ∩ L2(δ, T, Ḣ2
per(M)),

and ∂U1/∂x3, ∂U2/∂x3 belong to L2(δ, T, Ḣ2
per(M)) for δ > 0 arbitrarily small.
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We write U ] = U1 − U2 and Ũ = U1 + U2. Combining the equations for U1 and U2, we
find that U ] satisfies the following equation:

(4.10) U ]′ + AU ] + EU ] +
1

2
B(Ũ , U ]) +

1

2
B(U ], Ũ) = 0,

with U ](t?) = 0.
We define the following operator:

M(t)U ] =
1

2
B(Ũ , U ]) +

1

2
B(U ], Ũ)

=
1

2

(
ũ
∂U ]

∂x1

+ w(Ũ)
∂U ]

∂x3

)
+

1

2

(
u] ∂Ũ

∂x1

+ w(U ])
∂Ũ

∂x3

)
.

(4.11)

In what follows, the task is to prove that ‖M(t)‖L(V,H) belongs to L2(δ, T ). We thus
compute:

∣∣∣w(Ũ)
∂U ]

∂x3

∣∣∣
L2
≤ |w(Ũ)|L4

∣∣∣∂U ]

∂x3

∣∣∣
L4
≤ c|w(Ũ)|1/2

L2 ‖w(Ũ)‖1/2
∣∣∣∂U ]

∂x3

∣∣∣
1/2

L2

∥∥∥∂U ]

∂x3

∥∥∥
1/2

≤ c‖Ũ‖1/2|Ũ |1/2

H2 ‖U ]‖V ,

|ũ∂U ]

∂x1

|L2 ≤ |Ũ |L∞‖U ]‖ ≤ c|Ũ |1/2

H2 ‖Ũ‖1/2‖U ]‖V .

(4.12)

We also find:

∣∣∣w(U ])
∂Ũ

∂x3

∣∣∣
L2
≤ |w(U ])|L2

∣∣∣ ∂Ũ

∂x3

∣∣∣
H2
≤ c‖U ]‖V

∣∣∣ ∂Ũ

∂x3

∣∣∣
H2

,

|u] ∂Ũ

∂x1

|L2 ≤
∣∣∣U ]

∣∣∣
L4

∣∣∣ ∂Ũ

∂x1

∣∣∣
L4
≤ c‖U ]‖V‖Ũ‖1/2|Ũ |1/2

H2 .

(4.13)

Gathering the above estimates, we find:

(4.14) |M(t)U ]|L2 ≤ c‖Ũ‖1/2|Ũ |1/2

H2 ‖U ]‖V + c
∣∣ ∂Ũ

∂x3

∣∣
H2‖U ]‖V .

We now need to estimate the L2−norm of the x3-derivative of M(t)U ], in fact we need
to estimate the following expression:

2(M(t)U ])x3 =ũx3

∂U ]

∂x1

+ w(Ũ)x3

∂U ]

∂x3

+ ũ
∂2U ]

∂x1∂x3

+ w(Ũ)
∂2U ]

∂x2
3

+ u]
x3

∂Ũ

∂x1

+ w(U ])x3

∂Ũ

∂x3

+ u] ∂2Ũ

∂x1∂x3

+ w(U ])
∂2Ũ

∂x2
3

,

(4.15)

and we separately bound each of the terms.
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We easily find:

∣∣ũx3

∂U ]

∂x1

∣∣
L2 ≤ |ũx3|L∞

∣∣∂U ]

∂x1

∣∣
L2 ≤ c|ũx3|H2‖U ]‖V ,

∣∣w(Ũ)x3

∂U ]

∂x3

∣∣
L2 ≤ |ũx1|L4

∣∣∂U ]

∂x3

∣∣
L4 ≤ c|Ũx1|1/2

L2 ‖Ũx1‖1/2‖U ]‖V ,
∣∣ũ ∂2U ]

∂x1∂x3

∣∣
L2 ≤ |ũ|L∞

∣∣ ∂2U ]

∂x1∂x3

∣∣
L2 ≤ c|ũ|H2‖U ]‖V ,

(4.16)

as well as:

∣∣u] ∂2Ũ

∂x1∂x3

∣∣
L2 ≤ c|U ]|H1

∣∣ ∂2Ũ

∂x1∂x3

∣∣
H1 ≤ c‖U ]‖V

∣∣ ∂Ũ

∂x3

∣∣
H2 ,

∣∣u]
x3

∂Ũ

∂x1

∣∣
L2 ≤ c|U ]

x3
|H1|Ũ |H2 ≤ c‖U ]‖V |Ũ |H2 ,

∣∣w(U ])x3

∂Ũ

∂x3

∣∣
L2 ≤ |U ]

x1
|L2

∣∣ ∂Ũ

∂x3

∣∣
L∞ ≤ c‖U ]‖V

∣∣ ∂Ũ

∂x3

∣∣
H2 .

(4.17)

We remain with some more delicate terms to estimate, which need anisotropic estimates:

∣∣w(Ũ)
∂2U ]

∂x2
3

∣∣
L2 ≤

∣∣|w(Ũ)|L∞x3
|∂

2U ]

∂x2
3

|L2
x3

∣∣
L2

x1

≤ c||Ũx1|L2
x3
|L∞x1

∣∣∂2U ]

∂x2
3

∣∣
L2

≤ c|Ũ |H2

∣∣∂2U ]

∂x2
3

∣∣
L2 ≤ c|Ũ |H2‖U ]‖V ,

∣∣w(U ])
∂2Ũ

∂x2
3

∣∣
L2 ≤

∣∣|w(U ])|L∞x3
|∂

2Ũ

∂x2
3

|L2
x3

∣∣
L2

x1

≤ c||U ]
x1
|L2

x1
(L2

x3
)

∣∣∣∣∂2Ũ

∂x2
3

∣∣
L∞x1

(L2
x3

)

∣∣
L2

x1

≤ c‖U ]‖V
∥∥∂2Ũ

∂x2
3

∥∥
H2 .

(4.18)

From the computations above we can now conclude that:

(4.19) |M(t)U ]|H ≤ c{‖Ũ‖1/2|Ũ |1/2

H2 +
∣∣ ∂Ũ

∂x3

∣∣
H2 + |Ũ |H2}‖U ]‖V .

Thus ‖M(t)‖L(V,H) is bounded by the expression between brackets in (4.19) and, we

conclude, taking into account the properties of Ũ , that ‖M(t)‖L(V,H) belongs to L2(δ, T )
for δ > 0 arbitrarily small.

We now need to prove that if |U(t?)|H = 0, then |U(t)|H = 0 for all t ∈ [δ, t?], 0 < δ < t?.
The equivalent relation that we prove is that if there exists a time t ∈ (δ, t?) such that
|U ](t)|H > 0, then |U ](t?)|H > 0. Since we proved that U ] ∈ C([0, T ],H), it is enough to
show that log |U ](t)|H is bounded from below on [δ, t?].

Writing (4.10) as:

U ]′ + AU ] + EU ] + M(t)U ] = 0,
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we can use Proposition 4.1 where φ is defined as in (4.2) for U ]. We find:

(4.20) φ′(t) ≤ |M(t)U ](t)|2H
|U ](t)|2H

≤ ‖M(t)‖2
L(V,H)

|U ](t)|2V
|U ](t)|2H

≤ 1

c0

‖M(t)‖2
L(V,H)φ(t);

in (4.20) we used the fact that

((A + E)U ](t), U ](t))H = (AU ](t), U ](t))H ≥ c0‖U ]‖2
V .

Since ‖M(t)‖L(V,H) belongs to L2(δ, T ), we can apply the Gronwall lemma to (4.20) and
find:

(4.21) φ(t) ≤ φ(δ) exp(

∫ t

δ

c−1
0 ‖M(s)‖2

L(V,H) ds) ≤ K,

with K a constant independent of t.
Considering the function log |U ](t)|2H, we have:

d

dt
(log |U ](t)|2H) = 2

(U ], U ]′)H
|U ](t)|2H

= −2
(U ], (A + E)U ])H

|U ](t)|2H
− 2

(U ],M(t)U ])H
|U ](t)|2H

≥ −2φ(t)− 2c′‖M(t)‖L(V,H)φ(t),

(4.22)

since we can estimate:

(U ],M(t)U ])H ≤ |U ]|H|M(t)U ]|H
≤ |U ]|H‖M(t)‖L(V,H)‖U ]‖V ≤ c′|U ](t)|2H‖M(t)‖L(V,H)φ(t).

(4.23)

Using (4.21) into (4.22), we find that:

(4.24)
d

dt
(log |U ](t)|2H) ≥ −2K(1 + c′‖M(t)‖L(V,H)),

and since ‖M(t)‖L(V,H) is in L1(δ, T ), we find that

log |U ](t)|2H ≥ −2K(t? − t) + log |U ](δ)|2H ≥ K1, ∀t ∈ [δ, t?],

with K1 a constant independent of t. This gives that |U ](t?)|2H 6= 0, which implies that if
U ](t?)|2H = 0, then |U ](t)|2H = 0 on the interval [δ, t?]. But we know that this relation can
be proved for almost all δ in [0, t?] and from the fact that U ] ∈ C([0, T ],H), the desired
result follows. ¤

5. Backward uniqueness for the strong solutions of the three
dimensional primitive equations

The purpose of this section is to prove the backward uniqueness for the strong solutions
of the three dimensional primitive equations (1.1)-(1.14). This model was considered in
[10], where we have shown the existence and uniqueness of the strong solutions, as well
as the existence and (forward) uniqueness of very strong solutions (solutions with values
in Hm, m ≥ 2). These results will be used in what follows and we refer the interested
reader to [10] for more details.
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The result we will prove here is the following one:

Theorem 5.1. Let F be in L2(0, T, V ) and let U1, U2 be two strong solutions for the
primitive equations (1.1), U1, U2 belonging to C([0, T ]; V ) ∩ L2(0, T, Ḣ2

per(M)), such that
U1(t?) = U2(t?). Then U1 = U2 on the interval [0, t?].

The proof of the theorem follows the main steps as in Theorem 4.1 so we only emphasize
the points which are different.

Proof of Theorem 5.1: Let U1 and U2 be two strong solutions. We can then find a δ
arbitrarily small such that U1(δ) and U2(δ) belong to Ḣ2

per(M). This implies, with the
results of [10], that:

U1, U2 ∈ C(δ, T, Ḣ2
per(M)) ∩ L2(δ, T, Ḣ3

per(M)).

As in the previous section, we write U ] = U1 − U2 and Ũ = U1 + U2. Combining
the equations for U1 and U2, we find that U ] satisfies the same equation as (4.10) with
U ](t?) = 0.

We need again to prove that the operator M(t) defined by:

M(t)U ] =
1

2
B(Ũ , U ]) +

1

2
B(U ], Ũ)

=
1

2

(
ũ
∂U ]

∂x1

+ w(Ũ)
∂U ]

∂x3

)
+

1

2

(
u] ∂Ũ

∂x1

+ w(U ])
∂Ũ

∂x3

)
,

(5.1)

has the property that |M(t)|L(V,H) belongs to L2(δ, T ).
Here we estimate each term of (5.1) as follows:

∣∣ũ∂U ]

∂x1

∣∣
H
≤ |ũ|L∞

∣∣∂U ]

∂x1

∣∣
H
≤ c|Ũ |H2|U ]|V ,

∣∣ṽ ∂U ]

∂x2

∣∣
H
≤ c|Ũ |H2|U ]|V ,

∣∣w(Ũ)
∂U ]

∂x3

∣∣
H
≤ |w(Ũ)|L∞

∣∣∂U ]

∂x3

∣∣
H
≤ c|Ũ |H3|U ]|V ,

(5.2)

and also:
∣∣u] ∂Ũ

∂x1

∣∣
H
≤ |u]|L4

∣∣ ∂Ũ

∂x1

∣∣
L4 ≤ c|Ũ |H2|U ]|V ,

∣∣v] ∂Ũ

∂x2

∣∣
H
≤ c|Ũ |H2|U ]|V ,

∣∣w(U ])
∂Ũ

∂x3

∣∣
H
≤ |w(U ])|L2

∣∣ ∂Ũ

∂x3

∣∣
L∞ ≤ c|Ũ |H3|U ]|V .

(5.3)

Gathering the estimates above, we find:

(5.4) |M(t)U ]|H ≤ c|Ũ |H3|U ]|V ,
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which implies that |M(t)|L(V,H) belongs to L2(δ, T ). We can now perform the same kind
of reasoning as in Theorem 4.1 in order to prove the desired result. ¤
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