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Abstract

We study space and time discretizations of a Cahn-Hilliard type equation with dy-
namic boundary conditions. We first study a semi-discrete version of the equation and
we prove optimal error estimates in energy norms and weaker norms. Then, we study the
stability of the fully discrete scheme obtained by applying the Euler backward scheme to
the space semi-discrete problem. In particular, we show that this fully discrete problem
is unconditionally stable. Some numerical results in two space dimensions conclude the
paper.

1 Introduction

We consider the following problem in a smooth and bounded domain Ω ⊂ Rn with boundary
∂Ω = Γ:

ut = ∆w − w, t > 0, x ∈ Ω, (1.1)

w = f(u)−∆u, t > 0, x ∈ Ω, (1.2)

ut = ∆Γu− λu− g(u)− ∂nu, t > 0, x ∈ Γ, (1.3)

∂nw = 0, t > 0, x ∈ Γ, (1.4)

where ∆Γ is the Laplace-Beltrami operator on the boundary Γ, f and g are given nonlinear
interaction functions and λ is some given positive constant. The boundary condition (1.3)
will be interpreted as an additional second-order parabolic equation on the boundary Γ.
Problem (1.1)-(1.2) was introduced by Karali and Katsoulakis in [10] as a simplification of a
mesoscopic model for multiple microscopic mechanisms in surface processes such that surface
diffusion and adsorption-desorption and studied in [9], [11] and [12]; questions related to the
well-posedness and to the asymptotic behavior, such as the existence of the global attractor
and an exponential attractor have been answered under various assumptions on the nonlin-
earities and when the system is endowed with Dirichlet and Neumann boundary conditions;
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Here u is the order parameter and corresponds to a rescaled density of atoms and w is the
chemical potential. Now, the question of how the phase separation process is influenced by
the presence of walls has recently gained much attention and was mainly studied for polymer
mixtures when the boundary conditions are given by (1.3)-(1.4). The well-posedness and the
long time behavior of problem (1.1)-(1.4) were studied in [7] and [8], respectively with singular
and regular potentials.
The chapter is organized as follows. We first introduce in Section 2 some notation and as-
sumptions and, in Section 3, we study a space discretization of (1.1)-(1.4) by a Galerkin
method. In Section 4, we prove optimal error estimates for the difference between the ap-
proximate and the exact solution uh − u in energy norms and weaker norms as the mesh
step h tends to 0, where uh is the solution of the space semi-discrete scheme and u is the
solution of the continuous problem. In Section 5, we study the numerical stability of the fully
discrete problem obtained by applying the Euler implicit method to the space semi-discrete
problem. In particular, we show that this fully discrete problem is unconditionally stable and
the solution converges to equilibrium as h → 0. Finally, numerical simulations in two space
dimensions are presented in Section 6.

2 Assumptions and notation

In what follows, we consider Ω to be a 2d or 3d slab, i.e.

Ω = Πd−1
i=1 (IR/(LiZ))× (0, Ld), Li > 0, i = 1, ..., d, d = 2 or 3,

with smooth boundary
Γ = ∂Ω = Πd−1

i=1 (IR/(LiZ))× {0, Ld} .

More precisely, when d = 2, Ω is the rectangle (0, L1) × (0, L2) and u,w are periodic in the
x1−direction while the boundary conditions in problem (1.1) are valid for x2 = 0 and x2 = L2;
when d = 3, Ω is a parallelepiped (0, L1)× (0, L2)× (0, L3), u and w are periodic in the x1 and
x2−directions and the boundary conditions in problem (1.1) are valid for x3 = 0 and x3 = L3.
We assume that the nonlinearities f and g belong to C2(R,R) and satisfy the following
standard dissipativity assumptions

lim inf
|v|→∞

f ′(v) > 0, lim inf
|v|→∞

g′(v) > 0. (2.1)

Typical choices are
f(v) = v3 − v and g(v) = kv − h (v ∈ IR), (2.2)

where k > 0 and h ∈ IR are constants. The evolution boundary value problem (1.1)-(1.4) is
completed by the initial condition u(0) = u0.
We introduce the space

V =
{
v ∈ H1

p (Ω) and v(·, 0), v(·, Ld) ∈ H1
per

(
Πd−1
i=1 ]0, Li[

) }
,

where H1
per is the classical space of periodic functions and

H1
p (Ω) =

{
v ∈ H1(Ω), v is periodic in the x1, · · · , xd−1 − directions

}
.
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Then, V is a Hilbert space for the Hilbertian norm

‖v‖V =
(
‖v‖2

H1(Ω) + ‖v‖2
H1(Γ)

)1/2

.

The space V can also be seen as the closure for the ‖ ·‖V−norm of C1(Ω) with the periodicity
condition; V is continuously and densely embedded in H1(Ω) and is isometric to the closed
subspace Ṽ of H1

p (Ω)×H1
per(Γ) defined by:

Ṽ =
{

(u, ϕ) ∈ H1
p (Ω)×H1

per(Γ), u|Γ = ϕ in the sense of traces
}
.

We denote by (·, ·)Ω the L2(Ω)−scalar product and by | · |0 the L2(Ω)−norm. Similarly, (·, ·)Γ

denotes the L2(Γ)−scalar product and | · |0,Γ the associated norm. As a shortcut, we will
denote by ‖ · ‖k the Hilbertian norm in Hk(Ω) and | · |k the associated seminorm, i.e.

∀v ∈ Hk(Ω), ‖v‖2
k =

∑
|α|≤k

|∂αv|20 and |v|2k =
∑
|α|=k

|∂αv|20.

Similarly, ‖ · ‖k,Γ denotes the Hk(Γ)−norm and | · |k,Γ the associated seminorm.

We note that from (2.1), we can deduce that (see [1])

F (v) ≥ c1v
2 − c2, G(v) ≥ c1v

2 − c2, ∀v ∈ IR, (2.3)

for some constants c1 > 0 and c2 ≥ 0 and where F is an antiderivative of f and G is an
antiderivative of g.

3 The semi-discrete scheme

The variational formulation of (1.1)-(1.4) reads
(ut, ϕ)Ω = −(∇w,∇ϕ)Ω − (w,ϕ)Ω,
(w, χ)Ω = (f(u), χ)Ω + (∇u,∇χ)Ω + (∇Γu,∇Γχ)Γ + λ(u, χ)Γ + (g(u), χ)Γ

+(ut, χ)Γ,
(3.1)

for all ϕ ∈ H1
p (Ω) and for all χ ∈ V.

We introduce the functional E : V → IR defined by

E(u) =

∫
Ω

(
1

2
|∇u|2 + F (u)

)
dx+

∫
Γ

(
1

2
|∇Γu|2 +

λ

2
|u|2 +G(u)

)
dσ. (3.2)

If u is a regular solution of (1.1)-(1.4), then u dissipates E . Indeed, choosing ϕ = w and χ = ut
in (3.1) and subtracting the two equations, we obtain

d

dt
E(u(t)) = −

∫
Ω

|∇w|2dx−
∫

Ω

|w|2dx−
∫

Γ

|ut|2dσ, ∀t ≥ 0. (3.3)

For the space discretization, we consider a quasiuniform family of decompositions
{

Ωh
}
h

of

Πd
i=1[0, Li] into d−simplices which take into account the periodic boundary conditions on Ω,
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so that
{

Ωh
}
h

is also a triangulation of Ω. The triangulation Ωh of Ω induces a triangulation

Γh of Γ into d − 1 simplices in a natural way. For a given triangulation Ωh = ∪T∈ΩhT , we
define V h as the usual P 1 conforming finite element space

V h =
{
vh ∈ C0(Ω), vh|T is affine ∀T ∈ Ωh

}
.

For u ∈ C0(Ω), let Ihu denote the P 1 interpolate of u on Ωh, i.e. Ihu is the unique function
in V h which takes the same values as u on the nodes of the triangulation. We have the
following standard approximation results, where C > 0 denotes a constant which depends
only on

{
Ωh
}
h

∀u ∈ H2
p (Ω), |u− Ihu|0 + h|u− Ihu|1 ≤ Ch2|u|2 (3.4)

and
∀ϕ ∈ H2

per(Γ), |ϕ− Ihϕ|0,Γ + h|ϕ− Ihϕ|1,Γ ≤ Ch2|ϕ|2,Γ. (3.5)

Moreover, we have the following inverse estimate (see [5])

∀vh ∈ V h, ‖vh‖C0(Ω) ≤ Ch−d/2|vh|0, (3.6)

where d is the space dimension.

The space semi-discrete version of (3.1) reads:
Find (uh, wh) : [0, T ]→ V h × V h such that

(uht , ϕ)Ω = −(∇wh,∇ϕ)Ω − (wh, ϕ)Ω,
(wh, χ)Ω = (f(uh), χ)Ω + (∇uh,∇χ)Ω + (∇Γu

h,∇Γχ)Γ + λ(uh, χ)Γ + (g(uh), χ)Γ

+(uht , χ)Γ,
(3.7)

for all ϕ, χ ∈ V h.
We define the operator Gh : L2(Ω)→ V h, v → Ghv, where Ghv is the unique solution of the
problem

(∇Ghv,∇χ)Ω + (Ghv, χ)Ω = (v, χ)Ω, ∀χ ∈ V h. (3.8)

We also define the discrete norm

|v|−1,h = (Ghv, v)
1/2
Ω =

(
|∇Ghv|20 + |Ghv|20

) 1
2 , ∀v ∈ L2(Ω).

The norm | · |−1,h is a discrete version of the H−1-norm. We note that Gh is selfadjoint and
positive definite on L2(Ω). Indeed, for χ = Ghv in (3.8), we have

(Ghv, v)Ω = |∇Ghv|20 + |Ghv|20 ≥ 0

and
(v,Ghv′)Ω = (∇Ghv,∇Ghv′)Ω + (Ghv,Ghv′)Ω = (v′, Ghv)Ω,

for all v, v′ ∈ L2(Ω). Moreover, the following interpolation inequalities hold

|vh|20 ≤ |vh|−1,h‖vh‖1, ∀vh ∈ V h, (3.9)

and
|v|−1,h ≤ |v|0, ∀v ∈ L2(Ω). (3.10)
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In order to prove (3.9), we write

|vh|20 = (∇Ghvh,∇vh)Ω + (Ghvh, vh)Ω

≤ |∇Ghvh|0|∇vh|0 + |Ghvh|0|vh|0
≤ (|∇Ghvh|20 + |Ghvh|20)

1
2 (|∇vh|20 + |vh|20)

1
2

= |vh|−1,h‖vh‖1.

To prove (3.10), we write
|v|2−1,h = (Ghv, v)Ω ≤ |Ghv|0|v|0

and
|Ghv|20 ≤ ‖Ghv‖2

1 = |∇Ghv|20 + |Ghv|20 = |v|2−1,h.

Proposition 1. For every uh0 ∈ V h, problem (3.7) has a unique solution

(uh, wh) ∈ C1([0,+∞);V h × V h),

such that uh(0) = uh0 . Moreover,

E(uh(t)) +

∫ t

0

(|wh|21 + |wh|20 + |uht |20,Γ)ds ≤ E(uh(0)), ∀t ≥ 0, (3.11)

where E is defined by (3.2).

Proof. Let (ϕ1, . . . , ϕm) be an orthonormal basis of V h for the L2(Ω)-scalar product. We seek
for uh(t) =

∑m
i=1 ui(t)ϕi and wh(t) =

∑m
i=1wi(t)ϕi. We define the matrices

Aij = (∇ϕi,∇ϕj)Ω, (MΓ)ij = (ϕi, ϕj)Γ and (AΓ)ij = (∇Γϕi,∇Γϕj)Γ,

for 1 ≤ i, j ≤ m, the vectors U =

 u1
...
um

 , W =

 w1
...
wm

 , and the functions

F h(U) =

 (f(uh), ϕ1)Ω
...

(f(uh), ϕm)Ω

 , Gh
Γ(U) =

 (λuh + g(uh), ϕ1)Γ
...

(λuh + g(uh), ϕm)Γ

 .

Then (3.7) can be written as(
(A+ I) I
−I MΓ

)(
W
U ′

)
= −

(
0

AU + F h(U) + AΓU +Gh
Γ(U)

)
. (3.12)

Let B denote the square matrix of size 2M in the left-hand side of (3.12). We claim that B
is invertible. Indeed, let X, Y ∈ IRM . We have

(X t, Y t)B

(
X
Y

)
= X t(A+ I)X +X tY − Y tX + Y tMΓY

= (∇xh,∇xh)Ω + (xh, xh)Ω + (yh, yh)Γ

≥ 0,

(3.13)
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where xh =
∑m

i=1 xiϕi and yh =
∑m

i=1 yiϕi. This shows that B is positive semidefinite. Now,
if X, Y ∈ IRM satisfy

B

(
X
Y

)
=

(
0
0

)
⇐⇒

{
(A+ I)X +BY = 0
−X +MΓY = 0,

then by multiplying this equality on the left by (X t, Y t), we find that (∇xh,∇xh)Ω+(xh, xh)Ω+
(yh, yh)Γ = 0. This implies X = Y = 0 which yields that B is invertible, as claimed. Thus,
problem (3.7) has a unique maximal solution (uh, wh) ∈ C1([0, T+);V h × V h) such that
uh(0) = uh0 . Choosing ϕ = wh and χ = uht in (3.7), we find

d

dt
E(uh(t)) + |wh|21 + |wh|20 + |uht |20,Γ = 0. (3.14)

Integrating with respect to t, we deduce (3.11). Using (2.3), equation (3.11) leads to the a
priori bound ‖uh‖1 ≤ C(R) provided that uh0 ∈ V h with ‖uh0‖1 ≤ R.
Since uh ∈ L∞(0, T+;H1(Ω)), i.e. the bound is independent of time, we find that the solution
is global, i.e. T+ = +∞, and the proof is complete.

Exclusively for the next Theorem 3.1, we assume that f has a subcritical growth. In other
words, we assume that there exists a positive constant c3 such that

|f(s)| ≤ c3(1 + |s|p−1), ∀s ∈ IR, (3.15)

with p ∈ [2, 6] when d = 3 and p ≥ 2 arbitrary when d = 2. When d = 3, we also assume that
there exists a positive constant c4 such that

|g(s)| ≤ c4(1 + |s|q−1), ∀s ∈ IR, (3.16)

where q ≥ 2 is arbitrary. The typical choices (2.2) satisfy these assumptions with p = 4 and
q = 2. We have the following theorem:

Theorem 3.1. Assume that f, g ∈ C1(IR) satisfy (2.1), (3.15) and (3.16). Let u0 ∈ V and
let uh0 ∈ V h be such that uh0 → u0 in V as h→ 0. Then, for all T > 0, we have

uh → u weak * in L∞(0, T ;H1
p (Ω)) and strongly in C0([0, T ];L2(Ω)),

(uh)|Γ → u|Γ weak * in L∞(0, T ;H1
per(Γ)) and strongly in C0([0, T ];L2(Γ)),

wh → w weakly in L2(0, T ;H1
p (Ω)),

where (u,w) is the unique solution of (3.1) such that u(0) = u0 and

u ∈ L∞(0, T ;V ), u|Γ ∈ W 1,2(0, T ;L2(Γ)) and w ∈ L2(0, T ;H1
p (Ω)). (3.17)

Proof. By (3.15) and (3.16), we have that

|F (σ)| ≤ c5|σ|p + c6 and |G(σ)| ≤ c7|σ|q + c8,∀σ ∈ IR, (3.18)

where c5, c6, c7 and c8 are positive constants. Since uh0 → u0 in V, using (3.18) and the Sobolev
embeddings H1

p (Ω) ⊂ Lp(Ω) and H1
per(Γ) ⊂ Lq(Γ) (with q = +∞ when d = 2), we know that
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E(uh0) is bounded by a constant independent of h. The discrete energy estimate (3.11) implies
that (uh)h is bounded in L∞(0, T ;V ), (∇wh)h, (wh)h are bounded in L2(0, T ;L2(Ω)) and that
((uh|Γ)t)h is bounded in L2(0, T ;L2(Γ)). Thus, we obtain that, up to a subsequence, uh → u

weak * in L∞(0, T ;V ) and wh → w weakly in L2(0, T ;H1(Ω)).
If ϕ ∈ H1

p (Ω) and χ ∈ V, then choosing sequences ϕh ∈ V h and χh ∈ V h such that ϕh → ϕ
strongly in H1(Ω) and χh → χ strongly in V . Using standard compactness results, we can pass
to the limit in (3.7) and we obtain that (u,w) satisfies (1.1)-(1.4) and (3.17). By uniqueness,
the whole sequence (uh, wh) converges to (u,w).
For the strong convergence of (uh|Γ) to u|Γ, we use the fact that the space{

v ∈ L∞(0, T ;H1
per(Γ)), vt ∈ L2(0, T ;L2(Γ))

}
is compactly embedded into C0([0, T ];L2(Γ)). Finally, for the strong convergence of (uh)h, we
use the fact that for all 0 ≤ s ≤ t ≤ T, we have

|uh(t)− uh(s)|20 = 2

∫ t

s

(
uht (σ), uh(σ)− uh(s)

)
Ω

dσ

≤ −2

∫ t

s

(
∇wh(σ),∇(uh(σ)− uh(s))

)
Ω

dσ − 2

∫ t

s

(
wh(σ), uh(σ)− uh(s)

)
Ω

dσ

≤ 4c‖uh‖L∞(0,T ;H1
p(Ω))

(
‖∇wh‖L2(0,T ;L2(Ω)) + ‖wh‖L2(0,T ;L2(Ω))

)
|t− s|1/2.

(3.19)

Thus, the sequence (uh)h is uniformly equicontinuous in C0([0, T ];L2(Ω)). Since (uh) is bounded
in C0([0, T ];H1

p (Ω)) with H1
p (Ω) compactly embedded into L2(Ω), the Ascoli theorem implies

that uh → u strongly in C0([0, T ];L2(Ω)).

4 Error estimates for the space semi-discrete scheme

In order to estimate the errors uh−u and wh−w in appropriate norms, we follow a standard
approach (see [1], [2] and [18]) and we write

uh(t)− u(t) = θu(t) + ρu(t), with θu = uh − ũh, ρu = ũh − u,
wh(t)− w(t) = θw(t) + ρw(t), with θw = wh − w̃h, ρw = w̃h − w,

for all t ∈ [0, T ], where ũh = ũh(t) and w̃h = w̃h(t) are the elliptic projections of u = u(t) and
w = w(t), defined by

(∇w̃h,∇χ)Ω + (w̃h, χ)Ω = (∇w,∇χ)Ω + (w, χ)Ω, ∀χ ∈ V h, (4.1)

(∇ũh,∇χ)Ω + (∇Γũ
h,∇Γχ)Γ + λ(ũh, χ)Γ = (∇u,∇χ)Ω + (∇Γu,∇Γχ)Γ

+ λ(u, χ)Γ, ∀χ ∈ V h.
(4.2)

For a given w ∈ H1(Ω), equation (4.1) defines a unique w̃h ∈ V h. Indeed, the bilinear form
defined by

ã(ϕ, χ) = (∇ϕ,∇χ)Ω + (ϕ, χ)Ω (4.3)
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is the scalar product on H1(Ω). Thus, applying the Lax-Milgram theorem, we obtain the
result. Similarly, for a given u ∈ V, equation (4.2) defines a unique ũh ∈ V h. Indeed, the norm
v 7→ |∇v|20 + |v|20,Γ is equivalent to the H1−norm, so that the bilinear form defined by

a(ϕ, χ) = (∇ϕ,∇χ)Ω + (∇Γϕ,∇Γχ)Γ + λ(ϕ, χ)Γ (4.4)

is coercive on V, i.e. there exists c0 > 0 such that

a(ϕ, ϕ) = (∇ϕ,∇ϕ)Ω + (∇Γϕ,∇Γϕ)Γ + λ(ϕ, ϕ)Γ ≥ c0‖ϕ‖2
V , ∀ϕ ∈ V.

The bilinear continuous form a(·, ·) is a fortiori coercive on V h ⊂ V and the Lax-Milgram
theorem applies.

Lemma 4.1. For all w ∈ H2(Ω), the function w̃h ∈ V h defined by

(∇w̃h,∇χ)Ω + (w̃h, χ)Ω = (∇w,∇χ)Ω + (w, χ)Ω, ∀χ ∈ V h,

satisfies
|w̃h − w|0 + h|w̃h − w|1 ≤ Ch2|w|2, (4.5)

where C is a positive constant, independent of h.

Proof. By definition, we have

ã(w̃h, χ) = ã(w, χ), ∀χ ∈ V h, (4.6)

where ã(·, ·) is defined by (4.3). Since w̃h− Ihw ∈ V h, we have that ã(w̃h−w, w̃h− Ihw) = 0,
which yields

ã(w̃h − w, w̃h − w) = ã(w̃h − w, w̃h − Ihw) + ã(w̃h − w, Ihw − w),

= ã(w̃h − w, Ihw − w),

implying
‖w̃h − w‖2

1 = ã(w̃h − w, w̃h − w) ≤ ‖w̃h − w‖1‖Ihw − w‖1.

By (3.4), we have
‖w̃h − w‖1 ≤ ‖Ihw − w‖1 ≤ Ch|w|2, (4.7)

which gives the H1−estimate. In order to have the L2−estimate, we set ϕ ∈ H1(Ω) to be the
unique solution of

ã(ϕ, χ) = (z, χ)Ω, ∀χ ∈ V, (4.8)

for a given function z ∈ L2(Ω). Then, ϕ ∈ H2
p (Ω) and thanks to the elliptic regularity, we

have
|ϕ|2 ≤ C|z|0, (4.9)

for some constant C > 0 independent of z.
Choosing χ = w̃h − w in (4.8) and using the fact that ã(w̃h − w, Ihϕ) = 0, we find

(z, w̃h − w)Ω =ã(ϕ, w̃h − w)

=ã(ϕ− Ihϕ, w̃h − w)

≤‖ϕ− Ihϕ‖1‖w̃h − w‖1.

(4.10)
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Choosing z = w̃h − w, using (3.4), (4.7) and (4.9), we obtain

|w̃h − w|20 ≤‖ϕ− Ihϕ‖1‖w̃h − w‖1

≤Ch|ϕ|2Ch|w|2
≤Ch2|w̃h − w|0|w|2,

(4.11)

which gives
|w̃h − w|0 ≤ Ch2|w|2. (4.12)

By (4.7) and (4.12), we can conclude and the proof is complete.

Lemma 4.2. For all u ∈ H2
p (Ω) with u|Γ ∈ H2

per(Γ) the function ũh ∈ V h defined by (4.2)
satisfies

|ũh − u|0 + |ũh − u|0,Γ + h|ũh − u|1 + h|ũh − u|1,Γ ≤ Ch2(|u|2 + |u|2,Γ), (4.13)

where the positive constant C is independent of h.

Proof. Arguing as above, we have

a(ũh, χ) = a(u, χ), ∀χ ∈ V h, (4.14)

where a(·, ·) is defined by (4.4). Since ũh− Ihu ∈ V h, we have a(ũh− u, ũh− Ihu) = 0, which
yields

a(ũh − u, ũh − u) = a(ũh − u, ũh − Ihu) + a(ũh − u, Ihu− u),

= a(ũh − u, Ihu− u).
(4.15)

From (4.15) and using the coercivity of a, we obtain

c0‖ũh − u‖2
V ≤ a(ũh − u, ũh − u) ≤ c‖ũh − u‖V ‖Ihu− u‖V .

By (3.5), we have
‖ũh − u‖V ≤ c‖Ihu− u‖V ≤ ch(|u|2 + |u|2,Γ), (4.16)

which gives the H1−estimates. In order to have the L2−estimates, we set ϕ ∈ V to be the
unique solution of

a(ϕ, χ) = (z, χ)Ω + (ψ, χ)Γ, ∀χ ∈ V, (4.17)

for some given functions (z, ψ) ∈ L2(Ω)× L2(Γ). Then, thanks to an elliptic regularity result
(see [15]), we have ϕ ∈ H2

p (Ω), ϕ|Γ ∈ H2
per(Γ) and

|ϕ|2 + |ϕ|2,Γ ≤ C(|z|0 + |ψ|0,Γ), (4.18)

for some constant C > 0 independent of z and ψ.
Choosing χ = ũh − u in (4.17) and using the fact that a(ũh − u, Ihϕ) = 0, we find

(z, ũh − u)Ω + (ψ, ũh − u)Γ =a(ϕ, ũh − u)

=a(ϕ− Ihϕ, ũh − u)

≤c‖ϕ− Ihϕ‖V ‖ũh − u‖V .
(4.19)
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Choosing z = ũh − u and ψ = (ũh − u)Γ, using (3.5), (4.16) and (4.18), we obtain

|ũh − u|20 + |ũh − u|20,Γ ≤c‖ϕ− Ihϕ‖1‖ũh − u‖1

≤Ch(|ϕ|2 + |ϕ|2,Γ)Ch(|u|2 + |u|2,Γ)

≤Ch2(|ũh − u|20 + |ũh − u|20,Γ)1/2(|u|2 + |u|2,Γ).

(4.20)

Estimate (4.20) leads to

(|ũh − u|20 + |ũh − u|20,Γ)1/2 ≤ Ch2(|u|2 + |u|2,Γ). (4.21)

By (4.16) and (4.21), we can conclude and the proof is complete.

Lemma 4.3. Let (u,w) the a solution of (3.1) with the initial condition u(0) = u0 ∈ V and
(uh, wh) be the solution of (3.7) with the initial condition uh(0) = uh0 ∈ V h. Assume that

sup
t∈[0,T ]

‖u(t)‖C0(Ω) < R, sup
t∈[0,T ]

‖ut(t)‖C0(Ω) < R, ‖uh(0)‖C0(Ω) < R,

for some constant R < +∞, and let T h ∈ (0, T ] be the maximal time such that ‖uh(t)‖L∞(Ω) ≤
R for all t ∈ [0, T h]. Then, the following estimate holds:

N (t) +

∫ t

0

(|θut |21 + ‖θw‖2
1 + ‖θut ‖2

1,Γ)ds

≤CN (0) + C ′
∫ t

0

(|ρut |20 + |ρu|20 + |ρu|20,Γ + |ρut |20,Γ + |ρw|20 + |ρutt|20 + |ρutt|20,Γ + |ρwt |20)ds,

(4.22)

for some positive constants C and C ′ which are independent of u, uh and h, where

N (t) = |θu|21 + λ|θu|20,Γ + |θu|21,Γ + |θut |2−1,h + |θut |20,Γ.

Proof. Subtracting the first equation of (3.1) from the first equation of (3.7), we obtain

(uht − ut, ϕ)Ω + (∇(wh − w),∇ϕ)Ω + (wh − w,ϕ)Ω = 0, ∀ϕ ∈ V h. (4.23)

Using the definitions of θu and θw as well as (4.1), we find

(θut , ϕ)Ω + (∇θw,∇ϕ)Ω + (θw, ϕ)Ω = −(ρut , ϕ)Ω, ∀ϕ ∈ V h. (4.24)

Choosing ϕ = θw in (4.24), we obtain

(θut , θ
w)Ω + |θw|21 + |θw|20 = −(ρut , θ

w)Ω. (4.25)

Now, subtracting the second equation of (3.1) from the second equation of (3.7) and using
(4.2), we find

−(θw, χ)Ω + (∇θu,∇χ)Ω + (∇Γθ
u,∇Γχ)Γ + λ(θu, χ)Γ + (θut , χ)Γ

= (ρw, χ)Ω − (f(uh)− f(u), χ)Ω − (g(uh)− g(u), χ)Γ − (ρut , χ)Γ,
(4.26)
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for all χ ∈ V h.
Choosing χ = θut , estimate (4.26) gives

−(θw, θut )Ω + |θut |20,Γ +
1

2

d

dt
(|θu|21 + λ|θu|20,Γ + |θu|21,Γ)

= (ρw, θut )Ω − (f(uh)− f(u), θut )Ω − (g(uh)− g(u), θut )Γ − (ρut , θ
u
t )Γ.

(4.27)

Summing (4.25) and (4.27), we have

1

2

d

dt
(|θu|21 + λ|θu|20,Γ + |θu|21,Γ) + |θw|21 + |θw|20 + |θut |20,Γ

= −(ρut , θ
w)Ω + (ρw, θut )Ω − (f(uh)− f(u), θut )Ω − (g(uh)− g(u), θut )Γ − (ρut , θ

u
t )Γ.

(4.28)

We have:

|f(uh)− f(u)|0 ≤ Lf |uh − u|0,
|g(uh)− g(u)|0,Γ ≤ Lg|uh − u|0,Γ,

(4.29)

on [0, T h], where Lf and Lg are respectively the Lipschitz constants of f and g on [−R,R].
Thus, using (4.29) and the Hölder inequality, estimate (4.28) yields

1

2

d

dt
(|θu|21 + λ|θu|20,Γ + |θu|21,Γ) + |θw|21 + |θw|20 + |θut |20,Γ

≤|ρut |0|θw|0 + |ρw|0|θut |0 + Lf (|θu|0 + |ρu|0)|θut |0
+ Lg(|θu|0,Γ + |ρu|0,Γ)|θut |0,Γ + |ρut |0,Γ|θut |0,Γ.

(4.30)

Using the inequality
ab ≤ εa2 + 1/(4ε)b2, ∀a, b ≥ 0, ∀ε > 0,

with ε conveniently chosen, estimate (4.30) gives

d

dt
(|θu|21 + λ|θu|20,Γ + |∇Γθ

u|20,Γ) + |θw|21 + |θw|20 + |θut |20,Γ
≤ C1(|ρut |20 + |ρu|20 + |ρu|20,Γ + |ρut |20,Γ + |ρw|20) + C2(|θu|20,Γ + |θu|20 + |θut |20),

(4.31)

for some positive constants C1 and C2 which depend on |Ω|, |Γ|, Lf and Lg.
To estimate θut , we differentiate (4.24) and (4.26) with respect to t. We obtain

(θutt, ϕ)Ω + (∇θwt ,∇ϕ)Ω + (θwt , ϕ)Ω = −(ρutt, ϕ)Ω, ∀ϕ ∈ V h (4.32)

and

−(θwt , χ)Ω + (∇θut ,∇χ)Ω + (∇Γθ
u
t ,∇Γχ)Γ + λ(θut , χ)Γ + (θutt, χ)Γ

= (ρwt , χ)Ω − ([f(uh)− f(u)]t, χ)Ω − ([g(uh)− g(u)]t, χ)Γ − (ρutt, χ)Γ,∀χ ∈ V h.
(4.33)

Choosing ϕ = Ghθut in (4.32) and χ = θut in (4.33), adding the resulting equations and using
the fact that

(∇θwt ,∇Ghθut )Ω + (θwt , G
hθut )Ω = (θwt , θ

u
t )Ω,
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we find

1

2

d

dt
(|θut |2−1,h + |θut |20,Γ) + |θut |21 + |θut |21,Γ + λ|θut |20,Γ

=− (ρutt, G
hθut )Ω + (ρwt , θ

u
t )Ω − ([f(uh)− f(u)]t, θ

u
t )Ω − ([g(uh)− g(u)]t, θ

u
t )Γ

− (ρutt, θ
u
t )Γ.

(4.34)

Employing
[f(uh)− f(u)]t = f ′(uh)[uht − ut] + [f ′(uh)− f ′(u)]ut

and
[g(uh)− g(u)]t = g′(uh)[uht − ut] + [g′(uh)− g′(u)]ut,

we find

([f(uh)− f(u)]t, θ
u
t )Ω =(f ′(uh)[uht − ut], θut )Ω + ([f ′(uh)− f ′(u)]ut, θ

u
t )Ω

≤ sup
[−R,R]

|f ′|(|θut |0 + |ρut |0)|θut |0 +RLf ′(|θu|0 + |ρu|0)|θut |0

and

([g(uh)− g(u)]t, θ
u
t )Γ =(g′(uh)[uht − ut], θut )Γ + ([g′(uh)− g′(u)]ut, θ

u
t )Γ

≤ sup
[−R,R]

|g′|(|θut |0,Γ + |ρut |0,Γ)|θut |0,Γ +RLg′(|θu|0,Γ + |ρu|0,Γ)|θut |0,Γ,

where Lf ′ and Lg′ are respectively the Lipschitz constants of f ′ and g′ on [−R,R]. Thus,
(4.34) implies

1

2

d

dt
(|θut |2−1,h + |θut |20,Γ) + |θut |21 + |θut |21,Γ + λ|θut |20,Γ

≤|ρutt|−1,h|θut |−1,h + |ρutt|0,Γ|θut |0,Γ + |ρwt |0|θut |0
+ sup

[−R,R]

|f ′|(|θut |0 + |ρut |0)|θut |0 +RLf ′(|θu|0 + |ρu|0)|θut |0

+ sup
[−R,R]

|g′|(|θut |0,Γ + |ρut |0,Γ)|θut |0,Γ +RLg′(|θu|0,Γ + |ρu|0,Γ)|θut |0,Γ.

(4.35)

Using (3.10), the fact that the norm v 7→ |∇v|20 + |v|20,Γ is equivalent to the H1−norm and the
interpolation property (3.9) applied to θut , (4.35) gives

d

dt
(|θut |2−1,h + |θut |20,Γ) + |θut |21 + |θut |21,Γ + λ|θut |20,Γ
≤ C3(|θut |2−1,h + |θut |20,Γ + |θu|20 + |θu|20,Γ)

+ C4(|ρutt|20 + |ρutt|20,Γ + |ρwt |20 + |ρut |20 + |ρu|20 + |ρut |20,Γ + |ρu|20,Γ), on (0, T h),

(4.36)

for some positive constants C3 and C4 which depend on λ,R, cp, Lf ′ , Lg′ , sup
[−R,R]

|f ′| and sup
[−R,R]

|f ′|.

Adding (4.31) and (4.36), we find

d

dt
(|θu|21 + λ|θu|20,Γ + |θu|21,Γ + |θut |2−1,h + |θut |20,Γ) + |θw|21 + |θw|20 + |θut |20,Γ + |θut |21 + |θut |21,Γ
≤ C5(|ρut |20 + |ρu|20 + |ρu|20,Γ + |ρut |20,Γ + |ρw|20 + |ρutt|20 + |ρutt|20,Γ + |ρwt |20)

+ C6(|θu|21 + λ|θu|20,Γ + |θu|21,Γ + |θut |2−1,h + |θut |20,Γ + |θut |20),

(4.37)
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where we use the fact that |θu|20 ≤ c(|θu|21 +λ|θu|20,Γ) and for θut we use again the interpolation
property (3.9). Applying Gronwall’s lemma, we find estimate (4.22) with C = eC6T and
C ′ = C5e

C6T .

Theorem 4.4. Let (u,w) be the solution of problem (1.1)-(1.4) with the initial condition
u(0) = u0 such that

u, ut, utt, w, wt ∈ L2(0, T ;H2
p (Ω)) (4.38)

and
u|Γ, (ut)|Γ, (utt)|Γ, w|Γ, (wt)|Γ ∈ L2(0, T ;H2

per(Γ)) (4.39)

and let (uh, wh) be the solution of problem (3.7) with initial condition uh(0) = uh0 . If

θu(0) = 0 and θw(0) = 0, (4.40)

then the following estimates hold, for h small enough:

sup
[0,T ]

(
|uh − u|0 + |uh − u|0,Γ + |uht − ut|−1,h + |uht − ut|0,Γ

)
≤ Ch2,

sup
[0,T ]

(
|uh − u|1 + |uh − u|1,Γ

)
≤ Ch,∫ T

0

|wh − w|20ds ≤ Ch4,∫ T

0

(
|wh − w|21 + |uht − ut|21 + |uht − ut|21,Γ

)
ds ≤ Ch2.

Proof. If we differentiate equations (4.1) and (4.2) with respect to t, we obtain that the
elliptic projections of ut and wt are respectively (ũ)t and (w̃)t. A similar statement holds
for utt. Therefore, Lemma 4.1 applies with w replaced by wt and Lemma 4.2 applies with u
replaced by ut, utt, i.e.

|ρut |0 + |ρut |0,Γ + h|ρut |1 + h|ρut |1,Γ ≤ Ch2(|ut|2 + |ut|2,Γ),

|ρutt|0 + |ρutt|0,Γ + h|ρutt|1 + h|ρutt|1,Γ ≤ Ch2(|utt|2 + |utt|2,Γ),

|ρwt |0 + h|ρwt |1 ≤ Ch2|wt|2.
(4.41)

The regularity required on u, ut implies that u ∈ C1([0, T ];H2
p (Ω)) and by the Sobolev con-

tinuous injection H2
p (Ω) ⊂ C0(Ω), we see that u and ut belong to C0([0, T ];C0(Ω)). Thus,

sup
t∈[0,T ]

‖u(t)‖C0(Ω) < R and sup
t∈[0,T ]

‖ut(t)‖C0(Ω) < R,

for some R > 0. We also have

‖uh0 − u0‖C0(Ω) ≤ ‖uh0 − Ihu0‖C0(Ω) + ‖Ihu0 − u0‖C0(Ω)

≤ Ch−d/2|uh0 − Ihu0|0 + ‖Ihu0 − u0‖C0(Ω) (using (3.6))

≤ Ch−d/2(|uh0 − u0|0 + |u0 − Ihu0|0) + ‖Ihu0 − u0‖C0(Ω).

(4.42)

Using the embedding that H2
p (Ω) ⊂ C0,γ(Ω), where γ ∈ (0, 1), we find

‖Ihu0 − u0‖C0(Ω) ≤ C ′hγ|u0|2. (4.43)
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Due to estimates (3.4), (4.13) and assumptions (4.40), we have

|uh0 − u0|0 + |u0 − Ihu0|0 ≤ Ch2(|u0|2 + |u0|2,Γ). (4.44)

Thus by (4.43) and (4.44), we deduce that

‖uh0 − u0‖C0(Ω) ≤ (Ch2−d/2 + C ′hγ)|u0|2 + Ch2−d/2|u0|2,Γ. (4.45)

For h small enough, we obtain
‖uh0‖C0(Ω) < R, (4.46)

and we may apply Lemma (4.3).
We claim that N (0) ≤ Ch4, with N (t) = |θu|21 +λ|θu|20,Γ + |∇Γθ

u|20,Γ + |θut |2−1,h+ |θut |20,Γ. Indeed,
by assumptions (4.40), we have

N (0) = |θut (0)|2−1,h + |θut (0)|20,Γ. (4.47)

Using the fact that θw(0) = 0 and estimate (4.24) at t = 0, we see that uh(0) satisfies

(θut (0), ϕ)Ω = −(ρut (0), ϕ)Ω, ∀ϕ ∈ V h. (4.48)

Choosing ϕ = Ghθut (0) in (4.48) and using (3.10) and (4.41), we obtain

|θut (0)|2−1,h =− (ρut (0), Ghθut (0))Ω

≤|ρut (0)|−1,h|θut (0)|−1,h

≤c|ρut (0)|0|θut (0)|−1,h

≤Ch2(|ut(0)|2 + |ut(0)|2,Γ)|θut (0)|−1,h.

(4.49)

For ϕ = θut (0) in (4.48), we find

|θut (0)|0 ≤ |ρut (0)|0 ≤ Ch2(|ut(0)|2 + |ut(0)|2,Γ). (4.50)

Using assumptions (4.40) and choosing χ = θut (0) in (4.26) considered at t = 0, we obtain

|θut (0)|20,Γ =(ρw(0), θut (0))Ω − (f(uh0)− f(u0), θut (0))Ω

− (g(uh0)− g(u0), θut (0))Γ − (ρut (0), θut (0))Γ.
(4.51)

Using the fact that ‖u0‖C0(Ω) < R and the fact that uh0 − u0 = ρu(0), (4.51) gives

|θut (0)|20,Γ ≤(|ρw(0)|0 + Lf |ρu(0)|0)|θut (0)|0
+ (Lg|ρu(0)|0,Γ + |ρut (0)|0,Γ)|θut (0)|0,Γ,

(4.52)

where Lf and Lg are respectively the Lipschitz constants of f and g on [−R,R]. By (4.5),
(4.13), (4.41) and (4.50), estimate (4.52) yields

|θut (0)|20,Γ ≤Ch2(|w(0)|2 + |u0|2 + |u0|2,Γ)Ch2(|ut(0)|2 + |ut(0)|2,Γ)

+ (LgCh
2(|u0|2 + |u0|2,Γ) + Ch2(|ut(0)|2 + |ut(0)|2,Γ))|θut (0)|0,Γ,

(4.53)

and
|θut (0)|20,Γ ≤ Ch4 + Ch2|θut (0)|0,Γ. (4.54)
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In particular, (4.54) implies |θut (0)|0,Γ ≤ Ch2. Thus,

N (0) ≤ Ch4. (4.55)

The regularity assumptions on u and w and estimates (4.5), (4.13) and (4.41), imply that∫ t

0

|ρut |20 + |ρw|20 + |ρu|20 + |ρutt|20ds ≤ Ch4. (4.56)

Using estimates (4.55) and (4.56) we deduce from (4.22) that

N (t) ≤ Ch4, ∀t ∈ [0, T h]. (4.57)

Estimate (4.57) implies in particular that

|θu(t)|20 ≤ Ch2, ∀t ∈ [0, T h]. (4.58)

Arguing as in (4.42), we deduce that

sup
t∈[0,Th]

‖uh(t)− u(t)‖C0(Ω) → 0 as h→ 0. (4.59)

We conclude by noticing that for h small enough, T h = T.

Remark 1. We remark here that the regularity required in (4.38) and (4.39) is a strong one,
this is due to the fact that we need strong regularity results in order to estimate the term θut .

5 Stability of the backward Euler scheme

In what follows, we denote by δt = T/N the time step with N ∈ IN∗. We study the following
backward in time Euler scheme:
Let u0

h ∈ V h and for n = 1, 2, ..., find (unh, w
n
h) ∈ V h × V h such that{

(∂unh, ϕ)Ω = −(∇wnh ,∇ϕ)Ω − (wnh , ϕ)Ω,

(wnh , χ)Ω = (∇unh,∇χ)Ω + (f(unh), χ)Ω + (∇Γu
n
h,∇Γχ)Γ + (g̃(unh), χ)Γ + (∂unh, χ)Γ,

(5.1)

for all ϕ, χ ∈ V h, where we denote by ∂ the operator which to a sequence (vn)n≥0 associates
the sequence defined by

∂vn =
vn − vn−1

δt
, n ≥ 1, (5.2)

and the function g̃ is given by

g̃(σ) = λσ + g(σ), ∀σ ∈ IR.

Note that the dissipativity assumptions (2.1) imply that

f ′(v) ≥ −Cf and g̃′(v) ≥ −Cg, ∀v ∈ IR, (5.3)

where Cf and Cg are positive constants.
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Theorem 5.1. For every u0
h ∈ V h, there exists a sequence (unh, w

n
h)n≥1 generated by (5.1) and

which satisfies

E(unh) +
1

2δt
|unh − un−1

h |2−1,h +
1

2δt
|unh − un−1

h |20,Γ ≤ E(un−1
h ), ∀n ≥ 1. (5.4)

Furthermore, if δt < δt∗, where δt∗ = min

{
4

C2
f + C2

fC
,

1

Cg

}
, then this sequence is uniquely

defined.

Proof. Consider the variational problem:

Jh(u) = inf
v∈V h

Jh(v), (5.5)

where

Jh(v) = E(v) +
1

2δt
|v − un−1

h |2−1,h +
1

2δt
|v − un−1

h |20,Γ. (5.6)

Using (2.3), we have

Jh(v) ≥ 1

2
(|v|21 + |v|21,Γ + λ|v|20,Γ)− c2(|Ω|+ |Γ|), ∀v ∈ V h. (5.7)

Since Jh is continuous, there exists a solution to (5.5). Such a solution u satisfies

0 =(∇u,∇χ)Ω + (f(u), χ)Ω + (∇Γu,∇Γχ)Γ + (g̃(u), χ)Γ

+
1

δt
(Gh(u− un−1

h ), χ)Ω +
1

δt
(u− un−1

h , χ)Γ, ∀χ ∈ V h.
(5.8)

Setting unh = u, wnh = − 1
δt
Gh(u − un−1

h ), we find that (unh, w
n
h) solves problem (5.1). Thanks

to (5.5), Jh(unh) ≤ Jh(un−1
h ), which implies (5.4).

In order to prove uniqueness, set ξ = (unh)1− (unh)2 and η = (wnh)1− (wnh)2 to be the difference
of two possible solutions ((unh)i, (wnh)i) (i = 1, 2) of (5.1) for a given un−1

h . Then, (ξ, η) satisfies
(ξ, ϕ)Ω =− δt(∇η,∇ϕ)Ω − δt(η, ϕ)Ω,

(η, χ)Ω =(∇ξ,∇χ)Ω + (f((unh)1)− f((unh)2), χ)Ω + (∇Γξ,∇Γχ)Γ

+
(
g̃((unh)1)− g̃((unh)2), χ

)
Γ

+ (ξ/δt, χ)Γ,

(5.9)

for all ϕ, χ ∈ V h. Taking ϕ = η in the first equation of (5.9) and χ = ξ in the second equation
of (5.9) and subtracting the resulting equations, we obtain

δt|η|21 + δt|η|20 + |ξ|21 + |ξ|21,Γ +
1

δt
|ξ|20,Γ ≤ Cf |ξ|20 + Cg|ξ|20,Γ, (5.10)

where we have used the inequalities

(f((unh)1)− f((unh)2), ξ)Ω ≥ −Cf |ξ|20,

(g̃((unh)1)− g̃((unh)2), ξ)Γ ≥ −Cg|ξ|20,Γ.
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By choosing χ = ξ in the first equation of (5.9), we find

Cf |ξ|20 =− Cfδt(∇η,∇ξ)Ω − Cfδt(η, ξ)Ω

≤δt|η|21 +
C2
fδt

4
|ξ|21 + δt|η|20 +

C2
fδt

4
|ξ|20,

≤δt|η|21 +
C2
fδt

4
|ξ|21 + δt|η|20 +

C2
fCδt

4
|ξ|21,

(5.11)

which leads to (
1− δt(

C2
f

4
+
C2
fC

4
)

)
|ξ|21 + |ξ|21,Γ +

(
1

δt
− Cg

)
|ξ|20,Γ ≤ 0. (5.12)

The smallness assumption on δt implies ξ = 0 and by (5.9), we deduce that η = 0.

Corollary 1. If f and g are analytic, then, for all u0
h ∈ V h, any sequence (unh, w

n
h)n≥1 gener-

ated by (5.1) and which satisfies the energy estimate (5.4) converges to a steady state (uh, wh)
as n→ +∞.

Proof. The proof of this result is based on the Lojasiewicz gradient inequality (see [1] and
[14]). Let u0

h ∈ V h. By (5.4), the sequence (E(unh))n is non-increasing and since it is bounded
from below by 0, we have E(unh) → E∗. We assume without loss of generality that E∗ = 0.
By (3.2), E(v) → +∞ as ‖v‖V → +∞ and (unh)n is bounded: there exist u∞h ∈ V h and a
subsequence (unk

h )k such that unk
h → u∞h in V h as k → +∞.

Using the same matrix notation as introduced in the proof of Proposition 1, problem (5.1)
reads(

(A+ I) I
−I MΓ

)(
W n

(Un − Un−1)/δt

)
= −

(
0

AUn + F h(Un) + AΓU
n +Gh

Γ(Un)

)
,

where Un (resp. W n) is the vector of the coordinates of unh (resp. wnh). The matrix A + I is
invertible. Thus, eliminating W n, we obtain

((A+ I)−1 +MΓ)
Un − Un−1

δt
= −(AUn + F h(Un) +AΓU

n +Gh
Γ(Un)) = −∇Eh(Un), (5.13)

where

Eh(V ) = E(
M∑
i=1

viϕi), ∀V = (v1, · · · , vM) ∈ IRM .

If we take the Euclidean norm of (5.13), we see that

λ1
‖Un − Un−1‖

δt
≤ ‖∇Eh(Un)‖ ≤ λM

‖Un − Un−1‖
δt

, (5.14)

where 0 ≤ λ1 < λM < +∞ are respectively the smallest and the largest eigenvalues of
((A+I)−1 +MΓ) since ((A+I)−1 +MΓ) is a symmetric positive definite matrix. On the other
hand, since f and g are real analytic, the function Eh is real analytic on IRM and it satisfies
the Lojasiewicz inequality; more precisely, there exist σ, γ > 0 and ν ∈ (0, 1/2] such that

∀V ∈ IRM , ‖V − U∞‖ < σ ⇒ |Eh(V )|1−ν ≤ γ‖∇Eh(V )‖, (5.15)
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where we have used the fact that Eh(U∞) = E(u∞h ) = E∗ = 0 and where ‖ · ‖ denotes the
Euclidean norm in IRM . Now let n be such that ‖Un − U∞‖ ≤ σ. We recall that Eh satisfies
the following inequality:

Eh(Un) +
1

2δt
|Un − Un−1|2−1,h +

1

2δt
|Un − Un−1|20,Γ ≤ Eh(Un−1), ∀n ≥ 1. (5.16)

We consider the following two cases:
Case 1: Eh(Un) > Eh(Un−1)/2. In what follows, we will use the fact that all norms are
equivalent on V h. Since x 7→ xν−1 is non-increasing, we have

2Eh(Un) > Eh(Un−1)⇒ Eh(Un−1)ν−1 > 2ν−1Eh(Un)ν−1. (5.17)

We also know that
|vh|2−1,h + |vh|20,Γ ≥ ch|vh|20, ∀vh ∈ V h (5.18)

for some positive constant ch > 0 since all norms are equivalent on V h. Then

Eh(Un−1)ν − Eh(Un)ν =

∫ Eh(Un−1)

Eh(Un)

νxν−1dx

≥
∫ Eh(Un−1)

Eh(Un)

ν(Eh(Un−1))ν−1dx (using (5.17))

≥ 2ν−1νEh(Un)ν−1[Eh(Un−1)− Eh(Un)] (using (5.16))

≥ 2ν−1νEh(Un)ν−1 1

2δt
(|Un − Un−1|2−1,h + |Un − Un−1|20,Γ)

= 2ν−2νEh(Un)ν−1 1

δt
(|Un − Un−1|2−1,h + |Un − Un−1|20,Γ)

≥ 2ν−2νch
‖Un − Un−1‖2

δtEh(Un)1−ν .

(5.19)

Using (5.15) and (5.14), we obtain

Eh(Un−1)ν − Eh(Un)ν ≥2ν−2νch
γδt

‖Un − Un−1‖2

‖∇Eh(Un)‖

≥2ν−2νch
λMγ

‖Un − Un−1‖.
(5.20)

Case 2: Eh(Un) ≤ Eh(Un−1)/2. We have

Eh(Un) ≤ Eh(Un−1)

2

⇐⇒(Eh(Un))1/2 ≤ (Eh(Un−1))1/2

√
2

⇐⇒(Eh(Un−1))1/2 − (Eh(Un−1))1/2

√
2

≤ (Eh(Un−1))1/2 − (Eh(Un))1/2

⇐⇒
(

1− 1√
2

)
(Eh(Un−1))1/2 ≤ (Eh(Un−1))1/2 − (Eh(Un))1/2

⇐⇒(Eh(Un−1))1/2 ≤
(

1− 1√
2

)−1 (
(Eh(Un−1))1/2 − (Eh(Un))1/2

)
.

(5.21)
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Using (5.16), (5.18) and (5.21), we obtain

‖Un − Un−1‖ ≤ 1
√
ch

(|Un − Un−1|−1,h + |Un − Un−1|0,Γ)

≤ 2

(
δt

ch

)1/2 (
Eh(Un−1)− Eh(Un)

)1/2

≤ 2

(
δt

ch

)1/2

Eh(Un−1)1/2

≤ 2

(
1− 1√

2

)−1(
δt

ch

)1/2 (
Eh(Un−1)1/2 − Eh(Un)1/2

)
.

(5.22)

Thus, in both cases, we have

‖Un − Un−1‖ ≤22−νλMγ

νch

(
Eh(Un−1)ν − Eh(Un)ν

)
+ 2

(
1− 1√

2

)−1(
δt

ch

)1/2 (
Eh(Un−1)1/2 − Eh(Un)1/2

)
≤22−νλMγ

νch

(
Eh(Un−1)ν − Eh(Un)ν

)
+

(
δt

ch

)1/2 (
Eh(Un−1)1/2 − Eh(Un)1/2

)
.

(5.23)

Now, let Ẽ > 0 be small enough so that

22−νλMγ

νch
Ẽν +

(
δt

ch

)1/2

Ẽ1/2 ≤ σ/3. (5.24)

We choose n large enough such that

‖Un − U∞‖ ≤ 1
√
ch

(|Un − U∞|−1,h + |Un − U∞|0,Γ) < σ/3 and Eh(Un) ≤ Ẽ. Let N − 1 ≥ n

be the largest integer (including +∞) such that

‖Un − U∞‖ ≤ 1
√
ch

(|Un − U∞|−1,h + |Un − U∞|0,Γ) < 2σ/3,

for all n with n ≤ n ≤ N − 1. Assume by contradiction that N is finite. We deduce from
(5.16) that

‖UN − U∞‖ ≤ 1
√
ch

(|UN − U∞|−1,h + |UN − U∞|0,Γ)

≤ 1
√
ch

(
|UN − UN−1|−1,h + |UN − UN−1|0,Γ

)
+

1
√
ch

(
|UN−1 − U∞|−1,h + |UN−1 − U∞|0,Γ

)
≤ 1
√
ch

(√
2δtEh(UN−1) + |UN−1 − U∞|−1,h + |UN−1 − U∞|0,Γ

)
≤σ/3 + 2σ/3 = σ.

(5.25)
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So we may apply (5.23) to every n ≤ n ≤ N − 1 and since (Eh(Un))n is non-increasing, we
obtain

N∑
n=n

‖Un − Un−1‖ ≤ 22−νλMγ

νch
Eh(UN−1)ν + 5

(
δt

ch

)1/2

Eh(UN−1)1/2 ≤ σ/3. (5.26)

Thus,

‖UN − U∞‖ ≤ ‖UN − Un‖+ ‖Un − U∞‖

≤
N∑
n=n

‖Un − Un−1‖+ ‖Un − U∞‖

≤ σ/3 + σ/3 = 2σ/3,

(5.27)

which is in contradiction with the definition of N − 1. So N = +∞ and the whole sequence
(Un) converges to U∞. Since wnh , defined by (5.1), is a continuous function of unh, wnh also has
a limit w∞h as n→ +∞. We see that (u∞h , w

∞
h ) is necessarily a steady state by passing to the

limit in (5.1).

6 Numerical simulations

In this section, we illustrate some numerical simulations in two space dimensions. The fully
discrete scheme (5.1) requires at each time step the resolution of a nonlinear system and for
the numerical computation of solutions of the space semi-discrete scheme (3.7), we propose
instead of (5.1) a semi-implicit time discretizations which is the semi-implicit Euler (SIE)
scheme, i.e. (3.7) but the implicit nonlinear terms f(unh) and g̃(unh) are respectively replaced
by the explicit terms f(un−1

h ) and g̃(un−1
h ). Using the same arguments as in the proof of

Proposition 1 we see that the matrix of the SIE scheme is positive semidefinite and invertible,
so that the SIE scheme is well-posed.

Figure 1: t = 5

Figure 2: t = 10

Figure 3: t = 25
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Figure 4: t = 50

In Figures 1-4, we see the result of the SIE scheme on the slab Lx × Ly = 80 × 10. The
triangulation Ωh was obtained by dividing the slab into 256× 50 rectangles and by dividing
every rectangle along the same diagonal into two triangles. The nonlinearities are

f(v) =
1

2
(v3 − v) and g̃(v) = (λ+ k)v − h, v ∈ R, (6.1)

with λ + k = 1 (λ = 0.5, for instance), h = 0 and δt = 0.1. In each picture, the maxi-
mum and minimum values of u are colored in white and black and values of u in between
correspond to different shades of grey. In these numerical simulations, we chose the same
parameters as in [1] and [13]. Since h = 0, none of the components is preferably attracted by
the walls, which is visible on the fact that both white and black zones appear at the boundary.

Figure 5: t = 2 (h = 0)

Figure 6: t = 2 (h = 0.7)

In Figures 5 and 6, we consider the nonlinearity f(v) = v3 − v

2
, v ∈ R, and the same

nonlinearity g̃(v) = (λ + k)v − h, v ∈ R. This time, δt = 0.01 and the geometry is different;
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the domain Ω is a disk of radius 80 centered at (0, 0) from which we have cut off a disk of
radius 40 and centered at (20, 0). The exterior boundary is divided into 600 intervals and the
internal boundary into 400 intervals, yielding a triangulation Ωh of Ω with 59 048 triangles and
30 024 vertices. In these figures, we see the difference between the case h = 0, where no phase
is preferentially attracted by the walls, and the case h = 0.7, where one of the components is
preferentially attracted by the walls. We also remark that away from the boundary, Figures
5 and 6 present the same patterns.

References

[1] L. Cherfils, M. Petcu, and M. Pierre. A numerical analysis of the Cahn-Hilliard equation
with dynamic boundary conditions. Discrete Contin. Dyn. Syst., 27(4):1511–1533, 2010.

[2] C. M. Elliott, D. A. French, and F. A. Milner. A second order splitting method for the
Cahn-Hilliard equation. Numer. Math., 54(5):575–590, 1989.

[3] C.M. Elliott. The Cahn-Hilliard model for the kinetics of phase separation. In
Mathematical models for phase change problems (Óbidos, 1988), volume 88 of Internat.
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