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Abstract. The aim of this paper is to present a qualitative study of the Primitive
Equations in a three dimensional domain, with periodical boundary conditions. We
start by recalling some already existing results regarding the existence locally in time
of weak solutions and existence and uniqueness of strong solutions, and we prove the
existence of very regular solutions, up to C∞-regularity. In the second part of the paper
we prove that the solution of the Primitive Equations belongs to a certain Gevrey class
of functions.

1. Introduction

In this article we consider the Primitive Equations for the ocean or for the atmosphere
in 3 space dimensions, with periodic boundary conditions. The general form of the equa-
tions governing the movement of the oceans and atmosphere is derived from the basic
conservation laws, but the resulting equations are too difficult to handle. That is why,
using scale analysis methods and physical observations, the equations are usually approx-
imated by different models, having simpler forms (in principle), one of them being the
Primitive Equations (for more details on the form of the Primitive Equations and their
derivation, see e.g., [7], [8], [9]).

As we already mentioned, n this article we consider the 3D Primitive Equations with
space periodicity and start by recalling the known results of existence, uniqueness and
regularity of solutions, in the usual H1 Sobolev space (see [7], [8], [15]). We then prove
a regularity result in higher order Sobolev spaces; for a similar result for the Primitive
Equations in space dimension 2, see [11]. We also study the Gevrey regularity for the
PEs; in fact, we show that considering a forcing term which is analytic in time with
values in some Gevrey space, the solutions of the PEs starting with initial data in the
Sobolev space H1 instantly become elements of a certain Gevrey class and remain there
for a certain interval of time. The study of the Gevrey regularity for the solutions was
inspired by the article of Foias and Temam [4] who proved this type of results for the
Navier–Stokes equations in 2 and 3 space dimensions with periodic boundary conditions.
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We also mention the works of Promislow [12], of Ferrari and Titi [3], who obtained Gevrey
regularity results for a certain class of nonlinear parabolic equations; also, Cao, Rammaha
and Titi [2] established the Gevrey regularity for a certain class of analytic nonlinear
parabolic equations on the sphere. The Gevrey regularity of the Primitive Equations in
2 space dimensions was proven in [10].

The Primitive Equations in their dimensional form read:

∂u

∂t
+ u

∂u

∂x1

+ v
∂u

∂x2

+ w
∂u

∂x3

− fv +
1

ρ0

∂p

∂x1

= ν∆u + Fu,(1.1a)

∂v

∂t
+ u

∂v

∂x1

+ v
∂v

∂x2

+ w
∂v

∂x3

+ fu +
1

ρ0

∂p

∂x2

= ν∆v + Fv,(1.1b)

∂p

∂x3

= −ρg,(1.1c)

∂u

∂x1

+
∂v

∂x2

+
∂w

∂x3

= 0,(1.1d)

∂T

∂t
+ u

∂T

∂x1

+ v
∂T

∂x2

+ w
∂T

∂x3

= µ∆T + FT .(1.1e)

In the system above, (u, v, w) are the three components of the velocity vector and
p, ρ and T are respectively the perturbations of the pressure, of the density and of the
temperature from the reference (average) constant state p0, ρ0, and T0. The relation
between the temperature and the density is given by the equation of state, and we consider
here a version of this equation linearized around the reference state ρ0 and T0,

(1.2) ρfull = ρ0(1− βT (T − T0)),

so that for the perturbations ρ and T :

(1.3) ρ = −βT ρ0T.

The constant g is the gravitational acceleration and f the Coriolis parameter, ν and µ are
the eddy diffusivity coefficients, (Fu, Fv) represent body forces per unit of mass and FT

represents a heating source. In applications Fu, Fv vanish for the ocean but we consider
here nonzero forces for mathematical generality. When required, we denote by F the
vector (Fu, Fv, FT ).

We work in a limited domain:

(1.4) Ω = (0, L1)× (0, L2)× (−L3/2,−L3/2),

and we assume space periodicity with period Ω, meaning that all functions are taken to
satisfy:

(1.5) f(x1, x2, x3, t) = f(x1 + L1, x2, x3, t) = f(x1, x2 + L2, x3, t) = f(x1, x2, x3 + L3, t),

when extended to R3.
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All functions being periodic, they admit Fourier series, hence we can write:

(1.6) f(x1, x2, x3, t) =
∑

k∈R3

fk(t)e
i(k′1x1+k′2x2+k′3x3),

where, for notational conciseness, we set k′j = 2πkj/Lj for j = 1, 2, 3.
Moreover, we assume as in [10], [11], that the following symmetries hold:

u(x1, x2, x3, t) = u(x1, x2,−x3, t), Fu(x1, x2, x3, t) = Fu(x1, x2, x3, t),

v(x1, x2, x3, t) = v(x1, x2,−x3, t), Fv(x1, x2, x3, t) = Fv(x1, x2,−x3, t),

T (x1, x2, x3, t) = −T (x1, x2,−x3, t), FT (x1, x2, x3, t) = −FT (x1, x2,−x3, t),(1.7)

w(x1, x2, x3, t) = −w(x1, x2,−x3, t), p(x1, x2, x3, t) = p(x1, x2,−x3, t);

in other words, u, v, p are even and w, T odd in x3. These conditions are often used in
numerical studies of rotating stratified turbulence (see e.g. [1]). Note that without these
symmetry properties, space periodicity is not consistent with (1.1).

The following function spaces are used:

V = {U = (u, v, T ) ∈ (Ḣ1
per(Ω))3, u, v even in x3, T odd in x3,(1.8)

∫ L3/2

−L3/2

(ux1(x1, x2, x
′
3) + vx2(x1, x2, x

′
3)) dx′3 = 0},

H = closure of V in (L̇2(Ω))3.(1.9)

Here the dots above Ḣ1
per and L̇2 denote the functions with zero average over Ω.

These spaces are endowed with the following scalar products: on H we consider the
scalar product

(1.10) (U, Ũ)H = (u, ũ)L2 + (v, ṽ)L2 + κ(T, T̃ )L2 ,

and on V the scalar product is

(1.11) ((U, Ũ))V = ((u, ũ)) + ((v, ṽ)) + κ((T, T̃ )),

where we have written

(1.12) ((Φ, Φ̃)) =

∫

Ω

∇Φ · ∇Φ̃ dΩ.

The positive constant κ will be chosen below. Since we assumed that all functions have
zero average, a generalized Poincaré inequality holds, meaning that we have:

(1.13) |U |H ≤ c0‖U‖V , ∀U ∈ V,

which guarantees that ‖ · ‖ is indeed a norm on V equivalent to the usual H1 norm.
In system (1.1), the unknown functions are regrouped in two sets: the prognostic

variables u, v and T for which an initial value problem will be defined, and the diagnostic
variables ρ, w and p which can be defined, at each instant of time, as functions of the
prognostic variables, using the equations and the boundary conditions. The density ρ is
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already expressed in terms of the temperature T by the equation of state (1.3). Given the
prognostic variable U = (u, v, T ) ∈ V , we can uniquely determine the vertical velocity w
from the conservation of mass equation as:

(1.14) w(U) = w(x1, x2, x3, t) = −
∫ x3

0

(ux1 + vx2) dx′3,

where we used w(x1, x2, 0, t) = 0, since w is odd in x3. Using (1.1d), the fact that w is
periodic gives the constraint

(1.15)

∫ L3/2

−L3/2

(ux1 + vx2) dx3 = 0.

From equation (1.1c), the pressure can be determined uniquely in terms of T , up to its
value ps at x3 = 0, namely,

(1.16) p(x1, x2, x3, t) = ps(x1, x2, 0, t) + βT ρ0

∫ x3

0

T (x1, x2, x
′
3, t) dx′3.

In fact, we fully determine the Fourier coefficients pk of the pressure p for k3 6= 0 but
not for k3 = 0. That means that the part of the pressure we can not determine is the
average of the pressure in the vertical direction:

(1.17) p?(x1, x2) =
1

L3

∫ L3/2

−L3/2

p(x1, x2, x3, t) dx3 =
∑

k, k3=0

pk(t)e
i(k′1x1+k′2x2).

We deduce below the relation between the average of the pressure in the vertical direc-
tion and the surface pressure:

p(x1, x2, x3, t) = ps(x1, x2, 0, t) + βT ρ0

∫ x3

0

∑

k

Tk(t)e
i(k′1x1+k′2x2+k′3x′3) dx3

= ps(x1, x2, t) + βT ρ0

∑

k, k3 6=0

Tk(t)

ik′3
ei(k′1x1+k′2x2)(eik′3x3 − 1)

=
∑

(k1,k2)

(ps, (k1,k2) − βT ρ0

∑

k3 6=0

Tk(t)

ik′3
)ei(k′1x1+k′2x2) + βT ρ0

∑

k, k3 6=0

Tk(t)

ik′3
eik′·x

=
∑

(k1,k2)

(p?, (k1,k2)e
i(k′1x1+k′2x2) + βT ρ0

∑

k, k3 6=0

Tk(t)

ik′3
eik′·x,

(1.18)

where p? is the average of p in the vertical direction. Then:

(1.19) p?, (k1,k2) = ps, (k1,k2) − βT ρ0

∑

k3 6=0

Tk(t)

ik′3
.



REGULARITY RESULTS FOR THE PES IN SPACE DIMENSION 3 5

The variational formulation of the problem

In order to obtain the variational formulation of this problem, we consider a test func-
tion U [ = (u[, v[, T [) ∈ V , multiply (1.1a) by u[, (1.1b) by v[, and (1.1e) by κT [, and
integrate over Ω. Using the integration by parts and the space periodicity, we find that
system (1.1) is formally equivalent to the following problem:

To find U : [0, t0] → V , such that,

d

dt
(U,U [)H + a(U,U [) + b(U,U, U [) + e(U,U [) = (F,U [)H , ∀U [ ∈ V,

U(0) = U0.
(1.20)

In (1.20) we introduced the bilinear, continuous form a : V × V → R as:

(1.21) a(U,U [) = ν((u, u[)) + ν((v, v[)) + κµ((T, T [)),

the trilinear form b as:

b(U,U ], U [) =

∫

Ω

(u
∂u]

∂x
u[ + v

∂u]

∂y
u[ + w(U)

∂u]

∂z
u[) dΩ

+

∫

Ω

(u
∂v]

∂x
v[ + v

∂v]

∂y
v[ + w(U)

∂v]

∂z
v[) dΩ

+

∫

Ω

(u
∂T ]

∂x
T [ + v

∂T ]

∂y
T [ + w(U)

∂T ]

∂z
T̃ ) dΩ,

(1.22)

and the bilinear form e, e : V × V → R which is continuous:

(1.23) e(U,U [) = f

∫

Ω

(uv[ − vu[) dΩ− gβT

∫

Ω

Tw(U [) dΩ.

We note that

(1.24) a(U,U) + e(U,U) = ν‖u‖2 + ν‖v‖2 + κµ‖T‖2 − gβT

∫

Ω

Tw(U) dΩ.

We then estimate:

(1.25) |gβT

∫

Ω

Tw(U) dΩ| ≤ gβT |T |L2|w(U)|L2 ≤ cgβT (‖u‖+ ‖v‖)‖T‖;

here we used (1.14) and the Poincaré inequality. We find:

(1.26) a(U,U) + e(U,U) ≥ ν‖u‖2 + ν‖v‖2 + κµ‖T‖2 − cgβT‖u‖‖T‖ − cgβT‖v‖‖T‖.
From equation (1.26), we see that choosing κ large enough, more specifically κ ≥

2(cgβT )2/(νµ), the bilinear continuous form a + e is coercive on V , and

(1.27) a(U,U) + e(U,U) ≥ ν

2
‖u‖2 +

ν

2
‖v‖2 +

κµ

2
‖T‖2 ≥ c1‖U‖2

V , c1 = min(ν, µ).
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In order to study the properties of the form b, we introduce the space V2, defined as:

(1.28) V2 = the closure of V ∩ (Ḣ2
per(Ω))3 in (Ḣ2

per(Ω))3.

We have the following result on b:

Lemma 1.1. The form b is trilinear continuous from V×V2×V into R and from V×V×V2

into R, and

(1.29) |b(U,U ], U [)| ≤ c2‖U‖|U ]|1/2
H ‖U ]‖1/2‖U [‖V2 , ∀U,U ] ∈ V, U [ ∈ V2.

Furthermore,

b(U,U [, U [) = 0 ∀U ∈ V, U [ ∈ V2,

and

b(U,U [, U ]) = −b(U,U ], U [), ∀U,U [, U ] ∈ V with U [ or U ] ∈ V2.

Proof. The proof is based on appropriate estimates for the terms of b(U,U ], U [); Hölder,
Sobolev and interpolation inequalities are used. For more details on how this type of
results is derived, see [7], [11] or [15]. ¤

We can now write (1.20) as an evolution equation in the Hilbert space V ′
2 , which is

the dual space of V2. For that purpose we observe that we can associate the following
operators to the forms a, b and e above:

A linear continuous from V into V ′, defined by 〈AU,U [〉 = a(U,U [), ∀U,U [ ∈ V,

B bilinear, continuous from V × V into V ′
2 , defined by

〈B(U,U [), U ]〉 = b(U,U [, U ]) ∀U,U [ ∈ V, ∀U ] ∈ V2,

E linear continuous from V into V ′, defined by 〈EU,U [〉 = e(U,U [), ∀U,U [ ∈ V.

Then equation (1.20) is equivalent to the following operator evolution equation in V ′
2 :

dU

dt
+ AU + B(U,U) + EU = F,

U(0) = U0.
(1.30)

In the second section we present some existence, uniqueness and Sobolev regularity
results for the Primitive Equations, that is (1.20) or (1.30). We start by recalling the
existence of weak solutions (result already available thanks to [7]), the existence and
uniqueness of strong solutions (result already available, see [15]) and we conclude by
proving the existence of more regular solutions, up to C∞ regularity. For these high
regularity results we use periodic boundary conditions; for a similar result in two space
dimensions, see [11].

In the third section we prove that the solutions of the Primitive Equations in space
dimension three are real functions analytic in time with values in some Gevrey space.
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2. Sobolev regularity results

As we mentioned before, we start by recalling some results already available and then
we prove the existence of very regular solutions.

Theorem 2.1. Given U0 ∈ H and F ∈ L∞(R+; H), there exists at least one solution U
of problem (1.20) such that:

(2.1) U ∈ L∞(R+; H) ∩ L2(0, T ; V ), ∀T > 0.

Proof. The proof of this theorem is based on the a priori estimates given below which, by
classical methods, lead to (2.1); we briefly recall these calculations needed below.

Taking U [ = U(t) in equation (1.20), for an arbitrary fixed t > 0, we obtain after some
basic computations:

(2.2)
d

dt
|U |2H + c1‖U‖2

H ≤ c′1|F |2∞,
d

dt
|U |2H +

c1

c0

|U |2H ≤ c′1|F |2∞,

where |F |∞ is the norm of F in L∞(R+; H). Using Gronwall inequality, from (2.2) we
find

(2.3) |U(t)|2H ≤ |U(0)|2He
− c1t

c0 +
c′1c0

c1

(1− e
− c1t

c0 )|F |2∞.

Inequality (2.3) implies:

(2.4) lim sup
t→∞

|U(t)|2H ≤ c′1c0

c1

|F |2∞ =: r2
0.

After these a priori estimates of U in L∞(R+; H), we integrate (2.3) and find:

(2.5)

∫ t1

0

‖U‖2 dt ≤ K(U0, F, t1), ∀ t1 > 0,

where K(U0, F, t1) denotes a constant depending on the initial data U0 and on the time
t1 > 0. These estimates are at the basis of the proof of existence in Theorem 2.1 (for
more details, see [7]).

We also note that for a forcing independent on t, F (t) ≡ F ∈ H, inequality (2.4) implies
that any ball B(0, r′0) in H, with r′0 > r0 is an absorbing ball. ¤

The existence and uniqueness of a strong solution is given by the following theorem
(see e.g., [5], [15]):

Theorem 2.2. Given U0 ∈ V and F ∈ L2(0, T ; H), there exists t? > 0, t? = t?(‖U0‖)
and a unique solution U = U(t) of (1.20) on (0, t?, such that:

U ∈ C(0, t?; V ) ∩ L2(0, t?; (Ḣ
2
per(Ω))3).
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Proof. The proof is based, as usual, on some a priori estimates for the solution U , obtained
by taking U [ = −∆U in (1.20). First of all, let us note that the ”standard” treatment of
the bilinear term gives the estimate,

(2.6) |(B(U,U), ∆U)H | ≤ c‖U‖1/2
V |∆U |5/2

H ,

The term |∆U |5/2
H is too strong to be dominated, meaning it cannot be majorized by

|∆U |2 on the left-hand side.
In order to overcome this difficulty, the idea is to use an anisotropic treatment for the

terms in b(U, Ũ , U ]) which contain w(U). This gives the following result, which is proved
in [15] (see also [5]):

Lemma 2.1. The trilinear form b is continuous from V2 × V2 ×H into R, and:

(2.7) |b(U, Ũ , U ])| ≤ c3(‖U‖V ‖Ũ‖1/2
V ‖Ũ‖1/2

V2
+ ‖U‖1/2

V ‖U‖1/2
V2
‖Ũ‖1/2

V ‖Ũ‖1/2
V2

)|U ]|H ,

for all U , Ũ in V2 and U ] in H.

We return to the proof of the theorem. Using Lemma 2.1, we can estimate the trilinear
term as:

(2.8) |(B(U,U), ∆U)H | ≤ c4‖U‖V |∆U |2H .

This estimate allows us to obtain some a priori estimates, but since the estimate is a
weak one (the term |∆U |H has power 2), a direct estimate would force us to work with
small initial data. In order to avoid imposing such a restriction, we split the solution U
of equation (1.30) into U = U? + Ũ , where U? is the solution of the linear problem (as in
[5], [15]):

dU?

dt
+ AU? + EU? = F,

U?(0) = U0,
(2.9)

and Ũ is the solution of the following nonlinear problem, in which U? is now known:

dŨ

dt
+ AŨ + B(Ũ , Ũ) + B(Ũ , U?) + B(U?, Ũ) + EŨ = −B(U?, U?),

Ũ(0) = 0.

(2.10)

We start by deriving a priori estimates for U?. We take the scalar product of (2.9) with
−∆U? in H and we find:

(2.11)
d

dt
‖U?‖2

V + c1|∆U?|2H ≤ c1

2
|∆U?|2H +

1

2c1

|F |2H ,

which leads to:

(2.12) sup
0≤t≤t1

‖U?(t)‖2
V ≤

1

2c1

|F |2L2(0,t1;H) + ‖U0‖2
V ,
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and

(2.13)

∫ t1

0

|∆U?(t)|2H dt ≤ 1

2c1
2
|F |2L2(0,t1;H) +

1

c1

‖U0‖2
V .

Using the following a priori estimates and classical methods (e.g. Galerkin’s method),
we prove the existence of a solution of (2.10) on some interval (0, t?), where t? is also
determined below. Assuming that U? is known in L∞(0, t1; V ) ∪ L2(0, t1; H

2) for all
t1 > 0, we take the scalar product of (2.10) with ∆Ũ in H and we use Lemma 2.1. We
have the following estimates:

(2.14) |(B(Ũ , U?), ∆Ũ)H | = |b(Ũ , U?, ∆Ũ)| ≤ c1

8
|∆Ũ |2H + c‖Ũ‖2

V (1 + ‖U?‖2
H2),

(2.15) |(B(U?, Ũ), ∆Ũ)H | = |b(U?, Ũ , ∆Ũ)| ≤ c1

8
|∆Ũ |2H + c‖U?‖2

V ‖U?‖2
H2‖Ũ‖2

V ,

and

(2.16) |(B(U?, U?), ∆Ũ)H | = |b(U?, U?, ∆Ũ)| ≤ c1

8
|∆Ũ |2H + c‖U?‖2

V ‖U?‖2
H2 .

Taking into account all these estimates, (2.10) leads to the following estimate:

(2.17)
d

dt
‖Ũ‖2

V + (c1 − c4‖Ũ‖V )|∆Ũ |2H ≤ γ(t)‖Ũ‖2
V + η(t),

with

γ(t) = c(1 + ‖U?‖2
H2 + ‖U?‖2

V ‖U?‖2
H2 ,

η(t) = c‖U?‖2
V ‖U?‖2

H2 .

Using (2.12) and (2.13), we see that the functions γ and η are integrable on any interval
(0, t1). Since Ũ(0) = 0, we may assume that:

(2.18) ‖Ũ‖V ≤ c1

2c4

, on some finite interval of time (0, t0).

On that interval, we can write (2.17) as:

(2.19)
d

dt
‖Ũ‖2

V +
c1

2
|∆Ũ |2H ≤ γ(t)‖Ũ‖2

V + η(t).

Applying the Gronwall lemma to (2.19), we deduce the following estimate on (0, t0):

(2.20) ‖Ũ‖2
V ≤

∫ t

0

η(s) exp
( ∫ t

s

γ(τ) dτ
)

ds.

Since the functions γ and η are integrable on (0, T ), we can define t? = t?(F, U0) as the
first time for which

(2.21)

∫ t?

0

η(s) exp
( ∫ t?

s

γ(τ) dτ
)

ds =
( c1

2c4

)2

.
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Then, on the interval (0, t?) we find ‖Ũ‖V ≤ c1/2c4. Hence, on (0, t?) the solution Ũ
satisfies both (2.17) and (2.18).

We have then the necessary a priori estimates in order to deduce, using the Fourier–
Galerkin method, the existence of a solution U of (1.20) such that:

(2.22) U ∈ L∞(0, t?; V ) ∩ L2(0, t?; (Ḣ
2
per(Ω))3).

The continuity of U from [0, t?] into V is proved using an interpolation argument, see
e.g. [6] or [14].

The uniqueness of the solution is easily obtained by classical methods, meaning we
consider two solutions U1, U2 of (1.30) which satisfy (2.22) and estimate U = U1 − U2 in
the H norm, we find that the solutions coincide. ¤

As we mentioned at the beginning of this section, we now prove the existence and
uniqueness of the regular solution of the Primitive Equations, up to C∞ regularity. We
have the following result:

Theorem 2.3. Given m ∈ N, m ≥ 2, U0 ∈ V ∩ (Ḣm
per(Ω))3 and F ∈ L∞(0, T ; H ∩

(Ḣm−1
per (Ω))3), there exists t?? = t??(F, U0) and a unique solution U of equation (1.30) on

[0, t??] such that:

(2.23) U ∈ C(0, t??; (Ḣ
m
per(Ω))3) ∩ L2(0, t??; (Ḣ

m+1
per (Ω))3).

Moreover, if U0 ∈ V and F ∈ L∞(0, T ; H∩(Ḣm−1
per (Ω))3), then the solution U of equation

(1.30) belongs to C((0, t??]; Ḣ
m
per(Ω))3).

Proof. The proof is based on a priori estimates on the higher order derivatives.
We set |U |m = (

∑
[α]=m |DαU |2H)1/2, where Dα is the differential operator Dα =

Dα1
1 Dα2

2 Dα3
3 , Di = ∂/∂xi α is a multi-index, α = (α1, α2, α3), αi ∈ N and [α] = α1+α2+α3.

In equation (1.20) we take Ũ = (−∆)mU(t), with m ≥ 2 and t arbitrarily fixed and we
obtain:

d

dt
(U, (−∆)mU)H+a(U, (−∆)mU) + b(U,U, (−∆)mU) + e(U, (−∆)mU)

= (F, (−∆)mU)H .
(2.24)

We also note that:

a(U, (−∆)mU) + e(U, (−∆)mU) = (a + e)((−∆)m/2U, (−∆)m/2U) ≥ c1|U(t)|2m+1,

where we used the coercivity of a + e.
Integrating by parts and using the periodicity, we find:

(2.25)
1

2

d

dt
|U(t)|2m + c1|U(t)|2m+1 ≤ |b(U,U, (−∆)mU)|+ |(F, (−∆)mU)H |.
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We need to estimate the terms on the right hand side of (2.25). The last term can be
easily estimated as:

(2.26) |(F, (−∆)mU)H | ≤ c|F |2m−1 +
c1

2(2m + 3)
|U |2m+1.

In order to estimate the term b(U,U, (−∆)mU), we note that the integrals we need to
consider are of the types:∫

Ω

u
∂u

∂x
D2α1

1 D2α2
2 D2α3

3 u dΩ,

∫

Ω

v
∂u

∂y
D2α1

1 D2α2
2 D2α3

3 u dΩ,

∫

Ω

w(U)
∂u

∂z
D2α1

1 D2α2
2 D2α3

3 u dΩ,

(2.27)

where, as before, αi ∈ N with [α] = α1 + α2 + α3 = m. Integrating by parts and using
periodicity, the integrals become:

(2.28)

∫

Ω

Dα
(
u
∂u

∂x

)
Dαu dΩ,

∫

Ω

Dα
(
v
∂u

∂y

)
Dαu dΩ,

∫

Ω

Dα
(
w(U)

∂u

∂z

)
Dαu dΩ.

Using Leibniz’ formula, we see that the integrals can be written as sums of integrals of
the form

(2.29)

∫

Ω

uDα ∂u

∂x
Dαu dΩ,

∫

Ω

vDα ∂u

∂y
Dαu dΩ,

∫

Ω

w(U)Dα ∂u

∂z
Dαu dΩ,

and of integrals of the form

(2.30)

∫

Ω

δkuδm−k ∂u

∂x
Dαu dΩ,

∫

Ω

δkvδm−k ∂u

∂y
Dαu dΩ,

∫

Ω

δkw(U)δm−k ∂u

∂z
Dαu dΩ,

where k = 1, ..., m and δk is some differential operator Dα with [α] = k.
Note that for each α, after integration by parts, the sum of the integrals of type (2.29) is

zero because of the mass conservation equation (1.1d). It remains to estimate the integrals
of type (2.30). The first two integrals in (2.30) lead to the same kind of estimates, so in
fact we only need to estimate the first and last integrals, which we do using Sobolev and
interpolation inequalities. For the first integral, we write:

∣∣
∫

Ω

δkuδm−k ∂u

∂x
Dαu dΩ

∣∣ ≤ |δku|L3

∣∣δm−k ∂u

∂x

∣∣
L6|Dαu|L2

≤ c|U |1/2
k |U |1/2

k+1|U |m−k+2|U |m,

(2.31)

where k = 1, ..., m.
For the last integral we write, when k < m:

∣∣
∫

Ω

δkw(U)δm−k ∂u

∂z
Dαu dΩ

∣∣ ≤ |δkw(U)|L2

∣∣δm−k ∂u

∂z

∣∣
L3|Dαu|L6

≤ c|U |k+1|U |1/2
m−k+1|U |1/2

m−k+2|U |m+1,

(2.32)
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and when k = m:
∣∣
∫

Ω

δmw(U)
∂u

∂z
Dαu dΩ

∣∣ ≤ |δmw(U)|L2

∣∣∂u

∂z

∣∣
L6|Dαu|L3 ≤ c|U |2|U |1/2

m |U |3/2
m+1.(2.33)

Gathering relations (2.31), (2.32) and (2.33), we find:

|b(U,U, (−∆)mU)| ≤ c

m∑

k=1

|U |m−k+2|U |1/2
k |U |1/2

k+1|U |m

+ c

m−1∑

k=1

|U |k+1|U |1/2
m−k+1|U |1/2

m−k+2|U |m+1 + c|U |2|U |1/2
m |U |3/2

m+1.

(2.34)

We now need to bound the terms from the right-hand side of (2.34):
For the case when m > 2, we notice that not all terms on the right hand side of (2.34)

contain |U |m+1. From the first sum, only terms corresponding to k = 1 and to k = m
contain |U |m+1, and we estimate them as:

|U |m+1|U |1/2
1 |U |1/2

2 |U |m ≤ c1

2(m + 3)
|U |2m+1 + c′1|U |1|U |2|U |2m;

|U |2|U |3/2
m |U |1/2

m+1 ≤
c1

2(m + 3)
|U |2m+1 + c′2|U |4/3

2 |U |2m.

Terms from the second sum corresponding to k = 2, ..., m− 1, are estimated as:

(2.35) c|U |k+1|U |1/2
m−k+1|U |1/2

m−k+2|U |m+1 ≤ c1

2(m + 3)
|U |2m+1 + c′3|U |2k+1|U |m−k+1|U |m−k+2,

while for the term for k = 1, as well as for the last term in (2.34), we have:

(2.36) c|U |2|U |1/2
m |U |3/2

m+1 ≤
c1

2(m + 3)
|U |2m+1 + c′4|U |42|U |2m.

Gathering all the estimates above, we obtain the following differential inequality:

(2.37)
d

dt
|U |2m + c1|U |2m+1 ≤ θ + ϕ|U |2m,

where the expressions of the functions θ = θ(t) and ϕ = ϕ(t) can be easily derived from
the estimates above. The functions θ and ϕ are formed from sums involving the terms
|U |k, with k ≤ m.

We also note that for m = 2 we obtain, using the Young inequality, the following
differential inequality:

(2.38)
d

dt
|U |22 + c1|U |23 ≤ c|F |21 + c|U |1|U |32 + c|U |41|U |22 + c|U |10/3

2 .

Inequality (2.38) can be also written as:

(2.39)
d

dt
(1 + |U |22) ≤ K(|F |2L∞(H1), |U |L∞(0,t?;H1))(1 + |U |22)5/3,
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and we obtain that there exists a time t?? ≤ t? depending on F , |U0|2 and on t? of
Theorem 2.2, such that:

(2.40) |U(t)|2 ≤ K(U0), ∀ 0 ≤ t ≤ t??.

Using the Gronwall lemma, we find that for each m ≥ 2, we have a bound for U
in L∞(0, t??; Ḣ

m
per(Ω)) and L2(0, t??; Ḣ

m+1
per (Ω)), where t?? was defined above. From this

result, the first part of the theorem easily follows.
For the second part of the theorem we notice that since U0 belongs to V , the solution

U of problem (1.30) belongs, according to Theorem 2.2, to L2(0, t?; Ḣ
2
per). This means

that U(t) ∈ Ḣ2
per(Ω) almost everywhere on (0, t?), so there exists a t1 arbitrarily small

such that U(t1) ∈ Ḣ2
per(Ω). Using now the first part of the theorem we obtain that the

solution U is such that:

U ∈ C([t1, t??); Ḣ
2
per(Ω)) ∩ L2(t1, t??; Ḣ

3
per(Ω)).

Using the same argument as before, we find a t2 belonging to the interval [t1, t??],
arbitrarily close to t1, such that U(t2) ∈ Ḣ3

per(Ω). Applying the result deduced before, in
the first part of the theorem, we obtain that the solution U is such that:

U ∈ C([t2, t??]; Ḣ
3
per(Ω)) ∩ L2(t2, t??; Ḣ

4
per(Ω)).

Recurrently we arrive at:

U ∈ C([tm−1, t??]; Ḣ
m
per(Ω)) ∩ L2(tm−1, t??; Ḣ

m+1
per (Ω)).

where tm−1 is arbitrarily close to zero. From this relation, the result follows immediately:

U ∈ C((0, t??]; Ḣ
m
per(Ω))

¤

Remark 2.1. Note here that t?? is independent of m; in fact t?? = t(F, |U0|2, t?) is the
time for which |U |2 ∈ L∞(0, t??). Then, for each m > 2, the functions θ and ϕ from (2.37)
are locally integrable on (0, t??) so, by the Gronwall lemma, we obtain a bound of |U(t)|m
on the same interval (0, t??).

As a consequence of the above remark, we also deduce the following result:

Remark 2.2. Given U0 ∈ (Ċ∞(Ω̄))3 and F ∈ L∞(0, t, (Ċ∞(Ω̄))3) , Theorem 2.3 gives also
the existence of a solution U continuous from (0, t??) into ∩m≥0Ḣ

m
per(Ω) = Ċ∞per(Ω).

If F ∈ C∞(Ω̄ × [0, t]), estimates on the time derivatives of U can be also obtained as
e.g. in [13] for the case of Navier-Stokes equations, so that U is finally C∞ in space and
time on (0, t??).
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3. Gevrey regularity results

As mentioned in the introduction, the aim of this paper is also to prove that the
solutions of the PEs are real functions analytic in time with values in a Gevrey space;
in fact we prove that the solutions are the restriction to a positive real interval of some
complex analytic function in time. We start this section by introducing some notations
and defining the Gevrey spaces we are will consider.

We introduce the following notation:

[Uk]
2
κ = |uk|2 + |vk|2 + κ|Tk|2.

Considering the Laplacian ∆, we define the Gevrey class D(eτ(−∆)1/2
), τ > 0∗ as the

set of functions U in H satisfying

(3.1) |Ω|
∑

k∈Z3

e2τ |k′|[Uk]
2
κ = |eτ(−∆)1/2

U |2H < ∞.

The norm of the Hilbert space D(eτ(−∆)1/2
) is given by

(3.2) |U |τ := |U |
D(eτ(−∆)1/2

)
= |eτ(−∆)1/2

U |H , for U ∈ D(eτ(−∆)1/2

),

and the associated scalar product is

(3.3) (U, V )τ := (U, V )
D(eτ(−∆)1/2

)
= (eτ(−∆)1/2

U, eτ(−∆)1/2

V )H , for U, V ∈ D(eτ(−∆)1/2

).

Another Gevrey space that we will use is D((−∆)m/2eτ(−∆)1/2
), m ≥ 1 integer, which is a

Hilbert space when endowed with the inner product:

(U, V )
D((−∆)m/2eτ(−∆)1/2

)
= ((−∆)m/2eτ(−∆)1/2

U, (−∆)m/2eτ(−∆)1/2

V )H ;(3.4)

the norm of the space is given by

|U |2
D((−∆)m/2eτ(−∆)1/2

)
= |(−∆)m/2eτ(−∆)1/2

U |2H = |Ω|
∑

k∈Z3

|k′|2me2τ |k′|[Uk]
2
κ.(3.5)

Estimate on b:

We start with the following estimate on b, following the idea of Foias and Temam for
the Navier-Stokes equations [4]:

Lemma 3.1. Let U , U ] and U [ be given in D((−∆)3/2eτ(−∆)1/2
), for τ ≥ 0. Then the

following inequality holds:

|((−∆)1/2B(U,U ]), (−∆)3/2U [)τ | ≤ c|∆U |τ |∆U ]|1/2
τ |(−∆)3/2U ]|1/2

τ |(−∆)3/2U [|τ
+ c|∆U |1/2

τ |(−∆)3/2U |1/2
τ |∆U ]|τ |(−∆)3/2U [|τ .

(3.6)
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Proof. We first write the trilinear form b in Fourier modes. In order to simplify the
writing, we define, for each j ∈ Z3, δj,n as j′n/j′3 when j′3 6= 0 and as 0 when j′3 = 0, for
n = 1, 2. With obvious notations, the trilinear form is then written as:

b(U,U ], U [) =
∑

j+l+k=0

i(l′1uj + l′2vj + l′3wj)u
]
lu

[
k

+
∑

j+l+k=0

i(l′1uj + l′2vj + l′3wj)v
]
l v

[
k +

∑

j+l+k=0

i(l′1uj + l′2vj + l′3wj)T
]
l T

[
k

= using the fact that, by definition, wj = 0 for j3 = 0 (w is odd in x3)

=
∑

j+l+k=0

i[(l′1 − δj,1l
′
3)uj + (l′2 − δj,2l

′
3)vj](u

]
lu

[
k + v]

l v
[
k + κT ]

l T
[
k).

(3.7)

We then compute:

((−∆)1/2B(U,U ]), (−∆)3/2U [)τ

=
∑

j+l+k=0

i[(l′1 − δj,1l
′
3)uj + (l′2 − δj,2l

′
3)vj]e

2τ |k′||k′|4(u]
lu

[
k + v]

l v
[
k + κT ]

l T
[
k).

(3.8)

We associate to each function u, a function ǔ defined by:

(3.9) ǔ =
∑

j∈Z3

ǔje
i(j′1x+j′2y+j′3z), where ǔj = eτ |j′||uj|;

we also use similar notations for the other functions.
Since all the terms are similar, we need only to estimate the first sum from (3.8),

denoted by I. We find:

(3.10) |I| ≤
∑

j+k+l=0

|l′||j′||k′|4e2τ |k′||uj||u]
l ||u[

k|,

where we used the estimate |l′1 − δj′,1l
′
3| ≤ (L3/2π)|j′||l′|. Since j + k + l = 0 ⇐⇒

j′ + k′ + l′ = 0, we find |k′| − |l′| − |j′| ≤ 0 and we have:

|I| ≤
∑

j+k+l=0

|l′||j′|(|l′|+ |j′|)|k′|3ǔjǔ
]
l ǔ

[
k

≤
∑

j+k+l=0

|j′||l′|2|k′|3ǔjǔ
]
l ǔ

[
k +

∑

j+k+l=0

|j′|2|l′||k′|3ǔjǔ
]
l ǔ

[
k

=
1

|Ω|
∫

Ω

q1(x)q]
2(x)q[

3(x) dΩ +
1

|Ω|
∫

Ω

q2(x)q]
1(x)q[

3(x) dΩ,

(3.11)
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where we wrote:

q1(x) =
∑

j∈Z3

|j′|ǔje
i(j′1x+j′2y+j′3z), q2(x) =

∑

j∈Z3

|j′|2ǔje
i(j′1x+j′2y+j′3z),

q3(x) =
∑

j∈Z3

|j′|3ǔje
i(j′1x+j′2y+j′3z),

(3.12)

and the definitions for q]
i and q[

i for i = 1, 2, 3 are the similar ones.
Using the Hölder and the imbedding inequalities, we find:

|I| ≤ |q1|L6|q]
2|L3|q[

3|L2 + |q2|L3|q]
1|L6|q[

3|L2

≤ c|q1|H1|q]
2|1/2

L2 |q]
2|1/2

H1 |q[
3|L2 + c|q2|1/2

L2 |q2|1/2

H1 |q]
1|H1|q[

3|L2

≤ c|∆U |τ |∆U ]|1/2
τ |(−∆)3/2U ]|1/2

τ |(−∆)3/2U [|τ
+ c|∆U |1/2

τ |(−∆)3/2U |1/2
τ |∆U ]|τ |(−∆)3/2U [|τ .

(3.13)

Analogue estimates for the other terms, yield Lemma 3.1. ¤

A priori estimates for the real case

We first derive some a priori estimates in the real-time case and then we consider the
complex-time case. In all that follows we assume that the forcing term F is analytic
in time with values in the Gevrey space D(eσ1(−∆)1/2

(−∆)1/2), for some σ1 > 0, and

U0 ∈ D(−∆). Setting ϕ(t) = min(t, σ1), we apply the operator eϕ(t)(−∆)1/2
∆ to equation

(1.30), then we take the scalar product in H with eϕ(t)(−∆)1/2
∆U .

Since a + e is coercive, we have:

(eϕ(t)(−∆)1/2

∆AU, eϕ(t)(−∆)1/2

∆U)H + (eϕ(t)(−∆)1/2

∆EU, eϕ(t)(−∆)1/2

∆U)H

= a(eϕ(t)(−∆)1/2

∆U, eϕ(t)(−∆)1/2

∆U) + e(eϕ(t)(−∆)1/2

∆U, eϕ(t)(−∆)1/2

∆U)

≥ c1|eϕ(t)(−∆)1/2

(−∆)3/2U |2H .

For the bilinear term, we apply Lemma 3.1 and find:

|(eϕ(t)(−∆)1/2

∆B(U,U), eϕ(t)(−∆)1/2

∆U)H | ≤ c2|∆U |3/2
ϕ(t)|(−∆)3/2U |3/2

ϕ(t)

≤ c1

4
|(−∆)3/2U |2ϕ(t) + c3|∆U |6ϕ(t).

(3.14)

For the term containing the time derivative of U , we have:
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(eϕ(t)(−∆)1/2

∆U ′(t), eϕ(t)(−∆)1/2

∆U(t))H

=
( d

dt
(eϕ(t)(−∆)1/2

∆U), eϕ(t)(−∆)1/2

∆U
)

H

− ϕ′(t)(eϕ(t)(−∆)1/2

(−∆)3/2U, eϕ(t)(−∆)1/2

(−∆)U)H

=
1

2

d

dt
|eϕ(t)(−∆)1/2

∆U |2H − ϕ′(t)(eϕ(t)(−∆)1/2

(−∆)3/2U, eϕ(t)(−∆)1/2

(−∆)U)H

≥ 1

2

d

dt
|eϕ(t)(−∆)1/2

∆U |2H − |eϕ(t)(−∆)1/2

(−∆)3/2U |H |eϕ(t)(−∆)1/2

∆U |H

≥ 1

2

d

dt
|∆U |2ϕ(t) −

c1

4
|(−∆)3/2U |2ϕ(t) −

1

c1

|∆U |2ϕ(t).

The term containing the force F is estimated as:

(eϕ(t)(−∆)1/2

∆F, eϕ(t)(−∆)1/2

∆U)H ≤ |(−∆)1/2F |ϕ(t)|(−∆)3/2U |ϕ(t)

≤ 1

c1

|(−∆)1/2F |2ϕ(t) +
c1

4
|(−∆)3/2U |2ϕ(t).

(3.15)

Gathering all these estimates, we find:

(3.16)
d

dt
|∆U |2ϕ(t) + c1|(−∆)3/2U |2ϕ(t) ≤

2

c1

|∆U |2ϕ(t) + c′2|∆U |6ϕ(t) + c′3|(−∆)1/2F |2ϕ(t).

We consider the function y(t) = 1 + |∆U |2ϕ(t). Since

|(−∆)1/2F |2ϕ(t) ≤ |(−∆)1/2F |σ1 ,

we find, for any t1 > 0:

(3.17)
d

dt
y(t) ≤ c4y

3(t), 0 < t < t1,

where c4 is a constant depending on the norm of F in L∞(0, t1; D((−∆)1/2eσ1(−∆)1/2
)).

We easily deduce that there exists a time t′?, 0 < t′? ≤ t1, t′? = t′?(F, U0) = 3/8y2(0)c4,
such that y(t) ≤ 2y(0) for all 0 ≤ t ≤ t′?(F, U0). We then obtain the following a priori
estimate:

(3.18) |∆U(t)|2ϕ(t) ≤ 1 + 2|∆U0|2H , ∀ t ≤ t′?(F, U0).

A priori estimates for the complex case

In order to prove that the solution is analytic in time and coincides with the restriction
of a complex function in time to a real positive interval, we consider equation (1.30) with
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a complex time ζ ∈ C, and U a complex function. We take the complexified spaces H
and V denoted HC and VC

1, so equation (1.30) is rewritten as:

dU

dζ
+ AU + B(U,U) + E(U) = F,

U(0) = U0,
(3.19)

where ζ ∈ C is the complex time.
We consider ζ of the form ζ = seiθ, where s > 0 and cos θ > 0 so that the real part of

ζ is positive. We apply eϕ(s cos θ)(−∆)1/2
∆ to equation (3.19) and take the scalar product

in HC with eϕ(s cos θ)(−∆)1/2
∆U . We then multiply the resulting equation by eiθ and take

the real part. We find:

Re eiθ(eϕ(s cos θ)(−∆)1/2

∆
dU

dζ
, ∆eϕ(s cos θ)(−∆)1/2

U)H

=
1

2

d

ds
|eϕ(s cos θ)(−∆)1/2

∆U |2H
+ ϕ′(s cos θ) cos θ Re eiθ(∆eϕ(s cos θ)(−∆)3/2

U, ∆eϕ(s cos θ)(−∆)1/2

U)H

≥ 1

2

d

ds
|∆U |2ϕ(s cos θ) − cos θ|(−∆)3/2U |ϕ(s cos θ)|∆U |ϕ(s cos θ).

(3.20)

Since a + e is coercive for our choice of κ, we also find:

Re eiθ(eϕ(s cos θ)(−∆)1/2

∆AU, eϕ(s cos θ)(−∆)1/2

∆U)H

+ Re eiθ(eϕ(s cos θ)(−∆)1/2

∆EU, eϕ(s cos θ)(−∆)1/2

∆U)H

≥ c1 cos θ|eϕ(s cos θ)(−∆)1/2

(−∆)3/2U |2H = c1 cos θ|(−∆)3/2U |2ϕ(s cos θ).

(3.21)

For the forcing term, we write:

|Re eiθ(eϕ(s cos θ)(−∆)1/2

∆F, eϕ(s cos θ)(−∆)1/2

∆U)H | ≤ |(−∆)1/2F |ϕ(s cos θ)|(−∆)3/2U |ϕ(s cos θ)

≤ c1

6
cos θ|(−∆)3/2U |2ϕ(s cos θ) +

1

c1 cos θ
|(−∆)1/2F |2ϕ(s cos θ).

(3.22)

For the bilinear term B we use Lemma 3.1 and the Young inequality:

|Re eiθ(∆B(U,U), ∆U)ϕ(s cos θ)| ≤ c2|∆U |3/2
ϕ(s cos θ)|(−∆)3/2U |3/2

ϕ(s cos θ)

≤ c1

6
cos θ|(−∆)3/2U |2ϕ(s cos θ) +

c3

(cos θ)3
|∆U |6ϕ(s cos θ).

(3.23)

1For the scalar products and the norms we use the same notations as in the real case.
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Gathering all the estimates above, we find the following differential inequality:

1

2

d

ds
|∆U |2ϕ(s cos θ) +

c1

2
cos θ|(−∆)3/2|2ϕ(s cos θ) ≤

1

c1 cos θ
|(−∆)1/2F |2ϕ(s cos θ)

+
cos θ

c1

|∆U |2ϕ(s cos θ) +
c3

(cos θ)3
|∆U |6ϕ(s cos θ).

(3.24)

We restrict θ such that
√

2/2 ≤ cos θ ≤ 1 (in fact we can restrict θ to any domain such
that cos θ ≥ c > 0). Writing

y(s) = 1 + |∆U(s)|2ϕ(s cos θ),

the differential inequality (3.24) becomes:

(3.25)
dy(s)

ds
≤ c(F )y3(s), 0 < s < t1,

where c(F ) is a constant depending as before on the forcing term F . Therefore, by similar
reasoning as for the real case, we find that there exists a time t′?, 0 < t′? ≤ t1, t′? = t′?(F,U0)
such that:

(3.26) |eϕ(s cos θ)(−∆)1/2

∆U(seiθ)|2H ≤ 1 + 2|∆U0|2H , ∀ 0 ≤ s ≤ t′?(F, U0).

Considering the complex region

(3.27) D(U0, F, σ1) = {ζ = seiθ, |θ| ≤ π/4, 0 < s < t′?(F, U0)},
estimate (3.26) gives us a bound for U(ζ), when ζ ∈ D(U0, F, σ1).

We can now state the main result of this section:

Theorem 3.1. Let U0 be given in Ḣ2
per(Ω) and let F be a given function analytic in time

with values in D(eσ1(−∆)1/2
(−∆)1/2) for some σ1 > 0. Then there exists t′? > 0 depending

on the data, including U0, and a unique solution U of (1.30) on (0, t′?) such that the
function

t → ∆eϕ(t)(−∆)1/2

U(t),

is analytic from (0, t′?) with values in H, where ϕ(t) = min(t, σ1) and t′? was defined above.

Proof. The proof is based on the a priori estimates obtained above and the use of the
Galerkin–Fourier method; see e.g. [4]. The solutions of the Galerkin approximation
satisfy rigorously the estimates formally derived above, and the bounds are independent
of the order m of the Galerkin approximation. We can then pass to the limit m → ∞,
using classical results on the convergence of analytic functions. ¤

Remark 3.1. Taking into account the second part of Theorem 2.3, we see that the result
of Theorem 3.1 still holds true while starting with initial data U0 ∈ V , since at arbitrarily
small time t the solution U satisfies U(t) ∈ Ḣ2

per(Ω) and U ∈ C((0, t??]; Ḣ
2
per(Ω)).
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