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Université de Poitiers, Département d’Aérodynamique ISAE, ENSMA, UPR CNRS 3346,
Institut P Prime, Futuroscope Chasseneuil France, Germain.Rousseaux@univ-poitiers.fr

Key words: Immersed boundary methods, Parallel computing, Multiphase flows.

Abstract. This study addresses a problem of wave and current interactions. Experi-
ments performed in a wave channel in which a flow is imposed over an obstacle have shown
very interesting features such as wave blocking and the generation of blue shifted waves.
These experiments can be used as analogue models of gravity in order to understand some
phenomena such as the Hawking radiation of black holes.

The linear theory of gravity waves, based on the assumption of an irrotational fluid can
explain some aspects of the phenomenology. However, in order to fully understand the
propagation of waves in such a context, it is necessary to use more complex models. We
hence focused our research on the numerical simulation of the free-surface Navier-Stokes
equations in the presence of obstacles.

Several techniques, avoiding the generation of conformal meshes, will be used to take
into account the presence of both moving interface and obstacle in a two dimensional
incompressible fluid flow. In [1], an original cut-cell method was developed to preserve the
second order accuracy of the MAC scheme when enforcing Dirichlet boundary conditions
on an obstacle of arbitrary shape. In the present paper, the cut-cell method is extended
to treat two-phases incompressible flows passing over a submerged rigid obstacle. The
tracking of the interface Γ between the two phases (water and air) is achieved using the
finite difference technique [5] which include the effects of surface tension and do not smear
out the interface. We focus on the numerical simulation of current-obstacle interactions
in a water channel.

1 Introduction
We consider the simulation of an incompressible flow composed of two immiscible liquid

phases. The equations of motion of such heterogeneous incompressible viscous flow are
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the Navier-Stokes equations:

ρ (∂tu + (u.∇) u) = µ△u −∇p + f (1)
∇.u = 0 (2)

∂tρ + (u.∇) ρ = 0 (3)

where the mass density ρ(x, t) ∈ R, the velocity u(x, t) ∈ R2 and the pressure p(x, t) ∈ R
are the unknowns at time t and position x. We have respectively denoted by f(x, t) ∈ R2

and µ, a body force field and the constant dynamic viscosity. The velocity across the
interface Γ is continuous [u] = 0 and the stress jump condition reduce to [p] = −σκ,
where γ is the coefficient of surface tension and κ is the local curvature of the interface.

Several numerical approaches have been introduced in the literature for multiphase
flows, to accurately solve the equations with sharp interfaces. Let us mention Arbitrary
Lagrangian-Eulerian methods [10], Level-Set approach [9], Volume-Of-Fluid approach [2]
and diffuse interface methods [8].

Even if we expect to get smooth interfaces, breaking waves can occur in the water
channel. Therefore, the level set method, originally introduced by Osher and Sethian [7],
is well adapted for tracking the evolution of the interface between the two phases. Indeed,
no special procedures are required in order to model topological changes of the front. The
interface is represented as the zero level set of the function φ which satisfy:

∂tφ + u.∇φ = 0 (4)

Each phase being identified by a constant mass density, namely ρ1 or ρ2, the location of
each liquid phase is tracked using the heaviside function H defined by H(φ) = 1 if φ ≥
0 and 0 otherwise, so that ρ = ρ1 +(ρ2 −ρ1)H is the variable-density. In order to ensure
that φ stay a signed distance function, i.e. ||∇φ|| = 1, the reinitialization equation

∂τφ + S(φ0)(||∇φ|| − 1) = 0 ,with S(φ0) = φ0√
φ0

2 + h2
(5)

is iterated in virtual time τ , where φ0 is the initial φ and h is the grid cell size. Then,
convenient formulas for the interface normal and curvature can be used.

In complex geometries, the discretization of the Navier Stokes Equation by finite ele-
ment or finite volume methods need to generate conformal meshes which is a challenging
problem when the geometry gets complex. Indeed, generating a body-fitted grid can be
even more expansive than computing the solution itself. An alternative is proposed with
the Immersed Boundary (IB) methods. The aim of IB methods is to handle complex
geometric configurations without the use of body-fitted meshes. Simulations are per-
formed on cartesian grids so that the efficiency and robustness of cartesian grid solvers
are achieved.

The numerical scheme proposed in [1] is based on the well-known second-order pro-
jection MAC scheme (see [12]). As in [13], the immersed boundary is geometrically rep-
resented by using the signed algebraic distance to the obstacle boundary. In fluid-cells,
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that is mesh cells which are far enough from the immersed boundary, classical centered,
second-order finite volume schemes are used. In this approach, the location of the veloc-
ity component is, as in [13], adapted to the geometry of cut-cells. However, the discrete
pressure is placed at the center of the cartesian cells for both fluid-cells and cut-cells. In
the vicinity of the obstacle, second-order interpolations using boundary conditions on the
solid boundaries are introduced to evaluate the convective fluxes. This results in a local
first-order approximation of the nonlinear terms in cut-cells. A pointwise approximation
of the viscous terms is used in cut-cells. When boundary conditions on the immersed
boundary can be used, a five-point stencil scheme for the viscous term is employed. Oth-
erwise, a six-point first-order approximation is introduced. The resulting linear system
is close to the five-point structure symmetric system obtained on cartesian mesh with
the MAC scheme. A direct solver, based on a capacitance matrix method, is proposed.
The efficiency of the solver is similar to the cartesian grid solver obtained with the MAC
scheme. The incompressibility of the discrete velocity field is enforced up to the computer
accuracy. While first-order truncation errors are locally introduced in the scheme in the
cut-cells, a second-order global accuracy is recovered.

2 Numerical method
Let δt stand for the time step and tk = kδt discrete time values. Like in [11], a variable

density projection method is employed for solving the system (1)-(2)-(3) :

(a) Transport the level set function from time tk to tk+1 : the moving interface is tackled
with the Level-Set technique (fifth order WENO scheme).

(b) Using 1
2(φk + φk+1), determine the density repartition at intermediate time tk+ 1

2
.

(c) Predict the velocity at intermediate time tk+ 1
2

by using the previous pressure field
and the updated interface location.

ρk+ 1
2

(
uk+ 1

2 − uk

δt
+
(

uk+ 1
2 .∇

)
uk+ 1

2

)
= µk+1△uk+ 1

2 + µk△uk

2 −∇pk−
1
2 + fk+ 1

2 (6)

where the convective terms are treated with the Adams-Bashforth scheme :
(

uk+ 1
2 .∇

)
uk+ 1

2 =
(
3
(
uk.∇)

uk − (
uk−1.∇)

uk−1) /2

(d) Solve the variable coefficient Poisson equation on the pressure increment δpk+1 where
both the variable coefficient and the solution itself may be discontinuous.

∇.

(∇(δpk+1)
ρk+ 1

2

)
= 1

δt
∇.uk+ 1

2 (7)
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(e) The resulting pressure is used to project the intermediate velocity field onto the space
of divergence-free velocity field in order to obtain the velocity field at time tk+1.

uk+1 = uk+ 1
2 − δt

∇(δpk+1)
ρk+ 1

2
(8)

(f) Update the pressure field at time tk+1.

pk+ 1
2 = pk−

1
2 + δpk+1 (9)

A standard MAC grid is used where p, ρ, and φ exist at the cell centers, while u and v
are located at the appropriate cell edges. Away from both moving interface and obstacle,
linear partial differential operators (divergence, gradient, Laplacian operator) and nonlin-
ear terms are discretized on a fixed Cartesian grid by using standard second order Finite
Differences approximations.

The main challenge here is to take into account the boundary conditions of the problem.
The Immersed Boundary Method [1] is used in order to enforce the no-slip boundary
condition on the rigid obstacle within the prediction step (6) and also for the discretization
of both gradient and divergence operators in (7) and (8). In (6), we simply use the sign of
the level set function to determine µ (resp. ρ) as the air or water viscosity (resp. density)
in a sharp fashion. In particular, both µ and ρ are spatially constant on either side of the
interface. The techniques presented in [4] for the variable coefficient Poisson equation are
used to solve the equation (7) for the pressure. In addition, the pressure jump across the
interface is accounted for in the same time. As it was mentioned in [5], one should take
care to compute the derivatives of the pressure in (8) in exactly the same way as they
were computed in (7). Many direct and iterative approaches have been employed to find
the solution of the linear systems (6) and (7). For large problems, the faster solver we
have found is an algebraic multigrid method (HYPRE BoomerAMG). The resolution of
the linear systems has been implemented in parallel using the PETSc Fortran library.

3 Preliminary results
In this section we present a validation of our methods by focusing on the dispersive

aspects of the waves generated at the interface by an initial perturbation. We consider
the case where the domain is given by a 2m × 0.5m box. In order to approximate the
case of water waves we take the following values for the density:

ρ1 = 1000 kg.m−3 , (10)
ρ2 = 10 kg.m−3 . (11)

The viscosity is the same in the two phases and taken as: 10−3 Pa.s. The initial height
of the interface (plotted on figure 2) is given by:

h(x) = h0 + 0.1 e−10|x| , (12)
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Figure 1: Right : plot of the initial water height profile ; left : the height profile after some time

where : h0 = 30cm. By running a simulation on a 1024 × 512 grid with the above
parameters we expect to recover the dispersion relation for water waves. In order to do
this, we extract the water column height H(x, t) from the level set functions produced
by the simulation (see figure). By examining the properties of the square modulus of the
fourier modes of H (the spectral power density) we expect to observe the locus of the
wave numbers and frequencies that satisfy the dispersion relation. In the case of gravity
waves in a two layer fluid (i.e. fluids with different densities), the dispersion relation is
given by:

ω2 = g k (ρ1 − ρ2)
ρ1coth(k h1) + ρ2coth(k h2) . (13)

In the case of ρ1 >> ρ2 and k h1 >> 1, we obtain the classical dispersion relation for
water waves in deep water:

ω2 = g k . (14)
The figure shows the good agreement of the theory and the numerical simulations for the
dispersion of gravity waves.
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Figure 2: Upper figure: plot of the height of the interface (in color) as a function of x and t ; lower
figure: color of the spectral power density (in color) as a function of the wave number and the frequency.
In white we plotted the theoretical dispersion relation.
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