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† Laboratoire de Mathématiques et Applications UMR 7348, Université de Poitiers,
Téléport 2 - B.P. 30179, Boulevard Marie et Pierre Curie,

86962 Futuroscope Chasseneuil Cedex, France,
Nicolas.James@math.univ-poitiers.fr

Key words: Immersed boundary, cut-cell method, incompressible flow, parallel comput-
ing

Abstract. We present a parallel version of a second-order cut-cell scheme for the
numerical simulation of two-dimensional incompressible flows past obstacles. The cut-
cell method is based on the MAC scheme on cartesian grids and the solid boundary
is embedded in the computational mesh. Discretizations of the viscous and convective
terms are formulated in the context of finite volume methods ensuring local conservation
properties of the scheme. Classical second-order centered schemes are applied in mesh
cells which are sufficiently far from the obstacle. In the mesh cells cut by the obstacle,
first-order approximations are used. While the scheme is locally first-order, that in the
cut-cells, a global second-order accuracy is recovered. The time discretization is achieved
with a second-order projection scheme. Due to the presence of solid boundaries, the linear
systems for the velocity components and the pressure are non-symmetric but the stencil
remains compact as in the classical MAC scheme on cartesian grids. They are solved by
a direct method based on the capacitance matrix method and discrete Fourier transforms
(DFT) in the direction tranverse to the mean flow. The parallel code is based on the MPI
library for the communications between processes. The computational grid is splitted in
the x-direction so that the DFTs are local to the MPI processes. A divide and conquer
approach is applied to solve the tridiagonal systems whose solutions correspond to datas
distributed accross all the MPI processes. The efficiency and robustness of the method
are supported by numerical simulations of 2D flows past a circular cylinder at Reynolds
number Re = 9 500 on grids with up to 212 millions of points ran on 48 MPI processes.
Good agreement with published numerical results are obtained.
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1 INTRODUCTION
To improve the discretization in the near-cylinder region, a new cut-cell method that

ensures conservation properties (mass and kinetic energy) and directly enforces no-slip
Dirichlet boundary conditions on an immobile obstacle was proposed in [1]. We focus
here on a parallel version based on MPI which has been recently developped and its
application to the numerical simulation of the flow past a circular cylinder at Reynolds
number Re = 9 500.

The staggered arrangement of the velocity components is adapted to the cut-cell ge-
ometry (triangle, trapezoid, rectangle, pentagon). However, the pressure node is placed
at the center of the cartesian cells for both fluid-cells and cut-cells. These locations of the
unknowns induce specific discretizations in mesh cells located in the neighborhood of the
solid boundary. As a consequence, the linear systems are non-symmetric.

The parallel version is based on a splitting of the datas among processes along the
horizontal axis, namely each process works with a vertical band of the computational
domain. As usual in local discretization methods, the parallel computation of the explicit
terms, such as the nonlinearity, requires very few communications. The only tricky part
concerns the non-symmetric linear systems. They are efficiently solved by a direct method
based on the capacitance matrix method (see [1] for details) : the presence of the obstacle
is treated as a perturbation added to the standard five-point stencil scheme obtained
when the computational domain is fully filled by a fluid. Schematically, the algorithm
consists in three steps. First, a linear system of dimension the number of cut-cells, which
is much smaller than the total number of unknowns, is solved on one dedicated process of
the MPI communicator. The involved matrix has been factorized during a preprocessing
step performed once for all before time iterations. Then, a penta-diagonal linear system
(similar to the system obtained without any solid obstacles) is solved. As each MPI process
contains datas located on vertical bands, discrete Fourier transforms can be applied in
the y-direction resulting in a collection of independant tridiagonal systems, for which
the right-hand sides are distributed among MPI processes, due to the choice of the grid
partioning. A parallel direct solver based on the divide and conquer (DAC) approach
has been implemented. The DAC method is efficient here as we have to solve many
tridiagonal systems, once per grid point in the y-direction, simultaneously. Sequential
tasks, inherent to the DAC approach, are distributed among all the MPI processes avoiding
useless waiting time. Finally a linear correction is applied in order to account for the
presence of the obstacle in the computational domain. The parallel code reaches a good
level of performance : less than 15% (in the worst cases) of the CPU time is spent
in communications between processes. The sequential part performed on one process
represents a negligible amount of CPU time.

The parallel cut-cell algorithm is applied to the numerical simulation of the flow past a
circular cylinder at Re = 9 500 on grids with up to 212 millions of points and with up to
48 MPI processes. Good agreement with published numerical results are observed. The
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computations presented here have been performed on a DELL cluster using up to 48 cores
of Xeon processors. The nodes of the cluster are connected with a low latency bandwith
network.

2 THE CUT-CELL METHOD
2.1 Preliminaries

We consider a two-dimensional domain Ω = (−Lx, Lx) × (−Ly, Ly) in which a solid
obstacle ΩS ⊂ Ω is enclosed. Our aim is to study the time evolution of an incompressible
flow in ΩF = Ω\ΩS and we assume that the motion of the solid boundary ΓS = ∂ΩS is
prescribed. Therefore, the velocity field u(x, t) = (u, v) at location x = (x, y) ∈ ΩF and
time t > 0 is governed by the incompressible Navier-Stokes equations

∂u
∂t

− ν ∆u + ∇(u ⊗ u) + ∇p = 0,

∇ · u = 0, u(x, t = 0) = u0,
(1)

where u0 is an initial condition and ν > 0 is the kinematic viscosity. Equations (1) are
supplemented with boundary conditions on Γ = ∂Ω. Dirichlet boundary conditions are
imposed on the immersed boundary ΓS.

The temporal discretization of (1) is achieved by using a second-order projection
scheme. In a first step, momentum equations are advanced in time with a semi-implicit
scheme decoupling the velocity and pressure unknowns. We use a second-order backward
difference (BDF2) scheme for the time derivative and the viscous term combined with a
second-order Adams-Bashforth scheme for the nonlinear terms. Then, the intermediate
velocity is projected in order to obtain a free-divergence velocity field. Projection methods
are efficient and are widely used for the numerical simulations of incompressible turbulent
flows. The main feature of these schemes is that they allow to enforce the incompressibil-
ity constraint up to the computer accuracy : the discrete divergence is directly related to
the residual of the pressure linear system.

2.2 Staggered grids
The computational domain Ω is discretized by a cartesian mesh with nx + 1 (resp.

ny + 1) points in the horizontal (resp. vertical) direction. The mesh size hy in the vertical
direction is constant while a non-uniform mesh, generated by a regular mapping function,
is used in the horizontal direction. The horizontal mesh size hx equals hy in a region
containing the obstacle ΩS. A discrete boundary ΓS

h , which is piecewise linear on each
computational cell, is used to approximate the immersed boundary ΓS.

As in the classical MAC scheme for cartesian grids (see [2]), the discrete velocity
components are located at the midpoints of the cell edges while the discrete scalar pressure
is placed at the center of the cell. Let us consider a computational cell Kij, we can
distinguish two cases :

3

6139



F. Bouchon, T. Dubois and N. James

ui−1,j

vi,j−1

vij

uij

vi+1,j−1

Pi,j Pi+1,j

ΓS
h

xi−1 xi xi+1

yj−1

yj

Figure 1: Location of the unknowns in the cut-cells Kij (left) and Ki+1,j (right). The dashed parts of
the cell edges are located inside the obstacle.

1. Kij is a fluid cell that is Kij ⊂ ΩF : the staggered arrangement of the MAC scheme
is applied ;

2. Kij is a cut-cell that is Kij ∩ ΩS �= ∅ : the velocity unknowms are placed at the
center of the part of the edges lying in the fluid zone while the pressure is left at the
center of Kij and can therefore be located inside the solid depending on how Kij is
geometrically splitted in fluid and solid parts.

Figure 1 summarizes this staggered arrangement of the discrete unknowns.

2.3 The cut-cell approximation of the spatial operators
On cartesian grids, the discretization of the viscous terms (as well as the nonlinear

ones) by means of finite volume or finite difference approximations leads to symmetric
discrete operators based on five-point stencils. With a staggered arrangement of the
unknowns these stencils are specific for each unknown, that is the velocity components
and the pressure. As the discrete solid boundary ΓS

h intersects the computational mesh,
the location of the discrete velocity components in cut-cells are changed compared with
the classical MAC grid. Therefore, when one (or more) of these cut-cell unknowns belongs
to the five-point stencil of a discrete operator, the numerical scheme has to be modified
accordingly. Also, boundary conditions at the obstacle surface have to be accounted for
in the numerical scheme.

The spatial discretization of the Navier-Stokes equations based on the staggered ar-
rangement of the unknowns described above is fully detailed in [1]. Let us just mention
that the stencil of the discrete viscous terms is enlarged to a six-point one for compu-
tational meshes close to ΓS

h and first-order formulae are used. This locally first-order
truncation error in the vicinity of the obstacle does not affect the global second-order
convergence rate of the scheme.
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The coefficients of the discrete operators depend on the geometry of the computational
meshes, namely on the length of their edges. In cut-cells, these coefficients depend on the
location of the intersection of ΓS

h with the cartesian grid. As a consequence, the linear
systems obtained to compute the velocity and the pressure are no longer symmetric. The
efficiency, in terms of floating point operations, of the linear solver is essential in order
to be able to simulate flows at large Reynolds numbers requiring a large number of mesh
points.

2.4 A fast direct solver
We use a fast direct solver derived from the capacitance matrix method and adapted for

the case of non uniform grids (see [1] and [3] for the details). We summarize the resulting
algorithm. After spatial discretization of the Navier-Stokes equations, one linear equation
is obtained per node in the part of the computational domain filled by the fluid and
per unknown that is u, v and p. We complete these sets of linear equations by adding
similar ones for nodes of the cartesian grid lying inside the solid obstacle but with zero
as right-hand side. The unknowns corresponding to mesh points in ΩS

h are fictitious ones.
As in ΩF , the numerical scheme accounts for the boundary conditions on ΓS

h , the fluid
unknowns are independant to the solid ones. We therefore obtain linear algebraic systems
defined on the whole cartesian grid with size (nx − 1) × ny for u, nx × (ny − 1) for v and
(nx − 1) × (ny − 1) for p. All three linear systems are similar in nature : the resulting
matrices have similar structures with five or six non-zero coefficients per row.

Let us denote by A ∈ MN(R) one of these matrices. Then at each time iteration, we
have to solve a linear system

Ax = z (2)
with z computed from the velocity and the pressure at previous time steps. As it is
mentioned above, the matrix A is non-symmetric. Let us consider now the matrix G
obtained with the same discretization on the whole computational Ω totally filled by a
fluid that is with no obstacles. The matrices A and G differ only on rows corresponding
to computational meshes for which the five-point stencil interacts with a cut-cell. Let us
denote by nc this total number of rows, namely rows such that A−G have non-vanishing
coefficients. The efficiency of our direct solver is due to the fact that nc is small compared
with N and that the non-zero coefficients on each row of A − G is bounded. The linear
system (2) can be rewritten as

Gx = z − Qy (3)
where Q is a matrix of dimensions N × nc with one non-vanishing coefficient per column,
equal to one, and y ∈ Rnc such that

Qy = (A−G) x.

It can be easily shown that y is solution of the following linear system
(
Inc

+ M G−1Q
)
y = M G−1 z (4)
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with M = Qt(A−G). The matrix Inc
+ M G−1Q is a non-singular matrix (see [3] for a

proof) of size nc.
Based on these relations, the algorithm implemented to solve (2) consists in a prepro-

cessing step where the matrix Inc
+ M G−1Q is factorized (we use a LU -factorization)

followed by

i) Compute z and solve Gw = z ;

ii) Compute Mw and solve (4) ;

iii) Compute Qy and solve Gx = z − Qy.

Recalling that G is the matrix corresponding to the standard MAC scheme on the whole
computational mesh, steps i) and iii) can be performed by using any efficient solvers
available on cartesian grids. In the present work, we use Discrete Fourier transforms in
the vertical direction (where the mesh is uniform) combined with LU -factorizations of the
resulting tridiagonal systems.

2.5 A parallel version of the linear solver
The parallel version of this cut-cell method is based on explicit communications per-

formed by calling functions of the MPI library. The main feature of MPI is that a
parallel application consists in running p independant processes which may be executed
on different computers, processors or cores. These processes can exchange datas by send-
ing/receiving messages via a network connecting all the involved computing units.

The first step when developping a parallel algorithm is to define a suitable and efficient
splitting of the datas among the MPI processes : each MPI process will treat datas
associated with a part of the total computational mesh. For our problem, this choice is
straightforward and is related to the algorithm used to solve the linear systems. Indeed,
it is much easier to implement a parallel resolution of tridiagonal linear systems rather
than a parallel version of the DFT. Therefore, the parallel version of the code is based on
a splitting of the datas along the horizontal axis, so that each MPI process works with a
vertical slice of the computational mesh as it is illustrated on Figure 2.

In the framework of finite volume or finite difference schemes on cartesian grids, the
explicit computation of spatial derivatives is local and involves very few communications.
The only tricky part concerns the resolution of the linear systems. The step ii) of the
direct solver described in the previous section consists in solving a linear system involving
the matrix Inc

+ M G−1Q. As the LU -factorization of this matrix has been computed and
stored in a pre-processing step at the beginning of the time iterations, we have to solve
two triangular systems which can not be efficiently performed on parallel computers. As
nc is small compared to the size of the global problem, we choose to dedicate this task to
one given MPI process, fixed in advance. Once the linear system is solved, the resulting
vector is scattered from this MPI process to the other processes.
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As it was mentioned in the previous section, linear systems of steps i) and ii) are solved
by first applying a DFT in the y-direction : these computations are independant and can
be performed without any communications due to the distribution of datas among the MPI
processes. This results in a collection, one per grid point in the y-direction, of independant
tridiagonal linear systems connecting all nodes of the mesh in the x-direction. A parallel
direct solver based on the divide and conquer approach (DAC) has been implemented. The
DAC method, applied to solve one tridiagonal linear system on np > 1 MPI processes,
consists in splitting the tridiagonal matrix into np independant blocks (one per MPI
process). The solutions of these systems have to be corrected in order to recover the
solution of the global system. These corrections correspond to 2np − 1 values which are
solutions of a tridiagonal linear system of size 2np − 1. This phase of the DAC method
is sequential and has to be performed on one process inducing a useless waiting time for
the other processes. However, as we have to solve ny such systems simultaneously, this
sequential part can be distributed among all the np processes. In this context, the DAC
algorithm leads to an efficient parallel code.

The parallel code has a good level of performance : less than 15% of the CPU time is
spent in communications between MPI processes. The sequential part performed on one
process represents a negligible amount of CPU time. The computations presented here
have been performed on a DELL cluster using up to 48 cores of Xeon processors. A low
latency bandwith network connects the cluster nodes.

3 NUMERICAL RESULTS
3.1 Assessment of the cut-cell scheme

Recently, a validation tool was proposed in [4] in order to investigate the numerical
errors associated with immersed boundary methods. The assessment procedure is based
on a reference solution (see [5]) for the classical problem of the flow past a circular cylinder
at Reynolds number Re = 40. The grid convergence for the velocity and pressure obtained
with our cut-cell method is illustrated in Figure 3 : a second-order convergence rate is
found for both quantities.

3.2 Flow past a circular cylinder at Re = 9500
Preliminary numerical results for the flow past a circular cylinder at Reynolds number

Re = 9500 were obtained with the sequential code and were presented in [1]. A graphical
comparison with the pictures of the experiments performed by Bouard and Coutenceau,
published in [6], revealed a good qualitative agreement. Further investigations demon-
strate that the computational domain Ω = (−5, 5)× (−2.5, 2.5) used in [1] was too small :
a discripency of the drag coefficient with the results of the simulations performed by
Koumoutsakos and Leonard [7] was observed. In our simulation, the drag coefficient in
the early stage of the flow development was over-estimated by a factor of the order of
15%.
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Pk−1 Pk Pk+1

Figure 2: Splitting of the computational grid among the MPI processes Pk, k = 0, . . . , np − 1. The
lightgray aera indicates extra additional storage required for communications between neighborhood
processes.
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Figure 3: Velocity and pressure errors in L2-norm as functions of the spatial resolution.

In order to be able to increase the size of Ω, and therefore the total number of mesh
points and so the amount of computations, parallel simulations were necessary. We have
recently performed several numerical simulations listed in Table 1 using 32 and 48 MPI
processes. The elapsed time (in second) reported in Table 1 is of course meant per time
iteration. The number of cut-cells nc reported in Table 1 corresponds the velocity grids.
For the pressure, nc is slightly smaller. Note that the number of cut-cells nc is much
smaller than the total number of points nx × ny. The elapsed time corresponding to the
preprocessing step of the direct solver, namely the computation and assembling of the
matrix (Inc

+ MG−1Q) in (4), is equal to 24 minutes per unknown, that is u, v and p,
for the finest simulation F10. On Figure 4, the time evolution of the drag coefficient for
our simulations as well as the Koumoutsakos and Leonard’s (KL’s) [7] datas are plotted.
We note that results of the C10 and C20 simulations are almost identical indicating that
a convergence with respect to the size of the computational domain has been reached at
this resolution, namely hy = 2.5× 10−3. A good agreement is found with the KL’s results
up to t ≃ 1.5. For larger values of the non-dimensional time, the order of magnitude of
the drag coefficient for these two simulations are correct but the time evolution differs
slightly than the KL’s results.

The simulation F10 performed on a two times finer mesh, that is h = 1.25 × 10−3,
follows with a good accuracy the KL’s datas up to t = 3.0. In order to reach a grid
convergence of the simulations, further investigations are in progress and will presented
at the conference.
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Simulation L nx ny hy δt nc np Elapsed time (s)
C10 10 4096 8192 0.0025 0.00025 1980 32 4.73
C20 20 8640 16384 0.0025 0.00025 1980 32 6.77
F10 10 12960 16384 0.0012 0.0002 3960 48 7.52

Table 1: Numerical parameters of the parallel simulations of flow past a cylinder at Re = 9500. The
computational domain is Ω = (−L,L)2, the cylinder diameter is equal to 1.0 and np is the number of
MPI processes.
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Figure 4: Time evolution of the drag coefficient obtained for the simulations C10 (dotted line), C20
(dashed line) and F10 (solid line) compared with the numerical results of Koumoutsakos and Leonard [7]
(black dots).
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de Mathématiques de l’Université Blaise Pascal.
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