Choisir et traiter 4 parties parmi les 5 parties numérotées ci-dessous (elles sont indépendantes). Chaque partie sera notée sur 5 points, dans la limite de 4 parties par copie. Les calculettes ne sont pas autorisées.

- 1. On considère un plan affine \mathcal{P} muni d'un repère cartésien $\mathcal{R} = (\mathcal{O}, \vec{\imath}, \vec{\jmath})$. Soit \mathcal{O}' le point dont les coordonnées par rapport à \mathcal{R} sont (3, -1), et soient $\vec{u} = \vec{\imath} 3\vec{\jmath}$, et $\vec{v} = 2\vec{\imath} 5\vec{\jmath}$; alors $\mathcal{R}' = (\mathcal{O}', \vec{u}, \vec{v})$ est un autre repère cartésien (on l'admet).
 - a. Donner les coordonnées par rapport à \mathcal{R} du point P dont les coordonnées par rapport au repère \mathcal{R}' sont (-2,5).
 - b. Donner les coordonnées par rapport à \mathcal{R}' du point Q dont les coordonnées par rapport au repère \mathcal{R} sont (3, -4).
- 2. On se place dans un plan affine \mathcal{P} muni d'un repère cartésien $\mathcal{R} = (\mathcal{O}, \vec{\imath}, \vec{\jmath})$; les coordonnées par rapport à ce repère sont notées x, y. Soit P le point de coordonnées (2,7), $\vec{v} \in \overrightarrow{\mathcal{P}}$ le vecteur de coordonnées (-2,3), \mathcal{D} la droite d'équation 3x + 5y = -4, et $f: \mathcal{P} \to \mathcal{P}$ l'application affine avec f(P) = P et dont $\begin{pmatrix} 2 & 1 \ 3 \end{pmatrix}$ est la matrice par rapport à $(\vec{\imath}, \vec{\jmath})$ de l'application linéaire associée \overrightarrow{f} . Décrire en coordonnées les objets géométriques suivantes (les calculs nécessaires sont indépendants):
 - a. Le point d'intersection de la droite $\{P + \lambda v \mid \lambda \in \mathbf{R}\}$ avec \mathcal{D} .
 - b. La droite qui est image de \mathcal{D} par la translation par le vecteur \vec{v} (c'est-à-dire $A \mapsto A + \vec{v}$).
 - c. Le point $f(\mathcal{O})$ (image de l'origine \mathcal{O} par f).
 - d. La droite $f(\mathcal{D})$ (image de \mathcal{D} par f). [Il peut être utile d'écrire \mathcal{D} sous forme paramétrée d'abord.]
- **3.** Soit \mathcal{P} un plan euclidien, muni d'un repère euclidien $\mathcal{R} = (\mathcal{O}, \vec{\imath}, \vec{\jmath})$ (donc $(\vec{\imath}, \vec{\jmath})$ est orthonormée).
 - a. Décrire par une équation cartésienne la droite passant par le point de coordonnées (1,7) et orthogonale au vecteur $3\vec{\imath} 2\vec{\jmath}$.
 - b. Décrire par une équation cartésienne le cercle \mathcal{C} de diamètre [A, B], où $A, B \in \mathcal{P}$ sont les points dont les coordonnées par rapport à \mathcal{R} sont (5,3) respectivement (1,-4).
- **4.** Soit \mathcal{P} un plan affine muni d'un repère affine $\mathcal{R} = (A, B, C)$ (un triangle). On rappelle que les coordonnées barycentriques (x, y, z) d'un point $S \in \mathcal{P}$ sont des nombres réels, soumis à la contrainte x + y + z = 1, pour lesquels S = bar((x, A), (y, B), (z, C)). On abrégera cette relation $S = (x, y, z)_{\mathcal{R}}$
 - a. Rappeler une formule donnée dans le cours qui exprime la condition que trois points $(x_1, y_1, z_1)_{\mathcal{R}}$, $(x_2, y_2, z_2)_{\mathcal{R}}$, et $(x_3, y_3, z_3)_{\mathcal{R}}$, sont alignés.
 - b. On choisit des points P sur la droite (BC), Q sur la droite (CA), et R sur la droite (AB), en évitant chaque fois les points A, B, C eux-mêmes $(\text{donc } \{P, Q, R\} \cap \{A, B, C\} = \emptyset)$. Montrer que $P = (0, \lambda, 1 \lambda)_{\mathcal{R}}$, $Q : (1 \mu, 0, \mu)_{\mathcal{R}}$ et $R : (\nu, 1 \nu, 0)_{\mathcal{R}}$ pour certains $\lambda, \mu, \nu \in \mathbb{R} \setminus \{0, 1\}$.
 - c. Montrer que la droite (AP) est égale à $\{(x,y,z)_{\mathcal{R}} \mid x+y+z=1, (\lambda-1)y+\lambda z=0\}$

On écrira dans la suite $[a,b,c]_{\mathcal{R}}$ pour une droite ainsi définie par une équation en coordonnées barycentriques $\{(x,y,z)_{\mathcal{R}} \mid x+y+z=1, ax+by+cz=0\}$. Donc $(AP)=[0,\lambda-1,\lambda]_{\mathcal{R}}$ d'après la question précédente. De façon similaire $(B,Q)=[\mu,0,\mu-1]_{\mathcal{R}}$ et $(C,R)=[\nu-1,\nu,0]_{\mathcal{R}}$ (on l'admet).

- d. On considère la question si les droites (AP), (BQ) et CR sont concourantes, c'est-à-dire s'il existe ou non un point S du plan qui est situé sur les trois droites à la fois. En posant un système d'équations linéaire, déduire une condition en λ, μ, ν équivalente à celle disant que les droites (AP), (BQ) et (CR) sont concourantes.
- e. Réorganiser (si besoin) votre condition en une équation de la forme $E_1(\lambda)E_2(\mu)E_3(\nu)=c$: le produit de trois expressions en respectivement λ , μ , et ν vaut une constate c (à détailler quelles expressions et quelle constante). Ce résultat est connu comme le théorème de Ceva.
- 5. Dans cet exercice on fera référence à la classification des isométries du plan euclidien \mathcal{P} : identité, réflections, rotations, translations, et réflections glissées.
 - a. De quelle nature peut être la composée de deux réflexions dans des droites distinctes ?
 - b. Montrer que la composée de trois réflexions par rapport à trois droites concourantes $\mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3$ est une réflexion.
 - c. Décrire l'axe de cette réflexion composée, en terme des axes $\mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3$ des réflexions initiales.