L'utilisation d'une calculatrice (ou de tout appareil électronique) est interdite. Le barème donnera des poids égaux à chacune des deux parties (la question bonus qui est hors barème).

- 1. Dans chaque point ci-dessous on décrit deux ensembles X, Y. Chaque fois indiquer par A, B, C, ou D laquelle des situations suivantes se produit :
 - A: X = Y
 - $B: X \subset Y$ (c'est-à-dire $X \subseteq Y$ mais $X \neq Y$),
 - $C: Y \subset X$, (c'est-à-dire $Y \subseteq X$ mais $X \neq Y$),
 - D : aucun des trois précédents, ce qui équivaut à «on n'a ni $X \subseteq Y$ ni $Y \subseteq X$ ».

On remarque que ces possibilités sont mutuellement exclusives, donc toute réponse qui consiste à choisir plus d'une option est forcément fausse. $\mathcal{P}(A)$ désigne l'ensemble des parties de A; aussi $A \setminus B$ désigne la différence ensembliste $\{x \in A \mid x \notin B\}$, et A/\sim est l'ensemble des classes d'équivalence pour une relation d'équivalence ' \sim ' définie sur A. Il n'est pas demandé de motiver vos réponses.

- a. $X = \{0, 1, \{2, 1\}, 2, \{1, 2\}\}, \text{ et } Y = \{0, 1, \{2, 2, 1\}, 1, 2, 0\}$
- b. $X = \{12n \mid n \in \mathbb{N}\}, \text{ et } Y = \{n \in \mathbb{N} \mid n \text{ est divisible par } 3\}$
- c. $X = \{\{0,1\},\{2,3\},\{4,5\},\{6,7\}\}\}\$, et $Y = \{\{0,1,2,3\},\{4,5,6,7\}\}\$.
- d. $X = \{\{2n \mid n \in \mathbf{Z}\}, \{2n+3 \mid n \in \mathbf{Z}\}\}$ et $Y = \mathbf{Z}/\sim$, où la relation d'équivalence \sim sur \mathbf{Z} est définie par $a \sim b$ si et seulement si a et b ont la même parité.
- e. $X = \mathcal{P}(\{1, 2, 3\}) \setminus \mathcal{P}(\{2\})$, et $Y = \{\{1\}, \{3\}, \{1, 3\}\}$
- f. $X = [0, \sqrt{7}]$, et $Y = f^{-1}([0, 7])$ (image réciproque par f de l'intervalle $[0, 7] \subseteq \mathbf{R}$) où l'application $f : \mathbf{R} \to \mathbf{R}$ est donnée par $f(x) = x^2$.
- g.~X=[-3,3], et Y=g(Z) ou $Z=\{\,x\in\mathbf{R}\mid g(x)\leq 3\,\}$ (Y est l'image directe par g de Z), où l'application $g:\mathbf{R}\to\mathbf{R}$ est donnée par $g(x)=x^2+x^6.$
- **2.** Sur **Z** on définit une relation \mathcal{E} par $a\mathcal{E}b \iff 6 \mid (a-b)$ (dans cette expression '|' désigne "divise").
 - a. Montrer que \mathcal{E} est une relation d'équivalence sur \mathbf{Z} .
 - b. Décrire la partition de ${\bf Z}$ correspondant à ${\cal E}$; notamment, combien de parties y a-t-il?
 - c. Soit Q l'ensemble des parties de cette partition (donc Q est l'ensemble quotient \mathbf{Z}/\mathcal{E}). Si pour $a \in \mathbf{Z}$ on désigne par \overline{a} la classe dans Q à laquelle appartient a, montrer qu'on peut définir une application $f: Q \to Q$ par la condition $f(\overline{a}) = \overline{-a}$ pour tout $a \in \mathbf{Z}$. Décrire f par un tableau.