- 1. Combien d'éléments y a-t-il dans chacun des ensembles suivants ? Si vous donnez une formule, précisez aussi sa valeur explicite.
 - $a. \text{ Les parties de } [1,10] \text{ à 4 \'eléments}: \left(\begin{smallmatrix} [1,10]\\4 \end{smallmatrix}\right) = \{\, S \in \mathcal{P}([1,10]) \mid \#S = 4 \,\}.$
 - $\sqrt{C'}$ est évidemment $\binom{10}{4} = \frac{10 \cdot 9 \cdot 8 \cdot 7}{4!} = 210$.
 - b. Celles parmi ces parties qui contiennent un nombre ≥ 7 : $\{S \in {[1,10] \choose 4} \mid S \cap \{7,8,9,10\} \neq \emptyset\}$.
 - $\sqrt{\ }$ On a enlevé de l'ensemble précédent les $\binom{6}{4}=15$ éléments de $\binom{[1,6]}{4}$, et il en reste 210-15=195.
 - c. Les multi-ensembles sur [1,8] d'ordre $6: (1,8] \choose 6$.
 - $\sqrt{\text{C'est clairement}}$ $\binom{\binom{8}{6}}{6} = \frac{13 \cdot 12 \cdots 8}{6!} = 1716.$
 - d. Les multi-ensembles sur [1,8] d'ordre au plus 6.
 - $\sqrt{}$ En attribuant la multiplicité manquante au nombre 9, on peut compléter de tels multi-ensembles de façon unique en un multi-ensemble sur [1,9] d'ordre 6, ce qui définit une bijection (car l'opération inverse est donnée par l'oubli de l'élément 9). D'où la réponse $\binom{9}{6} = \binom{14}{6} = \frac{14\cdot13\cdots8}{9!} = 3003$.
 - - \sqrt{C} 'est le coefficient multinomial $\binom{8}{3,2,2,1} = \frac{8!}{3!2!2!1!} = 1680$.
 - f. Les parties de [1,10] ayant autant d'éléments pairs que d'éléments impairs, c'est-à-dire l'ensemble $\{S \in \mathcal{P}([1,10]) \mid \#(S \cap \{2,4,6,8,10\}) = \#(S \cap \{1,3,5,7,9\})\}.$
 - √ Avec i le nombre d'éléments pairs et d'éléments impairs, on peut choisir pour i fixé les parties $S \cap \{2,4,6,8,10\}$ et $S \cap \{1,3,5,7,9\}$ indépendemment, d'où on trouve $\sum_{i=0}^{5} {5 \choose i}^2$. On pourrait évaluer cette formule explicitement comme $1^2 + 5^2 + 10^2 + 10^2 + 5^2 + 1^2 = 2*(1+25+100) = 252$, ou on pourrait utiliser la formule $\sum_{k=0}^{n} {n \choose k}^2 = {2n \choose n}$ qu'on a vue en TD pour trouver directement ${10 \choose 5} = 252$. La seconde méthode a l'avantage de donner une formule explicite pour la généralisation où on remplace 10 par un nombre pair 2n quelconque. La formule ${2n \choose n}$ tellement simple demande une explication combinatoire que voici : on peut choisir une partie équilibrée (dans le sens de la question) de [1,2n] en choisissant d'abord une des ${2n \choose n}$ parties de n éléments de [1,2n], et en remplaçant alors l'intersection de cette partie avec les éléments pairs par le complément de cette intersection par rapport aux éléments pairs (exemple pour n=5: le choix $\{2,3,4,7,10\} \in {11,10 \choose 5}$ mène à la partie équilibrée $\{3,6,7,8\}$, car le complément de $\{2,4,10\}$ par rapport à $\{2,4,6,8,10\}$ est $\{6,8\}$).
 - g. Les nombres $n \in [1,99999]$ dont les chiffres de l'écriture décimale normalisée (donc avec chiffre initial distinct de '0') sont tous distincts (donc 3 et 2806 comptent, mais 38731 ne compte pas).
 - $\sqrt{\ Il\ sera\ plus\ facile\ de\ compter\ séparément\ les\ nombres\ dont\ l'écriture\ normalisée\ contient\ i\ chiffres, pour <math>i=1,2,3,4,5$. Pour i fixé, ce nombre est $10^{\underline{i}}-9^{\underline{i-1}}$ (les $10^{\underline{i}}$ arrangements de i chiffres moins les $9^{\underline{i-1}}$ qui commencent avec '0') soit $9\cdot 9^{\underline{i-1}}$. On trouve $9\sum_{i=1}^5 9^{\underline{i-1}} = 9(1+9+72+504+3024) = 32490$. L'évaluation est un peu facilitée si l'on écrit l'expression $9\cdot (1+9\cdot (1+8\cdot (1+7\cdot (1+6))))$.
- 2. On organise une loterie avec l lots identiques à gagner, à laquelle participent p personnes. Le tirage est tel qu'un même participant peut gagner plusieurs lots.
 - a. Combien y a-t-il de résultats différents possibles ?
 - $\sqrt{Si}\ P$ est l'ensemble des participants, chaque résultat détermine un multi-ensemble sur P, à savoir celui des personnes gagnantes avec comme multiplicité leur nombre de lots gagnés. Ainsi on trouve la réponse $\#(\binom{P}{l}) = \binom{p}{l} = \binom{p+l-1}{l} = \frac{(p+l-1)(p+l-2)\cdots(p+1)p}{l!} = \frac{p^{\overline{l}}}{l!}$.
 - b. Maintenant supposons que $l \ge p$, et que (les participants étant des enfants) le tirage soit truqué pour assurer que chacun gagne au moins un lot. Quel est alors le nombre de résultats possibles ?
 - $\sqrt{}$ On peut imaginer que 1 lot soit d'abord distribué à chacun des participants, et que les l-p lots restants soient alors distribués avec un tirage non truqué. Le nombre est donc obtenu à partir la formule de la question précédente, en remplaçant l par l-p, ce qui donne : $\binom{p}{l-p} = \binom{l-1}{l-p} = \binom{l-1}{p-1}$. Une méthode de tirage qui explique cette dernière formule est la suivante: on range les l lots sur une ligne, et parmi les l-1 espaces ainsi formés entre les lots, on en choisit p-1 pour mettre des séparations, divisant ainsi les l lots en p groupes non vides. Puis en procédant le long la ligne, on donne les groupes successifs de lots aux enfants successifs, du plus jeune au plus âgé.

3. Démontrer que la formule suivante est valable pour tout $n, m, k \in \mathbb{N}$: $\sum_{i=0}^{k} {n \choose i} {m \choose k-i} = {n+m \choose k}$.

√ Toute combinaison de k personnes choisies parmi n femmes et m hommes est déterminée par le nombre i des femmes sélectionnées, ainsi que par la combinaison de ces i femmes parmi les n femmes, et celle des k-i hommes parmi les m hommes. Le nombre de combinaisons est donc donné par la sommation à gauche, mais aussi simplement par $\binom{n+m}{k}$ car on n'est pas obligé de discriminer entre hommes et femmes. On peut également raisonner en coupant un mot contenant k lettres \mathbf{A} et n+m-k lettres \mathbf{B} en parties de n et de m lettres (alors i compte les \mathbf{A} dans la première partie), ou de façon similaire couper un chemin de réseau $(0,0) \to (k,n+m-k)$ après ses n premiers pas (après lesquels on se trouve dans un point de la forme (i,n-i)), laissant m pas pour le trajet $(i,n-i) \to (k,n+m-k)$. Une récurrence sur n ou sur m est aussi faisable, par exemple comme suit. Pour n=0 les facteurs $\binom{n}{i}$ sont tous nuls sauf pour i=0; la formule à montrer pour ce cas s'écrit donc $\binom{0}{0}\binom{m}{k}=\binom{m}{k}$ ce qui est vrai car $\binom{0}{0}=1$. Pour le cas n>0, on suppose la formule vraie au rang n-1. En utilisant la relation de récurrence connue $\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}$ pour n,k>0, on a

$$\begin{split} \sum_{i=0}^k \binom{n}{i} \binom{m}{k-i} &= \binom{n}{0} \binom{m}{k} + \sum_{i=1}^k \left(\binom{n-1}{i} + \binom{n-1}{i-1} \right) \binom{m}{k-i} \\ &= \binom{m}{k} + \sum_{i=1}^k \binom{n-1}{i} \binom{m}{k-i} + \sum_{i=1}^k \binom{n-1}{i-1} \binom{m}{k-i} \\ &= \sum_{i=0}^k \binom{n-1}{i} \binom{m}{k-i} + \sum_{i=0}^{k-1} \binom{n-1}{i} \binom{m}{k-(i+1)} \\ &= \binom{n-1+m}{k} + \binom{n-1+m}{k-1} = \binom{n+m}{k}, \end{split}$$

où l'hypothèse de récurrence à été utilisée deux fois au passage à la dernière ligne, et ensuite la relation de récurrence dans le sens inverse. L'argument donné n'est pas valable pour la valeur k=0 (on ne peut pas utiliser l'hypothèse de récurrence pour k-1=-1, et l'application de la relation de récurrence à la fin ne serait pas non plus valable), mais pour le cas k=0 l'équation à montrer devient $\binom{n}{0}\binom{m}{0}=\binom{n+m}{0}$, ce qui est évident, donc on peut ainsi sauver la raisonnement par récurrence sur n. Malgré la facilité du cas k=0, une récurrence sur k ne marche pas bien : même si k apparaît comme borne supérieure de la sommation, ce n'est pas la seule occurrence de k, donc le passage de k-1 à k ne concerne pas simplement l'ajout d'un nouveau terme ; tous les termes présents changent, ce qui rend l'hypothèse de récurrence difficile (voire impossible) à utiliser dans cette approche.