Université de Poitiers Année 2009/2010

6L19 : Devoir de géométrie À rendre au plus tard le 1^{et} avril 2010

Question préliminaire. Soit \mathcal{A} un espace affine euclidien orienté de dimension finie n et de direction $\overrightarrow{\mathcal{A}}$. Soient \mathbf{b} une base orthonormée directe de $\overrightarrow{\mathcal{A}}$ et \mathbf{b}' une base orthonormée de $\overrightarrow{\mathcal{A}}$. Montrer :

 $\det_{\mathbf{b}}(\overrightarrow{x_1}, \dots, \overrightarrow{x_n}) = + \det_{\mathbf{b}'}(\overrightarrow{x_1}, \dots, \overrightarrow{x_n}) \quad \text{si } \mathbf{b}' \text{ est directe};$ $\det_{\mathbf{b}}(\overrightarrow{x_1}, \dots, \overrightarrow{x_n}) = -\det_{\mathbf{b}'}(\overrightarrow{x_1}, \dots, \overrightarrow{x_n}) \quad \text{si } \mathbf{b}' \text{ est indirecte}.$

La quantité $\det_{\mathbf{b}}(\overrightarrow{x_1},\ldots,\overrightarrow{x_n})$ ne dépend donc pas de la base orthornormée directe \mathbf{b} de $\overrightarrow{\mathcal{A}}$ choisie; on notera cette quantité $\det_{\overrightarrow{\mathcal{A}}}(\overrightarrow{x_1},\ldots,\overrightarrow{x_n})$. En outre, la quantité $\det_{\overrightarrow{\mathcal{A}}}(\overrightarrow{x_1},\ldots,\overrightarrow{x_n})$ ne dépend pas du choix d'une base orthornormée de $\overrightarrow{\mathcal{A}}$.

Soit \mathcal{E} un espace affine euclidien orienté de dimension 3. On munit \mathcal{E} d'un repère affine orthonormé direct $(O, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$. La distance entre deux points A et B de \mathcal{E} est notée AB, d'où $AB = ||\overrightarrow{AB}||$. Si A et B sont deux points distincts de \mathcal{E} , on note $\mathcal{D}_{(A,B)}$ la droite passant par A et B et [AB] le segment d'extrémités A et B.

Si ABCD est un parallélogramme, i.e. $\overrightarrow{AB} = \overrightarrow{DC}$, contenu dans un plan $\mathcal P$ de $\mathcal E$ on définit son aire par :

(1)
$$\operatorname{aire}(ABCD) = \left| \operatorname{Det}_{\overrightarrow{\mathcal{D}}}(\overrightarrow{AB}, \overrightarrow{AD}) \right|$$

L'aire du triangle BCD est définie par :

(2)
$$\operatorname{aire}(BCD) = \frac{1}{2}\operatorname{aire}(ABCD)$$

Si A, B, C, D sont quatre points non coplanaires de \mathcal{E} , on appelle $t\acute{e}tra\grave{e}dre$ de sommets A, B, C, D l'enveloppe convexe de ces quatres points, c'est-à-dire l'ensemble des barycentres de ces quatre points affectés de poids positifs ou nuls. Les $ar\^{e}tes$ d'un tétra\`edre ABCD sont les segments d'extrémités deux sommets.

Le $volume \ vol(ABCD)$ d'un tétraèdre ABCD est défini par :

(3)
$$\operatorname{vol}(ABCD) = \frac{1}{6} \left| \operatorname{Det}_{\overrightarrow{\mathcal{E}}}(\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD}) \right|$$

Soit A, B, C, D quatre points non coplanaires de \mathcal{E} . On note T le tétraèdre de sommets A, B, C, D et V son volume.

1. Soit H_A le projeté orthogonal de A sur le plan passant par B, C et D. Montrer à l'aide de (1), (2) et (3), la relation :

$$V = \text{vol}(ABCD) = \frac{1}{3}AH_A \times \text{aire}(BCD)$$

- 2. Soit λ un nombre réel strictement compris entre 0 et 1 et soit F le barycentre des points pondérés (A, λ) et $(H_A, 1 \lambda)$. Soit \mathcal{P} le plan passant par F et perpendiculaire à $\mathcal{D}_{(A,H_A)}$. On note I_B le barycentre des points pondérés (A, λ) et $(B, 1 \lambda)$, I_C le barycentre des points pondérés (A, λ) et $(C, 1 \lambda)$, et I_D le barycentre des points pondérés (A, λ) et $(D, 1 \lambda)$.
- a) Montrer que le plan \mathcal{P} coupe les arêtes [AB], [AC] et [AD] en les points I_B , I_C et I_D respectivement.

L'intersection du tétraèdre T et du demi-espace limité par \mathcal{P} et contenant A est le tétraèdre $AI_BI_CI_D$. Soit v_{λ} le volume de ce tétraèdre.

- b) Déterminer la valeur de λ pour laquelle $v_{\lambda} = \frac{V}{8}$. (Indication : on pourra exprimer les vecteurs $\overrightarrow{AI_B}$, $\overrightarrow{AI_C}$ et $\overrightarrow{AI_D}$ en fonction des vecteurs \overrightarrow{AB} , \overrightarrow{AC} et \overrightarrow{AD} respectivement.)
- **3.** Montrer qu'il existe un unique couple de points (K, L) tel que $K \in \mathcal{D}_{(A,B)}$, $L \in \mathcal{D}_{(C,D)}$ et $\mathcal{D}_{(K,L)}$ est perpendiculaire aux droites $\mathcal{D}_{(A,B)}$ et $\mathcal{D}_{(C,D)}$.
- 4. Soit μ un nombre réel strictement compris entre 0 et 1 et soit G le barycentre des points pondérés (K,μ) et $(L,1-\mu)$. Soit Q le plan passant par G et perpendiculaire à $\mathcal{D}_{(K,L)}$. On note J_{AC} le barycentre des points pondérés (A,μ) et $(C,1-\mu)$, J_{AD} le barycentre des points pondérés (A,μ) et $(D,1-\mu)$, J_{BC} le barycentre des points pondérés (B,μ) et $(C,1-\mu)$ et J_{BD} le barycentre des points pondérés (B,μ) et $(D,1-\mu)$.
- a) Montrer que le plan Q coupe les arêtes [AC], [AD], [BC] et [BD] en les points J_{AC} , J_{AD} , J_{BC} et J_{BD} respectivement.
 - **b)** Montrer que $J_{AC}J_{AD}J_{BC}J_{BD}$ forme un parallélogramme.
- c) Exprimer l'aire du parallélogramme $J_{AC}J_{AD}J_{BC}J_{BD}$ en fonction de l'aire W d'un parallélogramme $J_1J_2J_3J_4$ tel que $\overrightarrow{J_1J_2} = \overrightarrow{AB}$ et $\overrightarrow{J_2J_3} = \overrightarrow{CD}$.
- d) Exprimer le volume V du tétraèdre T = ABCD en fonction de W et de la distance KL.