
APPROXIMATION IN THE SENSE OF KATO FOR TRANSPORTPROBLEMMOHAMED AMINE CHERIF AND HASSAN EMAMIRADAbstrat. By using Cherno�'s Theorem, we prove that an ap-proximation of the family {S(t) : t ≥ 0} given by (3.5) onvergesin the sense of Kato to transport semigroup.1. Introdution.Let us reall the Cherno�'s Theorem as it is given in [Che℄.Theorem 1.1. Let X be a Banah spae and {V (t)}t≥0 be a family of ontrations on
X with V (0) = I. Suppose that the derivative V ′(0)f exists for all f in a set D and thelosure Λ of V ′(0) |D generates a C0�semigroup S(t) of ontrations. Then, for eah
f ∈ X,

lim
n→∞

‖V (
t

n
)nf − S(t)f‖ = 0, (1.1)uniformly for t in ompat subsets of R+.In the next setion we will use the Cherno�'s theorem to prove the following result.Theorem 1.2. Let A be the generator of a C0-semigroup S0(t) suh that ‖S0(t)‖ ≤

e−ωt (ω ≥ 0), and B a bounded perturbation operator suh that ‖B‖ < ω, and A + Bde�ned in the D(A) generates a C0-semigroup S(t) of ontrations. Then, the onlusionof (1.1) holds for V (t) := S0(t) +
∫ t

0 S0(s)Bds.Proof. We remark that V (0) = I, V ′(0)f = (A + B)f for all f ∈ D(A) and �nally
V (t) is of ontration. In fat,

‖V (t)‖ ≤ ‖S0(t)‖ + ‖

∫ t

0
S0(s)Bds‖

≤ e−ωt + b

∫ t

0
e−ωsds =

(
1 −

b

ω

)
e−ωt +

b

ω
≤ 1,where b = ‖B‖. Sine all the assumptions of Theorem 1.1 are ful�lled, the onlusioninfers from this Theorem. �In the next setion, we de�ne the onvergene in the sense of Kato. Finally in thelast setion we onstrut the approximation spaes onvergene in the sense of Kato1991 Mathematis Subjet Classi�ation. 65M12, 65J10.Key words and phrases. Convergene in the sense of Kato, Transport semigroup.1



2 MOHAMED AMINE CHERIF AND HASSAN EMAMIRADand we prove that an approximating family of operators onstruted by mean of V (t)in transport problem onverges in the sense of Kato to the solution of this problem.This gives a new look to the transport proesses given by J. Hejtmanek in [Hej℄. Infat, Hejtmanek used this proesses only to Euler approximation of transport equation,but we will show in our forthoming paper that this proesses an be applied not onlyto Euler shemes but also to Crank-Niolson and Preditor-Corretor algorithms.2. Convergene in the sense of KatoIn this paper we give an approximation proessus for transport equation not only intime but also in spae. For approximation in spae we have to reall the onvergene inthe sense of Kato (see [Kat℄). We say that a sequene of Banah spaes {(Xn, ‖.‖n) :
n = 1, 2, · · · } onverges to a Banah spae (X, ‖.‖) in the sense of Kato and we write

Xn
K
−→ Xif for any n there is a linear operator Pn ∈ L(X,Xn) (alled an approximating operator)satisfying the following two onditions:(K1) limn→∞ ‖Pnf‖n = ‖f‖ for any f ∈ X;(K2) for any fn ∈ Xn, there exists f (n) ∈ X suh that fn = Pnf (n) with ‖f (n)‖ ≤

C‖fn‖n (C is independent of n).Let Xn
K
−→ X, Bn ∈ L(Xn) and B ∈ L(X). We say that Bn onverges to B inthe sense of Kato and we write Bn

K
−→ B if limn→∞ ‖BnPnf − PnBf‖n = 0 for any

f ∈ X. Let An and A be the generators of the C0�semigroups {Tn(t)}t≥0 ⊆ L(Xn) and
{T (t)}t≥0 ⊆ L(X), respetively. Consider the following three onditions:(A) ( Consisteny). There is a omplex number λ ontained in the resolvent sets⋂

n∈N
ρ(An) and ρ(A), respetively, suh that

(λ − An)−1 K
−→ (λ − A)−1.(B) (Stability). There exists a positive onstant M and a real number ω suh that

‖Tn(t)‖ ≤ Meωt, for any t ≥ 0 and for any n ∈ N.(C) (Convergene). For any �nite T > 0

Tn(t)
K
−→ T (t)uniformly on [0, T ], i.e.

lim
n→∞

sup
t∈[0,T ]

‖Tn(t)Pnf − PnT (t)f‖n = 0 for any f ∈ X. (2.1)In [Ush℄ one an retrieve the standard version of the Lax equivalene theorem whihsays that the onditions (A) and (B) hold if and only if (C) holds.



APPROXIMATION FOR TRANSPORT PROBLEM 33. Approximation of transport equationHere, we onsider a matter of partiles, onstituted of neutrons, eletrons, ions andphotons. Eah partile moves on a straight line with onstant veloity until it ollideswith other partile of the supporting medium resulting in absorption, sattering ormultipliation. The unknown of the transport equation is the partile density funtion
u(x,v, t). This is a funtion in the phase spae (x,v) ∈ Ω × V ⊂ R

2n at the time
t ≥ 0, whih belongs to its natural spae X = L1(Ω, V ). Atually, ∫Ω×V

u(x,v, t)dxdvdesignates the total number of partiles in the whole spae Ω × V at the time t. Thegeneral form of the transport problem is the following
(TP)





∂u
∂t

= −v · ∇u −σ(x,v)u

+
∫
V

p(x,v′,v)u(x,v′ , t)dv′ in Ω × V,

u(x,v, t) = 0 if x · v < 0, for all x ∈ ∂Ω

u(x,v, 0) = f(x,v) ∈ X,In this equation whih is known as linear Boltzmann equation the �rst term of theright hand side −v · ∇u(x,v, t) illustrates the movement of the lassial group of thepartiles in the absent of the absorption and prodution interations. The seond termrepresents the lost of the partiles aused by the di�usion or absorption at the point
(x,v) in the phase spae. Finally the integral of the last term represents the produtionof the partiles at the point (x,v) in the phase spae. The kernel p(x,v′,v) in thisintegral generates the transition of the states of partiles at the position x and havingthe veloity v

′ to the partiles at the same position having the veloity v. The veloityspae V is in general a spherial shell in R
n as

V = {v ∈ R
n | 0 ≤ vmin ≤ |v| ≤ vmax ≤ +∞}.In this paper we deal with a partiular feature of the transport equation in whihwe replae Ω, with (−a, a) and we take V := [−1, 1]. We assume that σ is a stritlypositive ontinuous funtion with

0 < sm ≤ σ(x) ≤ sM for almost any x ∈ (−a, a) (3.1)and the kernel p(x, v, v′) by 1
2p(x) whih is a positive ontinuous funtion independentof (v, v′), suh that

0 < sup
x∈[−a,a]

p(x) ≤ kM . (3.2)With these assumptions the transport problem (TP) an be replaed by the followingpartiular one
(TP1)





∂u
∂t

= −v · ∇u − σ(x)u + 1
2

∫ 1
−1 p(x)u(x, v, t)dv in (−a, a) × [−1, 1];

u(−a, v ≥ 0, t) = 0 and u(a, v ≤ 0, t) = 0 for all t > 0;

u(x, v, 0) = f(x, v) ∈ L1((−a, a) × [−1, 1]).



4 MOHAMED AMINE CHERIF AND HASSAN EMAMIRADRemark 3.1. If we denote the prodution term Af = 1
2

∫ 1
−1 p(x)f(x, v)dv = p(x)Pf ,with

Pf =
1

2

∫ 1

−1
f(x, v)dv, (3.3)whih is a projetion on L1((−a, a) × [−1, 1]). This spae being generating we get

‖P‖ = 1, and ‖A‖ = kM . Sine ‖A‖ ≤ kM and for the onstant funtion p(x) = kM weget the equality.Theorem 3.2. In the Banah spae X = L1((−a, a)×[−1, 1]) let us de�ne the operators
T0f := −v∂f/∂x, T1f := T0f − σ(x)f , T̃ f := T0f + Af and Tf := T1f + Af (Abeing de�ned in Remark 3.1). Any of these operators de�ned on D(T0) := {f ∈ X :
v∂f/∂x ∈ X, f(−a, v ≥ 0) = 0 and f(a, v ≤ 0) = 0} generates a C0-semigroup whihis given respetively by:(0) U0(t) whih are of ontrations;(1) U1(t) with ‖U1(t)‖ ≤ e−smt;(2) V (t) with ‖V (t)‖ ≤ ekM t;(3) U(t) with ‖U(t)‖ ≤ e(kM−sm)t.Proof. (0). For t > 0 suh that, |x − tv| < a, the semigroup U0(t)f(x, v) = f(x −
tv, v), satis�es ‖U0(t)f‖ = ‖f‖ and if x− tv < −a or x− tv > a, then U0(t)f(x, v) = 0.(1). The C0-semigroup generated by T1 is

[U1(t)f ](x,v) := e−
R t

0
σ(x−sv)dsf(x− tv,v) (3.4)and ∫ a

−a

∫ 1

−1
|[U1(t)f ](x,v)|dxdv ≤ e−tsm

∫ a

−a

∫ 1

−1
|f(x − tv,v)|dxdv.(2). For V (t) we will use the Dyson-Phillips formula:

V0(t) = U0(t), V (t) :=

∞∑

n=0

Vn(t),where
Vn+1(t) =

∫ t

0
V0(t − s)AVn(s)ds.Suppose that ‖Vn(s)‖ ≤ (kMs)n/n!, then by indution we get

‖Vn+1(t)f‖ ≤

∫ t

0
‖V0(t − s)AVn(s)f‖ds

≤

∫ t

0
‖AVn(s)f‖ds ≤

∫ t

0
kM

(kMs)n

n!
‖f‖ds

=
(kMs)n+1

(n + 1)!
‖f‖.



APPROXIMATION FOR TRANSPORT PROBLEM 5in whih we have used Remark 3.1. Consequently,
‖V (t)‖ ≤

∞∑

n=0

‖Vn(t)‖ ≤
∞∑

n=0

(kM t)n

n!
= ekM t.(3). We argue as in (2), but we replae the Dyson-Phillips formula by U(t) :=∑∞

n=1 Un(t) and we dedue by indution for ‖Un+1(t)‖ ≤ e−tsm(kM t)n/n! that
‖U(t)‖ ≤

∞∑

n=1

‖Un(t)‖ ≤
∞∑

n=1

e−tsm
(kM t)n−1

(n − 1)!
= e(kM−sm)t.

�Let us de�ne the approximating spaes Xn in this speial ase. We divide the phasespae (−a, a) × [−1, 1] into a �nite number of ells by hopping the x interval (−a, a)into 2mn equal parts and the v interval [−1, 1] into 2µn equal parts, hn and kn are thelength of these parts, that is,
hn =

a

mn
, kn =

1

µn
.Then eah ell an be labeled by a pair of integers (i, j) ∈ N ,where

N := {(i, j) : i = −mn, · · · ,−1, 0, 1, · · · ,mn. j = −µn, · · · ,−1, 0, 1, · · · , µn}.The number of the partiles in ell γ(i, j) = [ihn, (i + 1)hn]× [jkn, (j + 1)kn] is written
ξi,j.We de�ne the set of all real vetors ξi,j as the Banah spae Xn with the norm

ξ ∈ Xn, ‖ξ‖n =
∑

i,j

|ξi,j|.At this point let us prove that the approximating spae Xn onverges in the sense ofKato to X. In fat, from property of the positive one X+ of L1 it follows thatLemma 3.3. For Pnf = {ξi,j : (i, j) ∈ N} where
ξi,j =

∫ (i+1)hn

ihn

∫ (j+1)kn

jkn

f(x, v)dxdv,we have ‖Pnf‖n = ‖f‖.Proof. For every f(x, v) ≥ 0, we get
‖Pnf‖n =

∑

i,j

∫ (i+1)hn

ihn

∫ (j+1)kn

jkn

f(x, v)dxdv = ‖f‖.Sine L1((−a, a) × [−1, 1]) is generated by its positive one X+, that is f = f+ − f−with f± ≥ 0. So we get also
‖Pnf‖n = ‖Pn(f+ − f−)‖n = ‖Pnf+‖n + ‖Pnf−‖n = ‖f+‖ + ‖f−‖ = ‖f‖.

�



6 MOHAMED AMINE CHERIF AND HASSAN EMAMIRADThe ondition (K1) follows from 3.3 and for the ondition (K2) we denote χi,j theharateristi funtion of the ell γ(i, j) and for any {ξi,j} ∈ Xn we de�ne f (n) ∈ X as
f (n)(x) =

∑
i,j

ξi,j

hnkn
χi,j and we have

∫

(−a,a)×[−1,1]
|f (n)(x)|dxdv ≤

∑

i,j

∫

γ(i,j)

∣∣∣∣
ξi,j

hnkn
χi,j

∣∣∣∣ dxdv =
∑

i,j

|ξi,j|,sine ∫
γ(i,j)

χi,j

hnkn
dxdv = 1.In this setion we onsider the system (TP1), with the notation of Remark 3.1,

Af = pPf , where P is the projetion de�ned in (3.3).Here, we do not have at our disposition an expliit expression of the semigroup as
U0(t)f(x, v) = f(x − tv, v) or U1(t)f(x, v) = e−

R t

0
σ(x−sv)dsf(x − tv, v), but we anintrodue the operator

[V (t)f ](x, v) := e−
R t

0
σ(x−sv)dsf(x − tv, v)

+
1

2

∫ t

0
e−

R s

0
σ(x−rv)drp(x − sv)

∫ 1

−1
f(x − sv, v′)dv′ds (3.5)

= U1(t)f +

∫ t

0
U1(s)pPfds = U1(t)f +

∫ t

0
U1(s)Afds. (3.6)The operator V (t) is not himself a semigroup as U0(t) or U1(t), but it an at as theoperator funtion V (t) in Cherno�'s theorem (Theorem 1.1).We approximate this operator by

Un(kτn) := U1,n(t)(I + τnAn)k (3.7)(see Remarks 3.5 (a)), where
[Anξ]i,j :=

knpi

2

µn−1∑

l=−µn

ξi,l ∀j, −µn 6 j 6 µn − 1. (3.8)with pi = p(θ), θ ∈ [ihn, (i + 1)hn).Now, let U(t) be the transport semigroup de�ned in Theorem 3.2, then we haveTheorem 3.4. Under the assumption 2kM < sm, we have the onvergene of Un(t) to
U(t) in the sense of Kato.Proof. We have to prove that

‖Un(t)Pnf − PnU(t)f‖n → 0, (3.9)as n → ∞.First we prove that
Un(kτn)Pnf = PnV (τn)kf. (3.10)



APPROXIMATION FOR TRANSPORT PROBLEM 7In fat,
PnV (τn)f = Pn

[
e−

R τn
0

σ(x−sv)dsf(x − τnv, v)

+
1

2

∫ τn

0
e−

R s

0
σ(x−rv)drp(x − sv)

∫ 1

−1
f(x − sv, v′)dv′ds

]

= exp(−τnσi−j)ξi−j,j +
knτn

2
pi−je

−τnσi−j

µn−1∑

l=−µn

ξi−j,l

= [U1,n(τn)(I + τnAn)ξ]
i,j

= U1,n(τn)(I + τnAn)Pnf = Un(τn)Pnf.Hene, by taking g = V (τn)f , we obtain
PnV (τn)2f = PnV (τn)g = Un(τn)Png = Un(τn)2Pnf,and by indution we retrieve (3.10). One the identity (3.10) is proven, we replae

Un(t)Pnf by PnV (τn)nf in (3.9) and we use the isometri harater of Pn (see Lemma3.3), then we get
‖Un(t)Pnf − PnU(t)f‖n = ‖V (t/n)nf − U(t)f‖.Now, if ω = sm − kM , thanks to Theorem 3.2 (3), U(t) satis�es ‖U(t)‖ ≤ e−ωt, andsine 2kM < sm, we get kM < ω. So we an replae in Theorem 1.2, S0(t) by U1(t) and

B by the prodution operator A, the formula (3.6) show that we an use this Theoremto prove that (3.9) holds. �Remark 3.5. (a) After replaing the integral ∫ t

0 σ(ihn − sjkn)ds by σ
(n)
i,j , where

σ
(l)
i,j := τn

l∑

k=1

σ(ihn − jkτnkn). (3.11)The approximation of U1 given by (3.4) would be
U1,n(t) = exp

(
−σ

(n)
i,j

)
f(ihn − njτnkn, jkn),where σi−kj = σ(hn(i − kj)). Replaing f(ihn − jnτnkn, jkn) by ξi−nj,j as beforewe get

[U1,n(t)ξ]i,j = exp
(
−σ

(n)
i,j

)
ξi−nj,j. (3.12)So

[U1,n(τn)ξ]
i,j

= e−τnσi−jξi−j,j.(b) We note that by taking k = n, Un(t) given in (3.7), an be written as
Un(t) = U1,n(t)

(
n∑

k=0

Ck
n(τnAn)k

)
.



8 MOHAMED AMINE CHERIF AND HASSAN EMAMIRADHene
[Un(t)ξ]i,j = [U1,n(t)ξ]

i,j
+ U1,n(t)

(
n∑

k=1

Ck
n(τnpi)

k

)
kn

2

µn−1∑

l=−µn

ξi,l.Referenes[Che℄ P. R. Chernoff, Note on produt formulas for operator semigroups. J. Funt. Analysis.2 (1968), 238�242.[Hej℄ H. J. Hejtmanek, Approximations of linear transport Proesses. J. Math. Phys. 11 (1970),995�1000.[Kat℄ T. Kato, Perturbation Theory for Linear Operators Springer�Verlag, Berlin�New York(1966).[Ush℄ T. Ushijima, Approximation theory for semigroups of linear operators. Japan J. Math. 1(1975), 185�224.
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