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Université de Poitiers & CNRS
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Abstract. By introducing M-functional calculus we generalize some results
of Brenner and Thomée on the stability and convergence of rational approx-
imation schemes of bounded semigroups for nonuniform time steps. We give
also the rate of convergence for the approximation of the time derivative of
these semigroups.

1. Introduction. Let A be a closed densely defined linear operator in a Banach
space X which generates a strongly continuous semigroup etA. The purpose of this
paper is to approximate etA by suitable linear operators Pn(A) by using nonuniform
partitions of the time-interval [0, t].

If τ1, . . . , τn are n positive time steps whose sum equals to t then we will consider
approximations of the form

Pn(A) = R(τ1A) . . . R(τnA) (1)

where R is a rational function. Such a choice is motivated by the fact that rational
functions of A appear in time discretizations of the initial-value problem

d

dt
u = Au t > 0, u(0) = u0 ∈ X. (2)

Indeed, backward Euler and Crank-Nicholson schemes lead respectively to rational
functions of the form R(z) = (1 − z)−1 and R(z) = (1 + z/2)(1 − z/2)−1.

In the case where R is p-acceptable and the semigroup etA is bounded, the fol-
lowing results can be found in the literature since the seminal paper [8] of Hersh
and Kato (see Section 2 for notation and definitions).
• If etA is analytic and the partition is uniform then Le Roux proved in [10] that

‖(R( tnA)n − etA)A−p‖ ≤ C
( t

n

)p
.
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Moreover, if |R(∞)| < 1 then

‖R( tnA)n − etA‖ ≤ C
1

np
.

• If etA is analytic and the partition is nonuniform then it is proved in [12] that

‖(Pn(A) − etA)A−p‖ ≤ Cτp
m
,

where τm = maxk τk. Moreover, if |R(∞)| < 1 then Saito proves in [11] that

‖Pn(A) − etA‖ ≤ C
(τm
τ∗

)p
τp
m
,

where τ∗ = mink τk.
• If etA is not necessarily analytic and the partition is uniform then Brenner and
Thomée prove in [3] that

‖(Pn(A) − etA)A−p‖ ≤ Ctpn− p2

p+1 ,

(see also Remark 2 below). Irrespective to the analytic case, R( tnA)n may diverges.
For example, if A = d/dx and X = L∞(R) then by [2] Theorem 4.2, for every ε > 0
there exists some p-acceptable function Rε with Rε(∞) = 0 such that

‖Rε( tnA)n‖ ≥ Cn
1
2−ε.

Without the condition Rε(∞) = 0, the value ε = 0 is allowed in the above estimate.
This paper focuses on the case where etA is not analytic and the partition is

nonuniform.
We will now introduce our main results. In Theorem 5.1, we will prove that for

α ∈ (1/2, p], the following holds

‖(Pn(A) − etA)(1 −A)−α‖ ≤ C(t)τ
(α−1/2) p

p+1
m .

Thus we obtain convergence on a continuum of intermediate spaces between X and
the domain of Ap (see also [9]). If A = d/dx, X = C0(R), |R| = 1 on iR and the
partition is quasiuniform in the sense of Section 2 then

‖Pn(A)(1 −A)−α‖ −−−−→
n→∞

∞ ∀α < 1/2.

The reader is refered to Theorem 6.1 and Corollary 1 for precise statements. Besides,
following [12], we study approximations of the time derivative. We prove in Theorem
7.1 that for α > 3/2,

1

τn

(
Pn(A) − Pn−1(A)

)
→ d

dt
etA in L(D(Aα), X).

It is worthwhile to mention that a similar estimation is obtained in [12] only when
A generates an analytic C0-semigroup.

This paper is organized as follows. In Section 2, we fix some notations and
state our main assumptions. In Section 3, we introduce the so-called M-functional
calculus which allows to define operators-valued functionals. This calculus is the
main tool for proving, in Section 5 and 7, convergence results toward etA and d

dte
tA.

In Section 6, we give examples where the Crank-Nicholson scheme diverges.
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2. Notation and main assumptions. Though out this paper, t, p, Γ and H will
denote respectively a nonnegative time, a positive integer, the Euler function and
the Heaviside step function. The notation [Re z ≤ 0] and [Im z ≥ 0] stand for the
left and upper half-complex plane. For every function f defined on a subset of C,
fR denotes the restriction of f to R.

In the sequel, A : D(A) ⊂ X → X is a closed densely defined linear operator on
the Banach space X . The norm on X and on the space of bounded linear operators
acting on X will be both denoting by ‖ ·‖. We will further assume that A generates
a strongly continuous semigroup of bounded linear operator {etA | t ≥ 0}. Moreover
we suppose that this semigroup is bounded i.e.

M := sup
t≥0

‖etA‖ <∞. (3)

For any positive integer n, a sequence of positive numbers (τ1, τ2, · · · , τn) whose
sum equals t is called a n-grid. We denote

τm := τn
m

:= max
1≤k≤n

τk, τ∗ := τn∗ := min
1≤k≤n

τk.

As a simple consequence, τm ≥ t/n and τ∗ ≤ t/n. Moreover, without loss of
generality, we may assume τm ≤ 1. The case τm = τ∗ corresponds to uniform
partition of [0, t]. According to [12], for any positive number µ, a grid (τ1, τ2, · · · , τn)
is said to be µ–quasiuniform if τm/τ∗ ≤ µ.

Definition 2.1. We say that a rational complex function R is p-acceptable if

(a) |R(z)| ≤ 1 for all Re(z) ≤ 0;

(b) R(ix) = eix +O(xp+1) as x→ 0, x ∈ R.

In this definition, since p ≥ 1 the condition (b) implies that R(0) = R′(0) = 1
and the condition (a) implies that |R(i∞)| ≤ 1, consequently the degree of R is
nonpositive, that is

R :=
P

Q
and degreeR := degreeP − degreeQ ≤ 0. (4)

In the sequel, (τ1, τ2, · · · , τn) is a n-grid, R a p-acceptable rational function and
Pn will denote the function defined for all z in [Re z ≤ 0] by

Pn(z) = R(τ1z) . . . R(τnz).

For simplicity we put Pn−1(z) = R(τ1z) . . . R(τn−1z) and looking out that in this

case
∑n−1
k=1 τk 6= t. Moreover, we define Pn(A) by (1). It may be observed that our

results extend to the case where Pn(A) = R1(τ1A) . . . Rn(τnA) provided R1, . . . , Rn
are p-acceptable functions satisfying Definition 2.1 (b) uniformly with respect to n
i.e.

|Rk(ix) − eix| ≤ C|x|p+1 ∀x ∈ [−1, 1], k = 1, . . . , n,

where C is independent of n.
The space of all continuous linear operators defined on a normed vector space

Y with values in X will be denoted by L(Y,X). Regarding functions spaces, the
Lebesgue spaces of complex-valued functions defined on R are denoted by Lq(R)
(1 ≤ q ≤ ∞), with norm ‖ · ‖q. Besides

W 1,q(R) = {f : R → C | f and f ′ ∈ Lq(R)},
C(R) = {f : R → C | f is continuous on R}.
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Let

M+ = {f ∈ C(R) | Ff ∈ L1(R) and Ff is supported in [0,∞)} (5)

where Ff is the Fourier transform of f , i.e.

Ff(s) =

∫ ∞

−∞

e−ixsf(x) dx ∀s ∈ R.

In the sequel we will use the following inequality, known as Carlson’s inequality (see
[4]):

‖Ff‖1 ≤ 2
√

2π‖f‖
1
2
2 ‖f ′‖

1
2
2 ∀f ∈ W 1,2(R). (6)

Let also H+ be the set of all f : [Im z ≥ 0] → C holomorphic in [Im z ≥ 0] (i.e. f
has an holomorphic extension in a neighborhood of [Im z ≥ 0]) and converging to
zero as |z| → ∞.

Finally, various constants independent of t, n and the grid (τ1, τ2, · · · , τn) will be
generically denoted by the letters C or K. In order to emphasize the dependence
of C on some parameters α1, . . . , αm, we will use the notation Cα1,...,αm

and we
keep the same notation even if the values of Cα1,...,αm

are not the same in different
formulae.

3. M-functional calculus. Under notation and assumptions of Section 2, for any
f in M+, we define a M-functional calculus by

f(−iA)u =

∫ ∞

0

esAuFf(s) ds for all u ∈ X. (7)

This defines a bounded linear operator f(−iA) satisfying

‖f(−iA)‖ ≤M‖Ff‖1. (8)

Let α > 0 and λ ∈ [Re z > 0]. By choosing the principal determination of the
complex logarithm, the function

fα,λ : R → C, x 7→ (λ− ix)−α

is well defined and belongs to M+ since it is well known that

Ffα,λ(s) =
1

Γ(α)
H(s)sα−1e−sλ ∀s ∈ R, (9)

where H denotes the Heaviside step function. Consequently,

f1,λ(−iA) =

∫ ∞

0

esAe−sλds = (λ−A)−1. (10)

Here we want to generalize this formula to any entire power of (λ −A)−1.

Lemma 3.1. Under the above assumptions and notation, if α = m is a positive
integer then

fm,λ(−iA) = (λ−A)−m,

i.e. for any m ∈ N,

1

(m− 1)!

∫ ∞

0

esAsm−1e−sλ ds = (λ −A)−m. (11)
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Proof. We proceed by induction. The case m = 1 is given in (10), suppose m ≥ 1.
Then, from the identity F(fg) = Ff ∗ Fg, we deduce

∫ ∞

0

esAFfm,λ(s) ds =

∫ ∞

0

esA
∫

R

Ff1,λ(y)Ffm−1,λ(s− y) dy ds.

By using the fact that these Fourier transforms are supported in [0,∞), we obtain
(11) as desired.

This formula can also be generalized for any fractional power of (λ − A)−1. If
α > 0 is not an integer then, in accordance with Lemma 3.1, the bounded linear
operator fα,λ(−iA) will be denoted by (λ −A)−α i.e.

(λ−A)−α :=
1

Γ(α)

∫ ∞

0

esAsα−1e−λs ds. (12)

Since we can prove in a standard way that (1−A)−α is one-to-one, we put D(Aα) :=
(1 − A)−αX and define the unbounded operator (1 − A)α with domain D(Aα) by
(1−A)α := [(1−A)−α]−1, which is valid in the intermediate space D(Aα) equipped
with the norm

‖u‖Aα = ‖(1 −A)αu‖. (13)

The following lemmas give criteria for functions to belong to M+. First we have

Lemma 3.2. Let f ∈ H+ be such that FfR belongs to L1(R). Then fR lies in M+.

Proof. It is enough to show that FfR is supported in [0,∞). For every positive r,
let γr = {reiθ | 0 ≤ θ ≤ π}. Due to the residue formula,

FfR(s) =

∫

R

e−isxf(x) dx = − lim
r→∞

∫

γr

e−iszf(z) dz.

Since f ∈ H+, this limit is zero for any negative s.

Lemma 3.3. Let g, h : [Im z ≥ 0] → C be continuous functions in [Im z ≥ 0] such
that

(a) the product gh belongs to H+;
(b) gR and hR belong to W 1,∞(R) and W 1,2(R) respectively.

Then ghR belongs to M+ and

‖F(ghR)‖1 ≤ C‖gR‖W 1,∞‖hR‖W 1,2 .

Proof. The above estimate follows from Carlson’s inequality (6). Thus Lemma 3.2
yields ghR ∈ M+.

The following statement will be used later.

Theorem 3.4. Let α > 0 and R be a rational function bounded on [Rez ≤ 0] with
non positive degree. Then the following functions of the real variable x,

x 7→ eitx(1 − ix)−α, x 7→ R(x)(1 − ix)−α

belong to M+ and

etA(1 −A)−α =

∫ ∞

0

esA F(eitx(1 − ix)−α)(s) ds (14)

=
1

Γ(α)

∫ ∞

0

e(t+s)A sα−1e−s ds, (15)

R(A)(1 −A)−α =

∫ ∞

0

esA F(R(ix)(1 − ix)−α)(s) ds. (16)
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Proof. Since F(eitx(1 − ix)−α)(s) = F((1 − ix)−α)(s− t), we deduce with (9) that
x 7→ eitx(1 − ix)−α belongs to M+. Hence

∫ ∞

0

esA F(eitx(1 − ix)−α)(s) ds =
1

Γ(α)

∫ ∞

0

e(t+s)Asα−1e−s ds

=
etA

Γ(α)

∫ ∞

0

esAsα−1e−s ds

= etA(1 −A)−α,

in view of (12). We prove (16) by using partial fractions decomposition for R: we
first show with Lemma 3.3 that x 7→ R(ix)(1 − ix)−α is in M+, secondly, by using
Lemma 3.1, we arrive at (16).

4. Some estimates on Pn. The M-functional calculus allows to reduce our prob-
lem to one dimensional analysis. In this section, we will give some technical results
regarding the rational function Pn. With the notation of Section 2, we have

Lemma 4.1. Suppose that R is a p–acceptable rational function. Then there exists
a constant C such that for all x in R,

∣
∣Pn(ix) − eitx

∣
∣ ≤ Cτp

m
t|x|p+1 (17)

∣
∣
∣
∣

d

dx

(
Pn(ix) − eitx

)
∣
∣
∣
∣
≤ C(t+ 1)2 min

(
1, τp

m
(|x|p + |x|p+1)

)
(18)

sup
x∈R

|(Pn(ix) − eitx)(1 − ix)−s| ≤ C(t+ 1)τ
sp

p+s+1
m . (19)

Proof. For every x ∈ R, Pn(ix) − eitx is equal to

R(iτ1x)

n∏

k=2

R(iτkx) − eiτ1x
n∏

k=2

eiτkx

= (R(iτ1x) − eiτ1x)

n∏

k=2

R(iτkx) + eiτ1x
(

n∏

k=2

R(iτkx) −
n∏

k=2

eiτkx
)
.

Since R is p–acceptable, |R(iτ1x)− eiτ1x| ≤ C|τ1x|p+1. Using also the boundedness
of R on iR, we get

∣
∣Pn(ix) − eitx

∣
∣ ≤ C|τ1x|p+1 +

∣
∣
∣
∣
∣

n∏

k=2

R(iτkx) −
n∏

k=2

eiτkx

∣
∣
∣
∣
∣

≤ C

n∑

k=1

|τkx|p+1, (20)

by induction. Recalling that τk ≤ τm and
∑
τk = t, we obtain (17).

To prove (18), we write d
dx

(
Pn(ix) − eitx

)
in the form

i

n∑

k=1



τkR
′(iτkx)

∏

ℓ 6=k

R(iτℓx) − τke
iτkx

∏

ℓ 6=k

eiτℓx



 =

i

n∑

k=1



τk
(
R′(iτkx) − eiτkx

) ∏

ℓ 6=k

R(iτℓx) + τke
iτkx

( ∏

ℓ 6=k

R(iτℓx) −
∏

ℓ 6=k

eiτℓx
)



 . (21)
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Since R′ and R are bounded on iR, we deduce that
∣
∣
∣
∣

d

dx

(
Pn(ix) − eitx

)
∣
∣
∣
∣
≤ Ct. (22)

Furthermore by Definition 2.1 (b) and (20), we have |R′(ix) − eix| ≤ C|x|p and
∣
∣
∣
∣
∣
∣

∏

ℓ 6=k

R(iτℓx) −
∏

ℓ 6=k

eiτℓx

∣
∣
∣
∣
∣
∣

≤ Ct|x|p+1τp
m
,

thus going back to (21), we deduce
∣
∣
∣
∣

d

dx

(
Pn(ix) − eitx

)
∣
∣
∣
∣
≤ C

n∑

k=1

τp+1
k |x|p + τktτ

p
m
|x|p+1

≤ C(t+ 1)2τp
m
(|x|p + |x|p+1).

Then using also (22), (18) follows.

In order to show (19), for any r ∈ R there are two alternatives:
(i) If |x| ≤ τr

m
then according to (17)

|(Pn(ix) − eitx)(1 − ix)−s| ≤ |Pn(ix) − eitx|
≤ Cτp

m
t|x|p+1

≤ Ctτr(p+1)+p
m

.

(ii) If |x| > τr
m

then by Definition 2.1 (a),

|(Pn(ix) − eitx)(1 − ix)−s| ≤ 2|x|−s ≤ 2τ−rs
m

.

Next by choosing r = − p
p+s+1 , we get (19) which completes the proof of the lemma.

Lemma 4.2. Let R be a p-acceptable rational function. Then for any positive s
and τ , we have

sup
x∈R

∣
∣
(
R′(iτx) − eiτx

)
(1 − ix)−s

∣
∣ ≤ Cτ

sp
s+p . (23)

Proof. Let r < 0. (i) If |x| ≤ τr then since R′(iτx) − eiτx = O
(
(τx)p

)
,

∣
∣
(
R′(iτx) − eiτx

)
(1 − ix)−s

∣
∣ ≤ C|τx|p ≤ Cτ (1+r)p.

(ii) If |x| > τr then since R′ is bounded on iR, we have
∣
∣
(
R′(iτx) − eiτx

)
(1 − ix)−s

∣
∣ ≤ C|x|−s ≤ Cτ−rs.

Now, by choosing r = − p
p+s , we get (23).

Lemma 4.3. Under the assumptions of Lemma 4.2, we have

sup
x∈R

∣
∣
{ d

dx
(Pn(ix) − eitx)

}
(1 − ix)−s

∣
∣ ≤ C(t2 + 1)τ

sp
p+s+1
m . (24)

Proof. By differentiation,

{ d

dx
(Pn(ix) − eitx)

}
(1 − ix)−s =

n∑

k=1

iτk(A1 +A2),
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with

A1 =
(
R′(iτkx) − eiτkx

) ∏

ℓ 6=k

R(iτℓx)(1 − ix)−s

A2 = eiτkx
( ∏

ℓ 6=k

R(iτℓx) −
∏

ℓ 6=k

eiτℓx
)
(1 − ix)−s.

By (23), |A1| ≤ Cτ
sp/(p+s)
m ≤ Cτ

sp/(p+s+1)
m , while τm ≤ 1. For estimating A2, let

r < 0. (i) If |x| ≤ τr then by (20), |A2| ≤ Ctτ
p+r(p+1)
m . (ii) If |x| > τr then since

R is bounded, |A2| ≤ C|x|−s ≤ Cτ−rs
m

. Now by choosing r = − p
p+s+1 , we obtain

|A2| ≤ C(t+ 1)τ
sp/(p+s+1)
m . Then (24) follows.

5. On the rate of convergence. We would like to estimate the rate of con-
vergence of the approximation scheme. For this, we will use the notation and
assumptions of Section 2. In particular, τm ≤ 1.

Theorem 5.1. If R is a p-acceptable rational function and α ∈ (1/2, p] is given,
then

‖(Pn(A) − etA)(1 −A)−α‖ ≤MCp,α(t+ 1)3/2τ
(α−1/2) p

p+1
m . (25)

Proof. We adapt the method developed by Brenner and Thomée in [3] to nonuni-
form partitions. We use the M-functional calculus introduced in Section 3 which
gives simpler computations. For every positive integer n and α > 0, we define

fn : R → C, x 7→ (1 − ix)−α(Pn(ix) − eitx)

and gn(·) := fn(τ
−1·) where τ := τ

p/(p+1)
m . According to Theorem 3.4, fn is in M+

and (Pn(A) − etA)(1 − A)−α is equal to fn(−iA). By (8) and Carlson’s inequality
(6), we have

‖fn(−iA)‖ ≤M‖Ffn‖1 = M‖Fgn‖1

≤MC‖gn‖1/2
2 ‖g′n‖

1/2
2 . (26)

Moreover by Lemma 4.1,

|Pn(ixτ ) − ei
t
τ
x| ≤ Ct|x|p+1

with our choice for τ . Therefore

|Pn(ixτ ) − ei
t
τ
x| ≤ Cmin(t|x|p+1, 1). (27)

We deduce that |gn(x)| ≤ Cτα|x|−α min(t|x|p+1, 1) and since α ∈ (1/2, p],

‖gn‖2 ≤ Cp,α(t+ 1)τα. (28)

Let us now estimate ‖g′n‖2. We have

g′n(x) = iα
τ (1 − ixτ )−α−1(Pn(ixτ ) − ei

t
τ
x)

︸ ︷︷ ︸

=A

+ (1 − ixτ )−α(Pn(ixτ ) − ei
t
τ
x)′

︸ ︷︷ ︸

=B

By (27),

|A| ≤ ατα|x|−α−1Cmin(t|x|p+1, 1)

≤ αC(t+ 1)τα min(|x|p−α, |x|−α−1). (29)

In order to bound |B| from above, we first consider its second factor. According to
(18),

∣
∣ d
dx(Pn(ixτ ) − ei

t
τ
x)

∣
∣ ≤ τ−1C(t+ 1)2 min(1, |x|p + |x|p+1),
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since τ = τ
p/(p+1)
m and τ ≤ 1. Thus

|B| ≤ C(t+ 1)2τα−1 min(|x|−α, |x|p−α + |x|p+1−α). (30)

From (29) and (30), we obtain since α ∈ (1/2, p] and τ ≤ 1,

‖g′n‖2 ≤ Cp,α(t+ 1)2τα−1. (31)

Going back to (26), we finally get in view of (28) and (31),

‖fn(−iA)‖ ≤MCp,α(t+ 1)3/2τα−1/2,

which proves (25).

Remark 1. Inequality (25) may be restated as

‖(Pn(A) − etA)u‖ ≤MCp,α(t+ 1)3/2τ
(α−1/2) p

p+1
m ‖u‖Aα ∀u ∈ D(Aα).

Consequently, for every sequence (τnk )1≤k≤n, n ≥ 1 of grids satisfying τm → 0 as
n→ ∞, we have

Pn(A) −−−−→
n→∞

etA in L(D(Aα), X).

Remark 2. In the case of constant time steps, the best convergence exponent for
α = 0, ..., p+ 1, α 6= (p+ 1)/2 is

β(s) = α
p

p+ 1
+ min

(

0,
α

p+ 1
− 1

2

)

.

See [3] Theorem 4.

In general, we have the following upper bound for the best convergence exponent.

Theorem 5.2. Let C,C1, µ ≥ 1 be given. Let also (τnk )1≤k≤n, n ≥ 1 be a sequence
of grids satisfying

τm
τ∗

≤ µCn1 , τm ≤ Ct

n
∀n ≥ 1.

Moreover assume that

lim sup
n→∞

‖(Pn(A) − etA)(1 −A)−α‖ > 0,

for every positive α strictly less than a certain threshold αc. If for some real α > αc
there exists β(α) > 0 such that

‖(Pn(A) − etA)(1 −A)−α‖ ≤ Cα,t,pτ
β(α)
m

(32)

then αc ≤ 1/2 and

β(α) ≤
{

3α
2αc

if C1 > 1,
α

2αc
if C1 = 1.

If the grid (τ1, . . . , τn) is µ-quasiuniform (i.e. C1 = 1) and αc = 1/2 then the
above theorem expresses that the optimal rate of convergence on D(Aα) is less or
equal to α. Section 6 presents situations where αc is indeed equal to 1/2.

The proof of Theorem 5.2 relies on the following Lemma.

Lemma 5.3. Let γ ∈ (0, 1] and u be in D(Aγ). Then

‖etAu− u‖ ≤ KM,γ‖u‖Aγtγ ∀t ≥ 0. (33)

Moreover if v := vτ,α := (1 − τA)−αu with τ, α > 0 then

‖u− v‖ ≤ Γ(α+ γ)

Γ(α)
KM,γ‖u‖Aγτγ . (34)
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Remark 3. Inequality (33) yields the continuous injection of the interpolation
space D(Aγ) into the so-called Favard space of order γ,

Fγ =
{

u ∈ X | sup
t>0

‖ 1
tγ (etAu− u)‖ <∞

}

endowed with the norm

‖u‖Fγ
= sup

t>0
‖ 1
tγ (etAu− u)‖.

We refer the reader to [6] for more details on Favard spaces.

Proof of Lemma 5.3. According to (15) and the boundedness of etA, we have

‖etAu− u‖ ≤ 2M‖u‖Aγ .

As a consequence, (33) holds true for t ≥ 1. If t < 1 then Theorem 3.4 yields

etA(1 −A)−γ =
1

Γ(γ)

∫ ∞

t

esA(s− t)γ−1e−s+t ds.

Hence

Γ(γ)
(
etA(1 −A)−γ − (1 −A)−γ

)

=

∫ ∞

t

esA
{
(s− t)γ−1e−s+t − sγ−1e−s

}
ds−

∫ t

0

esAsγ−1e−s ds

=: I1 + I2. (35)

We bound I2 as follows:

‖I2‖ ≤M

∫ t

0

sγ−1e−s ds ≤ M

γ
tγ . (36)

Regarding I1, the identity

(s− t)γ−1et − sγ−1 =
{
(s− t)γ−1 − sγ−1

}
et + (et − 1)sγ−1,

leads to the decomposition of I1 into the sum J1 + J2 where

J1 :=

∫ ∞

t

esAe−s+t
{
(s− t)γ−1 − sγ−1

}
ds,

J2 := (et − 1)

∫ ∞

t

esAsγ−1e−s ds.

Furthermore, M−1‖J1‖ is bounded by
∫ ∞

t

e−s+t
{
(s− t)γ−1−sγ−1

}
ds

=

∫ ∞

0

e−ssγ−1 ds−
∫ ∞

0

e−s+tsγ−1 ds+

∫ t

0

e−s+tsγ−1 ds

= (1 − et)

∫ ∞

0

e−ssγ−1 ds+ et
∫ t

0

e−ssγ−1 ds

≤ e

γ
tγ ,

since t < 1 and 1 − et ≤ 0. Thus ‖J1‖ ≤ Kγ,M t
γ . Since ‖J2‖ is easily estimated

by MeΓ(γ)t and t, γ ≤ 1, we deduce that ‖I1‖ ≤ Kγ,Mt
γ . With (35) and (36), it

results that

‖etA(1 −A)−γ − (1 −A)−γ‖ ≤ Kγ,M t
γ ∀t ∈ [0, 1)
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and (33) follows.
We now prove (34). For u, v as in the statement of the lemma, we have

u− v =
1

Γ(α)

∫ ∞

0

(u− esτAu)sα−1e−s ds.

Hence with (33),

‖u− v‖ ≤ Kγ,M

Γ(α)

∫ ∞

0

(sτ)γsα−1e−s ds‖u‖Aγ

≤ Γ(α+ γ)

Γ(α)
Kγ,M‖u‖Aγτγ ,

which completes the proofs of the lemma.

Proof of Theorem 5.2. Let τ ∈ (0, 1], γ ∈ (0, αc) and α > αc. By Theorem 5.1, we
know that αc ≤ 1/2. Besides, according to [1, Corollary 2.1] ‖Pn(A)‖ ≤ C ln(1 +
τm

τ∗
)n1/2. Thus using also (34), we obtain for u and v as in Lemma 5.3,

‖Pn(A)(u − v)‖ ≤ ‖Pn(A)‖ ‖u− v‖

≤ CM,α,γ ln(1 +
τm
τ∗

)n1/2‖u‖Aγτγ .

By (3) and (34), ‖etA(u− v)‖ ≤ CM,α,γ‖u‖Aγτγ , thus

‖(Pn(A) − etA)(u− v)‖ ≤ CM,α,γ ln(1 +
τm
τ∗

)n1/2τγ‖u‖Aγ . (37)

Let α = m+β where m is the integral part of α and β ∈ [0, 1). Since D((1−A)α) =
(1 − τA)−αX , the operator (1 −A)α(1 − τA)−α is well defined and satisfies

(1 −A)α(1 − τA)−α = τ−α(1 −A)m(τ−1 −A)−m(1 −A)β(τ−1 −A)−β .

Since

(1 −A)m(τ−1 −A)−m =
(

1 + (τ − 1)(1 − τA)−1
)m

,

we have ‖(1 − A)m(τ−1 − A)−m‖ ≤ (1 + M)m. Moreover by [7, Theorem 1.4.6] ,
for every ε ∈ (0, 1] there holds

‖(1 −A)β(τ−1 −A)−β‖ ≤ 1 + Cα,M,ετ
−1‖(τ−1 −A)−1+ε‖

≤ (1 + Cα,M,ε)τ
−ε,

since ‖(τ−1 −A)−1+ε‖ ≤Mτ1−ε and τ ≤ 1. Finally we obtain

‖(1 −A)α(1 − τA)−α‖ ≤ Cα,M,ετ
−α−ε.

Then, using (32), we arrive at the following estimate

‖(Pn(A) − etA)v‖ ≤ ‖(Pn(A) − etA)(1 −A)−α‖ ‖(1 −A)α(1 − τA)−α‖ ‖u‖
≤ Ct,α,p,M,ετ

β(α)
m

τ−α−ε‖u‖. (38)

Combining (37) and (38), we deduce by the triangle inequality,

‖(Pn(A) − etA)u‖ ≤ C
(

ln(1 +
τm
τ∗

)n1/2τγ + τβ(α)
m

τ−α−ε
)

‖u‖Aγ ,

where the positive constant C depends on t, α, γ, p,M, ε. For n large enough (de-
pending only on α and γ), the optimal choice

τ :=

[

(α + ε)τ
β(α)
m

γ ln(1 + τm

τ∗
)n1/2

]1/(α+ε+γ)
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stays in (0, 1] and gives

‖(Pn(A) − etA)(1 −A)−γ‖ ≤ C

[

lnα+ε(1 +
τm
τ∗

)n(α+ε)/2τβ(α)γ
m

]1/(α+ε+γ)

.

From our assumptions on (τk)1≤k≤n, we deduce in the case C1 > 1,

‖(Pn(A) − etA)(1 − A)−γ‖ ≤ C
[

τ−3(α+ε)/2+β(α)γ
m

]1/(α+ε+γ)

.

Since

lim sup
n→∞

‖(Pn(A) − etA)(1 −A)−γ‖ > 0,

we must have −3(α + ε)/2 + β(α)γ ≤ 0 which yields β(α) ≤ 3α/(2αc). The case
C1 = 1 is similar and even simpler. This achieves the proof.

6. Sharpness of the Convergence Theorem. As a consequence of Theorem
5.1, if α > 1

2 and τm → 0 then

‖(Pn(A) − etA)(1 −A)−α‖ −−−−→
n→∞

0.

In this section we show that Pn(A)(1−A)−α may diverges in the particular case
where A = d

dx if α < 1/2. This is a consequence of the following result which gives
a lower bound for ‖Pn(A)(1 −A)−α‖.

Theorem 6.1. Let A be the generator of the translation group on X := C0(R), the
space of continuous functions converging to zero at infinity,

etAu(x) := u(x+ t), u ∈ C0(R), x, t ∈ R.

Let R be a p-acceptable function satisfying |R| = 1 on iR. Then, if τm ≤ 1, there
exist smooth positive functions K,L : (0,∞) → (0,∞) independent of n and t such
that

(i) L is non increasing on (1,∞), L(∞) = 0;
(ii) for every nonnegative exponent α, there holds

‖Pn(A)(1 −A)−α‖ ≥ K(α)n
1
2 τα∗ L( τm

τ∗
).

In particular,

‖Pn(A)‖ ≥ K(0)n
1
2L( τm

τ∗
).

As a consequence, the following statement holds.

Corollary 1. Under the assumptions of Theorem 6.1, assume in addition that the
grid (τk)1≤k≤n is µ-quasiuniform and 0 ≤ α < 1/2. Then

lim
n→∞

‖Pn(A)(1 −A)−α‖ ≥ Cα,t,µn
1
2−α −−−−→

n→∞
∞.

Proof. By definition of a µ–quasiuniform grid,

τ∗ ≥ µ−1τm ≥ µ−1 t

n
.

So thanks to Theorem 6.1,

‖Pn(A)(1 −A)−α‖ ≥ K(α)
( t

µ

)α
L(µ)n1/2−α.
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Remark 4. By the convergence results of Section 5, if the conclusion of the above
corollary holds then α must be less or equal to 1/2. To our knowledge, the conver-
gence of Pn(A) on D(A1/2) remains to be determinated even for uniform grids.

This result gives rise to the following conjecture: let (τnk )1≤k≤n, n ≥ 1 be a
sequence of grids such that τn

m
→ 0 as n → ∞. Let A be any operator satisfying

the assumptions of Section 2. Then there exists a threshold αc ∈ [0, 1/2) such that
(i) ‖Pn(A)(1 −A)−α‖ → ∞ as n→ ∞ if α < αc;
(ii) Pn(A) → etA in L(D(Aα), X) for α > αc.

As quoted in the introduction, αc = 0 for analytic semigroups. If A = d
dx then

αc = 1/2 under the assumptions of Corollary 1; so is it possible to find a sequence
of grids with αc < 1/2 ? Do they exist operators A such that αc ∈ (0, 1/2) for
(quasi)-uniform grid ?

The proof of Theorem 6.1 is a slight modification of Section 2 in [5]. First we
will need the following lemmas.

Lemma 6.2. Let A be the generator of the translation group on X = C0(R) and f
be a function in M+. Then

‖f(−iA)‖ = ‖Ff‖1.

Proof. For every (u, x) in C0(R) × R, we have es
d
dxu(x) = u(x+ s) and

f(−iA)u(x) =

∫ ∞

0

u(x+ s)Ff(s) ds =

∫

R

u(s)Ff(s− x) ds. (39)

Moreover

‖f(−iA)‖ = sup
‖u‖∞≤1

‖f(−iA)u‖∞ = sup
‖u‖∞≤1

sup
x∈R

|f(−iA)u(x)|

= sup
x∈R

sup
‖u‖∞≤1

|f(−iA)u(x)|. (40)

Now for every x in R, we define the bounded linear functional φx on C0(R) by (see
(39)),

φx(u) = f(−iA)u(x) =

∫

R

u(s)Ff(s− x) ds.

According to the Riesz representation theorem,

sup
‖u‖∞≤1

|φx(u)| = ‖Ff(· − x)‖1 = ‖Ff‖1.

Thus by (40), ‖f(−iA)‖ = ‖Ff‖1.

Lemma 6.3 (Van der Corput’s Lemma, see [2, Lemma 2.4] ). Suppose that g ∈
C1
c (R) and ψ is a real-valued function in C2(R) such that |ψ′′(x)| ≥ δ > 0 for all x

in the support of g. Then

‖F(eiψg)‖∞ ≤ 8√
δ
‖g′‖1.

We are now in position to give the

Proof of Theorem 6.1. Let us first assume that α is positive. According to Lemma
6.2

‖Pn(A)(1 −A)−α‖ = ‖F
(
Pn(ix)(1 − ix)−α

)
‖1. (41)
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Since |R| = 1 on iR, there exists a smooth function ψ : R → R such that

R(ix) = eiψ(x) for all x ∈ R.

Therefore, ψ′(x) = [R′/R](ix) and, as a consequence, ψ′′ is a real rational function
whose degree does not exceed −2. Since ψ′′ has a finite number of zeros and
converges to zero as x → ∞, we deduce that there exists a enough large (a > 2)
such that ψ′′ has constant sign on [a−1,∞) and |ψ′′| is non increasing on [a−1,∞).

Choose φ ∈ C∞
c (a− 1, a) and set

g(x) := φ(x)(1 − i xτ∗ )−α, ψn(x) =

n∑

k=1

ψ( τk

τ∗
x).

Then by the Plancherel theorem,

‖g‖2
2 = ‖eiψn(x)g(x)‖2

2 = ‖F
(
eiψn(x)g(x)

)
‖2
2

≤ ‖F
(
eiψn(x)g(x)

)
‖1‖F

(
eiψn(x)g(x)

)
‖∞

≤ ‖F
(
eiψn(x)(1 − i xτ∗ )−α

)
‖1‖F (φ(x)) ‖1‖F

(
eiψn(x)g(x)

)
‖∞. (42)

Now, recalling that τ∗ ≤ 1, we have

‖g‖2
2 =

∫ a

a−1

|φ(x)|2|(1 − i xτ∗ )−α|2dx

≥
(
1 + a2

τ2
∗

)−α‖φ‖2
2 ≥ (1 + a2)−ατ2α

∗ ‖φ‖2
2. (43)

By differentiating g and using a > 2, one finds a positive constant Cφ depending
only on φ such that

‖g′‖1 ≤ Cφ(1 + α)τα∗ . (44)

Moreover, for every x in (a− 1, a), there holds

|ψ′′
n(x)| =

n∑

k=1

(
τk

τ∗

)2|ψ′′
(
τk

τ∗
x
)
|

≥ |ψ′′
(
aτm

τ∗

)
|
n∑

k=1

(
τk

τ∗

)2 ≥ n|ψ′′
(
aτm

τ∗

)
|,

since, as stated above, ψ′′ does not change its sign on [a−1,∞), |ψ′′| is non increasing
on this interval and τk

τ∗
x belongs to (a− 1, aτm

τ∗
) for all x in (a− 1, a) and k in [1, n].

Lemma 6.3 and the above estimates tell us that there exists a new positive constant
Cφ such that

‖F
(
eiψng

)
‖∞ ≤ Cφ(1 + α)

τα∗
√

n|ψ′′
(
aτm

τ∗

)
|
. (45)

Now, using (41) and Pn(ix) = eiψn(τ∗x), it follows that

‖Pn(A)(1 −A)−α‖ = ‖F
(

eiψn(τ∗x)(1 − ix)−α
)

‖1

= ‖F
(

eiψn(y)(1 − i yτ∗ )−α
)

‖1. (46)

Going back to (42) and using (46), (45), (43), we derive

‖Pn(A)(1 −A)−α‖ ≥ C′
φ(1 + a2)−α(1 + α)−1n

1
2 τα∗ |ψ′′

(
aτm

τ∗

)
|1/2. (47)
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There remains to consider the case α = 0. According to the functional calculus of
Section 3, for every α in (0,∞), we have

‖(1 −A)−α‖ =
1

Γ(α)

∣
∣
∣
∣

∣
∣
∣
∣

∫ ∞

0

esAsα−1e−s ds

∣
∣
∣
∣

∣
∣
∣
∣
≤M.

Hence

‖Pn(A)(1 −A)−α‖ ≤ ‖Pn(A)‖ ‖(1 −A)−α‖ ≤M‖Pn(A)‖
and with (47),

‖Pn(A)‖ ≥
C′
φ

M
(1 + a2)−α(1 + α)−1n

1
2 τα∗ |ψ′′

(
aτm

τ∗

)
|1/2.

We conclude by letting α → 0 in the above inequality and setting K(α) =
C′

φ

M (1 +

a2)−α(1 + α)−1, L(·) = |ψ′′(a ·)|1/2 which achieves the proof of the theorem.

7. Approximation of the time derivative. We consider the Cauchy problem
{

d
dtu = Au t > 0

u(0) = v.

We would like to approach d
dtu at time t by

1

τn

(
Pn(A) − Pn−1(A)

)
v

for any v ∈ X smooth enough. Indeed, for large n, Pn(A)v and Pn−1(A)v are closed
to u(t) and u(t − τn) respectively. Thus it may be expected that the above finite
difference approaches d

dtu.

Theorem 7.1. Suppose R is a 1-acceptable rational function. Let α > 3/2 be given.
Then for every s ∈ (1, α− 1/2), there exists some constant C depending on α and
s such that

∣
∣
∣
∣

∣
∣
∣
∣

{ 1

τn

(
Pn(A) − Pn−1(A)

)
− d

dt
etA

}

(1 −A)−α
∣
∣
∣
∣

∣
∣
∣
∣
≤ C(t2 + 1)τ

s−1
s+1

m . (48)

We start with a simple lemma.

Lemma 7.2. For any 1–acceptable rational function R, we have for all x in R

|(1 − ix)R(ix) − 1| ≤ Cmin(|x|, x2). (49)

Proof. Since R(ix) = 1 + ix+O(x2), (49) holds for x in [−1, 1]. Besides for |x| > 1,
we have

|(1 − ix)R(ix) − 1| ≤ (2‖R‖∞ + 1)|x|.
Hence (49) follows.

Proof of Theorem 7.1. Once more, without loss of generality we assume τm ≤ 1.
According to Lemma 3.3, by taking g := gn and h := (1 − ix)−(α−s), for obtaining
(48) it is enough to estimate the W 1,∞(R) norm of the function gn defined by

gn(x) =
1

τn

(
Pn(ix) − Pn−1(ix) − iτnxe

itx
)
(1 − ix)−s.
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Let us first estimate the L∞ norm of gn. Remark that

gn(x) =τ−1
n

(
(1 − iτnx)R(iτnx) − 1

)
Pn−1(ix)(1 − ix)−s

︸ ︷︷ ︸

=A

+ ix
(
Pn(ix) − eitx

)
(1 − ix)−s

︸ ︷︷ ︸
.

=B

For the term A, let r < 0. (i) If |x| ≤ τr
m

then by Lemma 7.2

|A| ≤ Cτnx
2|1 − ix|−s ≤ Cτ2r+1

m
.

(ii) If |x| > τr
m

then by Lemma 7.2

|A| ≤ C|x|−s+1 ≤ Cτ−r(s−1)
m

.

Next by choosing r = −1/(s+ 1) in any case we obtain

|A| ≤ Cτ
s−1
s+1

m . (50)

For estimating B, we use (19) which yields

|B| ≤ |(Pn(ix) − eitx)(1 − ix)−(s−1)| ≤ C(t+ 1)τ
(s−1)p

s+p
m .

Since, for s > 1, (s−1)p
s+p ≥ s−1

s+1 , we get

sup
x∈R

|gn(x)| ≤ C(t+ 1)τ
s−1
s+1
m . (51)

Let us now estimate the derivative of gn. We write

g′n(x) =τ−1
n

(
Pn(ix) − Pn−1(ix) − iτnxe

itx
)′

(1 − ix)−s
︸ ︷︷ ︸

=A′

+ isτ−1
n

(
Pn(ix) − Pn−1(ix) − iτnxe

itx
)
(1 − ix)−(s+1)

︸ ︷︷ ︸
.

=B′

Arguing as in the proof of (51), we find

|B′| ≤ C(t+ 1)sτ
s

s+2
m . (52)

Thus, there remains to estimate A′ which is equal to

τ−1
n

((
(1 − iτnx)R(iτnx) − 1

)
Pn−1(ix) + iτnx(Pn(ix) − eitx)

)′

(1 − ix)−s

= τ−1
n

((
(1 − iτnx)R(iτnx) − 1

)
Pn−1(ix)

)′

(1 − ix)−s

︸ ︷︷ ︸

=A′

1

+ i
(

x
(
Pn(ix) − eitx

))′

(1 − ix)−s

︸ ︷︷ ︸

.

=A′

2

By Lemma 4.3 and (19),

|A′
2| ≤ C(t2 + 1)τ

s−1
s+1

m , (53)

since τm ≤ 1 and sp
p+s+1 ≥ (s−1)p

p+s ≥ s−1
s+1 . Regarding A′

1, it is equal to

τ−1
n

(

(1 − iτnx)R(iτnx) − 1
)′

Pn−1(ix)(1 − ix)−s

+ τ−1
n

(
(1 − iτnx)R(iτnx) − 1

)
P ′
n−1(ix)(1 − ix)−s.
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Remark that
(
(1 − iτnx)R(iτnx) − 1

)′
= O(τ2

nx) (54)

and for estimating P ′
n(ix), we write

P ′
n−1(ix) =

n−1∑

k=1

iτkR
′(iτkx)

n−1∏

ℓ=1
ℓ 6=k

R(iτℓx).

The rational functions R and R′ being bounded on iR, we get

|P ′
n−1(ix)| ≤ Ct. (55)

Now, let r < 0. (i) If |x| ≤ τr
m

then (54), (49) and (55) imply

|A′
1| ≤ Cτn|x| + Cτn|x|2t ≤ C(t+ 1)τ2r+1

m
.

(ii) If |x| > τr
m
. First we remark that by derivating

∣
∣
∣
∣

d

dx

(
(1 − iτnx)R(iτnx) − 1

)
∣
∣
∣
∣
≤ Cτn

since R is bounded on iR and the degree of R′ is negative. Using also Lemma 7.2,
we deduce

|A′
1| ≤ C|x|−s + C2t|x|−s+1 ≤ Cτ−rs

m
+ C2τ−r(s−1)

m
≤ C2tτ−r(s−1)

m
.

Next by choosing r = −1/(s+ 1), we get |A′
1| ≤ C(t + 1) (τm)(s−1)/(s+1) uniformly

for x in R.
Now using also (53), it results that

|A′| ≤ C(t2 + 1)τ
s−1
s+1

m . (56)

Compiling (52) and (56) we deduce

sup
x∈R

|g′n(x)| ≤ C(t2 + 1)τ
s−1
s+1

m .

Finally by (51)

‖gn‖W 1,∞ ≤ C(t2 + 1)τ
s−1
s+1
m ,

which completes the proof of the theorem.

Acknowledgements. The authors would like to the Referee for his/her usefull
remarks.
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[5] M. Crouzeix, S. Larsson, S. Piskarev and V. Thomée, The stability of rational

approximations of analytic semigroups. BIT 33 (1993), 74–84.
[6] K. J. Engel and R. Nagel, One-parameter semigroups for linear evolution equations.

Graduate Texts in Mathematics. 194, Springer-Verlag, 2000.
[7] D. Henry, Geometric theory of semilinear parabolic equations. Lecture Notes in Math-

ematics, 840. Springer-Verlag, Berlin-New York, 1981.
[8] R. Hersh and T. Kato, High-accurcy stable difference schemes for well-posed initial-

value problems. SIAM J. Numer. Anal. 16 (1979), 670-682.



18 HASSAN EMAMIRAD AND ARNAUD ROUGIREL

[9] M. Kovács, On the convergence of rational approximations of semigroups on interme-
diate spaces Math. Comp. 76 (2007), no. 257, 273–286.

[10] M.-N. Le Roux, Semidiscretization in time for parabolic problems. Math. Comp. 33
(1979), 919–931.

[11] N. Saito, Remarks on the rational approximation of semigroups. Japan J. Indust.
Appl.Math. 21 (2004), 323–337.

[12] Y. Yan, Smoothing A properties and approximation of time derivatives for parabolic
equations: variable time steps. BIT 43 (2003), 647–669.

E-mail address: emamirad@math.univ-poitiers.fr

E-mail address: rougirel@math.univ-poitiers.fr


