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DIRICHLET-TO-NEUMANN OPERATOR ON THE PERTURBED
UNIT DISK

HASSAN EMAMIRAD, MOHAMED-REZA MOKHTARZADEH

Abstract. This article concerns the Laplacian on a perturbed unit disk Ωε =
{z = r exp(iθ) : r < 1 + εf(θ)}, with dynamical boundary condition whose so-
lution can be represented by a Dirichlet-to-Neumann semigroup. By neglecting
the terms of order ε2, we obtain a simple expression which allows us to use
Chernoff’s theorem for its approximation. As a motivation for this research,
we present an example which shows the feasibility of applying Chernoff’s The-
orem.

1. Introduction

In many inverse problems the reconstruction of the Dirichlet-to-Neumann oper-
ator has paramount importance. For example, in [1, 2, 10] a nondestructive testing
technique is used to determine the distribution of electrical conductivity within
some inaccessible region from electrostatic measurements at its boundary. It has
been able to detect the presence and the approximate location of some object of
unknown shape buried in a medium of constant background conductivity. In the
present work we elaborate the same shape of the buried object, that is a star-shaped
perturbation of a circle (see Figure 1). On this domain our problem is generated
by an elliptic equation with a time dependent boundary condition as follows.

Let Ωε = {z = r exp(iθ) : r < 1 + εf(θ)} be the perturbed unit disk. In the
cylinder Γε = (0,∞)×Ωε with boundary ∂Γε = (0,∞)×∂Ωε, we consider the linear
elliptic differential equation with dynamic boundary conditions

∆u = 0, in Γε,

∂u

∂t
+
∂u

∂ν
= 0, on ∂Γε,

u(0) = g, on ∂Ωε,

(1.1)

We will see in the next section that by making the change of variables to polar co-
ordinates and neglecting the terms of order ε2, the system (1.1) can be transformed
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into the system
∆γε

v = 0, in Γ,
∂v

∂t
+

∂v

∂νγε

= 0, on ∂Γ,

v(0) = h, on ∂D,

(1.2)

whereD is the unit disk, Γ the cylinder (0,∞)×D with boundary ∂Γ = (0,∞)×∂D,

∆γε = div(γε∇), γε =
[

1 −εf ′
−εf ′ 1

]
and h(ρ, θ) = g(ρ(1 + εf(θ)), θ). The Dirichlet-to-Neumann operator Λγε for this
new system is defined by

[Λγε
h](ω) = − ∂v

∂νγε

= −ω · γε∇v
∣∣
∂D
, (1.3)

where ω is the outer normal vector at ω ∈ ∂D, which coincides with ω.
It is well known that the operator Λγε

generates a (C0) semigroup in L2(∂Ωε)
(see [9]) or in C(∂Ωε) (see [7]). In a simple case, where γε = I and Ωε is the unit
ball B in Rn this semigroup has a trivial explicit representation given by Lax [8],
which is

e−tΛIh(ω) = w(e−tω), for any ω ∈ ∂D.

where w is the harmonic lifting of h; i.e., the solution of

∆Iw = 0, in D,

w
∣∣
∂D

= h, on ∂D,
(1.4)

In [6], it is shown that this representation cannot be generalized if Ωε has other
geometry than a ball in Rn. This consideration motivates the authors of [5] to use a
new technique for having an approximation of the solution via Chernoff’s Theorem.
In fact, Chernoff [3] proves the following result.

Theorem 1.1. If X is a Banach space and {V (t)}t≥0 is a family of contractions
on X with V (0) = I. Suppose that the derivative V ′(0)f exists for all f in a set D
and the closure Λ of V ′(0) |D generates a C0-semigroup S(t) of contractions. Then,
for each f ∈ X,

lim
n→∞

‖V (
t

n
)nf − S(t)f‖ = 0, (1.5)

uniformly for t in compact subsets of R+.

In the next section we define all the ingredients of the above Theorem in the
framework of our problem and we prove how we can approximate the solution of
the system (1.2) by mean of this Theorem. Section 3 is devoted to give a bench
mark example for justifying the feasibility of our method. Finally we generalize in
section 4 this problem to 3D-consideration and take Ωε as a perturbed unit sphere.
Because of the extreme complexity of the system we restrict ourself to the discrete
values of φ, {φj j = 1, . . . , N}, which achieves to N times 2D system, each of which
can be computed as above.
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2. Modified system

By making the change of variables

ρ =
r

1 + εf(θ)

and θ remains invariant, the Laplacian in the new coordinates will be (see [4]),

∆ρ,θ =
( 1

(1 + εf)2
+

ε2(f ′)2

(1 + εf)4
) ∂2

∂ρ2
+

1
ρ

( 1
(1 + εf)2

+
2ε2(f ′)2

(1 + εf)4
− εf ′′

(1 + εf)3
) ∂

∂ρ

− 1
ρ

( 2εf ′

(1 + εf)3
) ∂2

∂ρ∂θ
+

1
ρ2

1
(1 + εf)2

∂2

∂θ2
.

(2.1)

By factoring the term 1
(1+εf)2 and neglecting the terms of order ε2, we obtain

∆(ε)
ρ,θ =

∂2

∂ρ2
+

1
ρ
(1− εf ′′)

∂

∂ρ
− 1
ρ
(2εf ′)

∂2

∂ρ∂θ
+

1
ρ2

∂2

∂θ2
. (2.2)

Here we have replaced 1
1+εf by 1− εf + . . . . Now let

γε =
[

1 −εf ′
−εf ′ 1

]
and ∆γε

= div(γε∇). Since in polar coordinates,

∇ = t(
∂

∂ρ
,
1
ρ

∂

∂θ
), div(F1, F2) =

1
ρ

( ∂

∂ρ
ρF1 +

∂

∂θ
F2

)
,

we obtain ∆(ε)
ρ,θ = ∆γε . Consequently the Dirichlet-to-Neumann operator will be

[Λγεh](1, 0) = −(1, 0) ·
[

1 −εf ′
−εf ′ 1

] [
vρ
vθ

ρ

]
(ρ,θ)=(1,0)

. (2.3)

Remark 2.1. Since γε is not continuous at the origin, even for f ∈ C1([0, 2π]),
in the sequel we replace Ωε by Ωε \ {0}, because for any periodic function f ∈
C∞([0, 2π]), we have γε ∈ C∞(Ω \ {0}).

Now, let us define ∂X := C(∂D) and the operator Vε(t) by

Vε(t)h(ω) := v(e−tγεω)
∣∣∣
∂D
, for any h ∈ ∂X, (2.4)

where v is the solution of (1.3).

Theorem 2.2. The family of the operators {Vε(t)}t≥0 defined above satisfies the
assumptions of the Chernoff’s Theorem 1.1.

Proof. For ε small enough, the eigenvalues of γε, λ = 1± εf ′(θ) are positive implies
that for any ω ∈ ∂D, we have e−tγεω ∈ D. Hence the fact that Vε(t) is a contraction
follows from the maximum principle. It is obvious that Vε(0) = I on the Banach
space ∂X. Since

D(Λγε) = {h ∈ ∂X : Λγεh ∈ ∂X},

for any h ∈ D(Λγε),
d
dtVε(t)h

∣∣∣
t=0

= −ω · γε∇v(ω) = Λγε
h. This shows that we can

apply Theorem 1.1 for the family of operators {Vε(t)}t≥0. �
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3. An example

Let us denote ∆0u = div(∇u) and ∆1u = div(f ′
[
0 1
1 0

]
∇u) in such a way that

∆γε
= ∆0 − ε∆1. Now let us define u0 and u1 such that by neglecting the terms of

order ε2, v = u0 + εu1 satisfies the system (1.2). In fact by taking u0 the solution
of the Dirichlet problem

∆0u0 = 0, in D,

u0

∣∣
∂D

= g0, on ∂D,
(3.1)

and u1 the solution of the Poisson problem
∆0u1 = ∆1u0, in D,

u1

∣∣
∂D

= g1, on ∂D.
(3.2)

Since

∆γε(u0 + εu1) = (∆0 − ε∆1)(u0 + εu1)

= ∆0u0 + ε(∆0u1 −∆1u0)− ε2∆1u1

by taking h = g0 + εg1, wε = u0 + εu1 approximates the solution of (1.2). Now by
choosing g0(θ) = cos(2θ), the solution of (1.3) will be u0(ρ, θ) = ρ2 cos(2θ), hence

Φ(ρ, θ) = ∆1u0 = div(f ′
[
0 1
1 0

]
∇u0)

= (−8f ′(θ) sin(2θ) + 2f ′′(θ) cos(2θ))

Taking f(θ) = cos(4θ) (see Figure 1), one gets Φ(ρ, θ) = −32 cos(6θ). Putting
g1(θ) = cos(6θ) in (2.3) its solution u1(ρ, θ) = ρ2 cos(6θ).

-1.0 -0.5 0.5 1.0
x

-1.0

-0.5

0.5

1.0

y

Figure 1. Ωε for f(θ) = cos(4θ) and ε = 0.1

Hence for f(θ) = cos(4θ) and h(θ) = cos(2θ) + ε cos(6θ), the function

wε(ρ, θ) = ρ2 [cos(2θ) + ε cos(6θ)] (3.3)

approximates the solution of (1.2).
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Since for f(θ) = cos(4θ),

etγε = et

[
coshψ(t) sinhψ(t))
sinhψ(t) coshψ(t)

]
,

where ψ(t) = 4εt sin(4θ). In this example the approximating family given by (2.4)
can be constructed as

[Vε(t)h](1, θ) = wε

(
e−t

[
coshψ(t) − sinhψ(t)
− sinhψ(t) coshψ(t)

] [
1
0

])
and by replacing in it in (3.3), we obtain

[Vε(t)h](1, θ)

= wε

(
e−t(coshψ(t)), e−t(− sinhψ(t))

)
=

(
e−t(coshψ(t))

)2
(

cos
[
2e−t(− sinhψ(t))

]
+ ε cos

[
6e−t(− sinhψ(t))

])
.

(3.4)

Consequently,
d

dt
[Vε(0)h](1, θ) = −2(1 + ε)

which is exactly the directional derivative obtained by the following standard for-
mula

[Λγεh](1, 0) = −(1, 0) ·
[

1 4ε sin 4θ
4ε sin 4θ 1

] [
2ρ(cos 2θ + ε cos 6θ)
ρ(−2 sin 2θ − 6ε sin 6θ)

]
(ρ,θ)=(1,0)

.

This proves that Vε(t) given by (3.4), can be used in Chernoff’s Theorem in order
to compute an approximating expression for the system (1.2).

4. Generalization to the perturbed unit sphere

Let
Ωε := {(r, θ, φ) ∈ [0, 1 + εf(θ, φ)]× [0, 2π)× [−π/2, π/2) }

be a perturbed unit sphere. Then the spherical coordinate the system (1.1) can be
written as

1
r2

∂

∂r

(
r2
∂u

∂r

)
+

1
r2 sin2 φ

∂2u

∂θ2
+

1
r2 sinφ

∂

∂φ

(
sinφ

∂u

∂φ

)
= 0, in Γε,

∂u

∂t
+
∂u

∂r
= 0, on ∂Γε,

u(0) = g, on ∂Ωε,

(4.1)

where Γε = [0,∞)× Ωε. As in Section 2, we change variables:

ρ =
r

1 + εf(θ, φ)
where θ and φ remain invariant. Then the Laplacian in the new coordinates will
be ∆ρ,θ,φ, which has a rather complicated expression, but by neglecting the terms
of order ε2, we transform ∆ρ,θ,φ to ∆(ε)

ρ,θ,φ. Our goal at this stage is to solve the
problem,

∆(ε)
ρ,θ,φv = 0, in Γ,

∂v

∂t
+
∂v

∂ρ
= 0, on ∂Γ,

v(0) = g, on ∂Ω,

(4.2)
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where Γ = [0,∞) × Ω, with Ω being the unit ball in R3. This system is still
quite complicate to be solved; so by taking N discrete values of φ, {φj := jh :
j = 1, . . . , N} with h = π/N , replacing ∂v

∂φ by (v(ρ, θ, φj+1) − v(ρ, θ, φj))/h and

replacing ∂2v
∂φ2 by (v(ρ, θ, φj+1)−2v(ρ, θ, φj)+v(ρ, θ, φj−1))/h2 we retrieve a system

of N equations of (ρ, θ) parameters, each of which has an expression as we have
already discussed in the preceding sections.

We postpone the numerical resolution of this system for a future article, with
numerical illustrations.
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