SEMICLASSICAL LIMIT OF HUSIMI FUNCTION

HASSAN EMAMIRAD AND PHILIPPE ROGEON

Abstract. We will show that Liouville and quantum Liouville operators L and L_{\hbar} generate two C_{0}-groups $\mathrm{e}^{t L}$ and $\mathrm{e}^{t L_{\hbar}}$ of isometries in $L^{2}\left(\mathbb{R}^{2 n}\right)$ and $\mathrm{e}^{t L_{\hbar}}$ converges ultraweakly to $\mathrm{e}^{t L}$. As a consequence we show that the Gaussian mollifier of the Wigner function, called Husimi function, converges in $L^{1}\left(\mathbb{R}^{2 n}\right)$ to the solution of the Liouville equation.

1. Introduction.

In the Schrödinger picture $H_{0}:=-\frac{\hbar^{2}}{2} \Delta$ and $H:=-\frac{\hbar^{2}}{2} \Delta+V$ are the free and perturbed hamiltonian operators in $L^{2}\left(\mathbb{R}^{n}\right)$, where \hbar is the Planck's constant. If φ is the solution of the corresponding Schrödinger equation

$$
\left\{\begin{array}{l}
\mathrm{i} \hbar \frac{\partial \varphi}{\partial t}=H \varphi \tag{Sch}\\
\varphi(x, 0)=\varphi_{0}(x)
\end{array}\right.
$$

It is well-known that for some potential V the operator H is self-adjoint. For example, when V satisfies the Kato conditions: $V \in L_{l o c}^{2}\left(\mathbb{R}^{n}\right), \quad V=V_{1}+V_{2}, \quad V_{1} \in$ $L^{\infty}\left(\mathbb{R}^{n}\right), \quad V_{2} \in L^{p}\left(\mathbb{R}^{n}\right), p>\max (n / 2,2)$, then $-\frac{i}{\hbar} H$ generates a unitary group $\mathrm{e}^{-\frac{\mathrm{it}}{\hbar} H}$ and

$$
\begin{equation*}
\left\|\mathrm{e}^{-\frac{\mathrm{it} t}{\hbar} H} \varphi_{0}(x)\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}=\left\|\varphi_{0}(x)\right\|_{L^{2}\left(\mathbb{R}^{n}\right)} \tag{1.1}
\end{equation*}
$$

for all $t \in \mathbb{R}$.
If we denote the Wigner transform of φ by

$$
\begin{equation*}
w:=W_{\varphi}(x, \xi)=(2 \pi)^{-n} \int_{\mathbb{R}^{n}} \mathrm{e}^{-\mathrm{i} \xi \cdot y} \varphi\left(x+\frac{\hbar y}{2}\right) \bar{\varphi}\left(x-\frac{\hbar y}{2}\right) \mathrm{d} y \tag{1.2}
\end{equation*}
$$

[^0]and if the potential $V=0$, then w will satisfy the advection equation
\[

\left\{$$
\begin{array}{l}
\frac{\partial w}{\partial t}+\xi \cdot \nabla_{x} w=0 \tag{AE}\\
w(x, \xi, 0)=w_{0} \in L^{2}\left(\mathbb{R}_{x}^{n} \times \mathbb{R}_{\xi}^{n}\right) .
\end{array}
$$\right.
\]

and if $V \neq 0$, then w will satisfy the quantum Liouville equation

$$
\left\{\begin{array}{l}
\frac{\partial w}{\partial t}+\xi \cdot \nabla_{x} w-P_{\hbar}\left(x, \nabla_{\xi}\right) w=0=\frac{\partial w}{\partial t}-L_{\hbar} w \tag{QLE}\\
w(x, \xi, 0)=w_{0}(x, \xi)=W_{\varphi_{0}} \in L^{2}\left(\mathbb{R}_{x}^{n} \times \mathbb{R}_{\xi}^{n}\right)
\end{array}\right.
$$

In this equation P_{\hbar} is a pseudo-differential operator defined either in symbolic form

$$
P_{\hbar}\left(x, \nabla_{\xi}\right)=\frac{\mathrm{i}}{\hbar}\left[V\left(x+\mathrm{i} \frac{\hbar}{2} \nabla_{\xi}\right)-V\left(x-\mathrm{i} \frac{\hbar}{2} \nabla_{\xi}\right)\right]
$$

or by

$$
P_{\hbar}\left(x, \nabla_{\xi}\right) w=k_{\hbar} * w=\int_{\mathbb{R}^{n}} k_{\hbar}(x, \xi-\eta) w(x, \eta) \mathrm{d} \eta
$$

with

$$
k_{\hbar}(x, \xi)=(2 \pi)^{-n / 2} \mathcal{F}_{y}\left[\frac{1}{\mathrm{i} \hbar}\left[V\left(x+\frac{\hbar}{2} y\right)-V\left(x-\frac{\hbar}{2} y\right)\right]\right](\xi)
$$

In [11, 10] it is proved that if $V \in H_{l o c}^{1}\left(\mathbb{R}^{n}\right) \cap L^{\infty}\left(\mathbb{R}^{n}\right)$ then (QLE) admits a solution in $L^{2}\left(\mathbb{R}_{x}^{n} \times \mathbb{R}_{\xi}^{n}\right)$ and the solution is unique if $V \in H_{l o c}^{1}\left(\mathbb{R}^{n}\right) \cap C^{2}\left(\mathbb{R}^{n}\right)$. Furthermore the mild solution of (QLE) converges weakly in $L^{2}\left(\mathbb{R}_{x}^{n} \times \mathbb{R}_{\xi}^{n}\right)$ to the weak solution of (LE). In [4] the authors proved the well-posedness of (QLE) in $L^{1}\left(\mathbb{R}_{x}^{n} \times \mathbb{R}_{\xi}^{n}\right)$ and it is proved that if $V \in H^{s}\left(\mathbb{R}^{n}\right)$ for $s>\max \{2, n / 2\}$ then the operator L_{\hbar} is a bounded perturbation of $L_{0}:=-\xi \cdot \nabla_{x}$ and generates a quasi-contractive C_{0}-group, which satisfies

$$
\left\|\mathrm{e}^{t L_{\hbar}} f\right\|_{L^{1}\left(\mathbb{R}_{x}^{n} \times \mathbb{R}_{\xi}^{n}\right)} \leq \mathrm{e}^{\delta_{\hbar}|t|}\|f\|_{L^{1}\left(\mathbb{R}_{x}^{n} \times \mathbb{R}_{\xi}^{n}\right)}
$$

where $\delta_{\hbar}=2(2 \pi)^{-n / 2} C_{\hbar}\|V\|_{H^{s}}$.
In the sequel we suppose that the potential V is such that the C_{0}-group acts on $L^{p}\left(\mathbb{R}_{x}^{n} \times \mathbb{R}_{\xi}^{n}\right)$, for $p=1$ and $p=2$. With respect to such a potential we consider the Liouville equation

$$
\left\{\begin{array}{l}
w_{t}=-\xi \cdot \nabla_{x} w+\nabla_{x} V \cdot \nabla_{\xi} w=L w \tag{LE}\\
w(x, \xi, 0)=w_{0}(x, \xi) \in L^{p}\left(\mathbb{R}_{x}^{n} \times \mathbb{R}_{\xi}^{n}\right),
\end{array}\right.
$$

which generates also a C_{0}-group $\mathrm{e}^{t L}$ in $L^{p}\left(\mathbb{R}_{x}^{n} \times \mathbb{R}_{\xi}^{n}\right)$ (see [1, Proposition 2.2]). In $L^{2}\left(\mathbb{R}_{x}^{n} \times \mathbb{R}_{\xi}^{n}\right)$ this group is unitary, since the operator L is skew-adjoint operator (see [11]). This group has also an explicit representation via Koopman formalism which asserts that

$$
\begin{equation*}
\mathrm{e}^{t L} f\left(x_{0}, \xi_{0}\right)=f(x(-t), \xi(-t)) \tag{1.3}
\end{equation*}
$$

where $(x(t), \xi(t))$ is the solution of the Hamiltonian system

$$
\begin{cases}\dot{x}=\xi, & x(0)=x_{0} \tag{HS}\\ \dot{\xi}=-\nabla_{x} V(x), & \xi(0)=\xi_{0}\end{cases}
$$

In [11] it is also shown that $\mathrm{e}^{t L_{\hbar}}$ converges weakly to $\mathrm{e}^{t L}$. In other words if w is the solution of Liouville equation (LE), then w_{\hbar} converges to w weakly in $L^{2}\left(\mathbb{R}_{x}^{n} \times \mathbb{R}_{\xi}^{n}\right)$ as $\hbar \rightarrow 0$.

In this paper we will prove that this convergence is not only in weak sense but also in ultra-weakly in $L^{2}\left(\mathbb{R}_{x}^{n} \times \mathbb{R}_{\xi}^{n}\right)$. Our proof is based on the theory of the algebras of operators on the Hilbert spaces ([3]).

In the first section we develop in an abstract manner some results which come to make use in the second section.

It is well-known that the Wigner distribution function is not positive and therefore one cannot regard that as a density distribution in statistical mechanics. For alleviating this difficulty K. Husimi proposed in [6] to take a mollifier of Wigner function which is called Husimi function and defined by $H_{\hbar}(x, \xi)=\left[G_{\hbar} * W_{\hbar}\right](x, \xi)$, where the Gaussian G_{\hbar} is

$$
\begin{equation*}
G_{\hbar}(x, \xi)=(\pi \hbar)^{-n} e^{-\left(|x|^{2}+|\xi|^{2}\right) / \hbar} \tag{1.4}
\end{equation*}
$$

Let us denote by

$$
\begin{equation*}
C_{\hbar}: f \in L^{1}\left(\mathbb{R}_{x}^{n} \times \mathbb{R}_{\xi}^{n}\right) \mapsto G_{\hbar} * f \in \mathscr{S}\left(\mathbb{R}_{x}^{n} \times \mathbb{R}_{\xi}^{n}\right) \tag{1.5}
\end{equation*}
$$

then $H_{\hbar}(x, \xi)=C_{\hbar} W_{\hbar}$. The action of C_{\hbar} on (QLE), gives a new perturbated system of (LE) called Husimi equation. The ill-posedness of the Husimi equation is already studied in [4]. In the section 3 we prove that the Husimi function H_{\hbar} converges strongly to w solution of (LE), in $L^{1}\left(\mathbb{R}_{x}^{n} \times \mathbb{R}_{\xi}^{n}\right)$. This proof is based on the result of P. Markowich and C. Ringhofer [11, Lemma 8], who prove that if the potential $V \in H_{l o c}^{1}\left(\mathbb{R}^{n}\right) \cap L^{\infty}\left(\mathbb{R}^{n}\right)$ then w_{\hbar} the mild solution of (QLE) converges weakly in $L^{2}\left(\mathbb{R}_{x}^{n} \times \mathbb{R}_{\xi}^{n}\right)$ to the weak solution of (LE), the ultraweak convergence (see definition 2.1) of $\mathrm{e}^{t L_{\hbar}}$ to $\mathrm{e}^{t L}$, as $\hbar \rightarrow 0$, together with some results of the Gaussian upper bound.

2. Ultraweak convergence of the quantum Liouville equation as $\hbar \rightarrow 0$.

Let H be a complex separable Hilbert space with scalar product (.,.) and norm $\|$.$\| . In the theory of von-Neumann algebra \mathcal{L}(H)$ designates the algebra of linear bounded operators equipped with the uniform norm $\|A\|:=\sup _{\|x\| \leq 1}\|A x\|$ and $\mathscr{I}_{1}(H)$ its *-ideal of the trace class operators with the norm

$$
\|A\|_{1}:=\sum_{i=1}^{\infty}\left|\lambda_{i}\right|
$$

where $\left|\lambda_{j}\right|$ are the singular values of A, or eigenvalues of $|A|=\sqrt{A A^{*}}$. Let $\left\{e_{i}\right\}_{i \in \mathbb{N}}$ be an orthonormal basis in H. It is clear that if $A \in \mathscr{I}_{1}(H)$ then

$$
\operatorname{Tr}(A):=\sum_{i=1}^{\infty} \lambda_{i}<\infty
$$

Since $\sum_{i=1}^{\infty}\left|\left(A e_{i}, e_{i}\right)\right|$ is independent of the choice of the orthonormal basis $\left\{e_{i}\right\}_{i \in \mathbb{N}}$, so, if we replace $\left\{e_{i}\right\}_{i \in \mathbb{N}}$ by $\left\{\varphi_{i}\right\}_{i \in \mathbb{N}}$ the orthonormal basis constituted by the eigenfunctions of $A \in \mathscr{I}_{1}(H)$, we retrieve

$$
\|A\|_{1}:=\sum_{i=1}^{\infty}\left|\left(A e_{i}, e_{i}\right)\right|
$$

Definition and Theorem 2.1. We say that the sequence of the bounded operators $\left\{A_{\alpha}\right\}$ converges ultraweakly to A and we write $A_{\alpha} \xrightarrow{u w} A$, if and only if

$$
\begin{equation*}
\lim _{\alpha} \sum_{i=1}^{\infty}\left(\left(A_{\alpha}-A\right) x_{i}, y_{i}\right)=0 \tag{2.1}
\end{equation*}
$$

for any pair of sequences $\left(x_{i}\right),\left(y_{i}\right)$ in H satisfying $\sum_{i=1}^{\infty}\left\|x_{i}\right\|^{2}+\left\|y_{i}\right\|^{2}<\infty$, which is equivalent to say that

$$
\begin{equation*}
\operatorname{Tr}\left(A_{\alpha} \rho\right) \rightarrow \operatorname{Tr}(A \rho) \tag{2.2}
\end{equation*}
$$

for any $\rho \in \mathscr{I}_{1}(H)$.
Proof. Any ρ can be represented in his orthonormal eigenfunctions basis $\left(\phi_{i}\right)$ as $\rho \phi_{i}=\lambda_{i} \phi_{i}$ and $\operatorname{Tr}\left(A_{\alpha} \rho\right)=\sum_{i=1}^{\infty}\left(A_{\alpha} \lambda_{i} \phi_{i}, \phi_{i}\right)$. If $\lambda_{i}=\left|\lambda_{i}\right| \mathrm{e}^{\mathrm{i} \theta_{i}}$, by taking $x_{i}=\sqrt{\left|\lambda_{i}\right|} \mathrm{e}^{\mathrm{i} \theta_{i} / 2} \phi_{i}$ and $y_{i}=\sqrt{\left|\lambda_{i}\right|} \mathrm{e}^{-\mathrm{i} \theta_{i} / 2} \phi_{i}$, we get

$$
\sum_{i=1}^{\infty}\left\|x_{i}\right\|^{2}+\left\|y_{i}\right\|^{2} \leq 2\|\rho\|_{1}
$$

Since $\operatorname{Tr}\left(A_{\alpha} \rho\right)=\sum_{i=1}^{\infty}\left(A_{\alpha} \lambda_{i} \phi_{i}, \phi_{i}\right)$ and $\operatorname{Tr}(A \rho)=\sum_{i=1}^{\infty}\left(A \lambda_{i} \phi_{i}, \phi_{i}\right)$, so we have (2.2).

Conversely if we suppose that (2.2) is true, then given $\left(x_{i}\right)$ and (y_{i}) satisfying $\sum_{i=1}^{\infty}\left\|x_{i}\right\|^{2}+\left\|y_{i}\right\|^{2}<\infty$, for ρ defined by $\rho x=\sum_{i=1}^{\infty}\left(x, y_{i}\right) x_{i}$, we have

$$
\begin{aligned}
\|\rho x\| & \leq \sum_{i=1}^{\infty}\left|\left(x, y_{i}\right)\right|\left\|x_{i}\right\| \\
& \leq \sum_{i=1}^{\infty}\|x\|\left\|y_{i}\right\|\left\|x_{i}\right\| \leq C\|x\|
\end{aligned}
$$

where $C^{2}=\left(\sum_{i=1}^{\infty}\left\|x_{i}\right\|^{2}\right)\left(\sum_{i=1}^{\infty}\left\|y_{i}\right\|^{2}\right)$, so we see that ρ is bounded. To show that ρ is trace class, let $\left(\psi_{j}\right)$ be any orthonormal set in H, by using the Bessel's
inequality we have

$$
\begin{aligned}
\sum_{j=1}^{n}\left|\left(\rho \psi_{j}, \psi_{j}\right)\right| & =\sum_{j=1}^{n}\left|\left(\sum_{i=1}^{\infty}\left(\psi_{j}, y_{i}\right) x_{i}, \psi_{j}\right)\right| \\
& \leq \sum_{i=1}^{\infty} \sum_{j=1}^{n}\left|\left(\psi_{j}, y_{i}\right)\right|\left|\left(x_{i}, \psi_{j}\right)\right| \\
& \leq \sum_{i=1}^{\infty} \sum_{j=1}^{n} \frac{1}{2}\left(\left|\left(\psi_{j}, y_{i}\right)\right|^{2}+\left|\left(x_{i}, \psi_{j}\right)\right|^{2}\right) \\
& \leq \sum_{i=1}^{\infty} \frac{1}{2}\left(\left\|x_{i}\right\|^{2}+\left\|y_{i}\right\|^{2}\right)
\end{aligned}
$$

which is finite and independent of n, which implies that ρ is a trace class operator on H.

Now if we replace in (2.2) $\rho \psi_{j}$ by $\sum_{i=1}^{\infty}\left(\psi_{j}, y_{i}\right) x_{i}$, we get

$$
\lim _{\alpha} \sum_{j=1}^{\infty}\left(\left(A_{\alpha}-A\right) \sum_{i=1}^{\infty}\left(\psi_{j}, y_{i}\right) x_{i}, \psi_{j}\right)=0
$$

which implies that

$$
\begin{aligned}
\lim _{\alpha} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty}\left(\psi_{j}, y_{i}\right)\left(\left(A_{\alpha}-A\right) x_{i}, \psi_{j}\right) & =\lim _{\alpha} \sum_{i=1}^{\infty}\left(\left(A_{\alpha}-A\right) x_{i}, \sum_{j=1}^{\infty}\left(y_{i}, \psi_{j}\right) \psi_{j}\right) \\
& \left.=\lim _{\alpha} \sum_{i=1}^{\infty}\left(A_{\alpha}-A\right) x_{i}, y_{i}\right)=0 .
\end{aligned}
$$

Remark 2.1. In [2], (2.2) is taken as the definition of ultraweak convergence.
Lemma 2.2. If the family $\left\{A_{\alpha}\right\}$ is uniformly bounded, then the ultraweak topology is equivalent to weak topology.

Proof. It is clear that if choose the sequences $\left\{x_{i}\right\}$ and $\left\{y_{i}\right\}$ such that $x_{1}=$ $x, y_{1}=y$, where x and y are arbitrary and $x_{i}=y_{i}=0$ for any $i \geq 2$, then (2.1) can be written as $\lim _{\alpha}\left(\left(A_{\alpha}-A\right) x, y\right)=0$ which implies the weak convergence of $\left\{A_{\alpha}\right\}$. Conversely, if $L:=\sup _{\alpha}\left\|A_{\alpha}\right\|$, for any $\varepsilon>0$ we can find an integer $N \gg 1$ such that

$$
\sum_{i \geq N}\left\|x_{i}\right\|^{2}+\left\|y_{i}\right\|^{2}<\frac{\varepsilon}{L+\|A\|}
$$

and also saying $\lim _{\alpha}\left(\left(A_{\alpha}-A\right) x, y\right)=0$ is equivalent to say that for any finite set Λ, if $\alpha \notin \Lambda$, then $\left(\left(A_{\alpha}-A\right) x_{i}, y_{i}\right)<\frac{\varepsilon}{2(N-1)}$ for all $i=1, \cdot, N-1$. So we can write
for any $\alpha \notin \Lambda$,

$$
\begin{aligned}
\sum_{i=1}^{\infty}\left(\left(A_{\alpha}-A\right) x_{i}, y_{i}\right) & =\sum_{i \leq N-1}\left(\left(A_{\alpha}-A\right) x_{i}, y_{i}\right)+\sum_{i \geq N}\left(\left(A_{\alpha}-A\right) x_{i}, y_{i}\right) \\
& \leq \frac{\varepsilon}{2}+(L+\|A\|) \sum_{i \geq N}\left\|x_{i}\right\|\left\|y_{i}\right\| \\
& \leq \frac{\varepsilon}{2}+\frac{L+\|A\|}{2} \sum_{i \geq N}\left\|x_{i}\right\|^{2}+\left\|y_{i}\right\|^{2}<\varepsilon
\end{aligned}
$$

Corollary 2.3. The group $e^{t L_{\hbar}}$ is unitary and converges ultraweakly in $L^{2}\left(\mathbb{R}_{x}^{n} \times\right.$ $\left.\mathbb{R}_{\xi}^{n}\right)$ to $e^{t L_{0}}$ as $\hbar \rightarrow 0$.

Proof. Multiplication of (QLE) by \bar{w}, integration by parts and taking the real parts of the resulting equation gives

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t} \iint_{\mathbb{R}_{x} \times \mathbb{R}_{\xi}}|w|^{2} d x d \xi+\operatorname{Re} \iint_{\mathbb{R}_{x} \times \mathbb{R}_{\xi}}\left[P_{\hbar}\left(x, \nabla_{\xi}\right) w\right] \bar{w} d x d \xi=0 . \tag{2.3}
\end{equation*}
$$

Applying the result of [11, Lemma 2] we get

$$
\iint_{\mathbb{R}_{x} \times \mathbb{R}_{\xi}}\left[P_{\hbar}\left(x, \nabla_{\xi}\right) u\right] \bar{u} d x d \xi=\iint_{\mathbb{R}_{x} \times \mathbb{R}_{\xi}}\left[P_{\hbar}\left(x, \nabla_{\xi}\right) \bar{u}\right] u d x d \xi
$$

and since by definition of $P_{\hbar}\left(x, \nabla_{\xi}\right)$ we have $P_{\hbar}\left(x, \nabla_{\xi}\right) \bar{u}=\overline{P_{\hbar}\left(x, \nabla_{\xi}\right) u}$, it follows that $\operatorname{Re} \iint_{\mathbb{R}_{x} \times \mathbb{R}_{\xi}}\left[P_{\hbar}\left(x, \nabla_{\xi}\right) w\right] \bar{w} d x d \xi=0$.

Thus, from (2.3) it follows that $\|w(., ., t)\|=\left\|w_{0}(.,).\right\|$, that is the group $e^{t L_{\hbar}}$ is unitary and for any $\hbar>0$ we have $\left\|e^{t L_{\hbar}}\right\|=1$ and the result infers from the above Lemma.

3. Husimi transformation

If we denote the solution of the Schrödinger equation (Sch) by ϕ_{\hbar} and its Wigner transform (1.2) by $W_{\varphi_{\hbar}}$, the Wigner function $W_{\varphi_{\hbar}}(x, \xi)$ is not positive for all values (x, ξ) of the phase space, in spite of the fact that

$$
\begin{equation*}
\int_{\mathbb{R}_{\xi}} W_{\varphi_{\hbar}}(x, \xi) d \xi=\mathcal{F}^{-1}\left[\mathcal{F}_{y}\left[\varphi_{\hbar}\left(x+\frac{\hbar y}{2}\right) \bar{\varphi}_{\hbar}\left(x-\frac{\hbar y}{2}\right)\right]\right](0)=\left|\varphi_{\hbar}(x)\right|^{2}>0 \tag{3.1}
\end{equation*}
$$

So, we cannot consider the Wigner function as a density function in the context of statistical mechanics. In [6], K. Husimi proposed the following procedure which ends to define a new function which is called Husimi function, which can be considered in some manner as a density function.

Define

$$
\begin{aligned}
H_{\hbar}(x, \xi, t) & =\left[W_{\varphi_{\hbar}} * G_{\hbar}\right](x, \xi, t) \\
& =\iint_{\mathbb{R}_{x}^{n} \times \mathbb{R}_{\xi}^{n}} W_{\varphi_{\hbar}}(y, \eta, t) G_{\hbar}(x-y, \xi-\eta) d y d \eta
\end{aligned}
$$

where $G_{\hbar}(x, \xi)$ is given in (1.4).
By taking $\hbar=4 t$, it is well-known that $[T(t) f](x, \xi)=\left[G_{4 t} * f\right](x, \xi)$ forms a Gaussian (or heat, or diffusion) semigroup and the strong continuity of this semigroup asserts that

$$
\begin{equation*}
\left\|G_{4 t} * f-f\right\|_{p} \rightarrow 0 \quad \text { for any } \quad f \in L^{p}\left(\mathbb{R}_{x}^{n} \times \mathbb{R}_{\xi}^{n}\right), \quad(1 \leq p<\infty) \tag{3.2}
\end{equation*}
$$

as $t \rightarrow 0$.
Lemma 3.1. For $\left(x_{0}, \xi_{0}\right)$ in phase space, define the Gabor function

$$
\psi_{x_{0}, \xi_{0}}(x)=(\pi)^{-n / 4} \mathrm{e}^{-\frac{\left|x-x_{0}\right|^{2}}{2 \hbar}} \mathrm{e}^{\mathrm{i} \xi_{0} \cdot x / \hbar}
$$

then the Wigner transform of Gabor function $W_{\psi_{x_{0}, \xi_{0}}}$ satisfies

$$
\begin{equation*}
W_{\psi_{x_{0}, \xi_{0}}}(x, \xi)=G_{\hbar}\left(x-x_{0}, \xi-\xi_{0}\right)=W_{\psi_{x, \xi}}\left(x_{0}, \xi_{0}\right) \tag{3.3}
\end{equation*}
$$

Proof. By using the expression

$$
W_{\psi_{x_{0}, \xi_{0}}}(x, \xi)=(2 \pi \hbar)^{-n} \int_{\mathbb{R}^{n}} \mathrm{e}^{-\mathrm{i}(\xi / \hbar) \cdot y} \psi_{x_{0}, \xi_{0}}\left(x+\frac{y}{2}\right) \bar{\psi}_{x_{0}, \xi_{0}}\left(x-\frac{y}{2}\right) d y
$$

we get by using the parallelogram identity

$$
\begin{aligned}
W_{\psi_{x_{0}, \xi_{0}}}(x, \xi) & =(\pi \hbar)^{-n / 2}(2 \pi \hbar)^{-n} \int_{\mathbb{R}^{n}} \mathrm{e}^{-\mathrm{i}\left(\frac{\xi-\xi_{0}}{\hbar} \cdot y\right)} \mathrm{e}^{-\left(\frac{\left|x-x_{0}\right|^{2}}{\hbar}+\frac{|y|^{2}}{4 \hbar}\right)} d y \\
& =(\pi \hbar)^{-n} \mathrm{e}^{-\left(\left|x-x_{0}\right|^{2}+\left|\xi-\xi_{0}\right|^{2}\right) / \hbar}
\end{aligned}
$$

since it is well-known that $\int_{\mathbb{R}^{n}} \mathrm{e}^{-\mathrm{i} \xi \cdot y} \mathrm{e}^{-k|y|^{2}} d y=\left(\frac{\pi}{k}\right)^{\frac{n}{2}} \mathrm{e}^{-\frac{|\xi|^{2}}{4 k}}$.
Now, let us consider the operator C_{\hbar} given in (1.5) and denote by $Q_{\hbar}\left(x, \nabla_{\xi}\right):=$ $C_{\hbar} P_{\hbar}\left(x, \nabla_{\xi}\right)$.

Theorem 3.2. The Husimi function H_{\hbar} is positive and belongs to $L^{1}\left(\mathbb{R}_{x}^{n} \times \mathbb{R}_{\xi}^{n}\right)$, further more H_{\hbar} converges in this space to $w(x, \xi)$ the solution of Liouville equation (LE), as $\hbar \rightarrow 0$.

For the proof of this Theorem we will use the following Lemma.
Lemma 3.3. Let us denote by $\chi_{k}(x, \xi, y, \eta)$ the characteristic function of $I_{k}=$ $\left\{(x, \xi, y, \eta) \in \mathbb{R}^{4 n}:(k-1)^{2} \hbar \leq|x-y|^{2}+|\xi-\eta|^{2}<k^{2} \hbar\right\}$ and

$$
g_{k}(y, \eta)=\int_{\mathbb{R}_{x}^{n} \times \mathbb{R}_{\xi}^{n}} k G_{\hbar}(x-y, \xi-\eta) \chi_{k}(x, \xi, y, \eta) d x d \xi
$$

then

$$
\begin{equation*}
\sum_{k \geq 1}\left\|g_{k}\right\|_{L^{2}\left(\mathbb{R}_{x}^{n} \times \mathbb{R}_{\xi}^{n}\right)}^{2}<\infty \tag{3.4}
\end{equation*}
$$

Proof. For the proof of this Lemma we will use the Gaussian upper bound (see [9, Chapter 7]). We remark that $G_{4 \hbar}(x-y, \xi-\eta)=p(\hbar,(x, \xi),(y, \eta))$ is the Gaussian kernel of Δ in $\mathbb{R}_{x}^{n} \times \mathbb{R}_{\xi}^{n}$ and satisfies

$$
\begin{equation*}
|p(\hbar,(x, \xi),(y, \eta))| \leq C(V((y, \eta), \sqrt{\hbar}))^{-1} \exp \left\{-c\left(\frac{|x-y|^{2}+|\xi-\eta|^{2}}{\hbar}\right)\right\} \tag{3.5}
\end{equation*}
$$

where $V((y, \eta), r)$ is the volume of the ball $B(y, \eta), r)$ centered at (y, η) of radius r in $\mathbb{R}_{x}^{n} \times \mathbb{R}_{\xi}^{n}$ (see [9, formula (7.5)]). Using the facts that

$$
\int_{\mathbb{R}_{x}^{n} \times \mathbb{R}_{\xi}^{n}} \chi_{k}(x, \xi, y, \eta) d x d \xi \leq V((y, \eta), k \sqrt{\hbar})
$$

and

$$
I_{k} \subset \bigcup_{|(y, \eta)| \leq k} \bigcup_{(x, \xi, y, \eta) \in I_{k}} B((y, \eta), k \sqrt{\hbar})
$$

it follows from (3.5) that

$$
\begin{aligned}
\sum_{k \geq 1}\left\|g_{k}\right\|_{L^{2}\left(\mathbb{R}_{x}^{n} \times \mathbb{R}_{\xi}^{n}\right)}^{2} & =\sum_{k \geq 1} \int_{\mathbb{R}_{x}^{n} \times \mathbb{R}_{\xi}^{n}}\left|\int_{\mathbb{R}_{x}^{n} \times \mathbb{R}_{\xi}^{n}} k G_{\hbar}(x-y, \xi-\eta) \chi_{k}(x, \xi, y, \eta) d x d \xi\right|^{2} d y d \eta \\
& \leq C^{2} \sum_{k \geq 1} \int_{|(y, \eta)| \leq k}\left(k \mathrm{e}^{-8 c(k-1)^{2}} \frac{V((y, \eta), k \sqrt{\hbar}))}{V((y, \eta), \sqrt{\hbar} / 2))}\right)^{2} d y d \eta
\end{aligned}
$$

since in $\mathbb{R}_{x}^{n} \times \mathbb{R}_{\xi}^{n}, V((y, \eta), r)$ is proportional to $r^{2 n}$, we get $\frac{V((y, \eta), k \sqrt{\hbar}))}{V((y, \eta), \sqrt{\hbar} / 2))} \leq C^{\prime}(2 k)^{2 n}$. This shows that

$$
\sum_{k \geq 1}\left\|g_{k}\right\|_{L^{2}\left(\mathbb{R}_{x}^{n} \times \mathbb{R}_{\xi}^{n}\right)}^{2} \leq C^{\prime \prime} \sum_{k \geq 1} k^{6 n+2} \mathrm{e}^{-8 c(k-1)^{2}}<\infty
$$

where $C^{\prime \prime}$ is a constant independent of \hbar.
Proof of Theorem 3.2. It follows from (3.1) and (3.3), that

$$
H_{\hbar}(x, \xi)=(1 / 4 \pi \hbar)^{-n}\left|\int_{\mathbb{R}^{n}} \varphi_{\hbar}(x) \overline{\psi_{x_{0}, \xi_{0}}(x)} d x\right|^{2}>0
$$

and the fact that $\left\|G_{\hbar}\right\|_{1}=1$, implies that $\left\|H_{\hbar}\right\|_{1}<\infty$ (see [4, Equation (1.19)]).

Now, in order to prove the L^{1}-convergence of H_{\hbar} toward w we will use Theorem 2.1, together with some aspects of wavelet theory. First we note that in $\left(L^{1}\left(\mathbb{R}_{x}^{n} \times \mathbb{R}_{\xi}^{n}\right),\|\cdot\|_{1}\right)$, we have

$$
\begin{equation*}
\left\|H_{\hbar}-w\right\|_{1} \leq\left\|\left(W_{\hbar}-w\right) * G_{\hbar}\right\|_{1}+\left\|G_{\hbar} * w-w\right\|_{1} . \tag{3.6}
\end{equation*}
$$

As it is showed in [1], the Koopman formalism (1.3), implies that if $w_{0} \in L^{p}\left(\mathbb{R}_{x}^{n} \times\right.$ \mathbb{R}_{ξ}^{n}), then w belongs also to $L^{p}\left(\mathbb{R}_{x}^{n} \times \mathbb{R}_{\xi}^{n}\right)$ and (3.2) holds for $p=1$, which yields to the convergence of the last term of (3.6) to zero as $\hbar \rightarrow 0$. So, it remains to prove the convergence of $\left\|\left(W_{\hbar}-w\right) * G_{\hbar}\right\|_{1}$ to zero, as $\hbar \rightarrow 0$.

Let $I_{k}=\left\{(x, \xi) \in \mathbb{R}_{x}^{n} \times \mathbb{R}_{\xi}^{n}: k-1 \leq \sqrt{|x|^{2}+|\xi|^{2}}<k\right\}$ and χ_{I} the characteristic function of I. We remark that $\sum_{k \geq 1} \chi_{I_{k}}=1$ for any $(x, \xi) \in$ $\mathbb{R}_{x}^{n} \times \mathbb{R}_{\xi}^{n}$. Let $s(x, \xi):=\mathrm{e}^{-\mathrm{i} \theta(x, \xi)}$, where $\theta(x, \xi)=\arg \left(W_{\hbar}-w\right)(x, \xi)$, so $\left[\left(W_{\hbar}-\right.\right.$ $w) s](x, \xi) \geq 0$ and $s(x, \xi) s^{*}(x, \xi)=1$. Finally by writing $W_{\hbar}-w=\left(\mathrm{e}^{t L_{\hbar}}-\mathrm{e}^{t L}\right) w_{0}$, we get

$$
\begin{aligned}
& \left\|\left(W_{\hbar}-w\right) * G_{\hbar}\right\|_{1}=\int_{\mathbb{R}_{x}^{n} \times \mathbb{R}_{\xi}^{n}}\left|\int_{\mathbb{R}_{y}^{n} \times \mathbb{R}_{\eta}^{n}}\left(\mathrm{e}^{t L_{\hbar}}-\mathrm{e}^{t L}\right) w_{0}(y, \eta) G_{\hbar}(x-y, \xi-\eta) d y d \eta\right| d x d \xi \\
& \quad \leq \int_{\mathbb{R}_{x}^{n} \times \mathbb{R}_{\xi}^{n}} \int_{\mathbb{R}_{y}^{n} \times \mathbb{R}_{\eta}^{n}}\left(\mathrm{e}^{t L_{\hbar}}-\mathrm{e}^{t L}\right) w_{0}(y, \eta) s(y, \eta)\left|s^{*}(y, \eta) G_{\hbar}(x-y, \xi-\eta)\right| d y d \eta d x d \xi \\
& \quad=\sum_{k \geq 1} \int_{\mathbb{R}_{y}^{n} \times \mathbb{R}_{\eta}^{n}}\left(\mathrm{e}^{t L_{\hbar}}-\mathrm{e}^{t L}\right) f_{k}(y, \eta) g_{k}(y, \eta) d y d \eta,
\end{aligned}
$$

where $f_{k}(y, \eta)=\frac{1}{k} w_{0}(y, \eta) s(y, \eta)$ and g_{k} defined as in Lemma 3.3.
Now, since $\mathrm{e}^{t L_{\hbar}}$ converges ultraweakly (in the sense of (2.1)) to $\mathrm{e}^{t L}$, it follows that H_{\hbar} converges in $L^{1}\left(\mathbb{R}_{x}^{n} \times \mathbb{R}_{\xi}^{n}\right)$ toward w.

References

[1] C. Bardos, Problèmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients réels, Ann. Sci. Éc. Norm. Supér. (4) 3 (1970) 185-233.
[2] E. B. Davies, Quantum Theory of Open systems. Academic Press, (1976).
[3] J. Dixmier, Les Algèbres d'Opérateurs dans l'Espace Hilbertien. Gauthier-Villars, Paris (1969).
[4] H. Emamirad and Ph. Rogeon, An existence family for the Husimi operator, Transp. Theo. Stat. Phys. 30 (2001), 673-685.
[5] H. Emamirad and Ph. Rogeon, Scattering theory for Wigner equation, Math. Meth. Appl. Sc. 28 (2005), 947-960.
[6] K. Husimi, Some formal properties of the density matrix, Proc. Phys. Math. Soc. Japan (III) 22 (1940), 464-317.
[7] P. L. Lions, Transformées de Wigner et équations de Liouville, RMA Res. Notes Appl. Math. 28 (1994), 539-553.
[8] P. L. Lions and T. Paul, Sur les mesures de Wigner, Rev. Mat. Iberoamericana 9 (1993), 553-618.
[9] E.-M. Ouhabaz, Analysis of Heat Equations on Domains, Princeton Univ. Press, Princeton, Oxford (2005).
[10] P. A. Markowich, On the Equivalence of the Schrödinger and the Quantum Liouville Equations, Math. Meth. Appl. Sci. 11 (1989), 459-469.
[11] P. A. Markowich and C. A. Ringhofer, An Analysis of the Quantum Liouville Equation, Z. angew. Math. Mech. 69 (1989), 121-127.
[12] M. Reed and B. Simon , Methods of Modern Mathematical Physics, (vol. I : Functional Analysis), Academic Press, Londres-New York-San Francisco (1975).
†Laboratoire de Mathématiques, Université de Poitiers. teleport 2, BP 179, 86960 Chassneuil du Poitou, Cedex, France
${ }^{\dagger} \dagger$ School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5746, Tehran, Iran

E-mail address: ${ }^{\dagger}$ emamirad@math.univ-poitiers.fr
E-mail address: ${ }^{\dagger}$ philippe.rogeon@univ-poitiers.fr
E-mail address: ${ }^{\dagger \dagger}$ emamirad@ipm.ir

[^0]: Date: January 14, 2012.
 1991 Mathematics Subject Classification. 47D06, 91B28.
 Key words and phrases. Wigner Transform, Husimi transform, Quantum Liouville semigroup, Ultraweak convergence.

 This research was in part supported by a grant from IPM for the first author.

