
SEMICLASSICAL LIMIT OF HUSIMI FUNCTION

HASSAN EMAMIRAD AND PHILIPPE ROGEON

Abstract. We will show that Liouville and quantum Li-
ouville operators L and L~ generate two C0-groups etL and
etL~ of isometries in L2(R2n) and etL~ converges ultraweakly
to etL. As a consequence we show that the Gaussian mollifier
of the Wigner function, called Husimi function, converges in
L1(R2n) to the solution of the Liouville equation.

1. Introduction.

In the Schrödinger picture H0 := −~2

2
∆ and H := −~2

2
∆ + V are the free and

perturbed hamiltonian operators in L2(Rn), where ~ is the Planck’s constant. If
ϕ is the solution of the corresponding Schrödinger equation

(Sch)







i~
∂ϕ

∂t
= Hϕ

ϕ(x, 0) = ϕ0(x)

It is well-known that for some potential V the operator H is self-adjoint. For ex-
ample, when V satisfies the Kato conditions: V ∈ L2

loc(R
n), V = V1 +V2, V1 ∈

L∞(Rn), V2 ∈ Lp(Rn), p > max(n/2, 2), then − i
~
H generates a unitary group

e−
it
~
H and

‖e− it
~
Hϕ0(x)‖L2(Rn) = ‖ϕ0(x)‖L2(Rn), (1.1)

for all t ∈ R.
If we denote the Wigner transform of ϕ by

w := Wϕ(x, ξ) = (2π)−n
∫

Rn

e−iξ·yϕ

(

x+
~y

2

)

ϕ

(

x− ~y

2

)

dy (1.2)
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and if the potential V = 0, then w will satisfy the advection equation

(AE)

{

∂w
∂t

+ ξ · ∇xw = 0

w(x, ξ, 0) = w0 ∈ L2(Rn
x × R

n
ξ ).

and if V 6= 0, then w will satisfy the quantum Liouville equation

(QLE)

{

∂w
∂t

+ ξ · ∇xw − P~(x,∇ξ)w = 0 = ∂w
∂t

− L~w

w(x, ξ, 0) = w0(x, ξ) = Wϕ0
∈ L2(Rn

x × R
n
ξ ).

In this equation P~ is a pseudo-differential operator defined either in symbolic
form

P~(x,∇ξ) =
i

~

[

V (x+ i
~

2
∇ξ) − V (x− i

~

2
∇ξ)

]

or by

P~(x,∇ξ)w = k~ ∗
ξ
w =

∫

Rn

k~(x, ξ − η)w(x, η)dη

with

k~(x, ξ) = (2π)−n/2Fy

[

1

i~

[

V

(

x+
~

2
y

)

− V

(

x− ~

2
y

)]]

(ξ).

In [11, 10] it is proved that if V ∈ H1
loc(R

n) ∩ L∞(Rn) then (QLE) admits a
solution in L2(Rn

x × R
n
ξ ) and the solution is unique if V ∈ H1

loc(R
n) ∩ C2(Rn).

Furthermore the mild solution of (QLE) converges weakly in L2(Rn
x×R

n
ξ ) to the

weak solution of (LE). In [4] the authors proved the well-posedness of (QLE)
in L1(Rn

x × R
n
ξ ) and it is proved that if V ∈ Hs(Rn) for s > max{2, n/2} then

the operator L~ is a bounded perturbation of L0 := −ξ · ∇x and generates a
quasi-contractive C0-group, which satisfies

‖etL~f‖L1(Rn
x×Rn

ξ
) ≤ eδ~ |t|‖f‖L1(Rn

x×Rn
ξ
)

where δ~ = 2(2π)−n/2C~‖V ‖Hs .
In the sequel we suppose that the potential V is such that the C0-group acts on

Lp(Rn
x × R

n
ξ ), for p = 1 and p = 2. With respect to such a potential we consider

the Liouville equation

(LE)

{

wt = −ξ.∇xw + ∇xV.∇ξw = Lw

w(x, ξ, 0) = w0(x, ξ) ∈ Lp(Rn
x × R

n
ξ ),

which generates also a C0-group etL in Lp(Rn
x ×R

n
ξ ) (see [1, Proposition 2.2]). In

L2(Rn
x × R

n
ξ ) this group is unitary, since the operator L is skew-adjoint operator

(see [11]). This group has also an explicit representation via Koopman formalism
which asserts that

etLf(x0, ξ0) = f(x(−t), ξ(−t)), (1.3)
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where (x(t), ξ(t)) is the solution of the Hamiltonian system

(HS)

{

�

x = ξ, x(0) = x0
�

ξ = −∇xV (x), ξ(0) = ξ0.

In [11] it is also shown that etL~ converges weakly to etL. In other words if
w is the solution of Liouville equation (LE), then w~ converges to w weakly in
L2(Rn

x × R
n
ξ ) as ~ → 0.

In this paper we will prove that this convergence is not only in weak sense but
also in ultra-weakly in L2(Rn

x × R
n
ξ ). Our proof is based on the theory of the

algebras of operators on the Hilbert spaces ([3]).
In the first section we develop in an abstract manner some results which come

to make use in the second section.
It is well-known that the Wigner distribution function is not positive and there-

fore one cannot regard that as a density distribution in statistical mechanics. For
alleviating this difficulty K. Husimi proposed in [6] to take a mollifier of Wigner
function which is called Husimi function and defined byH~(x, ξ) = [G~∗W~](x, ξ),
where the Gaussian G~ is

G~(x, ξ) = (π~)−ne−(|x|2+|ξ|2)/~ (1.4)

Let us denote by

C~ : f ∈ L1(Rn
x × R

n
ξ ) 7→ G~ ∗ f ∈ S (Rn

x × R
n
ξ ), (1.5)

then H~(x, ξ) = C~W~. The action of C~ on (QLE), gives a new perturbated
system of (LE) called Husimi equation. The ill-posedness of the Husimi equation
is already studied in [4]. In the section 3 we prove that the Husimi function H~

converges strongly to w solution of (LE), in L1(Rn
x ×R

n
ξ ). This proof is based on

the result of P. Markowich and C. Ringhofer [11, Lemma 8], who prove that if the
potential V ∈ H1

loc(R
n)∩L∞(Rn) then w~ the mild solution of (QLE) converges

weakly in L2(Rn
x × R

n
ξ ) to the weak solution of (LE), the ultraweak convergence

(see definition 2.1) of etL~ to etL, as ~ → 0, together with some results of the
Gaussian upper bound.

2. Ultraweak convergence of the quantum Liouville equation as

~ → 0.

Let H be a complex separable Hilbert space with scalar product (., .) and norm
‖.‖. In the theory of von-Neumann algebra L(H) designates the algebra of linear
bounded operators equipped with the uniform norm ‖A‖ := sup‖x‖≤1 ‖Ax‖ and
I1(H) its ∗−ideal of the trace class operators with the norm

‖A‖1 :=
∞
∑

i=1

|λi|,
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where |λj| are the singular values of A, or eigenvalues of |A| =
√
AA∗. Let {ei}i∈N

be an orthonormal basis in H. It is clear that if A ∈ I1(H) then

Tr(A) :=
∞
∑

i=1

λi <∞.

Since
∑∞

i=1 |(Aei, ei)| is independent of the choice of the orthonormal basis {ei}i∈N,
so, if we replace {ei}i∈N by {ϕi}i∈N the orthonormal basis constituted by the
eigenfunctions of A ∈ I1(H), we retrieve

‖A‖1 :=
∞
∑

i=1

|(Aei, ei)|.

Definition and Theorem 2.1. We say that the sequence of the bounded opera-

tors {Aα} converges ultraweakly to A and we write Aα
uw→ A, if and only if

lim
α

∞
∑

i=1

((Aα − A)xi, yi) = 0, (2.1)

for any pair of sequences (xi), (yi) in H satisfying
∑∞

i=1 ‖xi‖2+‖yi‖2 <∞, which

is equivalent to say that

Tr(Aαρ) → Tr(Aρ), (2.2)

for any ρ ∈ I1(H).

Proof. Any ρ can be represented in his orthonormal eigenfunctions basis
(φi) as ρφi = λiφi and Tr(Aαρ) =

∑∞
i=1(Aαλiφi, φi). If λi = |λi|eiθi , by taking

xi =
√

|λi|eiθi/2φi and yi =
√

|λi|e−iθi/2φi, we get

∞
∑

i=1

‖xi‖2 + ‖yi‖2 ≤ 2‖ρ‖1.

Since Tr(Aαρ) =
∑∞

i=1(Aαλiφi, φi) and Tr(Aρ) =
∑∞

i=1(Aλiφi, φi), so we have
(2.2).

Conversely if we suppose that (2.2) is true, then given (xi) and (yi) satisfying
∑∞

i=1 ‖xi‖2 + ‖yi‖2 <∞, for ρ defined by ρx =
∑∞

i=1(x, yi)xi, we have

‖ρx‖ ≤
∞
∑

i=1

|(x, yi)|‖xi‖

≤
∞
∑

i=1

‖x‖‖yi‖‖xi‖ ≤ C‖x‖

where C2 = (
∑∞

i=1 ‖xi‖2) (
∑∞

i=1 ‖yi‖2), so we see that ρ is bounded. To show
that ρ is trace class, let (ψj) be any orthonormal set in H, by using the Bessel’s
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inequality we have
n
∑

j=1

|(ρψj, ψj)| =
n
∑

j=1

∣

∣

∣

∣

∣

( ∞
∑

i=1

(ψj, yi)xi, ψj

)∣

∣

∣

∣

∣

≤
∞
∑

i=1

n
∑

j=1

|(ψj, yi)||(xi, ψj)|

≤
∞
∑

i=1

n
∑

j=1

1

2

(

|(ψj, yi)|2 + |(xi, ψj)|2
)

≤
∞
∑

i=1

1

2

(

‖xi‖2 + ‖yi‖2
)

which is finite and independent of n, which implies that ρ is a trace class operator
on H.

Now if we replace in (2.2) ρψj by
∑∞

i=1(ψj, yi)xi, we get

lim
α

∞
∑

j=1

(

(Aα − A)
∞
∑

i=1

(ψj, yi)xi, ψj

)

= 0,

which implies that

lim
α

∞
∑

i=1

∞
∑

j=1

(ψj, yi)((Aα − A)xi, ψj) = lim
α

∞
∑

i=1

(

(Aα − A)xi,
∞
∑

j=1

(yi, ψj)ψj

)

= lim
α

∞
∑

i=1

(Aα − A)xi, yi) = 0.

�

Remark 2.1. In [2], (2.2) is taken as the definition of ultraweak convergence.

Lemma 2.2. If the family {Aα} is uniformly bounded, then the ultraweak topology

is equivalent to weak topology.

Proof. It is clear that if choose the sequences {xi} and {yi} such that x1 =
x, y1 = y, where x and y are arbitrary and xi = yi = 0 for any i ≥ 2, then (2.1)
can be written as limα((Aα −A)x, y) = 0 which implies the weak convergence of
{Aα}. Conversely, if L := supα ‖Aα‖, for any ε > 0 we can find an integer N ≫ 1
such that

∑

i≥N
‖xi‖2 + ‖yi‖2 <

ε

L+ ‖A‖
and also saying limα((Aα−A)x, y) = 0 is equivalent to say that for any finite set
Λ, if α 6∈ Λ, then ((Aα−A)xi, yi) <

ε
2(N−1)

for all i = 1, ·, N − 1. So we can write
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for any α 6∈ Λ,

∞
∑

i=1

((Aα − A)xi, yi) =
∑

i≤N−1

((Aα − A)xi, yi) +
∑

i≥N
((Aα − A)xi, yi)

≤ ε

2
+ (L+ ‖A‖)

∑

i≥N
‖xi‖‖yi‖

≤ ε

2
+
L+ ‖A‖

2

∑

i≥N
‖xi‖2 + ‖yi‖2 < ε.

�

Corollary 2.3. The group etL~ is unitary and converges ultraweakly in L2(Rn
x ×

R
n
ξ ) to etL0 as ~ → 0.

Proof. Multiplication of (QLE) by w, integration by parts and taking the real
parts of the resulting equation gives

1

2

d

dt

∫∫

Rx×Rξ

|w|2dxdξ + Re

∫∫

Rx×Rξ

[P~(x,∇ξ)w]wdxdξ = 0. (2.3)

Applying the result of [11, Lemma 2] we get
∫∫

Rx×Rξ

[P~(x,∇ξ)u]udxdξ =

∫∫

Rx×Rξ

[P~(x,∇ξ)u]udxdξ

and since by definition of P~(x,∇ξ) we have P~(x,∇ξ)u = P~(x,∇ξ)u, it follows
that Re

∫∫

Rx×Rξ
[P~(x,∇ξ)w]wdxdξ = 0.

Thus, from (2.3) it follows that ‖w(., ., t)‖ = ‖w0(., .)‖, that is the group etL~

is unitary and for any ~ > 0 we have ‖etL~‖ = 1 and the result infers from the
above Lemma. �

3. Husimi transformation

If we denote the solution of the Schrödinger equation (Sch) by φ~ and its
Wigner transform (1.2) by Wϕ~

, the Wigner function Wϕ~
(x, ξ) is not positive for

all values (x, ξ) of the phase space, in spite of the fact that
∫

Rξ

Wϕ~
(x, ξ)dξ = F−1

[

Fy[ϕ~(x+
~y

2
)ϕ~(x−

~y

2
)]
]

(0) = |ϕ~(x)|2 > 0. (3.1)

So, we cannot consider the Wigner function as a density function in the context of
statistical mechanics. In [6], K. Husimi proposed the following procedure which
ends to define a new function which is called Husimi function, which can be
considered in some manner as a density function.
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Define

H~(x, ξ, t) = [Wϕ~
∗G~](x, ξ, t)

=

∫∫

Rn
x×Rn

ξ

Wϕ~
(y, η, t)G~(x− y, ξ − η)dydη,

where G~(x, ξ) is given in (1.4).
By taking ~ = 4t, it is well-known that [T (t)f ](x, ξ) = [G4t ∗ f ](x, ξ) forms

a Gaussian (or heat, or diffusion) semigroup and the strong continuity of this
semigroup asserts that

‖G4t ∗ f − f‖p → 0 for any f ∈ Lp(Rn
x × R

n
ξ ), (1 ≤ p <∞) (3.2)

as t→ 0.

Lemma 3.1. For (x0, ξ0) in phase space, define the Gabor function

ψx0,ξ0(x) = (π)−n/4e−
|x−x0|

2

2~ eiξ0·x/~

then the Wigner transform of Gabor function Wψx0,ξ0
satisfies

Wψx0,ξ0
(x, ξ) = G~(x− x0, ξ − ξ0) = Wψx,ξ

(x0, ξ0) (3.3)

Proof. By using the expression

Wψx0,ξ0
(x, ξ) = (2π~)−n

∫

Rn

e−i(ξ/~).yψx0,ξ0(x+
y

2
)ψx0,ξ0(x−

y

2
)dy

we get by using the parallelogram identity

Wψx0,ξ0
(x, ξ) = (π~)−n/2 (2π~)−n

∫

Rn

e−i(
ξ−ξ0

~
.y)e

−
�

|x−x0|
2

~
+

|y|2

4~

�
dy

= (π~)−n e−(|x−x0|2+|ξ−ξ0|2)/~,

since it is well-known that
∫

Rn e−iξ.ye−k|y|
2

dy =
(

π
k

)n
2 e−

|ξ|2

4k . �

Now, let us consider the operator C~ given in (1.5) and denote by Q~(x,∇ξ) :=
C~P~(x,∇ξ).

Theorem 3.2. The Husimi function H~ is positive and belongs to L1(Rn
x ×R

n
ξ ),

further more H~ converges in this space to w(x, ξ) the solution of Liouville equa-

tion (LE), as ~ → 0.

For the proof of this Theorem we will use the following Lemma.

Lemma 3.3. Let us denote by χk(x, ξ, y, η) the characteristic function of Ik =
{(x, ξ, y, η) ∈ R

4n : (k − 1)2
~ ≤ |x− y|2 + |ξ − η|2 < k2

~} and

gk(y, η) =

∫

Rn
x×Rn

ξ

kG~(x− y, ξ − η)χk(x, ξ, y, η)dxdξ
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then
∑

k≥1

‖gk‖2
L2(Rn

x×Rn
ξ
) <∞. (3.4)

Proof. For the proof of this Lemma we will use the Gaussian upper bound
(see [9, Chapter 7]). We remark that G4~(x− y, ξ − η) = p(~, (x, ξ), (y, η)) is the
Gaussian kernel of ∆ in R

n
x × R

n
ξ and satisfies

|p(~, (x, ξ), (y, η))| ≤ C(V ((y, η),
√

~))−1 exp

{

−c
( |x− y|2 + |ξ − η|2

~

)}

(3.5)

where V ((y, η), r) is the volume of the ball B(y, η), r) centered at (y, η) of radius
r in R

n
x × R

n
ξ (see [9, formula (7.5) ]). Using the facts that

∫

Rn
x×Rn

ξ

χk(x, ξ, y, η)dxdξ ≤ V ((y, η), k
√

~)

and

Ik ⊂
⋃

|(y,η)|≤k

⋃

(x,ξ,y,η)∈Ik

B((y, η), k
√

~)

it follows from (3.5) that

∑

k≥1

‖gk‖2
L2(Rn

x×Rn
ξ
) =

∑

k≥1

∫

Rn
x×Rn

ξ

∣

∣

∣

∣

∣

∫

Rn
x×Rn

ξ

kG~(x− y, ξ − η)χk(x, ξ, y, η)dxdξ

∣

∣

∣

∣

∣

2

dydη

≤ C2
∑

k≥1

∫

|(y,η)|≤k



ke−8c(k−1)2 V ((y, η), k
√

~))

V
(

(y, η),
√

~/2)
)





2

dydη,

since in R
n
x×R

n
ξ , V ((y, η), r) is proportional to r2n, we get V ((y,η),k

√
~))

V ((y,η),
√

~/2))
≤ C ′(2k)2n.

This shows that
∑

k≥1

‖gk‖2
L2(Rn

x×Rn
ξ
) ≤ C ′′

∑

k≥1

k6n+2e−8c(k−1)2 <∞,

where C ′′ is a constant independent of ~. �

Proof of Theorem 3.2. It follows from (3.1) and (3.3), that

H~(x, ξ) = (1/4π~)−n
∣

∣

∣

∣

∫

Rn

ϕ~(x)ψx0,ξ0(x)dx

∣

∣

∣

∣

2

> 0,

and the fact that ‖G~‖1 = 1, implies that ‖H~‖1 <∞ (see [4, Equation (1.19)]).
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Now, in order to prove the L1-convergence of H~ toward w we will use The-
orem 2.1, together with some aspects of wavelet theory. First we note that in
(

L1(Rn
x × R

n
ξ ), ‖ · ‖1

)

, we have

‖H~ − w‖1 ≤ ‖(W~ − w) ∗G~‖1 + ‖G~ ∗ w − w‖1. (3.6)

As it is showed in [1], the Koopman formalism (1.3), implies that if w0 ∈ Lp(Rn
x×

R
n
ξ ), then w belongs also to Lp(Rn

x × R
n
ξ ) and (3.2) holds for p = 1, which yields

to the convergence of the last term of (3.6) to zero as ~ → 0. So, it remains to
prove the convergence of ‖(W~ − w) ∗G~‖1 to zero, as ~ → 0.

Let Ik = {(x, ξ) ∈ R
n
x × R

n
ξ : k − 1 ≤

√

|x|2 + |ξ|2 < k} and χI the
characteristic function of I. We remark that

∑

k≥1 χIk = 1 for any (x, ξ) ∈
R
n
x × R

n
ξ . Let s(x, ξ) := e−iθ(x,ξ), where θ(x, ξ) = arg(W~ − w)(x, ξ), so [(W~ −

w)s](x, ξ) ≥ 0 and s(x, ξ)s∗(x, ξ) = 1. Finally by writing W~−w = (etL~ −etL)w0,
we get

‖(W~ − w) ∗G~‖1 =

∫

Rn
x×Rn

ξ

∣

∣

∣

∣

∣

∫

Rn
y×Rn

η

(etL~ − etL)w0(y, η)G~(x− y, ξ − η)dydη

∣

∣

∣

∣

∣

dxdξ

≤
∫

Rn
x×Rn

ξ

∫

Rn
y×Rn

η

(etL~ − etL)w0(y, η)s(y, η) |s∗(y, η)G~(x− y, ξ − η)| dydηdxdξ

=
∑

k≥1

∫

Rn
y×Rn

η

(etL~ − etL)fk(y, η)gk(y, η)dydη,

where fk(y, η) = 1
k
w0(y, η)s(y, η) and gk defined as in Lemma 3.3 .

Now, since etL~ converges ultraweakly (in the sense of (2.1) ) to etL, it follows
that H~ converges in L1(Rn

x × R
n
ξ ) toward w. �
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