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vard M. P. Curie, Teleport 2, BP 30179, 86962 FUTUROSCOPE, Chas-
seneuil. Cedex, France (e-mail: emamirad@math.univ-poitiers.fr)

‡Faculty of Engineering, Tehran University, P.O.Box 11365-4563 Tehran,
IRAN (heshmati@chamran.ut.ac.ir )

Abstract. This paper deals with the unilateral backward shift
operator T on a Bargmann space F (C). This space can be iden-
tified with the sequence space ℓ

2(N). We use the the hypercyclic-
ity Criterion of Bès, Chan and Seubert and the program of K.-G.
Grosse–Erdmann to give a necessary and sufficient condition in or-
der that T be a chaotic operator. The chaoticity of differentiation
which correspond to the annihilation operator in quantum radia-
tion field theory is in view, since the Bargmann space is an infinite
dimensional separable complex Hilbert space.

1. Introduction

In this paper the Bargmann space is denoted by F (C). This space has been studied
by many authors. Its roots can be found in mathematical problems of relativistic
physics (see [21]) or in quantum optics (see [16]). In physics the Bargmann space
contains the canonical coherent states, so it is the main tool for studying the bosonic
coherent state theory of radiation field (see [15] and for other application see [11]).
The space F (C) has also been discovered in the theory of the wavelets. In fact, the
Bargmann transform is a unitary map from L2(R) onto F (C) which transforms the
family of evaluation functionals at a point into canonical coherent state which are
noting but the Gabor wavelets. Since this family is not complete in L2(R), in [5]
Daubechies and Grossman have characterized its frames via Bargmann space.

The Hilbert space F (C) introduced by V. Bargmann [1, 2] is the space of entire
functions equipped with the inner product

(f, g) =

∫

C

f(z)g(z)dµ(z),
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and the norm ‖f‖ =
√

(f, f), where dµ(z) = π−1e−z·zdxdy, (z = x + iy), is the
Gaussian measure on C. A straightforward computation leads that

(zk, zk′

) =

{
0, for k 6= k′

k!, for k = k′.

This implies that ek = zk/
√

k! establishes an orthonormal basis in F (C). Related to

this basis we can say that a function f belongs to F (C) iff f(z) =
∑

k≥0 ck
zk√
k!

with
∑

k≥0 |ck|2 < ∞ and the Parseval identity implies that

‖f‖2 =
∑

k≥0

|ck|2. (1.1)

In the last decade it has been observed that chaotic behaviour in sense of Devaney
[7] can occur in some infinite-dimensional space for a linear operator. A continuous
linear operator T on a topological vector space X is called hypercyclic if there exists a
vector x ∈ X whose orbit {T nx |n = 0, 1, · · · } is dense in X. A periodic point for T is
a vector x ∈ X such that T nx = x for some n ∈ N. Finally, T is said to be chaotic if
it is hypercyclic and its set of periodic points is dense in X.

Examples of hypercyclic operators have been previously reported in [4, 12, 13, 17, 19,
20]. In [4], Birkhoff showed the hypercyclicity of the operator of translation on the space
H(C) of entire functions equipped with topology of local uniform convergence, while
MacLane’s result was on the hypercyclicity of the differentiation operator Df = f ′ on
H(C). Although F (C) ⊂ H(C), the differentiation operator D is not continuous on
the Bargmann space F (C). The same is true on the Hardy space H2. Motivated by
this result, Bès, Chan and Seubert have defined in [3] the notion of hypercyclicity and
chaos for an unbounded operator as follows:

Definition 1.1. Let X be a separable infinite dimensional Banach space. An un-

bounded densely defined operator A : X 7→ X is called hypercyclic if there is a vector

f ∈ X whose orbit under A; orb(A, f) := {f,Af,A2f, · · · }, is densely defined in X,

Every such vector f is called hypercyclic vector for A. If there exist an integer N ∈ N

and a vector f ∈ D(AN ) such that ANf = f , such vector is called periodic and the

operator A is said to be chaotic if it has both sets of periodic points and hypercyclic

vectors.

It is clear that if the unbounded operator A is hypercyclic then D(A∞) :=
⋂∞

n=0 D(An)
which contains orb(A, f) is also dense. In [6], one can find a similar definition, where
there are two different Banach spaces X and Y and A : X 7→ Y .

The identity (1.1) identifies the Bargmann space F (C) with the sequence space ℓ2(N).
Since any unilateral weighted backward shifts operator T : F (C) 7→ F (C),

T




∑

k≥0

ck
zk

√
k!


 =

∑

k≥0

ωkck+1
zk

√
k!

(1.2)

can be identified with

T̃ (ck)k∈N = (ωkck+1)k∈N, (1.3)



CHAOTIC WEIGHTED SHIFTS IN BARGMANN SPACE 3

It is clear that by assuming the following condition on the weight sequence {ωk}:
sup
k∈N

|ωk| ≤ M, (1.4)

the operator T (resp. T̃ ) becomes continuous in F (C) (resp. in ℓ2(N)). In [20], H.
Salas has shown the following result:

Lemma 1.2. Let T̃ be a positively weighted backward shift on ℓ2(N) defined by (1.3)

with (1.4). Then T̃ is hypercyclic if and only if there is an increasing sequence (nk) of

positive integers such that the weight sequence {ωk} satisfies

nk∏

n=1

ωn → ∞ (1.5)

as nk → ∞.

This result is generalized by K.-G. Grosse-Erdmann in [13] in the following terms:

Lemma 1.3. Let T̃ be a weighted backward shift on a Fréchet-sequence space X in

which (en)n∈N is an unconditional basis. Then the following assertions are equivalent:

(i) T̃ is chaotic;

(ii) T̃ has a non-trivial periodic point;

(iii) the series
∞∑

n=1

(

n∏

k=1

ωk)
−1en (1.6)

converges in X.

One of the aims of [13] was to apply the above lemma to the differentiation operator
Df = f ′ on H(C) the space of entire functions, endowed with the topology of uniform
convergence on compact subsets and retrieve the result of G. Godefroy and J. H. Shapiro
[12], which asserts that D is a chaotic operator on H(C). Our aim in this paper is to
extend the above result to the unbounded weighted shifts for establishing a necessary
and sufficient condition in order that a such operator to be hypercyclic or chaotic on the
Bargmann space. As a corollary one can retrieve the chaoticity of the differentiation
operator on F (C).

For achieving this end we have to use a Hypercyclicity Criterion for unbounded
operators. Such a criterion has been already provided by Bès, Chan and Seubert [3] in
the following terms.

Theorem 1.4. Let X be a separable infinite dimensional Banach space and let A be

a densely defined linear operator on X for which An is closed for any n ∈ N. Then A
is hypercyclic if there exist a dense subset D ⊂ D(A) and a mapping B : D 7→ D such

that

(i) AB = ID the identity map of D, and

(ii) An, Bn → 0 pointwise on D.

By using the above Criterion we will prove in the section 3 the following theorem.

Theorem 1.5. Let T be a linear unbounded backward shift operator on F (C). Then

the following assertions are equivalent:
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(i) T is chaotic;

(ii) T has a non-trivial periodic point;

(iii) the positive series
∞∑

n=1

n−1∏

j=0

1

|ωj|2
, (1.7)

converges.

This theorem implies that the differentiation is a chaotic unbounded operator in
F (C).

2. Hypercyclicity of unbounded backward shift in Bargmann space

Let {ωn}n∈N be an arbitrary weight sequence, we define the iterated unbounded
backward shift T n in Bargmann space by

T n




∑

k≥0

ck
zk

√
k!


 =

∑

k≥0




n+k−1∏

j=k

ωj


 cn+k

zk

√
k!

(2.1)

with its domain in F (C).

D(T n) := {f(z) =
∑

k≥0

ck
zk

√
k!

;
∑

k≥0

|ck|2 < ∞ and
∑

k≥0

∣∣∣∣∣∣

m+k−1∏

j=k

ωj

∣∣∣∣∣∣

2

|ck+m|2 < ∞},

(2.2)
for all m ∈ N, 1 ≤ m ≤ n.

Lemma 2.1. The subspace D(T∞) :=
⋂

n≥0 D(T n) is dense in F (C).

Proof. Since ek(z) := zk/
√

k! is the complete orthonormal basis in F (C) and each
ek ∈ D(T∞), this implies that D(T∞) is dense in F (C). �

This Lemma legitimates the research of hypercyclicity of the unbounded operator T
in the framework of Definition 1.1.

Lemma 2.2. Assume |ωk| is a nondecreasing sequence which tends to infinity as k →
∞. Then the spectrum of T is the whole complex plane.

Proof. Let λ be an arbitrary complex number and

ϕλ(z) =
∑

k≥0




k−1∏

j=0

λ

ωj


 zk

√
k!

.

For 1 < α < 1, choose n ∈ N enough large such that |λ| ≤ α|ωN | and write

∑

k≥0

k−1∏

j=0

∣∣∣∣
λ

ωj

∣∣∣∣
2

=

N∑

k=0

k−1∏

j=0

∣∣∣∣
λ

ωj

∣∣∣∣
2

+

∞∑

k=N+1

k−1∏

j=0

∣∣∣∣
λ

ωj

∣∣∣∣
2

≤
N∑

k=0

k−1∏

j=0

∣∣∣∣
λ

ωj

∣∣∣∣
2

+ (
1

1 − α
)

N∏

j=0

∣∣∣∣
λ

ωj

∣∣∣∣
2

< ∞.
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Hence ϕλ ∈ F (C) and

Tϕλ(z) =
∑

k≥0

ωk




k∏

j=0

λ

ωj


 zk

√
k!

= λ
∑

k≥0




k−1∏

j=0

λ

ωj


 zk

√
k!

= λϕλ(z)

shows that λ is an eigenvalue for T . �

In order to use the hypercyclicity criterion (Theorem 1.4) we have to ensure that
for each n ∈ N , the operator T n is closed. The above Lemma show that the resolvent
set of the operator T can be empty and we cannot use the fact that every power of a
closed unbounded operator with a nonempty resolvent set must be closed (see [10, p.
602]). So to prove this assertion we have to proceed in a direct manner.

Lemma 2.3. For each n ∈ N, the operator T n defined by (2.1) and (2.2) is closed.

Proof. Let {(fj, T
nfj)} be a sequence in the graph of T n which converges to a

point (f∗, g∗) in F (C) × F (C). Since F (C) is a Hilbert space, each coefficients ck,j of

fj(z) =
∑

k≥0 ck,j
zk√
k!

converges to the coefficient c∗k of f∗(z) =
∑

k≥0 c∗k
zk√
k!

, as j → ∞.

Hence 


n+k−1∏

j=k

ωj


 cn+k,j →




n+k−1∏

j=k

ωj


 c∗n+k.

On the other hand, since T nfj converges to g∗,



n+k−1∏

j=k

ωj


 cn+k,j → d∗k

where g∗(z) =
∑

k≥0 d∗k
zk√
k!

, we can conclude that dk =
(∏n+k−1

j=k ωj

)
c∗n+k. This proves

that f∗ ∈ D(T n) and T nf∗ = g∗. �

Theorem 2.4. A linear unbounded backward shift operator T : F (C) 7→ F (C) is

hypercyclic if and only if there is an increasing sequence (nk) of positive integers such

that
nk∏

j=0

|ωj| → ∞ as nk → ∞. (2.3)

Proof. For the necessary part of the proof we use a simplified version of Salas’
argument. Assume that T is hypercyclic. Since the set of hypercyclic vectors for T is
dense, then for a δk enough small there is a hypercyclic vector f ∈ D(T∞) for T such
that

‖f − 1‖ < δk (2.4)

and there is also an arbitrarily large nk ∈ N, such that

‖T nkf − 1‖ < δk (2.5)
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Now if f(z) =
∑

j≥0 cj
zj√
j!

, the inequality (2.4) implies that |cj | < δk for all j ≥ 1 and by

taking the inner product of (2.1) with 1, (2.5) implies that |
(∏nk−1

j=0 ωj

)
cnk

− 1| < δk.

This in turn implies

nk−1∏

j=0

|ωj | > (1 − δk)/|cnk
| > (1 − δk)/δk

By choosing δk enough small we see that the condition (2.3) is necessary if T is hyper-
cyclic.

For the sufficient part of the proof we will use the Hypercyclicity Criterion stated
in Theorem 1.4. The closedness of T n is already proved in Lemma 2.3. Take as D the
linear subspace generated by finite combinations of the canonical basis {zk/

√
k!}. As

Lemma 2.1 D is dense in F (C) and we can define the pseudo-inverse of T on D by

S




∑

0≤k≤n

ck
zk

√
k!


 =

∑

1≤k≤n+1

ck−1

ωk−1

zk

√
k!

.

Since T (zk/
√

k!) = ωk−1z
k−1/

√
(k − 1)!, for n > k,T n(zk/

√
k!) = 0 and any element

of D can be annihilated by a finite power of T . On the other hand, according to (2.3),

Snk(zk/
√

k!) =




nk+k∏

j=k

ωj




−1

zk+nk/
√

(k + nk)! → 0 as n → ∞

in F (C). In fact, as it is noted in [3], Theorem 1.4 actually holds when the entire
sequence of positive intergers in Hypothesis (ii) is replaced by a subsequence of positive
integers. With this we have proved all the assumptions of Theorem 1.4. �

Corollary 2.5. The operator of differentiation D : f 7→ f ′ defined on D(D) := {f ∈
F (C) : f ′ ∈ F (C)} is hypercyclic on F (C).

Proof. It is enough to remark that

D




∑

k≥0

ck
zk

√
k!


 =

∑

k≥0

√
k + 1ck+1

zk

√
k!

and ωk =
√

k + 1 satisfies the assumption (2.3). �

Remark 2.6. This Corollary is already established by Bès, Chan and Seubert in the
Hardy space H2 (see [3, Corollary 2.3]). In the next section we go further and we prove
that the operator of differentiation is even chaotic in F (C).

3. The proof of Theorem 1.5

(i) ⇒ (ii) is trivial.
(ii) ⇒ (iii). Since

TN




∑

k≥0

ck
zk

√
k!


 =

∑

k≥0




N+k−1∏

j=k

ωj


 cN+k

zk

√
k!
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if there exists N ∈ N such that TNf = f , then



N+k−1∏

j=k

ωj


 cN+k = ck, for any k ≥ 0.

This implies that for any l = 0, 1, · · · , N − 1 and any k ≥ 1

ckN+l =




kN+l−1∏

j=l

1

ωj


 cl. (3.1)

Now let us decompose the series
∑∞

n=1

∏n−1
j=0

1
|ωj |2 as follows

∞∑

n=1

n−1∏

j=0

1

|ωj|2
=

∑N

l=1

1
∏l−1

j=0 |ωj |2


1 +

∞∑

k=1

kN−1+l∏

j=l

1

|ωj|2


 . (3.2)

Since for any l = 0, 1, · · · , N − 1, the series
∑∞

k=1 c2
kN+l converges, the series (3.2) also

converges.
(iii) ⇒ (i). If the series (1.7) converges, the product

∏n−1
j=0

1
|ωj |2 has to tend to zero,

which is equivalent to (2.3). Thus T is hypercyclic. We shall now show that T has a
dense periodic points.

First we remark that with cl =
∏l−1

j=0
1
ωj

the identity (3.1) holds. Hence for any

integers ν ≥ 0 and N ≥ ν,

gν,N (z) :=
zν

√
ν!

+

∞∑

k=1




kN+ν−1∏

j=ν

1

ωj


 zkN+ν

√
(kN + ν)!

(3.3)

is a N–periodic point for T . Due to (1.7) gν,N ∈ F (C). We have also to show that

gν,N ∈ D(TN ). In (3.3), we have only the terms kN + ν, thus from (2.2) the series

∞∑

k=0

(k+1)N+ν−1∏

j=kN+ν

|ωj|2|c(k+1)N+ν |2

should be finite. Since ckN+ν = (
∏kN+ν−1

j=ν
1
ωj

) this series is equal

∞∑

k=0

kN+ν−1∏

j=ν

|ωj|−2

which under condition (iii) converges.
We shall now show that T has a dense set of periodic points. To see this, it suffices to

show that for every element f in the dense subspace D, defined in the proof of Theorem
2.4, there is a periodic point g arbitrarily close to it. Let f(z) :=

∑m
ν=0 cνz

ν/
√

ν! and
ε > 0. We can assume without loss of generality that

∣∣∣∣∣∣
cν

ν−1∏

j=0

ωj

∣∣∣∣∣∣
≤ 1 for ν = 0, 1, · · · ,m. (3.4)
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Furthermore the condition (1.7) implies that the series
∑

k≥0

(∏k
j=0

1
ωj

)
zk√
k!

converges,

which in turn implies the existence of an N ≥ m such that
∥∥∥∥∥∥

∑

k≥N+1

εk




k∏

j=0

1

ωj


 zk

√
k!

∥∥∥∥∥∥
<

ε

m + 1
(3.5)

for every sequence (εk) taking values 0 or 1. One can choose the periodic point for T
as g(z) :=

∑m
ν=0 cνgν,N (z). With this choice

‖g − f‖ =

∥∥∥∥∥

m∑

ν=0

cν

(
gν,N (z) − zν

√
ν!

)∥∥∥∥∥

=

∥∥∥∥∥∥

m∑

ν=0


cν

ν−1∏

j=0

ωj




∞∑

k=1




kN+ν−1∏

j=0

1

ωj


 zkN+ν

√
(kN + ν)!

∥∥∥∥∥∥

≤
m∑

ν=0

∥∥∥∥∥∥

∞∑

k=1




kN+ν−1∏

j=0

1

ωj


 zkN+ν

√
(kN + ν)!

∥∥∥∥∥∥
by (3.4)

< ε by (3.5).

This achieves the proof of the Theorem.

4. Chaoticity of the annihilation operator

In bosonic coherent state theory of radiation field, if the physical coordinates and
momentum are measured in standard units (

√
~/mω ≡ 1 for the position variable x

and
√

~mω ≡ 1 for the momentum d
dx), the one-dimensional oscillator hamiltonian can

be expressed by H = 2(A†A + AA†), where A† and A given by

A† =
1√
2

(
x − d

dx

)
and A =

1√
2

(
x +

d

dx

)

are the creation and annihilation operators. The particularities of these operators lie
in the fact that for the orthogonal basis of the Hilbert space H := L2(R), φn(x) =

π−1/4(en n!)−1/2 e−x2/2 Hn(x), where Hn(x) is the n-th order Hermite polynomial, one
has

A†φn =
√

n + 1φn+1 and Aφn =
√

nφn−1. (4.1)

In [14], Gulisashvili and MacCluer have shown that the annihilation operator A is
chaotic in the Fréchet space

E :=

{
φ ∈ H | φ =

∞∑

n=0

cnφn, with

∞∑

n=0

|cn|2(n + 1)ℓ < ∞ for all ℓ ∈ N
∗

}
.

The choice of such space comes from the fact that the operator A is not bounded in
H, but as it is mentioned in [1] by complexification, the natural space for creation and
annihilation operators would be the Bargmann space F (C). In fact, in this space the

orthogonal basis is φn(z) := zn/
√

n! and the creation and annihilation operators are
multiplication and differentiation

A† : ϕ(z) 7→ zϕ(z) and A : ϕ(z) 7→ dϕ(z)/dz.
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It is clear that for these operators the relations (4.1) are fulfilled.

Corollary 4.1. The annihilation operator A : f 7→ f ′ = df/dz defined on D(A) :=
{f ∈ F (C) : f ′ ∈ F (C)} is chaotic on F (C).

Proof. As we have seen in Corollary 2.5, for the operator A = D we have ωk =√
k + 1 which satisfies the assumption (1.7). �

5. Conclusion

In [14] Gulisashvili and MacCluer have given a nice interpretation of the chaotic-
ity of annihilation operator in the performance of nanomachinary (see [9]). In fact,
the interconnection of a nanosystem can be conceived as the iteration of the annihi-
lation operator and by the laws of thermodynamics, the closed system will gradually
decay from order to chaos, tending toward maximum entropy. Here we want to give
another interpretation: The relationship between chaos and irreversibility occurs in
many domains of sciences. In nonequilibrium statistical mechanics this is discussed in
chapters 7 and 8 of [8]. In the chapter 11 of [18] the emergence of irreversibility and
quantum chaos is elucidated. In L2(R) space the irreversibility of annihilation operator
can be considered as the loss of informations on the states of particles, but since in
the Bargmann space this operator can be identified with the differentiation, hence the
irreversibility is much more apparent. In fact, the differentiation is not invertible or is
invertible modulo a constant.
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