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CHAOTIC SOLUTION FOR THE BLACK-SCHOLES EQUATION

HASSAN EMAMIRAD, GISÈLE RUIZ GOLDSTEIN, AND JEROME A. GOLDSTEIN

(Communicated by Thomas Schlumprecht)

Abstract. The Black-Scholes semigroup is studied on spaces of continuous
functions on (0,∞) which may grow at both 0 and at ∞, which is important
since the standard initial value is an unbounded function. We prove that in
the Banach spaces

Y s,τ := {u ∈ C((0,∞)) : lim
x→∞

u(x)

1 + xs
= 0, lim

x→0

u(x)

1 + x−τ
= 0}

with norm ‖u‖Y s,τ = sup
x>0

∣
∣
∣

u(x)

(1+xs)(1+x−τ )

∣
∣
∣ < ∞, the Black-Scholes semigroup

is strongly continuous and chaotic for s > 1, τ ≥ 0 with sν > 1, where
√
2ν is

the volatility. The proof relies on the Godefroy-Shapiro hypercyclicity criterion.

1. Introduction

In [B-S], F. Black and M. Scholes proved that under certain assumptions about
the market, the value of a stock option, as a function of the current value of the
underlying asset x ∈ R+ = [0,+∞) and time, u(x, t), satisfies the final value
problem

(BS)

⎧⎪⎨
⎪⎩

∂u
∂t = − 1

2σ
2x2 ∂2u

∂x2 − rx∂u
∂x + ru in R+ × [0, T ];

u(0, t) = 0 for t ∈ [0, T ];

u(x, T ) = (x− p)+ for x ∈ R
+,

where p > 0 represents a given strike price, σ > 0 is the volatility and r > 0 is the
interest rate.

Let v(x, t) = u(x, T − t). Then v satisfies the forward Black-Scholes equation,
which is a parabolic problem, defined for all time t ∈ R+ by

(FBS)

⎧⎪⎨
⎪⎩

∂v
∂t = 1

2σ
2x2 ∂2v

∂x2 + rx ∂v
∂x − rv in R+ × R+;

v(0, t) = 0 for t ∈ R+;

v(x, 0) = f(x) for x ∈ R+.

Strictly speaking, the condition t ∈ R+ should have been written as 0 ≤ t ≤ T.
But once one notes that, there is no problem considering all nonnegative values of
time.
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In (FBS) we have

(1.1) f(x) = (x− p)+ =

{
x− p if x > p,

0 if x ≤ p,

but for the time being we prefer to consider f merely as an arbitrary given function.
Later we shall deal with (1.1). In order to put the (FBS) problem in an abstract

form, let us denote by Dν = νx d
dx , where ν = σ/

√
2, and let

(1.2) B = D2
ν + γDν − rI = ν2C1 + C2,

with γ = r/ν − ν, C1 := x2 d2

dx2 = D2
1 −D1 and C2 := rD1 − rI. Then (FBS) can

be written as

(AFBS)

⎧⎪⎨
⎪⎩
dv/dt = Bv,
v(0, t) = 0,

v(x, 0) = f(x) for x ∈ R+.

For European call options, Cruz-Báez and González-Rodŕıguez [C-G1] and
Arendt and de Pagter [AdP] showed that (FBS) is governed by a C0-semigroup on
a suitable Banach space. In [C-G2] the authors have generalized [C-G1] to Amer-
ican call options, a topic of interest in mathematical finance. But by working in
the context of a contraction semigroup, these authors could not consider the issue
of chaos. Recently, [GMR] gave a simple explicit representation of the solution of
(FBS), and this representation holds in the spaces Y s,τ considered here.

2. Multiplicative (C0) semigroups on the weighted space

For representing the Black-Scholes semigroup, we begin by introducing the trans-
lation on the multiplication group of positive numbers, G = ((0,∞), ·). We do this
now and we postpone the Black-Scholes semigroup to Section 3.

Let μ be the Haar measure on G and suppose τ = {τt : t ∈ R} is the group of
translations on G. Thus dμ = dx

x , and τt(x) = etx, for x > 0, t ∈ R.
Let s, τ ≥ 0 and let C(0,∞) be the space of all complex continuous functions on

(0,∞). Define

Y s,τ := {u ∈ C(0,∞) : lim
x→0

u(x)

1 + x−τ
= lim

x→∞

u(x)

1 + xs
= 0},

with norm

‖u‖s,τ = sup
x>0

∣∣∣∣ u(x)

(1 + x−τ )(1 + xs)

∣∣∣∣ < ∞.

These are Banach spaces.
Fix ν ∈ R\{0}. Define the translation group with parameter ν, Sν := {Sν(t) :

t ∈ R} on Y s,τ , by

(Sν(t)f)(x) = etDνf(x) = f(τνt(x))

for f ∈ Y s,τ , x ∈ G and t ∈ R. Since τt+s = τtτs for all t, s ∈ R, Sν forms a
one-parameter group on each Y s,τ . Let Dν be its infinitesimal operator in the sense
of Hille, that is,

Dνf =
d

dt
Sν(t)f |t=0

for all f for which this limit exists in Y s,τ ; call this set D(Dν). Then f ∈ D(Dν)
requires that x → f(x) and x → xf(x) are both in Y s,τ . Below we will establish
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the strong continuity and characterize D(Dν) = D(D1) in Y s,τ for s ≥ 1, τ ≥ 0.
The spaces Y s,τ are Banach spaces, for all s ≥ 0, τ ≥ 0.

Let M(0,∞) be the set of all finite complex Borel measures on (0,∞). Any
ψ ∈ M(0,∞) can be written as

(2.1) ψ = Re(ψ) + i Im(ψ) =

4∑
j=1

cjPj

where each Pj is a probability measure on (0,∞) and the scalars cj satisfy Re(ψ) =
(Reψ)+ − (Reψ)− = ψ1 − ψ2, with ψ1 = c1P1 and ψ2 = −c2P2, and c1, c2 ≥ 0.
In the same way Im(ψ) = (Imψ)+ − (Imψ)− = ψ3 − ψ4, with iψ3 = c3P3 and
iψ4 = −c4P4, and −ic3,−ic4 ≥ 0, and Pj is uniquely determined for each j for
which cj 	= 0. We also define ψ ∈ Mloc(0,∞) to mean that for any n ∈ N, the
restriction of ψ to Borel subsets of [ 1n , n] is a finite complex Borel measure ψn

satisfying

ψn = Reψn + i Imψn

= (Reψn)+ − (Reψn)− + i[(Imψn)+ − (Imψn)−].

Let ξn denote any one of (Reψn)±, (Imψn)±. Then each such ξn determines
uniquely a σ-finite Borel measure on (0,∞) via

ξ(A) = lim
n→∞

ξn(A ∩ [
1

n
, n])

for all Borel sets A ⊂ [0,∞]. In this sense we can view (Reψ)±, (Imψ)± as measures
in a certain sense. Note that the set functions ψ = (Reψ)+− (Reψ)−+i[(Imψ)+−
(Imψ)−] ∈ Mloc(0,∞) are not in general complex measures, but nevertheless we
can treat them locally (away from 0 and ∞) as if they were complex measures by
using ψn for n ∈ N.

We begin our study of Y s,τ with the case of s = 0, τ = 0. Note that

Y 0,0 = C0(0,∞),

the continuous complex functions on (0,∞), which vanish at both 0 and ∞, with
the norm

‖u‖0,0 =
1

4
‖u‖∞

for u ∈ Y 0,0. Note that the constant function 1 is in Y s,τ if and only if s > 0, τ > 0.
By the Riesz Representation Theorem, the dual space of Y 0,0 = ((C0(0,∞), ‖·‖0,0)
can be identified with M(0,∞) with the norm

‖ψ‖ = 4TV (ψ) = 4

4∑
j=1

|cj |

when cj is as in (2.1), and TV means total variation. The identification is made by
mapping u ∈ Y 0,0 and ψ ∈ M(0,∞) to

〈u, ψ〉 =
∫
(0,∞)

u(x)ψ(dx).

We shall write
∫∞
0

in place of
∫
(0,∞)

.

One may view Y 0,0 as {u ∈ C[0,∞] : u(0) = u(∞) = 0}, the continuous func-
tions on the compact interval [0,∞], which vanish at both 0 and ∞. Similarly,
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M(0,∞) may be viewed as the finite complex Borel measures ψ on [0,∞] satisfy-
ing ψ({0,∞}) = 0.

We next recall a well-known fact.

Lemma 2.1. Let U : X → Y be an isometric isomorphism between Banach spaces.
Then U∗ : Y ∗ → X∗ is also an isometric isomorphism between their dual spaces.

Let

Cc := Cc(0,∞) = {u ∈ C(0,∞) : u has compact support in (0,∞)}.

Then Cc is dense in Y s,τ for all s, τ ≥ 0. Let u ∈ Cc. Then u ∈ C0(ε, 1/ε) for some
ε > 0. Let ϕ ∈ M([ε, 1/ε]) be a finite complex measure on [ε, 1/ε], which is the
dual space of C[ε, 1/ε]. Then if ψ ∈ (Y s,τ )∗, we have 〈u, ψ〉 =

∫∞
0

u(x)ϕ(dx) for
some ϕ as above. We extend ϕ by requiring that ϕ(A) = 0 for all Borel subsets A
of [0, ε] ∪ [1/ε,∞] . For this ϕ, define χ by

χ(dx) = (1 + xs)(1 + x−τ )ϕ(dx).

Then for u ∈ Y s,τ , u = Us,τv for a unique v ∈ Y 0,0, and

〈u, ψ〉 :=
∫ ∞

0

u(x)ψ(dx) =

∫ ∞

0

(
u(x)

(1 + xs)(1 + x−τ )

)(
(1 + xs)(1 + x−τ )ψ(dx)

)
= 〈4Us,τu,

1

4
χ〉 = 〈Us,τu, χ〉 = 〈v, χ〉 = 〈u, U∗

s,τχ〉,

since u ∈ Cc, which is dense in Y a,b for all a, b > 0. Here Us,τ is the U of Lemma 2.1
corresponding to X = Ys,τ . Let

Zs,τ := {ψ ∈ Mloc(0,∞) : χ(dx) := (1+ xs)(1+x−τ )ψ(dx) defines χ ∈ M(0,∞)}

for s, τ ≥ 0. Then (2.2) below holds for ψ ∈ Zs,τ and ψ = U∗
s,τχ for a unique

χ ∈ M(0,∞), that is, ψ ∈ Y ∗
s,τ , and conversely. Thus we have proved that Zs,τ

can be identified with (Y s,τ )∗ for all s, τ ≥ 0. We restate this now proved result as
follows.

Lemma 2.2. For s, τ ≥ 0, the dual space of Y s,τ is
(2.2)
(Y s,τ )∗ = {ϕ ∈ Mloc((0,∞)) : η(dx) := (1+xs)−1(1+x−τ )−1ϕ(dx) ∈ M((0,∞))}.

Let us define the space Ss,τ := {f ∈ C1(0,∞) ∩ Y s,τ : f ′ ∈ L∞(0,∞)}. In
order to prove that Sν is a (C0) group on Y s,τ , we need the following lemma.

Lemma 2.3. The space Ss,τ is dense in Y s,τ for all s, τ ≥ 0.

Proof. Note that the map

f(x)

4
−→ f(x)

(1 + xs)(1 + x−τ )

is an isometric isomorphism from Y 0,0 onto Y s,τ which leaves invariant C∞
c (0,∞),

the smooth functions with compact support in (0,∞). Therefore C∞
c (0,∞) and

Ss,τ are both dense in Y s,τ since C∞
c (0,∞) is dense in Y 0,0. �

Theorem 2.4. The family Sν forms a (C0) group on Y s,τ for each s ≥ 1 and
τ ≥ 0.
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Proof. First we note that the constant function 1 belongs to Y s,τ if and only if s,
τ are both positive. Next, we observe that for f ∈ Y s,τ and t ∈ R,

‖Sν(t)f‖s,τ = sup
x>0

|f(eνtx)|
(1 + xs)(1 + x−τ )

= sup
y>0

∣∣∣∣ |f(y)|
(1 + [e−νty]s)(1 + [e−νty]−τ )

∣∣∣∣ .
Suppose tν > 0. Then

‖Sν(t)f‖s,τ ≤ eνts sup
y>0

|f(y)|
(1 + ys)(1 + y−τ )

= eνts‖f‖s,τ .

For tν ≤ 0, we have

‖Sν(t)f‖s,τ = sup
y>0

∣∣∣∣ |f(y)|
(1 + [e−νty]s)(1 + [e−νty]−τ )

∣∣∣∣
≤ e|νt|τ sup

y>0

|f(y)|
(1 + ys)(1 + y−τ )

= e|νt|τ‖f‖s,τ .

Thus Sν(t) : Y
s,τ �→ Y s,τ and ‖Sν(t)‖ ≤ eω|t|, ω = |ν|max{s, τ}.

Thanks to Lemma 2.3, it is enough to show the strong continuity on Ss,τ . In
fact, for any f ∈ Ss,τ , choose χ ∈ C∞(0,∞) such that χ(x) = 0 for 0 ≤ x ≤ 1, χ
is increasing on (1, 2), and χ(x) = 1 for x ≥ 2.

Let f1 = fχ, f2 = f(1 − χ). Then f1, f2 ∈ Ss,τ , suppf1 ⊂ (1,∞), suppf2 ⊂
(0, 2), and f1 + f2 = f . Now for f1,

‖Sν(t)f1 − f1‖s,τ = sup
x≥1

|f1(eνtx)− f1(x)|
(1 + xs)(1 + x−τ )

≤ ‖f ′
1‖∞ sup

x≥1

|eνtx− x|
1 + xs

≤ ‖f ′
1‖∞|eνt − 1| → 0, as t → 0+ since s ≥ 1.

For f2, we have

‖Sν(t)f2 − f2‖s,τ ≤ ‖f ′
2‖∞ sup

0<x<2

|eνtx− x|
1 + x−τ

≤ 2τ+1

1 + 2τ
‖f ′

2‖∞|eνt − 1| → 0,

as t → 0+, and this proves the theorem. �

In the sequel we will need the following result, which is proved in [G1] and [deL,
Theorem 11].

Lemma 2.5. Suppose iA generates a strongly continuous group. Let p(t) = t2n +
q(t), where q is a polynomial of degree less than 2n. Then −p(A) generates a
holomorphic (C0) semigroup of angle π/2.

Take A = −iDν , so that iA generates a strongly continuous group on X = Y s,τ

and take p(t) = t2 − iγt+ r. Hence we have the following result.

Theorem 2.6. The operator B defined in (1.2) generates a holomorphic (C0) semi-
group of angle π/2 on any Y s,τ , where s ≥ 1, τ ≥ 0.
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3. The chaotic character of the Black-Scholes semigroup

Let X be a separable complex Banach space.

Definition 3.1. A strongly continuous semigroup (or (C0) semigroup) T = {T (t) :
t ≥ 0} of bounded linear operators on X is called hypercyclic if there exists a vector
x ∈ X such that its orbit {T (t)x : t ≥ 0} is dense in X, and T is called chaotic if
in addition the set of periodic points of T ,

Pper := {x ∈ X : there exists t0 > 0 such that T (t0)x = x},

is dense in X.

The notion of chaotic (C0) semigroups was introduced independently by Mac-
Cluer [McC] and Protopopescu and Azmy [P-A]; the first systematic study of
this concept is due to Desch, Schappacher and Webb [DSW]. So far, several spe-
cific examples of hypercyclic (C0) semigroups have come up in the literature (see
[GE1, GE2] for complete citations).

The following lemma is proved by G. Godefroy and J. Shapiro in [G-S, Corol-
lary 1.5].

Lemma 3.2. Suppose A is a linear bounded operator on a Banach space X, Q1, Q2

are dense subsets of X and Z : Q1 �→ Q1 such that

(1) AZy = y, for all y ∈ Q1,
(2) limn→∞ Zny = 0, for all y ∈ Q1 and
(3) limn→∞ Anw = 0, for all w ∈ Q2.

Then A is hypercyclic.

Let s > 1/ν, where ν > 0 is given. Denote by

(3.1) Ss = {λ ∈ C : 0 < Reλ < νs}

the open strip in C and let hλ(x) = xλ. This function is well-defined in R+ for any
λ ∈ Ss.

Lemma 3.3. The function λ �→ hλ(x) is analytic from Ss into Y s,τ for each
sν > 1 and τ ≥ 0.

Proof. Note that when τ = 0, any ψ ∈ M(0,∞) cannot have an atom at 0 and
1 /∈ Y s,0. Now, since weak analyticity is equivalent to analyticity, we have only to
prove that

λ �→
∫
(0,∞)

h(x, λ)ψ(dx)

is analytic for any ψ ∈ F , where F is a norm-determining subset of (Y s,τ )∗. The
norm-determining set we use is

F := {cδx : c ∈ C, x ∈ (0,∞)},

where δx denotes the Dirac point mass measure at x. Note that

‖f‖s,τ = sup {|cf(x)| = |〈f, ψ〉| : ψ = cδx, c ∈ C, x ∈ (0,∞), ‖ψ‖(Y s,τ )∗ = 1},
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and a choice of c that works above is c = [(1+xs)(1+x−τ )]−1, when the supremum
defining the norm of f is a maximum attained at x. Furthermore

λ �→ xλ = e(ln x)λ = 〈hλ(x), δx〉

is an entire function of λ ∈ C for all x > 0; and for λ ∈ Ss and x > 0, limx→∞ xλ/
(1 + xs) = 0. Hence xλ ∈ Y s,τ for all τ > 0. �

If a linear operator L generates a (C0) group on a Banach space X, then some
polynomials in L (such as L2 + αL + βI for arbitrary scalars α, β) generate (C0)
semigroups on X. For the operator B, defined in (1.2), the Black-Scholes semigroup
can be represented by T (t) := f(Dν), where

(3.2) f(z) = etg(z) with g(z) = z2 + γz − r.

According to Theorem 2.6 this (C0) semigroup is well defined for each t ∈ C,
with Re(t) > 0. These operators will be shown to be chaotic on X = Y s,τ for
s > 1, τ ≥ 0 when sν > 1. We begin by recalling the following lemma, which was
proved in [DSW] and [dL-E], and we reproduce this proof in our case.

Lemma 3.4. Suppose that there exists a set Ω ⊂ Ss which has an accumulation
point in Ss. Then

Q := Span{hλ : λ ∈ Ω}

is dense in Y s,τ for s > 1, τ ≥ 0.

Proof. Suppose ψ ∈ Q⊥. Since ψ belongs to the dual of Y s,τ and hλ = xλ ∈ Y s,τ ,
Lemma 3.3 asserts that p(λ) = 〈ψ, xλ〉 is well defined and p(λ) is analytic in Ss.
Since p(λ) = 0 for all λ ∈ Ω, which is a set with an accumulation point, then p = 0
in all of Ss and so ψ = 0, as desired. �

We continue to work in the spaces Y s,τ , s > 1, τ ≥ 0 with sν > 1.

Lemma 3.5. Let D be the unit disk in C and T, the unit circle, be its boundary.
The set f(Ss) ∩ T is nonempty and possesses infinitely many accumulation points
in the strip Ss, where f is as in (3.2).

Proof. For f(z) = etg(z) with t > 0, in order to have f(Ss) ∩ T 	= ∅ we must find
z ∈ Ss such that

Re g(z) = Re(ν2z2 + (r − ν2)z − r) = ν2(x2 − y20 − x) + rx− r = 0

with z = x + iy0. Equivalently, we must find (x, y0) with 0 < x < νs, y0 ∈ R such
that

(3.3) x2 + (
r

ν2
− 1)x− r

ν2
= y20 .
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x

y

1 νs

− 2r
σ2

− 2r
σ2

C

Figure 1

Call C the curve represented by the graph of the quadratic function y = x2+
( r
ν2 − 1)x − r

ν2 . As Figure 1 shows, for 1 < x < νs, there are uncountably many
points (x, y) on the dashed portion of C with y > 0. For each such point let
y0 =

√
y. Then this gives uncountably many solutions of (3.3). �

Now we can prove our main theorem.

Theorem 3.6. The Black-Scholes (C0) semigroup T is chaotic in Y s,τ for each
s > 1, τ ≥ 0 with sν > 1.

Proof. First let us prove that the (C0) semigroup T = {T (t) = f(Dν) = etB : t ≥
0} is hypercyclic. For this we will use Lemma 3.2, taking

Ω1 = {λ ∈ 1

ν
Ss : |f(νλ)| > 1}, Ω2 = {λ ∈ 1

ν
Ss : |f(νλ)| < 1}

and

Qj := Span{hλ : λ ∈ Ωj} for j = 1, 2.

Now, let z0 ∈ f(Ss) ∩ T, since f is holomorphic and nonconstant, f(Ss) is an open
set, and Ω1 = f(Ss) ∩ {z ∈ C : |z| > 1} and Ω2 = f(Ss) ∩ {z ∈ C : |z| < 1}
are also open, and any point in Ωj is an accumulation point. So according to
Lemma 3.4, Qj is dense in Y s,τ for j = 1, 2.

Let A = f(Dν) and define Z = (f(Dν))
−1 on Q1 so that

Z

(
N∑

k=1

αkhλk

)
=

N∑
k=1

αk (f(νλk))
−1

hλk

for λk ∈ Ω1, αk ∈ C and N ∈ N. It is clear that for any y =
∑N

k=1 αkhλk
∈ Q1, we

have AZy = y. Furthermore for λk ∈ Ω1, |f(νλk)| > 1, and consequently

lim
n→∞

Zny = lim
n→∞

N∑
k=1

αk (f(νλk))
−n hλk

= 0.
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Finally, for w =
∑N

k=1 αkhλk
∈ Q2 with |f(νλk)| < 1 for each k,

lim
n→∞

Any = lim
n→∞

N∑
k=1

αkf(νλk)
nhλk

(x) = 0.

These imply that the hypotheses of the Godefroy-Shapiro Lemma 3.2 are satisfied
and A is hypercyclic.

To see that T (t) = f(Dν) is chaotic, we define Ω3 = {λ ∈ 1
νSs : f(νλ) ∈ e2πiQ}

and Q3 := Span{hλ : λ ∈ Ω3}. Q3 is contained in the set of all periodic points

of A = f(Dν). Suppose f(νλk) = e2πink/mk . Then for y =
∑N

k=1 αkhλk
and

m =
∏N

k=1 mk, one has f(Dν)
my = y. So the set of all periodic points Pper of

f(Dν) is dense, and consequently T (t) is chaotic. �

The real-world applications of (FBS) require nonnegative initial data and non-
negative solutions. The above proof that the Black-Scholes semigroup T is chaotic
uses holomorphic functions and thus requires the use of spaces of complex-valued
functions. Theorem 3.6 would be more satisfying from an applied standpoint if it
were valid for real functions. This is precisely the content of the next result.

Let Y s,τ
R be the real functions in Y s,τ . This is a real Banach space. If f ∈ Y s,τ ,

then by [GMR, eq. (17)], the solution of (FBS) is given by

v(x, t) = (T (t)f)(x) = (4πt)−1/2

∫ ∞

−∞
e−y2/(4t)f

(
xe(r−σ2/2)t−(σ/

√
2)y

)
dy.

Thus T (t)f is real (resp., nonnegative) for each t ≥ 0 if and only if f is real (resp.
nonnegative). Let ST be the restriction of T to Y s,τ

R . Then ST = {ST (t) : t ≥ 0}
is a (C0) semigroup on Y s,τ

R for s ≥ 1, τ ≥ 0.

Theorem 3.7. The semigroup ST on Y s,τ
R is chaotic if s > 1 and τ ≥ 0 when

sν > 1.

Proof. Let f ∈ Y s,τ be given, where s > 1 with sν > 1, and τ ≥ 0. Let g ∈ Y s,τ

have a dense T−orbit. Then there is a sequence of times tn → ∞ such that
‖T (tn)g − f‖s,τ → 0 as n → ∞. Consequently, since Re(T (t)h) = T (t)(Re(h)) for
all h ∈ Y s,τ ,

‖ST (tn)(Re(g))− f)‖s,τ ≤
∥∥∥√[ST (tn)(Re(g))− f ]2 + [ST (tn)(Im(g))]2

∥∥∥
s,τ

= ‖[Re(T (tn)g − f ] + i[Im(T (tn)g)]‖s,τ
= ‖T (tn)g − f‖s,τ → 0

as n → ∞. It follows that ST is hypercyclic.
Next, if f is periodic of period p, then so are Re(f) and Im(f). Thus ST has a

dense set of periodic points since T does. The theorem follows. �
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