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Abstract. The first aim of this paper is to illustrate numer-
ically that the Dirichlet-to-Neumann semigroup represented
by P. Lax acts as a magnifying glass. In this perspective, we
used the finite element method for the discretization of the
correspondent boundary dynamical system using the implicit
and explicit Euler schemes. We prove by using the Cher-
noff’s Theorem that the implicit and explicit Euler methods
converge to the exact solution and we use the (P1)-finite el-
ements to illustrate this convergence through a FreeFem++
implementation which provides a movie available online. In
the Dirichlet-to-Neumann semigroup represented by P. Lax
the conductivity γ is the identity matrix In, but for an other
conductivity γ, the authors of [3] supplied an estimation of
the operator norm of the difference between the Dirichlet-to-
Neumann operator Λγ and Λ1, when γ = βIn and β = 1
near the boundary ∂Ω (see Lemma 2.1). We will use this
result to estimate the accuracy between the correspondent
Dirichlet-to-Neumann semigroup and the Lax semigroup, for
f ∈ H1/2(∂Ω).

1. Introduction.

The semigroup character of a magnifying glass is intuitively quite obvious.
From an optical point of view, the magnifying glass has to leave the viewing
object unchanged if we look at it from a zero distance, while if we look at it from
a distance t, and then from a distance s, it is as if we looked at it from a distance
t+ s. That is the semigroup character of a magnifying glass. Surprisingly, in his
book [10, 36.2], P. Lax constructs an example of a (C0) semigroup who acts in
the same way. He takes the Banach space X = C(Sn−1), the space of continuous
functions f on the n−1 dimensional unit sphere or X the Hilbert space L2(Sn−1).
For each such function f there is a uniquely determined harmonic function u,
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called the harmonic lifting of f in the n-dimensional unit ball B which satisfies
the following system:

{

∆u = 0, in B,

u(ω) = f(ω), ω in Sn−1.
(1.1)

The Lax semigroup is defined by

e−tΛ1f(ω) = u(e−tω) for ω ∈ Sn−1. (1.2)

In [10, 36.2 Theorem 1] it is shown that e−tΛ1 forms a compact (C0) semigroup
on X. Furthermore if u is the harmonic lifting of f , then

lim
t→∞

‖e−tΛ1f − u(0)‖X = 0. (1.3)

In fact for any f ∈ X = C(Sn−1), 1.3 is clear, since u is uniformly continuous.
For f ∈ X = L2(Sn−1), we can take for simplicity n = 2 and the Fourier series
expansion of f . The unique harmonic lifting of f in Sn−1 can be expressed as

u(r, θ) =
a0
2

+
∞
∑

k=1

rk(ak cos kθ + bk sin kθ).

By replacing the Fourier coefficients by their integral expressions

ak =
1

π

∫ 2π

0

f(φ) cos kφdφ, bk =
1

π

∫ 2π

0

f(φ) sin kφdφ

and using the identity

1 + 2
∞
∑

k=1

rk cos k(θ − φ) =
1− r2

1− 2r cos(θ − φ) + r2

we get the Poisson integral expression of u

u(r, θ) =
1

2π

∫ 2π

0

1− r2

1− 2r cos(θ − φ) + r2
f(φ)dφ.

Since u(0) = 1
2π

∫ 2π

0
f(φ)dφ, we get

∫ 2π

0

|u(e−t, θ)− u(0)|2dθ =

∫ 2π

0

∣

∣

∣

∣

1

2π

∫ 2π

0

2e−t(cos(θ − φ)− e−t)

1− 2e−t cos(θ − φ) + e−2t
f(φ)dφ

∣

∣

∣

∣

2

dθ.

Now, for any ε > 0 and any (θ, φ) ∈ [0, 2π]2, we can take t large enough such that
∣

∣

∣

2e−t(cos(θ−φ)−e−t)
1−2e−t cos(θ−φ)+e−2t

∣

∣

∣
< ε. Consequently, by using the Cauchy-Schwarz inequality,
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one has

‖e−tΛ1f − u(0)‖2X =

∫ 2π

0

|u(e−t, θ)− u(0)|2dθ

≤
ε

2π

∫ 2π

0

(
∫ 2π

0

|f(φ)|dφ

)2

dθ ≤ 2πε

∫ 2π

0

|f(φ)|2dφ,

which proves (1.3).
In each stage of the convergence (1.3), if we take ft(x) = u(e−tx) as a function

on the boundary, then according to the semigroup law e−sΛ1ft(x) = u(e−(t+s)x),
this is just like taking a magnifying glass and going to the center of the disc. For
visualization of this phenomena compare the Figures 1, 2 and 3, which present
the Lax semigroup at time t = 0, t = 0.5 and t = 2. At the end of the paper an
internet address supplies the movie of this phenomena.

In [4], the authors showed that the Lax semigroup is in fact the Dirichlet-to-
Neumann (DtN) semigroup, when the domain Ω is the ball B and the conductivity
matrix, which will be defined later, is the identity matrix. To see this let us define
the DtN semigroup in its whole generality as in [7]. We consider a bounded
smooth domain Ω ⊂ Rn, and γ an n× n symmetric matrix with smooth (for the
simplicity of the exposition we take γ ∈ C∞(Ω)) real elements in Ω which has
uniformly bounded positive eigenvalues, i.e., there exists 0 < c1 < c2 such that
for every x ∈ Ω and ξ ∈ Rn,

c1‖ξ‖
2 ≤ ξTγ(x)ξ ≤ c2‖ξ‖

2.

This matrix is known as the electrical conductivity. Let X := L2(Ω) or C(Ω) and
let the corresponding boundary space be ∂X := C(∂Ω) or L2(∂Ω). We solve the
following Dirichlet problem

{

∇ · (γ∇u) = 0, in Ω,

u = f, on ∂Ω.
(1.4)

For any f ∈ ∂X, we write u = Lγf . Such a function is called the γ-harmonic
lifting of f and Lγ the γ-harmonic lifting operator. The function u represents the
electrical potential where this potential on the surface of the substance is f and
the substance is in electrical equilibrium. Now define the action of the generalized
DtN operator on f as the normal outward derivative of u on the boundary, i.e.,

Λγf := (ν.γ∇u)|∂Ω.

In other words, we define Λγ := ν(y) · γ∇Lγ where ν(y) is the unit outer normal
vector at y ∈ ∂Ω, and Λγ is called the DtN operator. In the simplest case where
γ is the identity matrix, we denote these operators by L1, the harmonic lifting
operator, and Λ1, the corresponding DtN operator.
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We consider Λγ as an unbounded operator on ∂X with the domain,

D(Λγ) = {f ∈ ∂X : Λγf ∈ ∂X}.

See [1, 6, 12] for various properties of this domain. The operator −Λγ generates an
analytic compact semigroup of contractions on these spaces, C(∂Ω) and L2(∂Ω).
This semigroup can be identified as the trace of the solution to the following
problem with dynamical boundary conditions:











∇ · (γ∇u(t, ·)) = 0, for every t ∈ R+, in Ω,

∂tu+ ν · γ∇u = 0, for every t ∈ R+, on ∂Ω,

u(0, ·) = f, on ∂Ω.

(1.5)

In fact, by taking the trace of this solution (see [1] for uniqueness) and denoting
it by u(t, x)

∣

∣

∂Ω
, we can also define the DtN semigroup as,

e−tΛγf := u(t, x)
∣

∣

∂Ω
, for every f ∈ ∂X.

It is easy to see that the L2(∂Ω) version of Λγ is selfadjoint and nonpositive,
and hence Λγ generates also an analytic semigroup of maximal angle π/2. Further
properties such as contraction, compactness, positivity, irreducibility and Markov
character of e−tΛγ can be found in [12] and [4]. In [7], J. Escher showed that the
operator Λγ generates also in C(∂Ω) an analytic semigroup of some positive angle
θ.

In the sequel, we are particularly interested in the case where γ is the identity
matrix In, so u will satisfy the following system.











∆u(t, ·) = 0, for every t ∈ R+, in Ω,

∂tu+ ν · ∇u = 0, for every t ∈ R+, on ∂Ω,

u(0, ·) = f, on ∂Ω.

(1.6)

In this case K.-J. Engel [6] showed that θ = π/2 even for the C(Ω) version of Λγ.
This proves that for Ω = B, we get (1.1) and in this case the DtN semigroup is
the one given by (1.2). The main advantage of the Lax representation is that it
is only necessary to solve the problem (1.1) in order to calculate the action of the
semigroup in all times. In [5], it is shown that the Lax representation is optimal
in the sense that for γ = In, the domain Ω should be a ball in Rn.

The first aim of this paper is to illustrate numerically the action of the Lax
semigroup and perhaps this permits to have an overview of the above open ques-
tion. For achieving this, we used the finite element method for the discretization
of (1.5). The program is performed by FreeFem++ language (see [9]). This
discretization is accomplished by using the implicit Euler scheme for the general
case; i.e. γ is not a constant multiple of the identity matrix but a function β
times the identity matrix. Thus, we have also to resolve the problem of accuracy.
Since for β = 1 in whole B we have an explicit representation of the semigroup,
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it is convenient to consider a net βα which converges to 1 as α → 0 and to check
the numerical accuracy.

In [3], it is written that, although the following result may be considered well-
known, due to lack of a suitable reference we present a full proof for the reader’s
convenience. In this result the authors show that if the conductivity γ = βIn
with β = 1 near the boundary then one can estimate ‖Λγ − Λ1‖L(H1/2(∂Ω),Hs(∂Ω))

with respect to ‖β − 1‖L∞(Ω). In the next section we cite again this result and
we use it in order to compare Λ1 with the general Dirichlet-to-Neumann operator
with β = 1 near the boundary; this estimation implies a strong estimation in
∂X norm for the difference between e−tΛγ and e−tΛ1 which directly depends on
‖β − 1‖L∞(Ω). As a consequence of this result, theoretically, the closer β is to 1,
the closer e−tΛγ is to e−tΛ1 . This shows the geometrical effects of the conductivity
on the structure of the Dirichlet-to-Neumann semigroup.

The third section is divided into three parts. The first part is devoted to the
Euler implicit scheme for our problem. To prove the convergence we construct
an approximating family {V (t)}t≥0 and we use the Chernoff’s product formula in
order to theoretically prove the convergence in L2(∂Ω). Contrary to the explicit
formulation (see [5, section 4]), here we do not have an explicit representation of
V (t). So we explicitly construct its left-inverse W (t) and we define V (t) as the
right-inverse of W (t). After proving the convergence, we use the finite element
method via its variational formulation in order to numerically solve this problem.
The second subsection is devoted to the explicit Euler scheme and we show why
this method cannot be resolved by its variational formulation. Finally, in sec-
tion 3.3, we consider an initial-boundary condition example which has a known
harmonic lifting and we construct via Lax representation the solution at time
t = 0.5. Then we define a conductivity function γα = βαIn such that βα → 1,
when α → 0 and we numerically illustrate that in this case e−tΛγ → e−tΛ1 .

2. Comparison of the semigroups.

In this section we show that if γ = βIn and β = 1 in a neighborhood of ∂Ω,
then for 0 ≤ t ≤ T and any f ∈ H1/2(∂Ω) we have

‖e−tΛγf − e−tΛ1f‖L2(∂Ω) ≤ CT‖β − 1‖L∞(Ω),

where the constant CT depends on T , f and the constant C in (2.1). The proof
of this estimation is a straightforward consequence of the following lemma which
has been proved in [3].

Lemma 2.1. Let β ∈ C∞(Ω) be a positive conductivity satisfying β = 1 near
∂Ω, then for all s ∈ R, the following estimate holds

‖Λγ − Λ1‖L(H1/2(∂Ω),Hs(∂Ω)) ≤ C‖β − 1‖L∞(Ω), (2.1)
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where the constant C depends on s, Ω, the ellipticity constant of γ and the support
of β − 1.

Now we are able to prove the main theorem of this section.

Theorem 2.1. For β = 1 near ∂Ω such that β ∈ C∞(Ω) and f ∈ H1/2(∂Ω),
there exists a constant CT depending on the ellipticity constant of γ, f and T
such that

‖e−tΛγf − e−tΛ1f‖L2(∂Ω) ≤ CT‖β − 1‖L∞(Ω),

for all t ∈ [0, T ].

Proof. One can readily write

e−tΛγf − e−tΛ1f =

∫ t

0

d

ds
(e(s−t)Λ1e−sΛγf)ds

=

∫ t

0

e(s−t)Λ1(Λ1 − Λγ)e
−sΛγfds

Since the semigroups e−tΛγ and e−tΛ1 are the analytic and contraction semi-
groups, then for any f ∈ H1/2(∂Ω) we have e−tΛγf ∈ H1/2(∂Ω) and we get :

‖e−tΛγf − e−tΛ1f‖L2(∂Ω) ≤

∫ t

0

‖(Λ1 − Λγ)e
−sΛγf‖L2(∂Ω)ds

≤ CT‖β − 1‖L∞(Ω)

where CT = CMT , with

MT = sup
t∈[0,T ]

∫ t

0

‖e−sΛγf‖H1/2(∂Ω)ds.

�

3. Numerical results

Here we are going to approximate the Dirichlet-to-Neumann semigroup by
means of Chernoff’s Theorem. Let us recall this Theorem which is proved in [2].

Theorem 3.1 (Chernoff’s product formula). Let X be a Banach space and
{V (t)}t≥0 be a family of contractions on X with V (0) = I. Suppose that the
derivative V ′(0)f exists for all f in a set D and that the closure Λ of V ′(0)

∣

∣

D

generates a (C0) semigroup S(t) of contractions. Then, for each f ∈ X,

lim
n→∞

V
( t

n

)n

f = S(t)f,

uniformly for t in compact subsets of R+.
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This procedure was achieved in [4] by choosing the approximating family
[V (t)f ](x) = u(e−tγ(x)x), where |x| = 1 and Ω = {x ∈ Rn : |x| < 1}. In [5]
the approximation family {V (t)}t≥0 is chosen for the Euler explicit scheme, with

V (t)f(x) =

{

(1− α)u(x) + αu(x− α−1tγ(x)ν(x)), 0 ≤ t ≤ αT,

V (αT )f(x), t > αT,
(3.1)

where u = Lγf and x ∈ ∂Ω. By using Theorem 3.1, it is proved that the following
Euler explicit scheme

(EES)











div(γ∇um+1) = 0 in Ω,
1
∆t

(um+1 − um) + ∂um

∂νγ
= 0 on ∂Ω,

u0 = f on ∂Ω.

converges to the solution of the problem (1.5).
For the Euler implicit scheme one can provide a variational formulation pro-

grammable in finite element method of the problem.
For this purpose we replace the time derivative by

∂u

∂t
(m∆t, x) ≃

1

∆t

(

um+1(x)− um(x)
)

, for x ∈ ∂Ω, and m = 0, · · · , [T/∆t],

where um(x) = u(m∆t, x). So, the Euler implicit scheme for the discrete bound-
ary dynamical system can be written as

(EIS)











div(γ∇um+1) = 0 in Ω,
1
∆t

(um+1 − um) + ∂um+1

∂νγ
= 0 on ∂Ω,

u0 = f on ∂Ω.

Since any x with |x| = 1 belongs to ∂Ω, we have

∂um+1

∂νγ
≈

um+1(x)− um+1(x−∆xγ(x)x)

∆x
. (3.2)

By replacing (3.2) in (EIS), we get
(

1 +
∆t

∆x

)

um+1(x)−
∆t

∆x
um+1(x−∆xγ(x)x) = um(x). (3.3)

Now let 0 < α ≤ 1 be a parameter. Since β(x) ≥ C−1 everywhere x ∈ ∂Ω,
there exists T > 0 such that for all t ≤ T , we have x − tγ(x)ν(x) ∈ Ω. We may
construct a family of operators in L (L2(∂Ω)) as follows. Set

W (t)f(x) =

{

(1 + α)u(x)− αu(x− α−1tγ(x)ν(x)), 0 ≤ t ≤ αT,

W (αT )f(x), t > αT,
(3.4)
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where u is the γ-harmonic lifting of f . By taking α = ∆t
∆x

we can write (3.3) as

W (∆t)um+1(x) = um(x). (3.5)

Now we define the family V (t) as the inverse of W (t) in the following sense

W (t)V (t)f(x) = f(x), (3.6)

and we show that V (t) satisfies all the assumptions of Chernoff’s product formula
in X = L2(∂Ω) with ‖.‖ = ‖.‖L2(∂Ω).

(1) V (0)f = f . Since for any x ∈ ∂Ω, we have W (0)f(x) = u(x) = f(x),

(3.6) shows

f(x) = W (0)V (0)f(x) = V (0)f(x).

(2) V ′(0)f = −Λγf . The derivative of W (t) with respect to t is

W ′(t)f = ∇u(x− α−1tγ(x)x)γ(x)x

and at point t = 0 we have W ′(0)f = Λγf . Furthermore, the derivative of
(3.6) gives W ′(t)V (t) +W (t)V ′(t) = 0 and its evaluation at t = 0, yields
Λγf + V ′(0)f = 0.

(3) V (t) is of contraction. Let us first retrieve a lower bound for W (t) in

L2(∂Ω). In fact

‖W (t)f‖2 =

∫

∂Ω

∣

∣u(x) + α
(

u(x)− u(x− α−1tγ(x)x)
)
∣

∣

2
dσ.

Since (u(x)− u(x− α−1tγ(x)x)) /α−1 is an approximation of the normal
derivative ∂u/∂νγ , so according to Hopf’s Lemma (see [8]), this term is
positive and consequently
∫

∂Ω

∣

∣u(x) + α
(

u(x)− u(x− α−1tγ(x)x)
)
∣

∣

2
dσ ≥

∫

∂Ω

|u(x)|2 dσ

which implies that ‖W (t)f‖ ≥ ‖f‖. This implies that ‖f‖ = ‖W (t)V (t)f‖ ≥
‖V (t)f‖.

So we have proved that V (t) satisfies all the assumptions of Chernoff’s prod-
uct formula and consequently the implicit Euler scheme converges to its exact
solution.

The variational formulation of this problem can be obtained by multiplying
both sides of the dynamic boundary condition by a test function v and by using
the divergence theorem, we get

∫

Ω

γ∇um+1∇vdx−

∫

∂Ω

γ
∂um+1

∂n
vdσ = 0,

that is
∫

Ω

∆tγ∇um+1∇vdx+

∫

∂Ω

um+1v −

∫

∂Ω

umvdσ = 0, (3.7)
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which is of the form
a(um+1, v) = ℓ(v),

where

a(um+1, v) =

∫

Ω

∆tγ∇um+1∇vdx+

∫

∂Ω

um+1vdσ

is the bilinear form with the unknown of the problem um+1 and

ℓ(v) =

∫

∂Ω

umvdσ

is a linear form. This variational formulation can be resolved by finite elements
implemented in FreeFem++ and the result is illustrated in the following subsec-
tion.

3.1. Numerical illustration. We begin by taking the initial function h(x, y) =
x2 + y on the boundary. The Dirichlet problem

{

∆u = 0, in Ω

u = h, on ∂Ω

admits a unique solution u(x, y) = h(x, y)− g(x, y), where g(x, y) = (x2+ y2−
1)/2. Since g = 0 on the boundary of Ω, ∆h = 2 and ∆g = 2. So the solution
will be

u(x, y) = (x2 − y2)/2 + y + 1/2. (3.8)

The peculiarity of this function is that on the straight lines y = −x + 1 for
(x, y) ∈ R+ × R+ and y = x+ 1 for (x, y) ∈ R− × R+ one has u = 1 (see Figure
1).

Now we include the potential γ 6= 1. Define γα as

γα(x, y) =

{

1 + α exp((− 9
16

+ x2 + y2)−1) if x2 + y2 < 9
16
,

1 if x2 + y2 ≥ 9
16
.

We remark that 1− γα has its support in the disc D := {z ∈ C : |z| ≤ 3/4},
furthermore ‖1− γα‖L∞(Ω) = αe−16/9, hence in order to justify our Theorem 2.1,
we have to move α towards zero and observe the convergence of the solution to
the exact solution given by (3.8). This is done in the subsequent Figures. Figure
4 to Figure 7 respectively illustrate the solution for α =300, 50, 10 and 0.1.

The calculations are performed via variational formulations described as above.
We take 50 points on the circle ∂Ω and the domain inside is triangulated with
Lagrange P1 finite elements. The visualization is drawn indicating the isovalues of
the finite element solution. We note the similarity of the exact solution (Figure
2) with the finite element solution for α = 0.1 (Figure 7). To illustrate this
similarity we have computed at the end the difference between this solution and
the exact solution in Figure 8.
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IsoValue
-2
-1.9
-1.8
-1.7
-1.6
-1.5
-1.4
-1.3
-1.2
-1.1
-1
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2

(x^2-y^2)/2+y+0.5

Figure 1. Initial data

u(0, x, y) = (x2 − y2)/2 + y + 1/2

IsoValue
-0.353876
-0.25731
-0.192932
-0.128554
-0.0641765
0.000201259
0.064579
0.128957
0.193334
0.257712
0.32209
0.386468
0.450845
0.515223
0.579601
0.643979
0.708356
0.772734
0.837112
0.998056

U_0(0.5,x,y)

Figure 2. The exact solution at time t = 0.5
u(0.5, x, y) = ((exp(−0.5)x)2 − ((exp(−0.5)y)2)/2 + exp(−0.5)y + 1/2.

IsoValue
0.344229
0.361146
0.372424
0.383702
0.39498
0.406258
0.417536
0.428814
0.440091
0.451369
0.462647
0.473925
0.485203
0.496481
0.507759
0.519037
0.530315
0.541593
0.552871
0.564149
0.575427
0.586705
0.597983
0.609261
0.637455

u(2,x,y)=0.5*((exp(-2.)*x)^2-(exp(-2.)*y)^2)+exp(-2.)*y+0.5

Figure 3. The exact solution at time t = 2
u(2, x, y) = ((exp(−2)x)2 − ((exp(−2)y)2)/2 + exp(−2)y + 1/2.

Finally for illustrating the first part of this paper we have performed a movie
with mp4 extension which is available online in

http://www.math.univ-metz.fr/˜jmse/Emamirad
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Here we have taken the boundary function f(x, y) = x4 + y2 sin(2πy), and 30
seconds after starting the movie res.mp4, we observe that we make a close-up of
the center and that we approach the values of

u(0) =
1

2π

∫ 2π

0

(

cos4 θ + sin2 θ sin(2π sin θ)
)

dθ = 0.375

IsoValue
-0.0151183
0.0419633
0.0800177
0.118072
0.156126
0.194181
0.232235
0.270289
0.308344
0.346398
0.384453
0.422507
0.460561
0.498616
0.53667
0.574724
0.612779
0.650833
0.688887
0.784023

U_300(0.5,x,y)
IsoValue
-0.157593
-0.0843016
-0.0354404
0.0134208
0.062282
0.111143
0.160004
0.208866
0.257727
0.306588
0.355449
0.404311
0.453172
0.502033
0.550894
0.599755
0.648617
0.697478
0.746339
0.868492

U_50(0.5,x,y)

Figure 4. Solution for α = 300 Figure 5. Solution for α = 50

IsoValue
-0.277674
-0.19028
-0.132017
-0.0737541
-0.0154912
0.0427718
0.101035
0.159298
0.21756
0.275823
0.334086
0.392349
0.450612
0.508875
0.567138
0.625401
0.683664
0.741927
0.80019
0.945847

U_10(0.5,x,y)
IsoValue
-0.352811
-0.256374
-0.192082
-0.12779
-0.0634983
0.000793497
0.0650853
0.129377
0.193669
0.257961
0.322252
0.386544
0.450836
0.515128
0.57942
0.643711
0.708003
0.772295
0.836587
0.997316

U_0.1(0.5,x,y)

Figure 6. Solution for α = 10 Figure 7. Solution for α = 0.1

IsoValue
-0.00171585
-0.00142664
-0.00123383
-0.00104102
-0.000848211
-0.000655403
-0.000462595
-0.000269787
-7.69788e-005
0.000115829
0.000308637
0.000501446
0.000694254
0.000887062
0.00107987
0.00127268
0.00146549
0.00165829
0.0018511
0.00233312

erreur

Figure 8. Error between uexa and u0.1
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