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Abstract. The space of pseudomeasures FL∞ lies between the space of
Radon measures and distributions; M ⊂ FL∞ ⊂ (C∞

c )′. The theory of
strongly continuous semigroups id generalized by J.L. Lions [9] to distribu-
tion semigroups (DSG) G ∈ L (C∞

c ,L (X)), where L (X) is the algebra of
linear continuous operators on a Banach space X, which satisfies the conserva-
tion of convolution G (φ∗ψ) = G (φ)G (ψ) for all φ,ψ ∈ C∞

c (R)+. In this paper
we define the subspace Πν of L (L2([−1, 1], µν)) of pseudomeasure operators
T , which satisfy T (g ∗ν h) = (Tg) ∗ν h for any g, h ∈ L2(I, µν). We prove that
T 2 conserves the generalized convolution T 2(f ∗ν g) = T (f) ∗ν T (g) and finally
we study the different properties of DSG with different type of endomorphism
G = T 2.

1. Introduction

This paper concerns with the homomorphisms which map from a convolution
algebra a into an algebra A. Well-known examples of such a situation are given
by J.L. Lions in [9] and J. Faraut in [5]. In [9], Lions takes a := C∞

c (R), A :=
L (X) the algebra of bounded linear operators on the Banach space X and the
homomorphism G : a 7→ A satisfies G (φ) = 0 whenever φ has its support in
(−∞, 0] and satisfies

G (φ ∗ ψ) = G (φ)G (ψ) for all φ, ψ ∈ C∞
c (R)+. (1.1)

By imposing the extra conditions on G , he defines G (T ), for any distribution
T ∈ a′ as an unbounded operator. In [5], Faraut takes a := M(R+), the space
of Radon measures on R+ and A := L (X). Here G (µt) is defined for a family
{µt}t≥0 of the measures semigroup on R+. In this case G (µt) satisfies

G (µt ∗ µs) = G (µt)G (µs) for all µt, µs satisfying µt ∗ µs = µt+s. (1.2)
Now the following problem arises. Is it possible to carry out the same formalism

for the space of pseudomeasures P which is a subset of distributions (C∞
c (R))′

and bigger than M(R+). In fact if we denote FL1 the space of distribution on
R which are Fourier transform of functions in L1(R). According to Riemann-
Lebesgue Theorem if f ∈ L1(R), then its Fourier transform f̂ is a continuous
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function vanishing at infinity. Hence C∞
c (R) ⊂ FL1 ⊂ C0(R). Since the dual of

C0(R) is M(R), the dual of FL1 (which can be identified with FL∞) is referred
to as the space of pseudomeasures (see [11] for more information on this space).

The same formalism is carried out for Fourier series or orthogonal systems
(see [10] or [13] for details). In the next section we will define the ultraspher-
ical polynomials Qν

n(x). Let aν be the space of the continuous functions on
I := [-1, 1] of the form

f =
∑
n≥0

ων
nf̂(n)Q

ν
n (1.3)

where f̂(n) = ⟨f,Qν
n⟩ :=

∫
I
fQν

ndµν and

ων
n =

(n+ ν)Γ(n+ 2ν)

22ν−1Γ(ν + 1/2)2Γ(n+ 1)
. (1.4)

We will see in Lemma 2.2 that aν equipped with the norm

∥f∥ν =
∑
n≥0

ων
n|f̂(n)| (1.5)

is a commutative, semisimple Banach algebra for the simple product of functions.

Definition 1.1. By a pseudomeasure is meant a distribution g ∈ C∞(I)′ such
that ĝ(n) ∈ ℓ∞(N). We denote by pν the space of all pseudomeasures.

As in the Fourier transform case, we can identify the space of pseudomeasures
with a′ν , the dual of aν . As in [8], on aν we introduce the generalized convolution
product denoted ∗ν , by mean of a kernel called Gegenbauer’s kernel.

In the section 3, we will define a pseudomeasure operator T as an element of
the Banach algebra L (L2(I, µν)) such that T (g ∗ν h) = (Tg) ∗ν h for any g, h ∈
L2(I, µν). Then we prove the consistency of this definition and we justify this
designation. Then we prove in order that the homomorphism G ∈ L (aν) satisfies
the identity

G (f ∗ν g) = Tf ∗ν Tg for all f, g ∈ aν , (1.6)

it is necessary and sufficient that G = T 2.
In the last section we compare the different properties of T 2 in the framework

of the theory of distribution semigroups (DSG). In the theory of DSG, if G ∈
L (C∞

c (R)+,L (X)) and satisfies what Lions called the assumptions of regular
distribution semigroup, that is, for any φ ∈ C∞

c (R)+ satisfying
∫∞
0
φ(t)dt = 1 we

have

s− lim
s→0

G (φs) = I, where φs(t) =
1

s
φ

(
t

s

)
. (1.7)

From this property he deduced that



CONSERVATION OF ULTRASPHERICAL CONVOLUTION 3

(a) ∪
φ∈C∞

c (R)+

ImG (φ) is dense in X (1.8)

(b) ∩
φ∈C∞

c (R)+

Ker G (φ) = {0} (1.9)

In [1, 2] the authors obtained the assertions (4.3) and (4.4) without assuming
the regular conditions of Lions, only by introducing the notion of smooth distri-
bution semigroup. This notion is redefined by P. J. Miana [12] by introducing the
Weyl’s fractional calculus. In the last section we prove as (1.7) the approximation
of identity for admissible pseudomeasure operator T , where ΦT (Q

ν
n) has only a

finite number of zeros. This gives readily (4.3) and (4.4) type assertions

2. Preliminaries

It is well-known that the orthogonal polynomials satisfying a second order dif-
ferential equation of the form Lu+λnu = 0 where the operator L is a second order
differential operator and λn’s are the correspondent eigenvalues. For example for
the Jacobi polynomials P α,β

n (x), L := (1 − x2) d2

dx2 + [(β − α) − (α + β + 2)x] d
dx

and λn = n(n + α + β + 1) in the Hilbert space L2([−1, 1], (1 − x)α(1 + x)βdx).
These polynomials satisfy the Rodrigues’ formula

(1− x)α(1 + x)βPα,β
n (x) =

(−1)n

2nn!

(
d

dx

)n [
(1− x)n+α(1 + x)n+β

]
. (2.1)

Throughout this paper, for the sake of simplicity, we take β = α = ν − 1

2
, which

corresponds to the ultraspherical (or Gegenbauer) polynomials Qν
n, but the same

analysis can be readily generalized to the Jacobi polynomials. In order to respect
the normalization we will use the customary notation for

Γ(n+ ν + 1
2
)

Γ(ν + 1
2
)Γ(n+ 1)

Qν
n(x) = P α,β

n (x). (2.2)

For ν > −1/2, in L2(I, µα) the set of ultraspherical polynomials

Qν
n(x) =

(−1)n

2n(ν − 1/2 + 1)...(ν − 1/2 + n)
(1− x2)−ν+1/2 d

n

dxn
(1− x2)ν−1/2+n

forms an orthogonal system on I for the measure dµν(x) = (1−x2)ν−1/2dx (cf.
[4]), with the inner product relation

⟨Qν
m, Q

ν
n⟩ν =

∫
I

Qν
m(x)Q

ν
n(x)dµν(x) =

{
0, if n ̸= m

(ων
n)

−1, if n = m.
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The well-known properties of these polynomials are:
(i) Qν

n(1) = 1; (the normalization condition)
(ii) Qν

0(x) = 1, Qν
1(x) = x;

(iii) Qν
n(−x) = (−1)nQν

n(x);
(iv) |Qν

n(x)| < 1 if ν > −1
2
, |x| < 1 and n ≥ 1;

(v) xQν
n(x) =

n
2n+2ν

Qν
n−1(x) +

n+2ν
2n+2ν

Qν
n+1(x) for n ≥ 1.

Now, let us define the space Lp(I, dµν) of the real valued functions f , such that

∥f∥p :=
(∫

I

|f(x)|pdµν(x)

)1/p

<∞. (2.3)

For p = 2 the inner product of L2(I, dµν) is designated by

⟨f, g⟩ :=
∫
I

f(x)g(x)dµν(x).

For any f, g ∈ L1(I, dµν), we can define the generalized convolution product of f
by g by

(f ∗ν g)(x) =
∫
I

∫
I

Gν(x, y, z)f(y)g(z)dµν(y)dµν(z), (2.4)

where the Gegenbauer kernel Gν(x, y, z) is defined by

Gν(x, y, z) =
21−2ν(1− x2 − y2 − z2 + 2xyz)ν−1

+

Γ(ν)2(1− z2)ν−1/2(1− x2)ν−1/2(1− y2)ν−1/2
for ν > 0, (2.5)

where by f+ we designate the positive part of the function f .
It is worthwhile to mention that this kernel produces also the following multi-

plication formula

Qν
n(x)Q

ν
n(y) =

∫
I

Gν(x, y, z)Q
ν
n(z)dµν(z), (−1 < x, y < 1) (2.6)

(see [8]). As a consequence of the above formula we get

(Qν
n ∗α Qν

m)(x) =

{
(ων

n)
−1Qν

m(x), if n = m

0, if n ̸= m.
(2.7)

(see [3] for the proof). The following Lemma is proved in [3].

Lemma 2.1. Suppose f, g ∈ L2(I, µν), then

f̂ ∗ν g(n) = f̂(n)ĝ(n). (2.8)

In [6] and [7], G. Gasper discusses this construction not only for the ultras-
pherical polynomials, but also for the Jacobi polynomials, where he shows the
following Lemma.
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Lemma 2.2. (a) L1(I, µν) endowed with the convolution product ∗ν is a semisim-
ple commutative Banach algebra.

(b) For 1 ≤ p, q, r ≤ ∞ and 1
r
= 1

p
+ 1

q
− 1, if f ∈ Lp(I, µν) and g ∈ Lq(I, µν) ,

then f ∗ν g ∈ Lr(I, µν) , and one has ∥f ∗ν g∥r ≤ ∥f∥p∥g∥q.

3. Pseudomeasure operators and the main result.

Definition 3.1. Let Πν be the subspace of the Banach algebra L (L2(I, µν)) we
say that T ∈ Πν is a pseudomeasure operator iff

T (g ∗ν h) = (Tg) ∗ν h for any g, h ∈ L2(I, µν). (3.1)

In order to prove the consistency of the above formula we need the following
Lemma which is proved in [3].

Lemma 3.2. (a) Let g, h ∈ L2(I, µν), then g ∗ν h ∈ L2(I, µν) ∩ aν;
(b) For any f ∈ aν there exist g, h ∈ L2(I, µν), such that f = g ∗ν h.

The elements of Πν are called pseudomeasure operators; the following Lemma
justifies this designation.

Lemma 3.3. For any T ∈ Πν there exists a unique pseudomeasure ΦT ∈ a′ν such
that

ΦT (g ∗ν h) = ⟨Tg, h⟩ for any g, h ∈ L2(I, µν). (3.2)
and this correspondence is an isometric isomorphism from Πν onto a′ν.

Proof. Let T ∈ Πν and f ∈ aν . From Lemma 3.2 it follows that there exist
g, h ∈ L2(I, µν) such that f = g ∗ν h and so Tf = Tg ∗ν h ∈ aν . Consequently
Tf is a continuous function on [−1, 1]. Thus, one can define the linear form ΦT

by
ΦT (f) = [Tf ](1). (3.3)

SinceGν(1, y, z) is a reproducing kernel on L2(I, µν), i.e.
∫
I
Gν(1, y, z)h(z)dµν(z) =

h(y), for all h ∈ L2(I, µν), we have

[g ∗ν h](1) =
∫
I

(∫
I

Gν(1, y, z)h(z)dµν(z)

)
g(y)dµν(y) =< g, h >,

therefore

ΦT (g ∗ν h) = [T (g ∗ν h)](1) = [Tg ∗ν h](1) =< Tg, h >,

regarding Lemma 3.2 (b);

|ΦT (f)| = |ΦT (g∗νh)| = | < Tg, h > | ≤ ∥Tg∥2∥h∥2 ≤ ∥T∥Πν∥g∥2∥h∥2 = ∥T∥Πν∥f∥ν
which implies the boundedness of ΦT by ∥T∥Πν .

Conversely, if Φ ∈ a′ν , then for any g, h ∈ L2(I, µν), one has

|Φ(g ∗ν h)| ≤ ∥Φ∥a′ν∥g ∗ν h∥ν ≤ ∥Φ∥a′ν∥g∥2∥h∥2.
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Thus, (g, h) 7→ Φ(g ∗ν h) is a bilinear form on L2(I, µν), therefore there exists
TΦ ∈ L (L2(I, µν)) such that Φ(g ∗ν h) =< h, TΦg > and ∥T∥Φ ≤ ∥Φ∥a′ν .

It is not hard to see that, for any f, g and h ∈ L2(I, µν) we have < f, g∗νh >=<
f ∗ν g, h > and consequently

< h, TΦ(g ∗ν h) > = Φ(h ∗ν (f ∗ν g)) = Φ((h ∗ν f) ∗ν g)
=< h ∗ν g, TΦf >=< h, (TΦf) ∗ν g >,

which implies that TΦ commutes with the generalized convolution products from
left, and accordingly TΦ ∈ Πν .

The fact that

ΦTΦ
(g ∗ν h) = [(TΦg) ∗ν h](1) =< TΦg, h >= Φ(g ∗ν h)

for any g, h ∈ L2(I, µν) implies that ΦTΦ
= Φ. Hence by ∥ΦT∥a′ν ≤ ∥T∥ΠΦ

and
∥T∥Φ ≤ ∥Φ∥a′ν the mapping T 7→ ΦT is an isometric isomorphism. �

The following corollary will be useful in the sequel.

Corollary 3.4. Suppose T ∈ Πν. For any f ∈ aν , T f ∈ aν and T̂ f(n) =

ΦT (Q
ν
n)f̂(n).

Proof. In the proof of the Lemma 3.3 we have shown that if f ∈ aν , then
Tf ∈ aν . From 2.7 and 3.2 it follows that

< T (Qν
n), Q

ν
m >= ΦT (Q

ν
n ∗ν Qν

m) =

{
(ων

n)
−1ΦT (Q

ν
n), if n = m

0, if n ̸= m,

and consequently T (Qν
n) = ΦT (Q

ν
n)Q

ν
n. This shows that

T̂ f(n) =

∫
I

(Tf)Qν
ndµν =

∫
I

∑
m≥0

ων
mf̂(m)T (Qν

m)Q
ν
ndµν

= ων
m

∫
I

∑
m≥0

f̂(m)ΦT (Q
ν
m)Q

ν
mQ

ν
ndµν = ΦT (Q

ν
n)f̂(n).

�
Example 3.5. Let us denote by Pj the projection on aν . For any f =∑

n≥0 ω
ν
nf̂(n)Q

ν
n ∈ aν , Pj(f) = ων

j f̂(j)Q
ν
j belongs to Πν . In fact for f = g ∗ν h,

we have

Pj(f) = ων
j f̂(j) = ων

j ĝ(j)ĥ(j) (according to (2.8)) (3.4)

= ων
j ĝ(j)Q

ν
j ∗ν

∑
n≥0

ων
nĥ(n)Q

ν
n(z) (according to (2.7)) (3.5)

= (Pjg) ∗ν h. (3.6)
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By using (3.3), we have also by normalization condition

ΦPj
(f) = Pj(f)(1) = ων

j f̂(j)Q
ν
j (1) = ων

j f̂(j). (3.7)

and
ΦPj

(Qν
j ) = ων

j Q̂
ν
j (j) = 1. (3.8)

and for n ̸= j, ΦPj
(Qν

n) = 0.

Example 3.6. The identity is also a pseudomeasure operator since I(f ∗ν g) =
(If) ∗ν g and ΦI(Q

ν
n) = 1 for all n ∈ N

Concerning the pseudomeasure operators we have also the following character-
ization.

Lemma 3.7. For any {βn} ∈ ℓ∞(N), the operator T defined by

Tf =
∑
n≥0

βnω
ν
nf̂(n)Q

ν
n(x),

where f =
∑

n≥0 ω
ν
nf̂(n)Q

ν
n(x), belongs to Πν. Conversely, if T ∈ Πν, there exists

a unique sequence {βn} ∈ ℓ∞(N), such that Tf =
∑

n≥0 βnω
ν
nf̂(n)Q

ν
n(x), for any

f =
∑

n≥0 ω
ν
nf̂(n)Q

ν
n(x), and we have ∥T∥Πν = ∥{βn}∥∞.

Proof. It suffices to prove that T satisfies

T [f ∗ν g] = [Tf ] ∗ν g ∀f, g ∈ L2(I, µν)

From the definition of T it follows that

T [f ∗ν g](x) =
∑
n≥0

βnω
ν
nf̂ ∗ν g(n)Qν

n(x)

=
∑
n≥0

βnω
ν
nf̂(n)ĝ(n)Q

ν
n(x)

=
∑
n≥0

βnω
ν
nf̂(n)Q

ν
n(x)

∫
I

Qν
n(z)g(z)dµν(z)

=
∑
n≥0

βnω
ν
nf̂(n)

∫
I

∫
I

Gν(x, y, z)Q
ν
n(y)g(z)dµν(z)dµν(y) (by (2.6))

=

[∑
n≥0

βnω
ν
nf̂(n)Q

ν
n

]
∗ν g(x)

= [Tf ] ∗ν g(x).

Conversely, let T ∈ Πν and ΦT ∈ a′ν be the corresponding pseudomeasure given
by Lemma 3.3. By designating βn := ΦT (Q

ν
n) for any f =

∑
n≥0 ω

ν
nf̂(n)Q

ν
n ∈ aν ,
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we have ΦT (f) =
∑

n≥0 ω
ν
nf̂(n)ΦT (Q

ν
n) =

∑
n≥0 βnω

ν
nf̂(n) and consequently

∥ΦT∥a′ν = sup
∥f∥aν≤1

|ΦT (f)| = sup∑
n≥0 ω

ν
n|f̂(n)|≤1

|
∑
n≥0

βnω
ν
nf̂(n)| = sup

n≥0
|βn|.

Furthermore it follows from Corollary 3.4 that for any f ∈ aν , Tf ∈ aν and

Tf =
∑
n≥0

ων
nT̂ f(n)Q

ν
n =

∑
n≥0

βnω
ν
nf̂(n)Q

ν
n.

�
Now, we can announce our main result.

Theorem 3.8. Let G ∈ L (aν): There exist a pseudomeasure operator T ∈ Πν,
such that one of the following equivalent assertions is fulfilled
(a)

G (g ∗ν h) = (Tg) ∗ν (Th) for any g, h ∈ L2(I, µν); (3.9)

(b)
G = T 2; (3.10)

(c)

Ĝ (f)(n) = Φ2
T (Q

ν
n)f̂(n). (3.11)

Proof. Let G ∈ L (aν), such that there exists a pseudomeasure operator
T ∈ Πν , satisfying (3.9). Then according to Lemma 3.7, there exists {βn} ∈
ℓ∞(N), such that Tf =

∑
n≥0 βnω

ν
nf̂(n)Q

ν
n(x), for any f =

∑
n≥0 ω

ν
nf̂(n)Q

ν
n, and

consequently for any g, h ∈ L2(I, µν) we have

G (g ∗ν h)(z) =
∫
I

∫
I

Gν(x, y, z)Tg(x)Th(y)dµν(x)dµν(y),

=
∑
n≥0

∑
m≥0

∫
I

∫
I

Gν(x, y, z)βnβmω
ν
nω

ν
mĝ(n)ĥ(m)Qν

n(x)Q
ν
m(y)dµν(x)dµν(y)

=
∑
n≥0

∑
m≥0

βnβmω
ν
nω

ν
mĝ(n)ĥ(m)[Qν

n ∗ν Qν
m](z)

=
∑
n≥0

β2
nω

ν
nĝ(n)ĥ(n)Q

ν
n(z) (according to (2.7))

=
∑
n≥0

β2
nω

ν
nĝ ∗ν h(n)Qν

n(z) (according to (2.4)) (3.12)

Now, Lemma 3.2(b) asserts that for any f ∈ aν there exist g, h ∈ L2(I, µν) such
that f = g ∗ν h, which according to (3.12) implies that (̂G f)(n) = β2

nf̂(n).
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Now, since βn = ΦT (Q
ν
n) and by Corollary 3.4 (̂Tf)(n) = ΦT (Q

ν
n)f̂(n), we get

T̂ 2f(n) = Φ2
T (Q

ν
n)f̂(n)

= (̂G f)(n),

which is equivalent to (3.10).
Here we have also proved that (3.10) implies (3.11). Finally the fact that (3.9)

follows from (3.11). In fact, according to Lemma 3.7, Tf =
∑

n≥0 βnω
ν
nf̂(n)Q

ν
n ∈

Πν , and for G (f) =
∑

n≥0 β
2
nω

ν
nf̂(n)Q

ν
n, we follow (3.12) from bottom to top and

we retrieve (3.9). �

4. Comparison with the theory of distribution semigroups

Definition 4.1. In the sequel we say a pseudomeasure operator is admissible if
(i) the set of {ΦT (Q

ν
n), n ∈ N} has only a finite set of zeros;

(ii) the sequence {1/ΦT (Q
ν
n)

2 ∈ ℓ∞ for , n ≥ M}, where M := max{n ∈ N :
ΦT (Q

ν
n) = 0}.

In the Examples 3.5 and 3.6, according to (3.8), Pj is not admissible, while the
identity operator I is admissible, since ΦI(Q

ν
n) = 1 for all n ∈ N.

In the theory of DSG, if G ∈ L (C∞
c (R)+,L (X)) and satisfies the conditions of

regular distribution semigroup, then for any φ ∈ C∞
c (R)+ satisfying

∫∞
0
φ(t)dt =

1 we have (1.7) and consequently (4.3) and (4.4). Here we will prove a similar
result for a endomorphism G = T 2, where T is an admissible pseudomeasure
operator.

Theorem 4.2. Let T be an admissible pseudomeasure operator and G = T 2, then
there exist a sequence gm ∈ aν, such that

lim
m→∞

∥G (gm ∗ν f)− f∥ν = 0 for any f ∈ aν . (4.1)

Proof. Let T be the admissible pseudomeasure operator and ΦT the corre-
spondent element in a′ν . For any integer m ≤ M , we take gm = 0 and for any
m > M we define

gm(x) =
ων
M+1

(ΦT (QM+1
ν))2

Qν
M+1(x) + · · ·+ ων

m

(ΦT (Qm
ν))2

Qν
m(x).

Now for any n ∈ N we take m so large that m > max{n,M}, hence we have

ĝm(n) =< gm, Q
ν
n >=

∫
I

gmQ
ν
ndµν =

ων
n

(ΦT (Qn
ν))2

< Qν
n, Q

ν
n >

=
1

(ΦT (Qn
ν))2

(4.2)
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which is exactly what we were looking for. Since according to (2.8) and (ii) of
Definition 4.1 ∥gm ∗ν f∥ν ≤ C∥f∥ν and for any f =

∑
n≥0 ω

ν
nf̂(n)Q

ν
n ∈ aν , we

have
G (gm ∗ν f)(x) =

∑
n≥0

(ΦT (Q
ν
n))

2ων
nĝm(n)f̂(n)Q

ν
n(x).

Hence we get

∥G (gm ∗ν f)− f∥ν =
∑
n≥0

ων
n|((ΦT (Qn

ν))2ĝm(n)− 1)f̂(n)|,

which according to (4.2) goes to zero as m→ ∞. �
Corollary 4.3. For G = T 2

(a)
R :=

∪
f∈ aν

ImG (f) is dense in aν (4.3)

(b)
N :=

∩
g∈ pν

Ker G (g ∗ν .) = {0}, (4.4)

where pν is the space of pseudomeasures (see Definition 1.1).

Proof. (a) For any f ∈ anu, gm ∗ν f ∈ aν and according to Corollary 3.4 for
any m, Im G (gm ∗ν f) ∈ R. Finally Theorem 4.2 implies the assertion.
(b) Since for any g ∈ pν , f 7→ G (g ∗ν f) belongs to L (aν), if f ∈ N , then
G (gm ∗ν f) = 0 for all gm ∈ pν . According to assumption (ii) of Definition 4.1,
gm constructed in the proof of Theorem 4.2 belongs to pν , hence G (gm ∗ν f) = 0
which goes to f by Theorem 4.2. This implies that f = 0. �
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