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ABSTRACT. The space of pseudomeasures FL> lies between the space of
Radon measures and distributions; M C FL>* C (C°)’. The theory of
strongly continuous semigroups id generalized by J.L. Lions [9] to distribu-
tion semigroups (DSG) ¢ € Z(C°, Z (X)), where Z(X) is the algebra of
linear continuous operators on a Banach space X, which satisfies the conserva-
tion of convolution ¥ (v 1)) = 9 ()9 (¢) for all v, € C(R),. In this paper
we define the subspace II, of Z(L?([-1,1], 1,)) of pseudomeasure operators
T, which satisfy T'(g *, h) = (T'g) *, h for any g,h € L*(I, u,). We prove that
T? conserves the generalized convolution T2(f *, g) = T(f) *, T(g) and finally
we study the different properties of DSG with different type of endomorphism
g =T2.

1. INTRODUCTION

This paper concerns with the homomorphisms which map from a convolution
algebra a into an algebra A. Well-known examples of such a situation are given
by J.L. Lions in [9] and J. Faraut in [5]. In [9], Lions takes a := C°(R), A :=
Z(X) the algebra of bounded linear operators on the Banach space X and the
homomorphism ¢ : a — A satisfies ¥(¢) = 0 whenever ¢ has its support in
(—o0, 0] and satisfies

G(pxv) =9 ()9 () forall ¢, e CF(R):. (1.1)
By imposing the extra conditions on ¢, he defines ¥ (7'), for any distribution
T € o as an unbounded operator. In [5], Faraut takes a := M(R,), the space

of Radon measures on R, and A := Z(X). Here ¥ (u) is defined for a family
{11 }1>0 of the measures semigroup on R,. In this case ¥ (1) satisfies

G (e * p1s) = G ()9 (1) for all py, ps satisfying puy * prg = peys. (1.2)
Now the following problem arises. Is it possible to carry out the same formalism
for the space of pseudomeasures P which is a subset of distributions (C>(R))’
and bigger than M(R,). In fact if we denote FL! the space of distribution on
R which are Fourier transform of functions in L'(R). According to Riemann-
Lebesgue Theorem if f € L'(R), then its Fourier transform f is a continuous

Date: April 23, 2014.
1991 Mathematics Subject Classification. 47A40, 35P25.
This research was in part supported by a grant from IPM.



2 M. AMINI, H. EMAMIRAD AND A. SHAFIEE

function vanishing at infinity. Hence C°(R) C FL' C Cy(R). Since the dual of
Co(R) is M(R), the dual of FL' (which can be identified with F L) is referred
to as the space of pseudomeasures (see [11| for more information on this space).

The same formalism is carried out for Fourier series or orthogonal systems
(see [10] or [13] for details). In the next section we will define the ultraspher-
ical polynomials Q%(z). Let a, be the space of the continuous functions on
[ := [-1, 1] of the form

F=Y wifmey (1.3)

-~

where f(n) = (f,Q%) == [, fQ4dp, and

y (n+v)I'(n+2v)
T 21T (y 4 1/2)2T (n + 1)

w (1.4)

We will see in Lemma 2.2 that a, equipped with the norm

1l =D wrlf(n)] (1.5)

n>0
is a commutative, semisimple Banach algebra for the simple product of functions.

/

Definition 1.1. By a pseudomeasure is meant a distribution g € C*(I)" such

that g(n) € (> (N). We denote by p, the space of all pseudomeasures.

As in the Fourier transform case, we can identify the space of pseudomeasures
with a/,, the dual of a,. As in [8], on a, we introduce the generalized convolution
product denoted %, by mean of a kernel called Gegenbauer’s kernel.

In the section 3, we will define a pseudomeasure operator T as an element of
the Banach algebra £ (L?(I, u,)) such that T'(g *, h) = (Tg) *, h for any g, h €
L3(I, u,). Then we prove the consistency of this definition and we justify this
designation. Then we prove in order that the homomorphism ¢ € £ (a,) satisfies
the identity

G(f*,9)=Tfx,Tg forall f g€a,, (1.6)

it is necessary and sufficient that & = T2,

In the last section we compare the different properties of 72 in the framework
of the theory of distribution semigroups (DSG). In the theory of DSG, if ¥ €
Z(CP(R)4, Z(X)) and satisfies what Lions called the assumptions of regular
distribution semigroup, that is, for any ¢ € C2°(R), satisfying fooo e(t)dt =1 we
have

1
s — lir%g(gos) =1, where p,(t) = P (é) . (1.7)

From this property he deduced that



CONSERVATION OF ULTRASPHERICAL CONVOLUTION 3

(a)
U Im%(p) is dense in X (1.8)
PeCE(R) 4
(b)
[ Ker%(y)={0} (1.9)
PEC(R)+
In [1, 2] the authors obtained the assertions (4.3) and (4.4) without assuming
the regular conditions of Lions, only by introducing the notion of smooth distri-
bution semigroup. This notion is redefined by P. J. Miana [12] by introducing the
Weyl’s fractional calculus. In the last section we prove as (1.7) the approximation
of identity for admissible pseudomeasure operator 7', where ®7(Q") has only a
finite number of zeros. This gives readily (4.3) and (4.4) type assertions

2. PRELIMINARIES

It is well-known that the orthogonal polynomials satisfying a second order dif-
ferential equation of the form Lu+ \,u = 0 where the operator L is a second order
differential operator and \,’s are the correspondent eigenvalues. For example for
the Jacobi polynomials P&#(z), L := (1 — )L, +[(8 — @) — (o + B + 2)a] L
and )\, = n(n + a+ B+ 1) in the Hilbert space L2([—1,1], (1 — 2)%(1 + z)?dx).
These polynomials satisfy the Rodrigues’ formula

ey o (_1)71 d\" n+oa n
(1—2)*(1+2)’P*P(z) = el G [(1—z)"" 1 +2)""].  (2.1)
1
Throughout this paper, for the sake of simplicity, we take § = a =v — 2 which

corresponds to the ultraspherical (or Gegenbauer) polynomials @, but the same
analysis can be readily generalized to the Jacobi polynomials. In order to respect
the normalization we will use the customary notation for

L(n+v+1)
F(v+3HI(n+1)
For v > —1/2, in L*(I, u,) the set of ultraspherical polynomials

Qn(z) = P(x). (2.2)

(=n" 2y-wt1/2 4" -
v _ 1 — v+1/2 2 1 — 22\ 1/24n
R e TPy oy py sy pran L g 1)

forms an orthogonal system on I for the measure du, (z) = (1 —22)"~*/2dx (cf.
[4]), with the inner product relation

0, if n#m

(W)™ if n=m.

Q2 QL) = / @mx)czz(@d%(x):{
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The well-known properties of these polynomials are:

Y(1) =1; (the normalization condition)

i) Q

(i) @ ()—1Q1()
(m; (=) = (= )Q”()
(v)

(iv) |@n(z)| <1 1fu>— |z <1 and n > 1;
V) 2Q5(7) = 5 2—1(95) + 2 Qr () for n > 1.

Now, let us define the space LP(I,dy, ) of the real valued functions f, such that

11 i= [ 1£60 (o )p<oo. (23)

For p = 2 the inner product of L*(I,du,) is designated by

(.9 /f o) ().

For any f,g € L'(I,du,), we can define the generalized convolution product of f
by g by

(f % 9) / / (2,9, 2) F () (=) () s (2), (2.4)

where the Gegenbauer kernel G, (z,y, z) is defined by
2U72(1 — 2 — 2 — 2% + nyz)’fl

T(V)2(1 — 22)v12(1 — 22)7-1/2(1 — y2)v—1/2

where by f, we designate the positive part of the function f.

It is worthwhile to mention that this kernel produces also the following multi-
plication formula

Q)R (y) = / G,y )Q(dp (), (—1<zy<1)  (26)

1

Gy(x,y,2) = for v >0, (2.5)

(see [8]). As a consequence of the above formula we get

(W) Qn(x),  if n=m
0, if n#m.

(see [3] for the proof). The following Lemma is proved in [3].

(Q5 *a @) (2) = { (2.7)

Lemma 2.1. Suppose f,g € L*(I, ), then
f %, 9(n) = F(n)g(n). (2:8)

In [6] and [7], G. Gasper discusses this construction not only for the ultras-
pherical polynomials, but also for the Jacobi polynomials, where he shows the
following Lemma.
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Lemma 2.2. (a) L'(I, 1) endowed with the convolution product *,, is a semisim-
ple commutative Banach algebra.

(b) For 1 <p,qr <ooand ; =+ —1,if f € L’(I,,) and g € LU, p,) ,
then fx, g € L"(I,p,) , and one has || [+, gl < [[flpllglly-

3. PSEUDOMEASURE OPERATORS AND THE MAIN RESULT.

Definition 3.1. Let II, be the subspace of the Banach algebra Z(L*(I, u,)) we
say that T € 11, is a pseudomeasure operator ift

T(g*, h) = (Tg)*,h forany g,hec L*(I, ). (3.1)

In order to prove the consistency of the above formula we need the following
Lemma which is proved in [3].

Lemma 3.2. (a) Let g,h € L*(I,u,), then g*, h € L*(I, ) Na,;
(b) For any f € a, there exist g,h € L*(I,u,), such that f = g, h.

The elements of II, are called pseudomeasure operators; the following Lemma
justifies this designation.

Lemma 3.3. For any T € 11, there exists a unique pseudomeasure O € a!, such
that
dr(g*, h) = (Tg,h) forany g,h € L*(I, ). (3.2)

and this correspondence is an isometric isomorphism from 11, onto a,.

Proof. Let T € 1II, and f € a,. From Lemma 3.2 it follows that there exist
g,h € L*(I,p,) such that f = g*, h and so T'f = Tg *, h € a,. Consequently
T f is a continuous function on [—1,1]. Thus, one can define the linear form &
by

Or(f) = [Tf1(1 ) (3:3)
Since G, (1,y, z) is a reproducing kernel on L*(1, j1,,), i.e. [, G,(1,y, 2)h(2)dp,(z) =
h(y), for all h € L*(I, i, ), we have

o1l = [ ([ Guttn Z)h(Z)duu(Z)) o) (y) =< g.h >,

I
therefore

Or(g*, h) =[T(g*, h)|](1) =[Tgx*, h|(1) =<Tg,h >,
regarding Lemma 3.2 (b);
[Pr()] = |@r(gxh)| = | < Tg,h > [ < [ Tyllo|Pll2 < [Tl llgllollll2 = 1T, L £

which implies the boundedness of &7 by ||T||1, -
Conversely, if ® € a/,, then for any g,h € L?(I, 1), one has

[@(g %0 W] < [®lag [lg *0 Al < (@]l [lgll2172]l2-
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Thus, (g,h) — ®(g %, h) is a bilinear form on L?(I, u, ), therefore there exists
Ty € L(L*(I,11,)) such that ®(g*, h) =< h,Teg > and || T|le < ||P||a

It is not hard to see that, for any f, g and h € L*(I, 1,)) we have < f, g%, h >=<
f *, g, h > and consequently

< h7T‘1>(g *y h) > = CD(h *u (f *y g)) = (I)((h *y f) *y g)
=<h *y gaTCPf >=< ha (T<I>f) *y, g >,

which implies that T commutes with the generalized convolution products from
left, and accordingly T € 11,,.
The fact that

O1,(9 %0 h) = [(Teg) v (1) =< Tog, h >= (g *, h)
for any g,h € L*(I, p1,,) implies that @7, = ®. Hence by ||®r|le, < ||T|n, and
|T]|e < ||®||e, the mapping T' — ®p is an isometric isomorphism. O

The following corollary will be useful in the sequel.

Corollary 3.4. Suppose T' € 1I,. For any f € a,,Tf € a, and T}(n) =
O7(Qn)f(n).

Proof. In the proof of the Lemma 3.3 we have shown that if f € a,, then
Tf € a, From 2.7 and 3.2 it follows that

@) 0r(@),  if n=m
0, if m#m,
and consequently T(Q¥) = &7r(Q¥)QY. This shows that

Thmn) = [(0)@idn, = [ 3wt Flm) (@) Qdn,

m>0

— / N Fm)@r(Q4)Q4Qudu, = 01(Q4) F(n).

m>0

O

Example 3.5. Let us denote by P; the projection on a,. For any f =
Y onsownf ()@ € ay, Pi(f) = w”f( ))QY belongs to II,. In fact for f = g, h,

we have

Pi(f) = w! f(j) = w}G(5)h(5) (according to (2.8)) (3.4)
= w;g(j)Q5 Z W/ h(n)QY (z) (according to (2.7)) (3.5)

= (P;g) *, h. (3.6)
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By using (3.3), we have also by normalization condition

Op, (f) = Pi(f)(1) = Y F()QY(1) = wl F(5). (3.7)
and
O, (QY) = whQ4(j) = 1. (3.8)
and for n # j, ®p,(Qr) = 0.

Example 3.6. The identity is also a pseudomeasure operator since I(f *, g) =
(If)*,gand ®;(Q%)=1foralneN

Concerning the pseudomeasure operators we have also the following character-
ization.

Lemma 3.7. For any {5,} € (*(N), the operator T" defined by
Tf=> Buwlf(n)Q4(x),

n>0
where f =3 o wy A(n)Q,”L(x), belongs to 11,,. Conversely, if T' € 11,,, there exists
a unique sequence {B,} € (>°(N), such that Tf =3 -, Buw, f(n)Q; (), for any
f = Esowi F(m)Q5(w), and we have | T, = [{Ba} [
Proof. 1t suffices to prove that T satisfies
Tif gl =[Tfl*g  Vf.g€ LI m)
From the definition of 7" it follows that

TIf %, g)(2) = Bulif *, g(n)Ql(2)

n>0

= > Bk f(mFm)Q; (x)
n>0

— Zﬂnw f QY (x /QV z)dp, (2)
n>0

=3 utfm) [ [ Gula Qg (0) (b (26)

n>0

Zﬁnwzﬂm@;] 4 9(x)

n>0

= [T'f] %, g(z).
Conversely, let T' € II, and @7 € a, be the corresponding pseudom/gasure given
by Lemma 3.3. By designating 3, := ®7(Qy,) for any f =3 - w, f(n)Q} € a,,
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we have &p(f) =3 - w nf( )27 (Qr) =250 anm?(n) and consequently
|22l = sup [@r(H)l=  sup D Buwhfn)l =sup|s,l.
Iflla, <1 S nsowkl F()|<1 >0 n>0
Furthermore it follows from Corollary 3.4 that for any f € a,, T'f € a, and
Tf =Y WTfm)Q, =" B f(n)Q
n>0 n>0

O

Now, we can announce our main result.

Theorem 3.8. Let 4 € £(a,): There exist a pseudomeasure operator T € 11,,,
such that one of the following equivalent assertions is fulfilled

(a)

4(g*, h) = (Tg)*, (Th) for any g,h € L*(I, ,); (3.9)

(b)
G =T (3.10)

(c)
G(F)(n) = ¥3(Qu) F(n). (3.11)

Proof.  Let ¢4 € £(a,), such that there exists a pseudomeasure operator
T € 1I,, satisfying (3.9). Then according to Lemma 3.7, there exists {5,} €

¢>°(N), such that Tf = ano /an;;f(n)Q;( ), for any f = Zn>0 v ( )QY, and
consequently for any g, h € L*(1, j1,)) we have

o0 W) = | [ Gula o) Th) @) (1),
=5 [ [l Bt SR ) )i )

n>0 m>0

= 33 BB A (m) Q4 %, Q(2)

n>0 m>0

= Z B2wrg(n Qr(z) (according to (2.7))
n>0

= Z Bl g *, h Q7 (z) (according to (2.4)) (3.12)
n>0

Now, Lemma 3.2(b) asserts that for any f € a, there exist g,h € L*(I, u,) such
that f = g %, h, which according to (3.12) implies that (4 f)(n) = ﬁﬁf(n)
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—_— ~

Now, since 5, = ®7(Q%) and by Corollary 3.4 (T'f)(n) = ®7(Q%)f(n), we get
T2f(n) = 23(Q)f(n)

= (@f)(n),
which is equivalent to (3.10).
Here we have also proved that (3.10) implies (3.11). Finally the fact that (3.9)

~

follows from (3.11). In fact, according to Lemma 3.7, T'f = }_ -, Buw; f(n)Qy, €

IT,, and for 4 (f) = >_,- Brws, f(n)Q", we follow (3.12) from bottom to top and
we retrieve (3.9). O

4. COMPARISON WITH THE THEORY OF DISTRIBUTION SEMIGROUPS

Definition 4.1. In the sequel we say a pseudomeasure operator is admissible if

(i) the set of {®1(Q%),n € N} has only a finite set of zeros;
(ii) the sequence {1/®7(Q%)? € ¢ for ,n > M}, where M := max{n € N :
r(Qr) = 0}

In the Examples 3.5 and 3.6, according to (3.8), P; is not admissible, while the
identity operator I is admissible, since ®;(Q%) = 1 for all n € N.

In the theory of DSG, if 4 € Z(C*(R), £ (X)) and satisfies the conditions of
regular distribution semigroup, then for any ¢ € C°(R), satisfying fooo p(t)dt =
1 we have (1.7) and consequently (4.3) and (4.4). Here we will prove a similar
result for a endomorphism ¢ = T2, where T is an admissible pseudomeasure
operator.

Theorem 4.2. Let T be an admissible pseudomeasure operator and 9 = T?, then
there exist a sequence g,, € a,, such that

Tim [|F(gm 0 f) = fllo =0 forany [ € a,. (4.1)

Proof. Let T be the admissible pseudomeasure operator and ®1 the corre-
spondent element in a/,. For any integer m < M, we take g,, = 0 and for any
m > M we define

wX wr
M+1 m 2@;( )

gm(T) = ” QV )+ -+ —
D @ Qe T Q)
Now for any n € N we take m so large that m > max{n, M}, hence we have

v

G(n) =< g, Q2 >= / Qi = s < QU Q>
1

R (4.2
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which is exactly what we were looking for. Since according to (2.8) and (ii) of

~

Definition 4.1 ||gm %, fll, < C|/f|l, and for any f = > . wif(n)Q: € a,, we
have B

~

G (gm0 £)(@) = Y _(27(Q))*whGim(n) F(n) QY (2).

n>0
Hence we get

~

||%(gm *y f) - f”l/ = ZWZ|(((DT(QnV))2/g\m(n) - 1)f(n>|7

n>0

which according to (4.2) goes to zero as m — oc. O
Corollary 4.3. For ¢ =T?
(a)

K = U Im¥Y(f) is dense in a, (4.3)

fea

(b)

N =) Ker 4(g*, .) = {0}, (4.4)

where p,, is the space of pseudomeasures (see Definition 1.1).

Proof. (a) For any f € a,u, g *, [ € a, and according to Corollary 3.4 for
any m, Im 9(g,, *, f) € #. Finally Theorem 4.2 implies the assertion.
(b) Since for any g € p,, f — (g *, f) belongs to Z(a,), if f € A, then
G (gm *, f) = 0 for all g,, € p,. According to assumption (ii) of Definition 4.1,
gm constructed in the proof of Theorem 4.2 belongs to p,, hence 4 (g, *, f) =0

which goes to f by Theorem 4.2. This implies that f = 0. U
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