Horizontal diffusion in C! path space

Marc Arnaudon, Koléhé Abdoulaye Coulibaly and Anton Thalmaiér

1 Laboratoire de Mathématiques et Applications, CNRS: UMIR@& Université de Poitiers,
Teléeport 2 - BP 30179, F-86962 Futuroscope ChassenedéCErance

marc.arnaudon@math.univ-poitiers.fr
abdoulaye.coulibaly@math.univ-poitiers.fr

2 Unité de Recherche en Mathematiques, Université du inisairg,
162A, avenue de la Faiencerie, L-1511 Luxembourg, Gramchipof Luxembourg

anton.thalmaier@uni.lu

Summary. We define horizontal diffusion i6&1 path space over a Riemannian manifold and
prove its existence. If the metric on the manifold is devalgpunder the forward Ricci flow,
horizontal diffusion along Brownian motion turns out to kedth preserving. As application,
we prove contraction properties in the Monge-Kantorovidhimization problem for prob-
ability measures evolving along the heat flow. For constank diffusions, differentiating a
family of coupled diffusions gives a derivative processhwdt covariant derivative of finite
variation. This construction provides an alternative rodtto filtering out redundant noise.

Key words: Brownian motion, damped parallel transport, horizonttilidion,
Monge-Kantorovich problem, Ricci curvature

1 Preliminaries

The main concern of this paper is to answer the following joesGiven a second
order differential operatdr without constant term on a manifod and aC! path
u— ¢(u) taking values inM, is it possible to construct a one parameter family
X (u) of diffusions with generatok and starting poinky(u) = ¢ (u), such that the
derivative with respect ta is locally uniformly bounded?

If the manifold isR" and the generatdr a constant coefficient differential op-
erator, there is an obvious solution: the famiy(u) = ¢ (u) +Y;, wherey; is an
L-diffusion starting at 0, has the required properties. Bugzaly onR" with a non-
constant generator, the question becomes difficult.

In this paper we give a positive answer for elliptic operatoon general mani-
folds; the result also covers time-dependent elliptic gatoesL = L(t).
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It turns out that the constructed family of diffusions s@tke ordinary differen-
tial equation in the space of semimartingales:

0w (u) = WIX(W) ($ (W), (1.1)

whereW(X(u)) is the so-called deformed parallel translation along tmeisertin-
galeX(u).

The problem is similar to finding flows associated to derxagtirocesses as stud-
ied in [7, 8, 9, 10, 14, 13] and [12]. However it is transverisathe sense that in
these papers diffusions with the same starting point arergesfd along a drift which
vanishes at time 0. In contrast, we want to move the startaigt fout to keep the
generator. Our strategy of proof consists in iterating felreouplings for closer and
closer diffusions. In the limit, the solution may be consatkas an infinite number of
infinitesimally coupled diffusions. We call it horizontaldiffusion inC! path space.

If the generatoL is degenerate, we are able to solve (1.1) only in the constant
rank case; by parallel coupling we construct a family ofufons satisfying (1.1) at
u= 0. In particular, the derivative of; (u) atu = 0 has finite variation compared to
parallel transport.

Note that our construction requires only a connection orfilex bundle gener-
ated by the “carré du champ” operator. In the previous aggrof [11], a stochastic
differential equation is needed afnthas to be the Le Jan-Watanabe connection as-
sociated to the SDE.

The construction of families df(t)-diffusions X (u) with d,X (u) locally uni-
formly bounded has a variety of applications. In StochaAtialysis, for instance,
it allows to deduce Bismut type formulas without filteringlumdant noise. If only
the derivative with respect toatu = 0 is needed, parallel coupling as constructed
in [4, 5] would be a sufficient tool. The horizontal diffusibowever is much more
intrinsic by yielding a flow with the deformed parallel tréaison as derivative, well-
suited to applications in the analysis of path space. Marefor anyu, the diffusion
X.(u) generates the same filtration)&$0), and has the same lifetime if the manifold
is complete.

In Section 4 we use the horizontal diffusion to establish mtraztion property
for the Monge-Kantorovich optimal transport between piolitg measures evolv-
ing under the heat flow. We only assume that the cost funcsi@rion-decreasing
function of distance. This includes all Wasserstein distgrwith respect to the time-
dependent Riemannian metric generated by the symbol ofehergtor_(t). For a
generator which is independent of time, the proof could beesed using simple
parallel coupling. The time-dependent case however regtiorizontal diffusion as
a tool.

2 Horizontal diffusion in C! path space

Let M be a complete Riemannian manifold withits Riemannian distance. The
Levi-Civita connection oM will be denoted by
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Given a continuous semimartingaletaking values irvl, we denote byl"X =
dX its Itd differential and byd,X the martingale part ai X. In local coordinates,

0

g (2.1)

D1
dX = dX = (o|x'+§rj (X)d<X X*> )

Wherel'jik are the Christoffel symbols of the Levi-Civita connectianM. In addi-
tion, if . . _

dX'=dM' +dA
whereM' is a local martingale and' a finite variation process, then

9
dnX =AM 7.

Alternatively, if
R(X) = P"(X) : Ty,M — T M

denotes parallel translation aloXg then

d% = R(X (/ Py(X 15xs)

dmxt = H(X)dN

wherel; is the martingale part of the Stratonovich integﬁﬁP(X)glGXS.

If X is a diffusion with generatdr, we denote byV(X) the so-called deformed
parallel translation alon¥. Recall thatW(X); is a linear maplx,M — Tx M, de-
termined by the initial conditioW(X)o = IdTXOM together with the covariant Itd
stochastic differential equation:

and

DW(X); = —% Ric* (W(X)t) dt 4 Oyy(x), Z dt. (2.2)
By definition we have
DW(X); = R(X)d (P.(X)"*W(X)),. (2.3)

Note that the Itd differential (2.1) and the parallel tratisn require only a con-
nection] on M. For the deformed parallel translation (2.2) however thaneation
has to be adapted to a metric.

In this Section the connection and the metric are indeperafaime. We shall
see in Section 3 how these notions can be extended to timeadept connections
and metrics.

Theorem 2.1.LetR — M, u— ¢(u), be a C path in M and let Z be a vector field
on M. Further let X be a diffusion with generator

L=A/2+2Z,
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starting at¢ (0), and lifetime&. There exists a unique family

U= (X (U)hepo.g

of diffusions with generator L, almost surely continuoug&tin) and Ct in u, satisfy-
ing X(0) = X9, Xo(u) = ¢ (u) and

0uXe (U) = WX (U)e(¢(u))- (2.4)

Furthermore, the process(X) satisfies the & stochastic differential equation
dX () = P dnX? + Zyg o Ot (2.5)

where F3<‘(

ou ok TX[oM — Tx M denotes parallel transport along the'Curve

O,u = M, v X(v).

Definition 2.2. We call t— (X (u)ycr) the horizontal L-diffusion in &€ path space
CL(R,M) over X0, starting at¢.

Remark 2.3Given an elliptic generatdr, we can always choose a metgon M
such that
L=A/2+Z

for some vector field whereA is the Laplacian with respect th Assuming thaiv
is complete with respect to this metric, the assumptionsheforem 2.1 are fulfilled.
In the non-complete case, a similar result holds with they dlifference that the
lifetime of X (u) then possibly depends an

Remark 2.4Even ifL = A/2, the solution we are looking for is not the flow of a
Cameron-Martin vector field: firstly the starting point he@ot fixed and secondly
the vector field would have to depend on the paramet@onsequently one cannot
apply for instance Theorem 3.2 in [14]. An adaptation of thaop of the cited result
would be possible, but we prefer to give a proof using infsiiteal parallel coupling
which is more adapted to our situation.

Proof (of Theoren2.1).

Without loss of generality we may restrict ourselves to thsec > 0.

A. Existence.Under the assumption that a solutirfu) exists, we have for any
stopping timeT,

Wt (X(U)) (9 (U)) = WE(Xr 4. () (0% (W),

fort € [0,&(w) — T(w)[andw € {T < &}. Hered Xt := (dX)1 denotes the deriva-
tive processdX with respect tou, stopped at the random timE; note that by
Eq. (2.4),(0X%1)(u) =W (X(u))T(¢(u)). Consequently we may localize and replace
the time interval0, &[ by [0, T Atg] for sometp > 0, wherer is the first exit time of

X from a relatively compact open sub&ebf M with smooth boundary.
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We may also assume thidtis sufficiently small and included in the domain of
a local chart; moreover we can choages 0,1] with [;°]/¢ (u)| dusmall enough
such that the processes constructedifer|0, ug] stay in the domaitJ of the chart.
At this point we use the uniform boundednes$\bbn [0, T Atg).

Fora > 0, we define by induction a family of procesge§’ (u) )i>o indexed by
u> 0 as follows:X%(0) = X9, X§(u) = ¢(u), and ifu € Jna,(n+1)a] for some
integern > 0, X (u) satisfies the Itd equation

dX () = Pea (na).xa (w dmX" (NQ) + Zya ) dt, (2.6)

whereP,y denotes parallel translation along the minimal geodesimi to y. We

choosea sufficiently small so that all the minimizing geodesics argquely de-
termined and depend smoothly of the endpoints: si€éu) is constructed from
X% (na) via parallel coupling (2.6), there exists a constant 0 such that

(X (U)X (na)) < p(X§ (). X' (na)) €% < || ¢ | €™ 2.7)
(see e.g. [16]).
The procesgX9(u) satisfies the covariant Itd stochastic differential equmt
DAX (u) = Oyxa(uyPxa(na),. dmX (na)

+ Ogxa(wZdt— % Ric*(aX%(u))dt, (2.8)

(see [3] Eq. (4.7), along with Theorem 2.2).

Step 1 We prove that ifX andY are twoL-diffusions stopped aty := T Aty and
living in U, then there exists a constahsuch that

E | sup|[W(X); —W(Y) 2

t<to

<CE | sup|% —¥%/*| . (2.9)
t<tg

Here we use the Euclidean norm defined by the chart.
Write - _
L=a'dj+bg,
with al = all fori,j e {1,...,dimM}.
For L-diffusionsX andY taking values irJ, we denote byNX, respectivelyN",
their martingale parts in the chdst Then Itd’s formula yields

<(NX)k . (NY)k, (NX)k _ (NY)k>t
= ¢ Y97 = (X5 = Yo)?
2 /O"<><sk—vsk>d<<Nsx>k— (N)¥)
-2 [ 0¥ () - (%)) ds
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Thus, forU sufficiently small, letting{NX — NY|N* — NY) denote the Riemannian
guadratic variation, there exists a const@nt 0 (possibly changing from line to
line) such that

E[(N* = NYIN* = NY) ]

To
< |suplp 2| +C5 | [ X~ ek06) ~ 500
t<to 0
1,
< CE | supl|X — ¥;||2 +c/°1E lsup|XS—YS||2] dt
t<to 0 s<Tp
<C(1+to)E supIIXt—YtIZ]-
t<tg

Finally, again changin@, we obtain
E[(NX = NY|N* —=N")s,] <CE [sumxt—Yth]. (2.10)
t<to

Writing W(X) = P(X) (P(X)~*W(X)), an easy calculation shows that in the lo-
cal chart

dW(X) = — (X)(dX,W(X))

_ %(dr)(x)(dx)(dX,W(X))

n %r (X)(dX, T (X)(dX,W(X)))

- % Ric*(W(X))dt

+ Owx)Zdt. (2.11)

We are going to use Eq. (2.11) to evaluate the differ&¢é) — W(X). Along with
the already established bound (2.10), taking into acccati¥/(X), W(Y) and the
derivatives of the brackets &f andY are bounded i, we are able to get a bound
for

F (0= 2| sup [W(Y) WA I?

S<IAT
Indeed, first an estimate of the type

F(t) <GE lsup|XS—Ys|2

s<Tp

t
+C [ F(9ds 0<t<i
0

is derived which then by Gronwall's lemma leads to

F(t) <C1€*'E lSUpIXt—YtHZ]. (2.12)
t<to
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Lettingt = tg in (2.12) we obtain the desired bound (2.9).
Step 2 We prove that there exis&> 0 such that for alli € [0, ug],

E | supp? ()q"(u),)q“'(u))] <C(a+a)? (2.13)

t<tg

From the covariant equation (2.8) fdiX“(v) and the definition of deformed
parallel translation (2.2),

1.
DW(X); = > Ric* (W(X); 1) dt — Do 12 dt,

we have for(t,v) € [0, To] x [0, Ug],

WX ()2 0XE(0) = B0+ [ WOK () M P . G (),
or equivalently,

X (V) =W(XI (V) (V)
t
+W(X(V))t ./0 W(XY(V))s * Ooxe v)Pre va),. 0nXd (Vo) (2.14)

with vq = na, where the integen is determined byna < v < (n+ 1)a. Conse-
quently, we obtain

p<x;f<u>,x€’<u>>
_ /O (dp, (0% (v),0%%'(v)) ) dv

=y (e (W<X“<v>>t¢<v>,w<xa/<v>>t¢<v>)>dv
+/u<dp’( /W s 'Daxa )P (va),. dmXs' (Var ), )>dv
+/ <dp (0WXG / WX V)s ﬁxg’(v)ng/(va/),.dmxsa/@’a/))>dV

This yields, by means of boundednesdpfand deformed parallel translation, to-
gether with (2.12) and the Burkholder-Davis-Gundy inedjigs,

u

E LSSUTEPZ (Xt“(uma'(U))] <c|®E _tsgur(l?pz (Xt“(V),Xt"’(V)) dv

S
ChE ./0 HD@XSG(V)R@(va),.HZdS] dv

u [ rTo
+C IE/ 0
o |Jo

2
ds] dv.

oxg' () Pxe’ (v, ’
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From here we obtain

E | supp? (Xt"( ) %

t<tg

supp? (X< >,><1“’<v>)] dv

<c /
t<tg

+CaZ/OUE Uorollm"(v)lzds} dv

+Ca’2/0u]E[/oro X (v)

where we used the fact that foe T,M, 0OyP . = 0, together with

p(XE(v),xE(vs)) <CB, B=a,d,

fod o

see estimate (2.7).
Now, by Eq. (2.8) forDdX®, there exists a consta@ > 0 such that for all

v € [0, ug],
E[/:’ ’0)(53(v)H2ds} <c.

Consequently,

E [supp2 (&“(U)%”/(U))_ <C /

t<to

supp? (X7 >,>q“’<v>)] dv
t<To

+2CC(a+a’)?

which by Gronwall lemma yields

<C(a+a')?

E LSSUTEPZ (Xt”(U),Xt"/(U))

for some constar@ > 0. This is the desired inequality.

Step 3 Recall that N _
L=a'dj+bg;.

Denoting by(ajj) the inverse ofal), we let[)' be the connection with Christoffel
symbols

1
(Pt = =5 @+ ay) b (2.15)
We are going to prove that dltdiffusions are.)’-martingales:

(i) On one hand[Y’-martingales are characterized by the fact that forkany

ka+%(I”)=‘jd<Xi,Xj> is the differential of a local martingale. ~ (2.16)
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(i) On the other hand,-diffusions satisfy the following two conditions:
dxk—bX(X)dt is the differential of a local martingale, (2.17)

d(xi,x1) = (all (X) +al (X)) dt. (2.18)

From this it is clear that (2.15), (2.17) together with (2.i8ply (2.16).
From inequality (2.13) we deduce that there exists a lirgipnocess

(X (U))o<t<ro, 0<u<up

such that for all € [0,up] anda > 0,

E | supp? (X7 (u), % (u)) | <Ca?. (2.19)

t<tg

In other words, for any fixed € [0,uo], the procesgX® (u))icjo.¢,) CONVErges
to (X (u))iefo,r) Uniformly in L? asa tends to 0. Since these processes @re
martingales, convergence also holds in the topology of semingales ([2] Proposi-
tion 2.10). This implies in particular that for amye [0, Ug|, the procesgX (U) /o,
is a diffusion with generatdr, stopped at timep.

Extracting a subsequencey)x-o convergent to 0, we may assume that almost
surely, for all dyadia € [0, ug],

supp (X (u), X (u))

t<to

converges to 0. Moreover we can cho@gg)x>o of the formay = 2~ with (ny)k>o0
an increasing sequence of positive integers. Due to (2.&)can take a version of
the processe$, u) — X (u) such that

U X (u)

is uniformly Lipschitz inu € Nax N0, up] with a Lipschitz constant independentof
andt. Passing to the limit, we obtain that a.s for any [0, 19, the map

ur— X (u)

is uniformly Lipschitz inu € 2 N[0, up] with a Lipschitz constant independenttof
where? is the set of dyadic numbers. Finally we can choose a vergion o

(t,u) — X (u)

which is a.s. continuous ift, u) € [0, Tg] x [0, Up], and hence uniformly Lipschitz in
u € [0, ug).
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Step 4 We prove that almost sureli (u) is differentiable inu with derivative

WX (u))e(¢ ().

More precisely, we show that in local coordinates, almostlgufor allt € [0, To],
u € [0, ug,

=0+ ["WOX()x(9 () (220
From the construction it is clear that almost surely, fot al[0, 7o), u € [0, U],

(W) = X0+ [ WX (9(v) dv

+f ’ <W(x"k(v))t JA W) M P G (vak)) dv

This yields

—x{"—/uwx V)e(9(v)) dv
=X (U)X + [ WX W)= WX()) () dv

+ /O (w<x"k<v>>t [ WO T P ) )

The terms of right-hand-side are easily estimated, whettesiestimates the constant
C may change from one line to another. First observe that

E | sup||X (u) — X™(u) ||2] <Caf.
t<tg

Using (2.9) and (2.19) we have

! 2
E [sup / (W(XT(v))e =W(X(V))) dv| ]
t<tg ||/0
<E LS<UTP : [IW (X% (V) )t = WX (V) ]| dV]

- [E lsumwxak( )t W<X<v>>t|2] dv

t<to

<Caf,

and finally
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T

't
/0 WX())s Do) P vy, IS (Ve

E |sup

t<tg

[ wexs
JO

't
< [ WO T P X () )

sup
t<tg

2
]dv

u To 2 . .
gC/O E UO HDdxs“k(v)sz“"(vak),.H ds] dv (sincew 1 is bounded)

U
gc/E
JO

<ca? /(;UE M" ||c9XS"k(v)|2ds} dv
<Caf.
where in the last but one inequality we usédP, . = 0 for anyv € TyM which implies
VR, || < Co(x,y)?(IVII%,

and the last inequality is a consequence of (2.8).
We deduce that

E [sup
t<to

Since this is true for anyr, using continuity inu of X (u), we finally get almost
surely for allt, u,

X(0) X0~ ["WXWK(w)av

2
1 <Ca?.

X(0) =X+ [ WX(W)()av
Step 5 Finally we are able to prove Eq. (2.5):

dX (u) = ng*u('> dmX0 + Zy, () dit.

Since a.s. the mappin@,u) — dX%(u) is continuous, the map — dX(u) is
continuous in the topology of uniform convergence in praligbWe want to prove
thatu+— dX(u) is continuous in the topology of semimartingales.

Since for a given connection on a manifold, the topology afarm convergence
in probability and the topology of semimartingale coincigethe set of martingales
(Proposition 2.10 of [2]), it is sufficient to find a connectionT M for which dX (u)
is a martingale for any. Again we can localize in the domain of a chart. Recall that
for all u, the proces¥(u) is a ['-martingale wherél' is defined in step 1. Then
by [1], Theorem 3.3, this implies that the derivative witsgect tou with values in
TM, denoted here byX(u), is a(00’)°-martingale with respect to the complete lift
(O0')¢ of O0'. This proves that — dX(u) is continuous in the topology of semimartin-
gales.
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Remark 2.5Alternatively, one could have used that given a geneidtdhe topolo-
gies of uniform convergence in probability on compact setd the topology of
semimartingales coincide on the setL&fdiffusions. Since the process@X (u) are

diffusions with the same generator, the result could bevddras well.

As a consequence, Itd integrals commute with derivativiéls iespect ta (see

e.g. [2], corollary 3.18 and lemma 3.15). We write it formnyadk

DIX = OydX — %R(ax,dX)dx

Since
dX(u) @ dX(u) = g~ 1(X(u))dt
whereg is the metric tensor, Eq. (2.21) becomes

DAX = OydX — % Ric*(aX)dt

On the other hand, Eq. (2.4) and Eq. (2.2)\Myield

1_.
DX = -5 Ric?(dX) dt + Oy Z dt.

From the last two equations we obtain
OudX = OyxZ dt.
This along with the original equation
dX? = dmX® 4 Zyodt
gives
dX () = P dnX® + Zyg o Ot
where %
Pt ) T M — Ty M

denotes parallel transport along ecurvev i— X (V).

(2.21)

B. UniquenessAgain we may localize in the domain of a chlrtLetting X (u)
andY (u) be two solutions of Eq. (2.4), then fétr,u) € [0, o[ x [0, ug] we find in local

coordinates,
U

VU)X = [ (WY ()= WIX())) ()

JO
On the other hand, using (2.9) we have

E | sup|%(u) - |]<c/ supl(v

t<tg

from which we deduce that almost surely, fora# [0, 1o, X (u) =Y

(2.22)

(2.23)

(u). Conse-

quently, exploiting the fact that the two processes areicoats in(t, u), they must

be indistinguishable. O
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3 Horizontal diffusion along non-homogeneous diffusion
In this Section we assume that the elliptic generato function of time:L = L(t)

fort > 0. Letg(t) be the metric oM such that

L(t) = %At +2Z(t)

whereA! is theg(t)-Laplacian and(t) a vector field orM.
Let (X) be an inhomogeneous diffusion with generdt¢r). Parallel transport
P'(X); along theL(t)-diffusion X is defined analogously to [6] as the linear map

PY(X)t: Tx,M — Tx, M
which satisfies 1
D'P!(X)r = — 5 (P (X)o)dt (3.1)

whereg denotes the derivative gfwith respect to time; the covariant differentii
is defined in local coordinates by the same formulab awith the only difference
that Christoffel symbols now depend tin

Alternatively, if J is a semimartingale ovét, the covariant differentiad!J may
be defined a®(0,J) = (0,D'J), where(0,J) is a semimartingale alon@,X;) in

M = [0,T] x M endowed with the connectidn defined as follows: if
s ¢(s) = (f(s),9(s))
is aC! path inM ands— (i(s) = (a(s),u(s)) € TM is C! path overd, then
FI6i(s) = (d(s), (0Fu) (s))

where[' denotes the Levi-Civita connection associated(td. It is proven in [6]
thatP'(X); is an isometry fron{Tx,M, g(0, Xo)) to (Tx M, g(t, X%)).
The damped parallel translatigw (X); alongX; is the linear map

WH(X)t : TxgM — Tx M
satisfying
D'W!(X) = (D{Nt(x)tZ(t, - :—ZL(Rict)t(Wt(X)t)) dt. (3.2)
If Z= 0 andg(t) is solution to the backward Ricci flow:
g = Ric, (3.3)
then damped parallel translation coincides with the usagdlfel translation:
P{(X) =W!(X),

(see [6] Theorem 2.3). .
The Itd differentiald”Y = d” Y of anM-valued semimartingalé is defined by
formula (2.1), with the only difference that the Christéfgmbols depend on time.
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Theorem 3.1.Keeping the assumptions of this Section, let
R—M, u— ¢(u),

be a ¢ path in M and let ¥ be an L(t)-diffusion with starting poinip(0) and
lifetime&. Assume thatM, g(t)) is complete for every t. There exists a unique family

U= (X (U)o
of L(t)-diffusions, which is a.s. continuous(inu) and Ct in u, satisfying
X(0) = X° and X%(u) = ¢ (u),
and solving the equation
0% (u) =W (X () (B (w). (3.4)

Furthermore, Xu) solves the & stochastic differential equation
A (u) = Pyt dPOx + Z(t, % (u) dt (3.5)

where

p51§<-> {TyoM = Ty M

denotes parallel transport along the*@urve
0,u = M, v X(v),

with respect to the metric(g).
If Z=0and if gt) is given as solution to the backward Ricci flow equation, then
almost surely for all t,

1% (Wllgey = 1#(Wlgo) - (3.6)

Definition 3.2. We call
t— (X (u))uer

the horizontal I(t)-diffusion in C path space &R, M) over X, started atp.

Remark 3.3Eq. (3.6) says that iZ = 0 and ifg is solution to the backward Ricci
flow equation, then the horizontglt)-Brownian motion is length preserving (with
respect to the moving metric).

Remark 3.4Again if the manifold(M,g(t)) is not necessarily complete for &lla
similar result holds with the lifetime of (u) possibly depending on

Proof (of Theoren8.1). The proof is similar to the one of Theorem 2.1. We restrict
ourselves to explaining the differences.

The localization procedure carries over immediately; wekvwam the time inter-
val [0, T Ato].
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Fora > 0, we define the approximating proce§%(u) by induction as
xta(o) = xtoa Xg(u) = ¢(u)’
and ifu € Jna, (n+ 1)a] for some integen > 0, thenX“ (u) solves the Itd equation
d"X7 (1) = Pia (g xa (uy ImX (na) + Z(t, X (u)) dit (3.7)

whereP}(,y is the parallel transport along the minimal geodesic froto y, for the
connectiorlt. N
Alternatively, lettingX® = (t,X%), we may write (3.7) as

A% (U) = Bra (na) a0y X (Nar) + Z(XE (u)) dt (3.8)

Wherel5>z,y denotes parallel translation along the minimal geodesim# to y for the
connectioril.

Denoting byp(t, x,y) the distance from to y with respect to the metrig(t), I1td’s
formula shows that the procepst, X" (u), X% (na)) has locally bounded variation.
Moreover since locallg; p(t,x,y) < Cp(t,x,y) for x £y, we find similarly to (2.7),

p(t, X% (), X7 (na)) < p(0,X§'(u), X5 (nar)e™" < [ €.

Since all Riemannian distances are locally equivalerg,ithplies

P (X% (u), X" (na)) < p(X§' (u), X' (nar))e™ < | €™ (3.9)

wherep =p(0, -, -).
Next, differentiating Eq. (3.8) yields

DauXE (u) = iaui{’(u) Pga (na),. dmX" (nar)

+ E{W(u)z dt— %F”z(aufq’(u), dX (u)) dX7 (u).

Using the fact that the first component¥f (u) has finite variation, a careful com-
putation ofR leads to the equation
Dtau)ga (U) - I:lt;uxta(u) Pt a(na> i dm)(ta (nC{)

+ Dy Z(t ) — %(Rid)ﬁ (3uXC (u)) dt.

To finish the proof, it is sufficient to remark that in step 1, E410) still holds
true for X andY g(t)-Brownian motions living in a small open set, and that in
step 5, the map — dX(u) is continuous in the topology of semimartingales. This
last point is due to the fact that allX(u) are inhomogeneous diffusions with the
same generator, sdy, and the fact that the topology of uniform convergence on
compact sets and the topology of semimartingales coinaidé-diffusions. O



16 M. Arnaudon, K. A. Coulibaly, and A. Thalmaier
4 Application to optimal transport

In this Section we assume again that the elliptic genelatoris aC* function of
time with associated metrig(t):

L(t) = %At +2Z(t)

whereA! is the Laplacian associated ggt) andZ(t) is a vector field. We assume
further that for any, the Riemannian manifol@M, g(t)) is metrically complete, and
L(t) diffusions have infinite lifetime.

Letting¢ : R, — R, be a non-decreasing function, we define a cost function

C(t,X,y) = ¢(p(t,X,y)) (4.1)

wherep(t, -, -) denotes distance with respectit).
To the cost functiorc we associate the Monge-Kantorovich minimization be-
tween two probability measures tdh

Herluv)= dnt [ cltxy)dn(xy) (4.2)
ner(u,v) JMxm

wherelT(u,v) is the set of all probability measures dhx M with marginalsu
andv. We denote

Wor(,v) = (Zppr(1,v)) P (4.3)

the Wasserstein distance associated t00. For a probability measuye on M, the
solution of the heat flow equation associated o will be denoted byuR.

Define a sectiori('Z)’ € I (T*M © T*M) as follows: for anyx € M andu,v €
TXMl

1
(0'2)(u,v) = > (9t)(TLZ,v) +9(t)(u,0\2)) -
In case the metric is independenttaindZ = gradv for someC? functionV onM,

then
(0'2)°(u,v) = OdV(u,v).

Theorem 4.1.We keep notation and assumptions from above.

a) Assume
Rict —g—2(0'z)" > 0. (4.4)

Then the function
t— #ci(UR,VR)
is non-increasing.
b) If for some ke R,
Rict —g—2(0'2)" > kg, (4.5)

then we have for all p- 0

Wp,t(IlHa VH) S eikt/z Wp,o(l-h V)'
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Remark 4.2Before turning to the proof of Theorem 4.1, let us mentiort thahe
caseZ = 0, g constant,p = 2 andk = 0, item b) is due to [20] and [19]. In the
case wherg is a backward Ricci flow solutior = 0 andp = 2, statement b) is
due to Lott [17] and McCann-Topping [18]. For extensionswth@’-transportation,
see [22].

Proof (of Theorerd.1). a) Assume that Ric-g— 2(00!Z)? > 0. Then for anyL (t)-
diffusion (%), we have
d(g(t)(W(X)t, W(X)t))
= 9(t) (W(X),
= 9(t) (W(X),

T 2g(t) (utwwza, = %(Rict>ﬁ<W<X>t>,W<X>t) dt

(X)r) dt+2g(t) (D'W(X)e, W (X))
(X)) dt

W
W
= (9+2(0'2) - Rict) (W(X)e, W(X);) dt < 0.

Consequently, for anty> 0,

Forx,y € M, letu— y(x,y)(u) be a minimalg(0)-geodesic fronx to y in time 1:
y(x,y)(0) = x andy(x,y)(1) = y. Denote byX*¥Y(u) a horizontaL (t)-diffusion with
initial conditiony(x,y).

Forn € IN(u,v), define the measurg onM x M by

m(AxB)= [ P{XY(0) A X¥(1) eB}dn(xy).

whereA andB are Borel subsets dfl. Thenn; has marginalg/R andvR. Conse-
quently it is sufficient to prove that for any sugh

| BltX0.xY @) dnxy) < [ coxyaniey). @)
MxM MxM

On the other hand, we have a.s.,
1
pEXY(0).6Y(1) < [|ax(u], du

- /01 IO (W) vxy) (W) du

W(X)elle < [W(X)ollo = 1. (4.6)

< [ 7y wllpau
=p(O.xy),
and this clearly implies
c(t,XY(0),%*¥(1)) <c(0,xy) a.s,
and then (4.7).
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b) Under condition (4.5), we have

SOWOLWIX):) < kgD WO WOX),),
which implies
WXl < e /2,

and then
P (6, XY(0),X¥(1)) < e 2p(0,x,y).
The result follows. O

5 Derivative process along constant rank diffusion

In this Section we consider a generatasf constant rank: the imade of the “carré
du champ” operataf (L) € I (TM® TM) defines a subbundle @M. In E we then
have an intrinsic metric given by

90 = (MFLIEX) ™", xeM.

Let O be a connection o& with preserveg, and denote by’ the associated semi-
connection: iU € I (TM) is a vector field[J;U is defined only ifv € E and satisfies

OW = Oy, V + V.Ul

whereV € I (E) is such thaw,, = v (see [11], Section 1.3). We denote Bgx) the
drift of L with respect to the connectidn

For the construction of a flow df-diffusions we will use an extension af to
TM denoted by. Then the associated semi-connectidris the restriction of the
classical adjoint of (see [11] Proposition 1.3.1).

Remark 5.1It is proven in [11] that a connectidd always exists, for instance, we
may take the Le Jan-Watanabe connection associated to ahlvaskn vector bundle
homomorphism from a trivial bundlel x H to E whereH is a Hilbert space.

If X is anL-diffusion, the parallel transport
P(X)t: Exy — Ex

alongX; (with respect to the connecticﬁw) depends only ofl. The same applies for
the Itd differentiald X = d”X;. We still denote by, its martingale part.
We denote by
P'(X)t : TxM — Tx M

the parallel transport along for the adjoint connectio(ﬁ)/, and byD'J the covari-
ant differential (with respect tg1)’) of a semimartingalé € TM aboveX; compare
(2.3) for the definition.
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Theorem 5.2.We keep the notation and assumptions from above.d-ké» fixed
pointin M and X(xp) an L-diffusion starting atx For x € M close to %, we define
the L-diffusion X(x), started at x, by

dX(X) - P)(((xo),xt(x) dmxt (XO) +Z(Xt(x))dt (5-1)
wherelf’x,y denotes parallel transport (with respectfft) along the uniqué—geodesic
from xtoy. Then

DTy, X = ETXOXZ dt— % Ric? (T X) dt (5.2)

where

d
Ric*(u) = Zﬁ(u,a)a, uec M,
i=

and(e)i—1,..4 an orthonormal basis of For the metric g.

Under the additional assumption thatZl” (E), the differentiaD' Ty, X does not
depend on the extensiah and we have

DT, X = O xZdt— % Ric*(Ty, X) dt. (5.3)
Proof. From [3] Eq. 7.4 we have

5/TXOX = iTxOXISX((Xo),. dmX: (X0) + iTxOXZ dt

— % (R (T X, dX(%0))dX (x0) + DT/ (dX(%0), Tp X, dX(%0)))

— %T’/(Iﬁ/TXOX,dX)

whereT’ denotes the torsion tensor(af. Since for allx eM, E|v|5x,. =0ifve TuM,
the first term in the right vanishes. As a consequebtE, X has finite variation, and
T'(D'Ty,X,dX) = 0. Then using the identity

R(v,uju+ 0T (u,v,u) = Riv,u)u, u,ve T,M,
which is a particular case of identity (C.17) in [11], we dhta
D'TipX = O xZ dt— %ﬁ(TXOx,dX(xo))dX(xo).
Finally writing 3
R(Ty, X, dX(X0))dX(X0) = Ric* (T, X) dt
yields the result. O

Remark 5.3In the non-degenerate casejs the Levi-Civita connection associated
to the metric generated Hy, and we are in the situation of Section 2. In the de-
generate case, in generaldoes not extend to a metric connectionddnHowever
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conditions are given in [11] (1.3.C) under whit(X) is adapted to some metric,
and in this caséy, X is bounded with respect to the metric.

One would like to extend Theorem 2.1 to degenerate diffissarconstant rank,
by solving the equation

duX(u) = O xwZ dt— % Ric*(duX (u)) dt.

Our proof does not work in this situation for two reasons. Tir& one is that in
general5/(x) is not adapted to a metric. The second one is the lack of amiality
of the type (2.7) sincel does not have an extensi@hwhich is the Levi-Civita
connection of some metric.

Remark 5.4WhenM is a Lie group and. is left invariant, theri] can be chosen as
the left invariant connection. In this cage)’ is the right invariant connection, which
is metric.
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