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Summary. We define horizontal diffusion inC1 path space over a Riemannian manifold and
prove its existence. If the metric on the manifold is developing under the forward Ricci flow,
horizontal diffusion along Brownian motion turns out to be length preserving. As application,
we prove contraction properties in the Monge-Kantorovich minimization problem for prob-
ability measures evolving along the heat flow. For constant rank diffusions, differentiating a
family of coupled diffusions gives a derivative process with a covariant derivative of finite
variation. This construction provides an alternative method to filtering out redundant noise.
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1 Preliminaries

The main concern of this paper is to answer the following question: Given a second
order differential operatorL without constant term on a manifoldM and aC1 path
u 7→ ϕ(u) taking values inM, is it possible to construct a one parameter family
Xt(u) of diffusions with generatorL and starting pointX0(u) = ϕ(u), such that the
derivative with respect tou is locally uniformly bounded?

If the manifold isR
n and the generatorL a constant coefficient differential op-

erator, there is an obvious solution: the familyXt(u) = ϕ(u) +Yt , whereYt is an
L-diffusion starting at 0, has the required properties. But already onR

n with a non-
constant generator, the question becomes difficult.

In this paper we give a positive answer for elliptic operatorsL on general mani-
folds; the result also covers time-dependent elliptic generatorsL = L(t).
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It turns out that the constructed family of diffusions solves the ordinary differen-
tial equation in the space of semimartingales:

∂uXt(u) = W(X(u))t(ϕ̇(u)), (1.1)

whereW(X(u)) is the so-called deformed parallel translation along the semimartin-
galeX(u).

The problem is similar to finding flows associated to derivative processes as stud-
ied in [7, 8, 9, 10, 14, 13] and [12]. However it is transversalin the sense that in
these papers diffusions with the same starting point are deformed along a drift which
vanishes at time 0. In contrast, we want to move the starting point but to keep the
generator. Our strategy of proof consists in iterating parallel couplings for closer and
closer diffusions. In the limit, the solution may be considered as an infinite number of
infinitesimally coupled diffusions. We call it horizontalL-diffusion inC1 path space.

If the generatorL is degenerate, we are able to solve (1.1) only in the constant
rank case; by parallel coupling we construct a family of diffusions satisfying (1.1) at
u = 0. In particular, the derivative ofXt(u) at u = 0 has finite variation compared to
parallel transport.

Note that our construction requires only a connection on thefiber bundle gener-
ated by the “carré du champ” operator. In the previous approach of [11], a stochastic
differential equation is needed and∇ has to be the Le Jan-Watanabe connection as-
sociated to the SDE.

The construction of families ofL(t)-diffusionsX.(u) with ∂uX.(u) locally uni-
formly bounded has a variety of applications. In StochasticAnalysis, for instance,
it allows to deduce Bismut type formulas without filtering redundant noise. If only
the derivative with respect tou at u = 0 is needed, parallel coupling as constructed
in [4, 5] would be a sufficient tool. The horizontal diffusionhowever is much more
intrinsic by yielding a flow with the deformed parallel translation as derivative, well-
suited to applications in the analysis of path space. Moreover for anyu, the diffusion
X.(u) generates the same filtration asX.(0), and has the same lifetime if the manifold
is complete.

In Section 4 we use the horizontal diffusion to establish a contraction property
for the Monge-Kantorovich optimal transport between probability measures evolv-
ing under the heat flow. We only assume that the cost function is a non-decreasing
function of distance. This includes all Wasserstein distances with respect to the time-
dependent Riemannian metric generated by the symbol of the generatorL(t). For a
generator which is independent of time, the proof could be achieved using simple
parallel coupling. The time-dependent case however requires horizontal diffusion as
a tool.

2 Horizontal diffusion in C1 path space

Let M be a complete Riemannian manifold withρ its Riemannian distance. The
Levi-Civita connection onM will be denoted by∇.
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Given a continuous semimartingaleX taking values inM, we denote byd∇X =
dX its Itô differential and bydmX the martingale part ofdX. In local coordinates,

d∇X ≡ dX =

(

dXi +
1
2

Γ i
jk(X)d<X j ,Xk>

)

∂
∂xi (2.1)

whereΓ i
jk are the Christoffel symbols of the Levi-Civita connection on M. In addi-

tion, if
dXi = dMi +dAi

whereMi is a local martingale andAi a finite variation process, then

dmX = dMi ∂
∂xi .

Alternatively, if
Pt(X) ≡ PM

t (X) : TX0M → TXt M

denotes parallel translation alongX, then

dXt = Pt(X)d

(

∫ .

0
Ps(X)−1δXs

)

t

and
dmXt = Pt(X)dNt

whereNt is the martingale part of the Stratonovich integral
∫ t

0 P(X)−1
s δXs.

If X is a diffusion with generatorL, we denote byW(X) the so-called deformed
parallel translation alongX. Recall thatW(X)t is a linear mapTX0M → TXt M, de-
termined by the initial conditionW(X)0 = IdTX0M together with the covariant Itô
stochastic differential equation:

DW(X)t = −
1
2

Ric♯(W(X)t)dt+ ∇W(X)t Z dt. (2.2)

By definition we have

DW(X)t = Pt(X)d
(

P.(X)−1W(X)
)

t . (2.3)

Note that the Itô differential (2.1) and the parallel translation require only a con-
nection∇ on M. For the deformed parallel translation (2.2) however the connection
has to be adapted to a metric.

In this Section the connection and the metric are independent of time. We shall
see in Section 3 how these notions can be extended to time-dependent connections
and metrics.

Theorem 2.1.Let R → M, u 7→ ϕ(u), be a C1 path in M and let Z be a vector field
on M. Further let X0 be a diffusion with generator

L = ∆/2+Z,
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starting atϕ(0), and lifetimeξ . There exists a unique family

u 7→ (Xt(u))t∈[0,ξ [

of diffusions with generator L, almost surely continuous in(t,u) and C1 in u, satisfy-
ing X(0) = X0, X0(u) = ϕ(u) and

∂uXt(u) = W(X(u))t(ϕ̇(u)). (2.4)

Furthermore, the process X(u) satisfies the It̂o stochastic differential equation

dXt(u) = PXt( ·)
0,u dmX0

t +ZXt(u) dt, (2.5)

where PXt( ·)
0,u : TX0

t
M → TXt (u)M denotes parallel transport along the C1 curve

[0,u]→ M, v 7→ Xt(v).

Definition 2.2. We call t 7→ (Xt(u)u∈R) the horizontal L-diffusion in C1 path space
C1(R,M) over X0, starting atϕ .

Remark 2.3.Given an elliptic generatorL, we can always choose a metricg on M
such that

L = ∆/2+Z

for some vector fieldZ where∆ is the Laplacian with respect tog. Assuming thatM
is complete with respect to this metric, the assumptions of Theorem 2.1 are fulfilled.
In the non-complete case, a similar result holds with the only difference that the
lifetime of X.(u) then possibly depends onu.

Remark 2.4.Even if L = ∆/2, the solution we are looking for is not the flow of a
Cameron-Martin vector field: firstly the starting point hereis not fixed and secondly
the vector field would have to depend on the parameteru. Consequently one cannot
apply for instance Theorem 3.2 in [14]. An adaptation of the proof of the cited result
would be possible, but we prefer to give a proof using infinitesimal parallel coupling
which is more adapted to our situation.

Proof (of Theorem2.1).
Without loss of generality we may restrict ourselves to the caseu≥ 0.
A. Existence.Under the assumption that a solutionXt(u) exists, we have for any

stopping timeT,

WT+t(X(u))(ϕ̇(u)) = Wt(XT+ · (u))(∂XT(u)),

for t ∈ [0,ξ (ω)−T(ω)[ andω ∈ {T < ξ}. Here∂XT := (∂X)T denotes the deriva-
tive process∂X with respect tou, stopped at the random timeT; note that by
Eq. (2.4),(∂XT)(u) = W(X(u))T(ϕ̇(u)). Consequently we may localize and replace
the time interval[0,ξ [ by [0,τ ∧ t0] for somet0 > 0, whereτ is the first exit time of
X from a relatively compact open subsetU of M with smooth boundary.
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We may also assume thatU is sufficiently small and included in the domain of
a local chart; moreover we can chooseu0 ∈ ]0,1] with

∫ u0
0 ‖ϕ̇(u)‖du small enough

such that the processes constructed foru∈ [0,u0] stay in the domainU of the chart.
At this point we use the uniform boundedness ofW on [0,τ ∧ t0].

For α > 0, we define by induction a family of processes(Xα
t (u))t≥0 indexed by

u ≥ 0 as follows:Xα(0) = X0, Xα
0 (u) = ϕ(u), and if u ∈ ]nα,(n+1)α] for some

integern≥ 0, Xα(u) satisfies the Itô equation

dXα
t (u) = PXα

t (nα),Xα
t (u)dmXα

t (nα)+ZXα
t (u) dt, (2.6)

wherePx,y denotes parallel translation along the minimal geodesic from x to y. We
chooseα sufficiently small so that all the minimizing geodesics are uniquely de-
termined and depend smoothly of the endpoints: sinceXα(u) is constructed from
Xα(nα) via parallel coupling (2.6), there exists a constantC > 0 such that

ρ(Xα
t (u),Xα

t (nα)) ≤ ρ(Xα
0 (u),Xα

0 (nα))eCt ≤ ‖ϕ̇‖∞ αeCt0 (2.7)

(see e.g. [16]).
The process∂Xα(u) satisfies the covariant Itô stochastic differential equation

D∂Xα(u) = ∇∂Xα (u)PXα (nα),.dmXα
t (nα)

+ ∇∂Xα (u)Z dt−
1
2

Ric♯(∂Xα(u))dt, (2.8)

(see [3] Eq. (4.7), along with Theorem 2.2).

Step 1 We prove that ifX andY are twoL-diffusions stopped atτ0 := τ ∧ t0 and
living in U , then there exists a constantC such that

E

[

sup
t≤τ0

‖W(X)t −W(Y)t‖
2

]

≤CE

[

sup
t≤τ0

‖Xt −Yt‖
2

]

. (2.9)

Here we use the Euclidean norm defined by the chart.
Write

L = ai j ∂i j +b j∂ j

with ai j = a ji for i, j ∈ {1, . . . ,dimM}.
ForL-diffusionsX andY taking values inU , we denote byNX , respectivelyNY,

their martingale parts in the chartU . Then Itô’s formula yields
〈

(NX)k− (NY)k,(NX)k− (NY)k〉

t

= (Xk
t −Yk

t )2− (Xk
0 −Yk

0 )2

−2
∫ t

0
(Xk

s −Yk
s )d((NX

s )k− (NY
s )k)

−2
∫ t

0
(Xk

s −Yk
s )

(

bk(Xs)−bk(Ys)
)

ds.
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Thus, forU sufficiently small, letting〈NX −NY|NX −NY〉 denote the Riemannian
quadratic variation, there exists a constantC > 0 (possibly changing from line to
line) such that

E
[

〈NX −NY|NX −NY〉τ0

]

≤CE

[

sup
t≤τ0

‖Xt −Yt‖
2

]

+C∑
k

E

[

∫ τ0

0
|Xk

t −Yk
t | |b

k(Xt)−bk(Yt)|dt

]

≤CE

[

sup
t≤τ0

‖Xt −Yt‖
2

]

+C
∫ t0

0
E

[

sup
s≤τ0

‖Xs−Ys‖
2

]

dt

≤C(1+ t0)E

[

sup
t≤τ0

‖Xt −Yt‖
2

]

.

Finally, again changingC, we obtain

E
[

〈NX −NY|NX −NY〉τ0

]

≤CE

[

sup
t≤τ0

‖Xt −Yt‖
2

]

. (2.10)

Writing W(X) = P(X)
(

P(X)−1W(X)
)

, an easy calculation shows that in the lo-
cal chart

dW(X) = −Γ (X)(dX,W(X))

−
1
2
(dΓ )(X)(dX)(dX,W(X))

+
1
2

Γ (X)(dX,Γ (X)(dX,W(X)))

−
1
2

Ric♯(W(X))dt

+ ∇W(X)Z dt. (2.11)

We are going to use Eq. (2.11) to evaluate the differenceW(Y)−W(X). Along with
the already established bound (2.10), taking into account thatW(X), W(Y) and the
derivatives of the brackets ofX andY are bounded inU , we are able to get a bound
for

F(t) := E

[

sup
s≤t∧τ

‖W(Y)−W(X)‖2
]

.

Indeed, first an estimate of the type

F(t) ≤C1E

[

sup
s≤τ0

‖Xs−Ys‖
2

]

+C2

∫ t

0
F(s)ds, 0≤ t ≤ t0

is derived which then by Gronwall’s lemma leads to

F(t) ≤C1eC2t
E

[

sup
t≤τ0

‖Xt −Yt‖
2

]

. (2.12)
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Letting t = t0 in (2.12) we obtain the desired bound (2.9).

Step 2 We prove that there existsC > 0 such that for allu∈ [0,u0],

E

[

sup
t≤τ0

ρ2
(

Xα
t (u),Xα ′

t (u)
)

]

≤C(α + α ′)2. (2.13)

From the covariant equation (2.8) for∂Xα
t (v) and the definition of deformed

parallel translation (2.2),

DW(X)−1
t =

1
2

Ric♯(W(X)−1
t )dt−∇W(X)−1

t
Z dt,

we have for(t,v) ∈ [0,τ0]× [0,u0],

W(Xα(v))−1
t ∂Xα

t (v) = ϕ̇(v)+
∫ t

0
W(Xα(v))−1

s ∇∂Xα
s (v)PXα

s (vα ),.dmXα
s (vα),

or equivalently,

∂Xα
t (v) = W(Xα(v))t ϕ̇(v)

+W(Xα(v))t

∫ t

0
W(Xα(v))−1

s ∇∂Xα
s (v)PXα

s (vα ),.dmXα
s (vα) (2.14)

with vα = nα, where the integern is determined bynα < v ≤ (n+ 1)α. Conse-
quently, we obtain

ρ(Xα
t (u),Xα ′

t (u))

=

∫ u

0

〈

dρ ,
(

∂Xα
t (v),∂Xα ′

t (v)
)〉

dv

=

∫ u

0

〈

dρ ,
(

W(Xα(v))t ϕ̇(v),W(Xα ′
(v))t ϕ̇(v)

)〉

dv

+

∫ u

0

〈

dρ ,

(

W(Xα(v))t

∫ t

0
W(Xα(v))−1

s ∇∂Xα
s (v)PXα

s (vα ),.dmXα
s (vα),0

)〉

dv

+

∫ u

0

〈

dρ ,

(

0,W(Xα ′
(v))t

∫ t

0
W(Xα ′

(v))−1
s ∇∂Xα′

s (v)PXα′
s (vα′ ),.dmXα ′

s (va′)

)〉

dv.

This yields, by means of boundedness ofdρ and deformed parallel translation, to-
gether with (2.12) and the Burkholder-Davis-Gundy inequalities,

E

[

sup
t≤τ0

ρ2
(

Xα
t (u),Xα ′

t (u)
)

]

≤ C
∫ u

0
E

[

sup
t≤τ0

ρ2
(

Xα
t (v),Xα ′

t (v)
)

]

dv

+C
∫ u

0
E

[

∫ τ0

0

∥

∥∇∂Xα
s (v)PXα

s (vα ),.
∥

∥

2
ds

]

dv

+C
∫ u

0
E

[

∫ τ0

0

∥

∥

∥
∇∂Xα′

s (v)PXα′
s (vα′ ),.

∥

∥

∥

2
ds

]

dv.
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From here we obtain

E

[

sup
t≤τ0

ρ2
(

Xα
t (u),Xα ′

t (u)
)

]

≤ C
∫ u

0
E

[

sup
t≤τ0

ρ2
(

Xα
t (v),Xα ′

t (v)
)

]

dv

+Cα2
∫ u

0
E

[

∫ τ0

0
‖∂Xα

s (v)‖2 ds

]

dv

+Cα ′2
∫ u

0
E

[

∫ τ0

0

∥

∥

∥
∂Xα ′

s (v)
∥

∥

∥

2
ds

]

dv,

where we used the fact that forv∈ TxM, ∇vPx,. = 0, together with

ρ(Xβ
s (v),Xβ

s (vβ )) ≤Cβ , β = α,α ′,

see estimate (2.7).
Now, by Eq. (2.8) forD∂Xβ , there exists a constantC′ > 0 such that for all

v∈ [0,u0],

E

[

∫ τ0

0

∥

∥

∥
∂Xβ

s (v)
∥

∥

∥

2
ds

]

< C′.

Consequently,

E

[

sup
t≤τ0

ρ2
(

Xα
t (u),Xα ′

t (u)
)

]

≤C
∫ u

0
E

[

sup
t≤τ0

ρ2
(

Xα
t (v),Xα ′

t (v)
)

]

dv

+2CC′(α + α ′)2,

which by Gronwall lemma yields

E

[

sup
t≤τ0

ρ2
(

Xα
t (u),Xα ′

t (u)
)

]

≤C(α + α ′)2

for some constantC > 0. This is the desired inequality.

Step 3 Recall that
L = ai j ∂i j +b j∂ j .

Denoting by(ai j ) the inverse of(ai j ), we let∇′ be the connection with Christoffel
symbols

(Γ ′)k
i j = −

1
2
(aik +a jk)b

k. (2.15)

We are going to prove that allL-diffusions are∇′-martingales:

(i) On one hand,∇′-martingales are characterized by the fact that for anyk,

dXk +
1
2
(Γ ′)k

i j d〈X
i,X j〉 is the differential of a local martingale. (2.16)
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(ii) On the other hand,L-diffusions satisfy the following two conditions:

dXk−bk(X)dt is the differential of a local martingale, (2.17)

and
d〈Xi ,X j〉 = (ai j (X)+a ji(X))dt. (2.18)

From this it is clear that (2.15), (2.17) together with (2.18) imply (2.16).
From inequality (2.13) we deduce that there exists a limiting process

(Xt(u))0≤t≤τ0, 0≤u≤u0

such that for allu∈ [0,u0] andα > 0,

E

[

sup
t≤τ0

ρ2(Xα
t (u),Xt(u))

]

≤Cα2. (2.19)

In other words, for any fixedu ∈ [0,u0], the process(Xα
t (u))t∈[0,τ0] converges

to (Xt(u))t∈[0,τ0] uniformly in L2 as α tends to 0. Since these processes are∇′-
martingales, convergence also holds in the topology of semimartingales ([2] Proposi-
tion 2.10). This implies in particular that for anyu∈ [0,u0], the process(Xt(u))t∈[0,τ0]

is a diffusion with generatorL, stopped at timeτ0.
Extracting a subsequence(αk)k≥0 convergent to 0, we may assume that almost

surely, for all dyadicu∈ [0,u0],

sup
t≤τ0

ρ (Xα
t (u),Xt(u))

converges to 0. Moreover we can choose(αk)k≥0 of the formαk = 2−nk with (nk)k≥0
an increasing sequence of positive integers. Due to (2.7), we can take a version of
the processes(t,u) 7→ Xαk

t (u) such that

u 7→ Xαk
t (u)

is uniformly Lipschitz inu∈Nαk∩ [0,u0] with a Lipschitz constant independent ofk
andt. Passing to the limit, we obtain that a.s for anyt ∈ [0,τ0], the map

u 7→ Xt(u)

is uniformly Lipschitz inu∈ D ∩ [0,u0] with a Lipschitz constant independent oft,
whereD is the set of dyadic numbers. Finally we can choose a version of

(t,u) 7→ Xt(u)

which is a.s. continuous in(t,u) ∈ [0,τ0]× [0,u0], and hence uniformly Lipschitz in
u∈ [0,u0].
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Step 4 We prove that almost surely,Xt(u) is differentiable inu with derivative

W(X(u))t(ϕ̇(u)).

More precisely, we show that in local coordinates, almost surely, for all t ∈ [0,τ0],
u∈ [0,u0],

Xt(u) = X0
t +

∫ u

0
W(X(v))t(ϕ̇(v))dv. (2.20)

From the construction it is clear that almost surely, for allt ∈ [0,τ0], u∈ [0,u0],

Xαk
t (u) = X0

t +
∫ u

0
W(Xαk(v))t(ϕ̇(v))dv

+

∫ u

0

(

W(Xαk(v))t

∫ t

0
W(Xαk(v))−1

s ∇∂X
αk
s (v)

P
X

αk
s (vαk),.dmXαk

s (vαk)

)

dv.

This yields

Xt(u)−X0
t −

∫ u

0
W(X(v))t (ϕ̇(v))dv

= Xt(u)−Xαk
t (u)+

∫ u

0
(W(Xαk(v))t −W(X(v))t) ϕ̇(v)dv

+

∫ u

0

(

W(Xαk(v))t

∫ t

0
W(Xαk(v))−1

s ∇∂X
αk
s (v)

P
X

αk
s (vαk),.dmXαk

s (vαk)

)

dv.

The terms of right-hand-side are easily estimated, where inthe estimates the constant
C may change from one line to another. First observe that

E

[

sup
t≤τ0

∥

∥Xt(u)−Xαk
t (u)

∥

∥

2

]

≤Cα2
k .

Using (2.9) and (2.19) we have

E

[

sup
t≤τ0

∥

∥

∥

∥

∫ u

0
(W(Xαk(v))t −W(X(v))t) dv

∥

∥

∥

∥

2
]

≤ E

[

sup
t≤τ0

∫ u

0
‖W(Xαk(v))t −W(X(v))t‖

2 dv

]

=
∫ u

0
E

[

sup
t≤τ0

‖W(Xαk(v))t −W(X(v))t‖
2

]

dv

≤Cα2
k ,

and finally
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E

[

sup
t≤τ0

∥

∥

∥

∥

∫ u

0
(W(Xαk(v))t

×

∫ t

0
W(Xαk(v))−1

s ∇∂X
αk
s (v)

P
X

αk
s (vαk),.dmXαk

s (vαk)

)

dv

∥

∥

∥

∥

2
]

≤C
∫ u

0
E

[

sup
t≤τ0

∥

∥

∥

∥

∫ t

0
W(Xαk(v))−1

s ∇∂X
αk
s (v)

P
X

αk
s (vαk),.dmXαk

s (vαk)

∥

∥

∥

∥

2
]

dv

≤C
∫ u

0
E

[

∫ τ0

0

∥

∥

∥
∇∂X

αk
s (v)

P
X

αk
s (vαk),.

∥

∥

∥

2
ds

]

dv (sinceW−1 is bounded)

≤Cα2
k

∫ u

0
E

[

∫ τ0

0
‖∂Xαk

s (v)‖2 ds

]

dv

≤Cα2
k .

where in the last but one inequality we used∇vPx,. = 0 for anyv∈TxM which implies

∥

∥∇vPy,.
∥

∥ ≤Cρ(x,y)2‖v‖2,

and the last inequality is a consequence of (2.8).
We deduce that

E

[

sup
t≤τ0

∥

∥

∥

∥

Xt(u)−X0
t −

∫ u

0
W(X(v))t(ϕ̇(v))dv

∥

∥

∥

∥

2
]

≤Cα2
k .

Since this is true for anyαk, using continuity inu of Xt(u), we finally get almost
surely for allt,u,

Xt(u) = X0
t +

∫ u

0
W(X(v))t(ϕ̇(v))dv.

Step 5 Finally we are able to prove Eq. (2.5):

dXt(u) = PXt( ·)
0,u dmX0

t +ZXt(u) dt.

Since a.s. the mapping(t,u) 7→ ∂Xt(u) is continuous, the mapu 7→ ∂X(u) is
continuous in the topology of uniform convergence in probability. We want to prove
thatu 7→ ∂X(u) is continuous in the topology of semimartingales.

Since for a given connection on a manifold, the topology of uniform convergence
in probability and the topology of semimartingale coincideon the set of martingales
(Proposition 2.10 of [2]), it is sufficient to find a connection onTM for which∂X(u)
is a martingale for anyu. Again we can localize in the domain of a chart. Recall that
for all u, the processX(u) is a ∇′-martingale where∇′ is defined in step 1. Then
by [1], Theorem 3.3, this implies that the derivative with respect tou with values in
TM, denoted here by∂X(u), is a(∇′)c-martingale with respect to the complete lift
(∇′)c of ∇′. This proves thatu 7→ ∂X(u) is continuous in the topology of semimartin-
gales.
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Remark 2.5.Alternatively, one could have used that given a generatorL′, the topolo-
gies of uniform convergence in probability on compact sets and the topology of
semimartingales coincide on the set ofL′-diffusions. Since the processes∂X(u) are
diffusions with the same generator, the result could be derived as well.

As a consequence, Itô integrals commute with derivatives with respect tou (see
e.g. [2], corollary 3.18 and lemma 3.15). We write it formally as

D∂X = ∇udX−
1
2

R(∂X,dX)dX. (2.21)

Since
dX(u)⊗dX(u) = g−1(X(u))dt

whereg is the metric tensor, Eq. (2.21) becomes

D∂X = ∇udX−
1
2

Ric♯(∂X)dt.

On the other hand, Eq. (2.4) and Eq. (2.2) forW yield

D∂X = −
1
2

Ric♯(∂X)dt + ∇∂XZ dt.

From the last two equations we obtain

∇udX = ∇∂XZ dt.

This along with the original equation

dX0 = dmX0 +ZX0 dt

gives

dXt(u) = PXt( ·)
0,u dmX0

t +ZXt(u) dt,

where
PXt( ·)

0,u : TXt M → TXt(u)M

denotes parallel transport along theC1 curvev 7→ Xt(v).

B. Uniqueness.Again we may localize in the domain of a chartU . LettingX(u)
andY(u) be two solutions of Eq. (2.4), then for(t,u)∈ [0,τ0[×[0,u0] we find in local
coordinates,

Yt(u)−Xt(u) =

∫ u

0

(

W(Y(v))t −W(X(v))t
)

(ϕ̇(v))dv. (2.22)

On the other hand, using (2.9) we have

E

[

sup
t≤τ0

‖Yt(u)−Xt(u)‖2

]

≤C
∫ u

0
E

[

sup
t≤τ0

‖Yt(v)−Xt(v)‖
2

]

dv (2.23)

from which we deduce that almost surely, for allt ∈ [0,τ0], Xt(u) = Yt(u). Conse-
quently, exploiting the fact that the two processes are continuous in(t,u), they must
be indistinguishable. ⊓⊔
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3 Horizontal diffusion along non-homogeneous diffusion

In this Section we assume that the elliptic generator is aC1 function of time:L = L(t)
for t ≥ 0. Letg(t) be the metric onM such that

L(t) =
1
2

∆ t +Z(t)

where∆ t is theg(t)-Laplacian andZ(t) a vector field onM.
Let (Xt) be an inhomogeneous diffusion with generatorL(t). Parallel transport

Pt(X)t along theL(t)-diffusionXt is defined analogously to [6] as the linear map

Pt(X)t : TX0M → TXt M

which satisfies

DtPt(X)t = −
1
2

ġ♯(Pt(X)t)dt (3.1)

whereġ denotes the derivative ofg with respect to time; the covariant differentialDt

is defined in local coordinates by the same formulas asD, with the only difference
that Christoffel symbols now depend ont.

Alternatively, if J is a semimartingale overX, the covariant differentialDtJ may
be defined as̃D(0,J) = (0,DtJ), where(0,J) is a semimartingale along(t,Xt) in
M̃ = [0,T]×M endowed with the connectioñ∇ defined as follows: if

s 7→ ϕ̃(s) = ( f (s),ϕ(s))

is aC1 path inM̃ ands 7→ ũ(s) = (α(s),u(s)) ∈ TM̃ is C1 path overϕ̃ , then

∇̃ũ(s) =
(

α̇(s),
(

∇ f (s)u
)

(s)
)

where∇t denotes the Levi-Civita connection associated tog(t). It is proven in [6]
thatPt(X)t is an isometry from(TX0M,g(0,X0)) to (TXt M,g(t,Xt)).

The damped parallel translationWt(X)t alongXt is the linear map

Wt(X)t : TX0M → TXt M

satisfying

DtWt(X)t =

(

∇t
Wt(X)t

Z(t, ·)−
1
2
(Rict)♯(Wt(X)t)

)

dt. (3.2)

If Z ≡ 0 andg(t) is solution to the backward Ricci flow:

ġ = Ric, (3.3)

then damped parallel translation coincides with the usual parallel translation:

Pt(X) = Wt(X),

(see [6] Theorem 2.3).
The Itô differentiald∇Y = d∇t

Y of anM-valued semimartingaleY is defined by
formula (2.1), with the only difference that the Christoffel symbols depend on time.
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Theorem 3.1.Keeping the assumptions of this Section, let

R → M, u 7→ ϕ(u),

be a C1 path in M and let X0 be an L(t)-diffusion with starting pointϕ(0) and
lifetimeξ . Assume that(M,g(t)) is complete for every t. There exists a unique family

u 7→ (Xt(u))t∈[0,ξ [

of L(t)-diffusions, which is a.s. continuous in(t,u) and C1 in u, satisfying

X(0) = X0 and X0(u) = ϕ(u),

and solving the equation

∂Xt(u) = Wt(X(u))t(ϕ̇(u)). (3.4)

Furthermore, X(u) solves the It̂o stochastic differential equation

d∇Xt(u) = Pt,Xt ( ·)
0,u d∇(t)Xt +Z(t,Xt(u))dt, (3.5)

where
Pt,Xt ( ·)

0,u : TX0
t
M → TXt(u)M

denotes parallel transport along the C1 curve

[0,u]→ M, v 7→ Xt(v),

with respect to the metric g(t).
If Z ≡ 0 and if g(t) is given as solution to the backward Ricci flow equation, then

almost surely for all t,
‖∂Xt(u)‖g(t) = ‖ϕ̇(u)‖g(0) . (3.6)

Definition 3.2. We call
t 7→ (Xt(u))u∈R

the horizontal L(t)-diffusion in C1 path space C1(R,M) over X0, started atϕ .

Remark 3.3.Eq. (3.6) says that ifZ ≡ 0 and if g is solution to the backward Ricci
flow equation, then the horizontalg(t)-Brownian motion is length preserving (with
respect to the moving metric).

Remark 3.4.Again if the manifold(M,g(t)) is not necessarily complete for allt, a
similar result holds with the lifetime ofX.(u) possibly depending onu.

Proof (of Theorem3.1). The proof is similar to the one of Theorem 2.1. We restrict
ourselves to explaining the differences.

The localization procedure carries over immediately; we work on the time inter-
val [0,τ ∧ t0].
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Forα > 0, we define the approximating processXα
t (u) by induction as

Xα
t (0) = X0

t , Xα
0 (u) = ϕ(u),

and ifu∈ ]nα,(n+1)α] for some integern≥ 0, thenXα(u) solves the Itô equation

d∇Xα
t (u) = Pt

Xα
t (nα),Xα

t (u)dmXα
t (nα)+Z(t,Xt(u))dt (3.7)

wherePt
x,y is the parallel transport along the minimal geodesic fromx to y, for the

connection∇t .
Alternatively, lettingX̃α

t = (t,Xα
t ), we may write (3.7) as

d∇̃X̃α
t (u) = P̃X̃α

t (nα),X̃α
t (u)dmX̃α

t (nα)+Z(X̃α
t (u))dt (3.8)

whereP̃x̃,ỹ denotes parallel translation along the minimal geodesic from x̃ to ỹ for the
connection∇̃.

Denoting byρ(t,x,y) the distance fromx to ywith respect to the metricg(t), Itô’s
formula shows that the processρ (t,Xα

t (u),Xα
t (nα)) has locally bounded variation.

Moreover since locally∂tρ(t,x,y) ≤Cρ(t,x,y) for x 6= y, we find similarly to (2.7),

ρ(t,Xα
t (u),Xα

t (nα)) ≤ ρ(0,Xα
0 (u),Xα

0 (nα))eCt ≤ ‖ϕ̇‖∞ αeCt0.

Since all Riemannian distances are locally equivalent, this implies

ρ(Xα
t (u),Xα

t (nα)) ≤ ρ(Xα
0 (u),Xα

0 (nα))eCt ≤ ‖ϕ̇‖∞ αeCt0 (3.9)

whereρ = ρ(0, ·, ·).
Next, differentiating Eq. (3.8) yields

D̃∂uX̃α
t (u) = ∇̃∂uX̃α

t (u)P̃X̃α
t (nα),.dmX̃α

t (nα)

+ ∇̃∂uX̃α
t (u)Z dt−

1
2

R̃
(

∂uX̃α
t (u),dX̃α

t (u)
)

dX̃α
t (u).

Using the fact that the first component ofX̃α
t (u) has finite variation, a careful com-

putation ofR̃ leads to the equation

Dt∂uXα
t (u) = ∇t

∂uXα
t (u)P

t
Xα

t (nα),.dmXα
t (nα)

+ ∇t
∂uXα

t (u)Z(t, ·)−
1
2
(Rict)♯

(

∂uXα
t (u)

)

dt.

To finish the proof, it is sufficient to remark that in step 1, Eq. (2.10) still holds
true for X andY g(t)-Brownian motions living in a small open setU , and that in
step 5, the mapu 7→ ∂X(u) is continuous in the topology of semimartingales. This
last point is due to the fact that all∂X(u) are inhomogeneous diffusions with the
same generator, sayL′, and the fact that the topology of uniform convergence on
compact sets and the topology of semimartingales coincide on L′-diffusions. ⊓⊔
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4 Application to optimal transport

In this Section we assume again that the elliptic generatorL(t) is aC1 function of
time with associated metricg(t):

L(t) =
1
2

∆ t +Z(t)

where∆ t is the Laplacian associated tog(t) andZ(t) is a vector field. We assume
further that for anyt, the Riemannian manifold(M,g(t)) is metrically complete, and
L(t) diffusions have infinite lifetime.

Lettingϕ : R+ → R+ be a non-decreasing function, we define a cost function

c(t,x,y) = ϕ(ρ(t,x,y)) (4.1)

whereρ(t, ·, ·) denotes distance with respect tog(t).
To the cost functionc we associate the Monge-Kantorovich minimization be-

tween two probability measures onM

Wc,t(µ ,ν) = inf
η∈Π(µ,ν)

∫

M×M
c(t,x,y)dη(x,y) (4.2)

whereΠ(µ ,ν) is the set of all probability measures onM ×M with marginalsµ
andν. We denote

Wp,t(µ ,ν) =
(

Wρ p,t(µ ,ν)
)1/p

(4.3)

the Wasserstein distance associated top > 0. For a probability measureµ on M, the
solution of the heat flow equation associated toL(t) will be denoted byµPt .

Define a section(∇tZ)♭ ∈ Γ (T∗M⊙T∗M) as follows: for anyx ∈ M andu,v∈
TxM,

(∇tZ)♭(u,v) =
1
2

(

g(t)(∇t
uZ,v)+g(t)(u,∇t

vZ)
)

.

In case the metric is independent oft andZ = gradV for someC2 functionV on M,
then

(∇tZ)♭(u,v) = ∇dV(u,v).

Theorem 4.1.We keep notation and assumptions from above.

a) Assume
Rict −ġ−2(∇tZ)♭ ≥ 0. (4.4)

Then the function
t 7→ Wc,t(µPt ,νPt)

is non-increasing.

b) If for some k∈ R,
Rict −ġ−2(∇tZ)♭ ≥ kg, (4.5)

then we have for all p> 0

Wp,t(µPt ,νPt) ≤ e−kt/2
Wp,0(µ ,ν).
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Remark 4.2.Before turning to the proof of Theorem 4.1, let us mention that in the
caseZ = 0, g constant,p = 2 andk = 0, item b) is due to [20] and [19]. In the
case whereg is a backward Ricci flow solution,Z = 0 andp = 2, statement b) is
due to Lott [17] and McCann-Topping [18]. For extensions about L -transportation,
see [22].

Proof (of Theorem4.1). a) Assume that Rict −ġ−2(∇tZ)♭ ≥ 0. Then for anyL(t)-
diffusion (Xt), we have

d
(

g(t)(W(X)t ,W(X)t)
)

= ġ(t)
(

W(X)t ,W(X)t
)

dt+2g(t)
(

DtW(X)t ,W(X)t
)

= ġ(t)
(

W(X)t ,W(X)t
)

dt

+2g(t)

(

∇t
W(X)t

Z(t, ·)−
1
2
(Rict)♯(W(X)t),W(X)t

)

dt

=
(

ġ+2(∇tZ)♭ −Rict
)

(

W(X)t ,W(X)t
)

dt ≤ 0.

Consequently, for anyt ≥ 0,

‖W(X)t‖t ≤ ‖W(X)0‖0 = 1. (4.6)

For x,y ∈ M, let u 7→ γ(x,y)(u) be a minimalg(0)-geodesic fromx to y in time 1:
γ(x,y)(0) = x andγ(x,y)(1) = y. Denote byXx,y(u) a horizontalL(t)-diffusion with
initial conditionγ(x,y).

Forη ∈ Π(µ ,ν), define the measureηt onM×M by

ηt(A×B) =

∫

M×M
P
{

Xx,y
t (0) ∈ A, Xx,y

t (1) ∈ B
}

dη(x,y),

whereA andB are Borel subsets ofM. Thenηt has marginalsµPt andνPt . Conse-
quently it is sufficient to prove that for any suchη ,

∫

M×M
E
[

c(t,Xx,y
t (0),Xx,y

t (1))
]

dη(x,y) ≤
∫

M×M
c(0,x,y)dη(x,y). (4.7)

On the other hand, we have a.s.,

ρ(t,Xx,y
t (0),Xx,y

t (1)) ≤

∫ 1

0

∥

∥∂uXx,y
t (u)

∥

∥

t du

=

∫ 1

0

∥

∥W(Xx,y(u))t γ̇(x,y)(u)
∥

∥

t du

≤

∫ 1

0

∥

∥γ̇(x,y)(u)
∥

∥

0du

= ρ(0,x,y),

and this clearly implies

c
(

t,Xx,y
t (0),Xx,y

t (1)
)

≤ c(0,x,y) a.s.,

and then (4.7).
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b) Under condition (4.5), we have

d
dt

g(t)
(

W(X)t ,W(X)t
)

≤−kg(t)
(

W(X)t ,W(X)t
)

,

which implies
‖W(X)t‖t ≤ e−kt/2,

and then
ρ
(

t,Xx,y
t (0),Xx,y

t (1)
)

≤ e−kt/2ρ(0,x,y).

The result follows. ⊓⊔

5 Derivative process along constant rank diffusion

In this Section we consider a generatorL of constant rank: the imageE of the “carré
du champ” operatorΓ (L) ∈ Γ (TM⊗TM) defines a subbundle ofTM. In E we then
have an intrinsic metric given by

g(x) = (Γ (L)|E(x))−1 , x∈ M.

Let ∇ be a connection onE with preservesg, and denote by∇′ the associated semi-
connection: ifU ∈Γ (TM) is a vector field,∇′

vU is defined only ifv∈ E and satisfies

∇′
vU = ∇Ux0

V +[V,U ]x0

whereV ∈ Γ (E) is such thatVx0 = v (see [11], Section 1.3). We denote byZ(x) the
drift of L with respect to the connection∇.

For the construction of a flow ofL-diffusions we will use an extension of∇ to
TM denoted by∇̃. Then the associated semi-connection∇′ is the restriction of the
classical adjoint of̃∇ (see [11] Proposition 1.3.1).

Remark 5.1.It is proven in [11] that a connection∇ always exists, for instance, we
may take the Le Jan-Watanabe connection associated to a wellchosen vector bundle
homomorphism from a trivial bundleM×H to E whereH is a Hilbert space.

If Xt is anL-diffusion, the parallel transport

P(X)t : EX0 → EXt

alongXt (with respect to the connectioñ∇) depends only on∇. The same applies for
the Itô differentialdXt = d∇Xt . We still denote bydmXt its martingale part.

We denote by
P̃′(X)t : TX0M → TXt M

the parallel transport alongXt for the adjoint connection(∇̃)′, and byD̃′J the covari-
ant differential (with respect to(∇̃)′) of a semimartingaleJ ∈ TM aboveX; compare
(2.3) for the definition.



Horizontal diffusion in path space 19

Theorem 5.2.We keep the notation and assumptions from above. Let x0 be a fixed
point in M and Xt(x0) an L-diffusion starting at x0. For x∈ M close to x0, we define
the L-diffusion Xt(x), started at x, by

dXt(x) = P̃Xt(x0),Xt(x) dmXt(x0)+Z(Xt(x))dt (5.1)

whereP̃x,y denotes parallel transport (with respect to∇̃) along the uniquẽ∇-geodesic
from x to y. Then

D̃′Tx0X = ∇̃Tx0XZ dt−
1
2

Ric♯(Tx0X)dt (5.2)

where

Ric♯(u) =
d

∑
i=1

R̃(u,ei)ei , u∈ TxM,

and(ei)i=1,...,d an orthonormal basis of Ex for the metric g.
Under the additional assumption that Z∈ Γ (E), the differentialD̃′Tx0X does not

depend on the extensioñ∇, and we have

D̃′Tx0X = ∇Tx0XZ dt−
1
2

Ric♯(Tx0X)dt. (5.3)

Proof. From [3] Eq. 7.4 we have

D̃′Tx0X = ∇̃Tx0XP̃Xt(x0),. dmXt(x0)+ ∇̃Tx0XZ dt

−
1
2

(

R̃′(Tx0X,dX(x0))dX(x0)+ ∇̃′T̃ ′(dX(x0),Tx0X,dX(x0))
)

−
1
2

T̃ ′(D̃′Tx0X,dX)

whereT̃ ′ denotes the torsion tensor of∇̃′. Since for allx∈ M, ∇̃vP̃x,. = 0 if v∈ TxM,
the first term in the right vanishes. As a consequence,D̃′Tx0X has finite variation, and
T ′(D̃′Tx0X,dX) = 0. Then using the identity

R̃′(v,u)u+ ∇̃′T̃ ′(u,v,u) = R̃(v,u)u, u,v∈ TxM,

which is a particular case of identity (C.17) in [11], we obtain

D̃′Tx0X = ∇̃Tx0XZ dt−
1
2

R̃(Tx0X,dX(x0))dX(x0).

Finally writing
R̃(Tx0X,dX(x0))dX(x0) = Ric♯(Tx0X)dt

yields the result. ⊓⊔

Remark 5.3.In the non-degenerate case,∇ is the Levi-Civita connection associated
to the metric generated byL, and we are in the situation of Section 2. In the de-
generate case, in general,∇ does not extend to a metric connection onM. However
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conditions are given in [11] (1.3.C) under whichP′(X) is adapted to some metric,
and in this caseTx0X is bounded with respect to the metric.

One would like to extend Theorem 2.1 to degenerate diffusions of constant rank,
by solving the equation

∂uX(u) = ∇̃∂uX(u)Z dt−
1
2

Ric♯(∂uX(u))dt.

Our proof does not work in this situation for two reasons. Thefirst one is that in
generalP̃′(X) is not adapted to a metric. The second one is the lack of an inequality
of the type (2.7) since∇ does not have an extensioñ∇ which is the Levi-Civita
connection of some metric.

Remark 5.4.WhenM is a Lie group andL is left invariant, then∇̃ can be chosen as
the left invariant connection. In this case(∇̃)′ is the right invariant connection, which
is metric.
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