Journées en la mémoire de François Courtès Poitiers 4-5 mai 2017

Programme

Jeudi 4 mai

10h00 Accueil

10h30 Discours d'Alessandra Sarti, Directrice du LMA.

P. Broussous. "Sur les travaux de François - I. Conjecture de Prasad".

 ${\bf 11h30}$ G. Henniart. "Algèbres de Hecke sphériques pour des coefficients modulo p ".

12h30 Déjeuner

14h00 B. Lemaire. "Sur les travaux de François - II."

 ${f 15h00}$ R. Beuzart. "Représentations de carré intégrable de H(E) distinguées pour (H(F), chi) et une conjecture de Prasad."

16h00 C. Blondel. "Blocs de Jordan inertiels des représentations cuspidales des groupes symplectiques".

19h30 Restaurant, Bistrot de l'Absynthe, rue Carnot, Poitiers centre.

Vendredi 5 mai

9h30 J.-L. Waldspurger. "Représentations de réduction unipotente et front d'onde."

10h30 A.-M. Aubert. "Algèbres de Hecke affines pour les paramètres de Langlands des groupes réductifs p-adiques".

11h30 V. Heiermann. "Sur le spectre automorphe non ramifié".

Résumé des exposés

Anne-Marie Aubert. Algèbres de Hecke affines pour les paramètres de Langlands des groupe réductifs p-adiques"

Nous construirons une partition de l'ensemble des paramètres de Langlands enrichis d'un groupe p-adique en séries de Bernstein et associerons à chaque série une algèbre de Hecke affine généralisée. Nous décrirons comment attacher une famille finie de telles algèbres à chaque sous-ensemble de paramètres de caractère infinitésimal fixé. Il s'agit d'un travail en collaboration avec Ahmed Moussaoui et Maarten Solleveld.

Raphaël Beuzart. Représentations de carré intégrable de H(E) distinguées pour $(H(F), \chi)$ et une conjecture de Prasad.

Soit E/F une extension quadratique de corps p-adiques et H un groupe réductif connexe sur F. Pour toute représentation irréductible lisse π de H(E) et tout caractère χ de H(F) on pose $m(\pi,\chi) := \dim Hom_{H(F)}(\pi,\chi)$. Une conjecture de Prasad décrit précisément cette multiplicité lorsque π est la représentation de Steinberg. Broussous-Courtès et Courtès ont démontré cette conjecture

dans le cas où H est déployé et l'extension E/F modérément ramifiée en utilisant la géométrie de l'immeuble. Dans cet exposé, on présentera une preuve de la conjecture de Prasad en général pour les caractères χ "galoisiens". L'approche est totalement orthogonale à celle de Broussous et Courtès et se base sur une formule intégrale exprimant, lorsque π est de carré intégrable, $m(\pi,\chi)$ en fonction du caractère de Harish-Chandra de π . Cette formule est réminiscente des relations d'orthogonalité d'Arthur et d'une formule de Waldspurger liée à la conjecture de Gan-Gross-Prasad. Comme ces dernières elle découle d'une formule des traces simple adaptée à la situation.

Corinne Blondel. Blocs de Jordan inertiels des représentations cuspidales des groupes symplectiques.

Soit G un groupe symplectique sur un corps local non archimédien de caractéristique résiduelle impaire. La théorie des paires couvrantes de Bushnell et Kutzko permet d'analyser les points de réductibilité de l'induite parabolique à G d'une représentation cuspidale d'un sous-groupe de Lévi maximal. Dans un travail en collaboration avec Henniart et Stevens, nous obtenons, par ce moyen, une description des blocs de Jordan attachès par Mæglin à une représentation cuspidale π d'un groupe symplectique, en termes d'un type cuspidal dont π est l'induite (travaux de Stevens), à torsion près pour chaque bloc par un caractère non ramifi'é.

Paul Broussous. Sur les travaux de François - I. Conjecture de D. Prasad.

Volker Heiermann. Sur le spectre automorphe non ramifié

Guy Henniart. Algèbres de Hecke "sphériques" pour des coefficients modulo p

Il s'agit d'un travail commun avec M.-F. Vignéras. On considère un groupe réductif G sur un corps local F de caractéristique résiduelle p, et un sousgroupe parahorique spécial K de G. On fixe un corps de coefficients C, algébriquement clos de caractéristique p. Si V est une C-représentation admissible de G, et W une C-répresentation lisse irréductible de K, l'espace d'entrelacement $\operatorname{Hom}_K(W,V)$ est un module sur l'algébre de Hecke "sphérique" $H(G,W) = \operatorname{End}_G(\operatorname{ind}_K^G(W))$. En utilisant une description explicite de W, nous décrivons H(G,W) comme l'algèbre d'un monoïde de type fini, d'ailleurs souvent commutatif.

Bertrand Lemaire. Sur les travaux de François - II

Jean-Loup Waldspurger. Représentations de réduction unipotente et front d'onde.

On considère un groupe spécial orthogonal $G=\mathrm{SO}(2n+1)$ défini sur un corps p-adique F. Lusztig a paramétré les repréesentations irréductibles de réduction unipotente de G(F). restreignons-nous aux représentations tempérées. On montre que ce paramétrage est "le bon", c'est-à-dire qu'il vérifie les propriétés attendues relatives à l'endoscopie, lesquelles le caractérise. Considérons maintenant les représentations anti-tempérées, c'est-à-dire les images des représentations tempérées par l'involution d'Aubert-Zelevinsli. On calcule le front d'onde d'une telle représentation π : c'est l'image par une dualité à la Spaltenstein de l'orbite symplectique figurant dans le paramètre d'Arthur de π .