UNIVERSITÉ DE POITIERS

Master 2 de Mathématiques Fondamentales

Année 2010/2011

Introduction au Programme de Langlands

Devoir Libre

A rendre durant la semaine du 3 janvier 2011

Exercice 1. Soit p un nombre premier et \mathbb{F}_q un corps fini à p^f éléments, f entier ≥ 1 . Posons $G = \mathrm{GL}(2, \mathbb{F}_q)$. Rappelons que des représentants des classes de conjugaison dans G sont donnés comme suit :

- (a) les éléments dits *elliptiques* qui ne possèdent aucune valeur propre dans \mathbb{F}_q ;
- (b) les éléments dits scalaires de la forme λI_2 , $\lambda \in \mathbb{F}_q^{\times}$;
- (c) les éléments dits hyperboliques possèdant deux valeurs propres distinctes dans \mathbb{F}_q ;
- (d) les autres, dits paraboliques, c'est-à-dire ceux de la forme $\begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$, $\lambda \in \mathbb{F}_q^{\times}$.

On rappelle que G agit sur la droite projective $\mathbb{P}^1(\mathbb{F}_q)$, ensemble des droites vectorielles de \mathbb{F}_q^2 . On note V l'ensemble des fonctions complexes définies sur $\mathbb{P}^1(\mathbb{F}_q)$ et V_0 le sous-espaces vectoriels des fonctions constantes. Le groupe G agit linéairement sur V par translation :

$$[\pi(g)(f)](x) = f(g^{-1}.x), \ x \in \mathbb{P}^1(\mathbb{F}_q), \ g \in G, \ f \in V \ .$$

Le sous-espace V_0 est invariant et la représentation de G dans le quotient V/V_0 s'appelle la représentation de Steinberg de G et se note \mathbf{St}_G .

Le but de cet exercice est de calculer le caractère de \mathbf{St}_G et de montrer que cette représentation est irréductible. Pour cela nous calculerons d'abord le caractère de la représentation (π, V) .

- 1.1. Donner le nombre de classes de conjugaison de type (a) (resp. de type (b), (c) et (d)) dans G et le cardinal de chaque classe.
- **1.2.** Montrer que pour $g \in G$, la valeur $\chi_V(g)$ du caractère de la représentation (π, V) en g est égal au nombre de droites de \mathbb{F}_q^2 globalement fixes par g. On remarquera qu'une base de V est donnée par les fonctions caractéristiques δ_x des singletons $\{x\}$, $x \in \mathbb{P}^1(\mathbb{F}_q)$.
- **1.3.** Pour $g \in G$ de type (a) (resp. de type (b), (c), (d)) déterminer le nombre de droites de \mathbb{F}_q^2 fixes par g.
- 1.4. En déduire la valeur de χ_V sur chaque type de classe de conjugaison et les valeurs du caractère χ de la représentation de Steinberg \mathbf{St}_G .
- 1.5. Montrer que la représentation \mathbf{St}_G est irréductible.

Exercice 2. Soit F un corps local non archimédien. L'objet de cet exercice est de montrer que toute représentation lisse irréductible de dimension finie de G = GL(2, F) est de dimension 1.

On fixe (π, V) une telle représentation. On note U (resp. \overline{U}) le groupe des matrices unipotentes supérieures (resp. unipotentes inférieures). Pour $n \in \mathbb{Z}$, on note

$$U_n = \left\{ \left(\begin{array}{cc} 1 & a \\ 0 & 1 \end{array} \right) \; ; \; a \in \mathfrak{p}_F^n \; \right\} \; .$$

Pour $x \in F^{\times}$, on note $d(x) = \begin{pmatrix} x & 0 \\ 0 & 1 \end{pmatrix}$.

- **2.1.** En raisonnant sur une base de V, montrer qu'il existe $n \in \mathbb{Z}$ tel que $U_n \subset \operatorname{Ker} \pi$ (utiliser la lissité de π).
- **2.2.** Pour $x \in F^{\times}$ et $n \in U_n$, déterminer $d(x)U_nd(x)^{-1}$ en fonction de n et $v_F(x)$.
- **2.3.** En déduire que $U \subset \operatorname{Ker} \pi$, puis que $\overline{U} \subset \operatorname{Ker} \pi$ et $\operatorname{SL}(2,F) \subset \operatorname{ker} \pi$.
- 2.4 Conclure.

Exercice 3. Caractères lisses additifs. Un caractère lisse additif, ou plus simplement caractère, ψ d'un corps local non archimédien F est un homomorphisme de groupes $(F,+) \longrightarrow (\mathbb{C}^{\times},.)$ à noyau ouvert, c'est-à-dire trivial sur \mathfrak{p}_F^n pour n assez grand. Le but de cet exercice est de décrire tous ces caractères.

On rappelle que si M est un groupe abélien fini, le groupe \hat{M} de ses caractères a même cardinal que M.

Si ψ est un caractère de (F,+) non trivial, son *conducteur* est le plus petit entier relatif $n=c(\psi)$ tel que ψ soit trivial sur \mathfrak{p}_F^n .

- **3.1.** Soient ψ un caractère additif et $a \in F^{\times}$. On définit un caractère ψ^a par $\psi^a(x) = \psi(ax)$. Montrer que $c(\psi^a) = c(\psi) v_F(a)$.
- **3.2.** On suppose que $F = F_q(X)$. Montrer que la formule

$$\psi_1(\sum_{i\in\mathbb{Z}}a_iX^i)=a_0$$

définit un caractère de (F, +) de conducteur 1.

- **3.3.** On note $\mathbb{Q}^{(p)}$ le sous-anneau de \mathbb{Q} formé des rationnels de la forme a/p^k , $a \in \mathbb{Z}$, $k \in \mathbb{N}$.
 - **a.** Montrer que $\mathbb{Q}_p = \mathbb{Q}^{(p)} + \mathbb{Z}_p$ et $\mathbb{Q}^{(p)} \cap \mathbb{Z}_p = \mathbb{Z}$.
- **b.** En déduire qu'on a un isomorphisme canonique $\varphi: \mathbb{Q}_p/\mathbb{Z}_p \longrightarrow \mathbb{Q}^{(p)}/\mathbb{Z}$ et que $\psi_0(x) = e^{2i\pi\varphi(x)}$ est un caractère de \mathbb{Q}_p de conducteur 0.

Ainsi le caractère ψ_1 de \mathbb{Q}_p donné par $\psi_1(x) = \psi_0(x/p)$ est de conducteur 1.

3.4. (*Question plus difficile*). Supposons F de caractéristique 0. Montrer que la fonction ψ donnée par $\psi(x) = \psi_1(\operatorname{Tr}_{F/\mathbb{Q}_p}(x))$ est un caractère (lisse) non trivial de (F, +).

On notera à nouveau ψ_1 le choix d'un caractère de conducteur 1 de F (il y a en fait un choix naturel qui utilise la différente de l'extension F/\mathbb{Q}_p , mais dont nous ne parlerons pas ici).

3.5 Soient $m \ge n$ des entiers relatifs. Montrer que l'application de \mathfrak{p}_F^{1-m} dans $\widehat{\mathfrak{p}_F^n}/\widehat{\mathfrak{p}_F^m}$ qui à a associe le caractère $x + \mathfrak{p}_F^m \mapsto \psi_1^a(x)$ est bien définie, a pour noyau \mathfrak{p}_F^{1-n} et induit une bijection :

$$\mathfrak{p}_F^{1-m}/\mathfrak{p}_F^{1-n}\longrightarrow \widehat{\mathfrak{p}_F^n/\mathfrak{p}_F^m}$$
.

Pour la surjectivité, on pourra comparer les cardinaux des deux ensembles.

Dorénavant, on fixe un caractère ψ de (F,+) de conducteur \mathfrak{p}^m .

- **3.6.** Montrer qu'il existe $a_1 \in \mathfrak{p}_F^{1-m}$ tel que $\psi_1^{-a_1}\psi$ soit trivial sur \mathfrak{p}_F^{m-1} . On pourra regarder la restriction de ψ à \mathfrak{p}_F^{m-1} , que l'on regardera comme un caractère de $\mathfrak{p}_F^{m-1}/\mathfrak{p}_F^m$, et appliquer la question précédente.
- **3.7.** Par récurrence, montrer qu'il existe une suite $(a_k)_{k\geqslant 1}$ telle que $a_k\in\mathfrak{p}_F^{k-m}$ et telle que

$$\psi_1^{-a_p}\psi_1^{-a_{p-1}}\cdots\psi_1^{-a_1}\psi=\psi_1^{-a_p-a_{p-1}-\cdots-a_1}\psi$$

soit trivial sur \mathfrak{p}_F^{m-p} , pour tout $p \ge 1$.

- **3.8.** Prouver que la série $\sum_{k>1} a_k$ converge vers une limite $a \in F$ et que $\psi = \psi_1^a$.
- **3.9.** En déduire que l'application $a \mapsto \psi_1^a$ est un isomorphisme entre le groupe (F, +) et le groupe des caractères de (F, +).

Exercice 4. Représentations de dimension 2 de F^{\times} . Si F est un corps local non archimédien, les représentations lisses de F^{\times} ne sont pas semisimples en général. Voici un exemple qui illustre ce phénomène.

Notons $\widehat{\mathfrak{o}_F^{\times}}$ le groupe des caractères lisses de \mathfrak{o}_F^{\times} .

Soit (π, V) une représentation lisse de dimension 2 de F^{\times} . Puisque les représentations du groupe compact \mathfrak{o}_F^{\times} sont semisimples, on a la décomposition en composantes isotypiques :

$$V = \bigoplus_{\chi \in \widehat{\mathfrak{o}_F^{\times}}} V_{\chi}$$

οù

$$V_\chi = \{\ v \in V\ ;\ \pi(u).v = \chi(u)v \text{ pour tout } u \in \mathfrak{o}_F^\times\ \}\ .$$

4.1. Montrer que chaque V_{χ} est stable par F^{\times} . En déduire que l'on a deux cas possibles :

Cas no 1. Il existe un unique caractère χ tel que $V_{\chi} \neq 0$ et Dim $V_{\chi} = 2$.

Cas no 2. Il existe exactement deux caractères χ_1 et χ_2 tels que $V_{\chi_i} \neq 0$, i = 1, 2.

4.2. Dans le cas 2, montrer que V est semisimple.

On suppose dorénavant qu'on est dans le cas 1.

- **4.3.** Montrer que si π est semisimple si et seulement si $\pi(\varpi)$ est diagonalisable.
- **4.4.** On suppose à présent π non diagonalisable.

- **a.** Montrer qu'il existe un complexe non nul λ et une base (e_1, e_2) de V tels que la matrice de $\pi(\varpi)$ soit $\begin{pmatrix} \lambda & \lambda \\ 0 & \lambda \end{pmatrix}$.
 - **b.** Montrer que dans la base (e_1, e_2) , π prend la forme matricielle :

$$\pi(x) = \xi(x) \begin{pmatrix} 1 & v_F(x) \\ 0 & 1 \end{pmatrix}, x \in F^{\times},$$

où ξ est un caractère de F^\times prolongeant l'unique χ tel que $V_\chi \neq 0.$

Exercice 5. On note X l'arbre de G = GL(2, F). L'objet de cet exercice est de montrer que l'étude spectrale du laplacien discret sur les sommets de X donne lieu à des représentations irréductibles de G.

On appelle distance entre deux sommet s et t de X le nombre d'arêtes d'un chemin sans aller-retour reliant s à t.

On note $t_{\varpi} = \begin{pmatrix} \varpi & 0 \\ 0 & 1 \end{pmatrix}$ et, si s_0 désigne le sommet $[\mathfrak{o} \oplus \mathfrak{o}]$, on pose $s_k = t_{\varpi}^n s_0 = [\mathfrak{p}^n \oplus \mathfrak{o}], n \in \mathbb{Z}$.

- **5.1.** A l'aide d'un résultat du cours, montrer que deux sommets s et t sont à distance $d \in \mathbb{N}$ si et seulement si il existe une base (e_1, e_2) de F^2 telle que $s = [\mathfrak{o}e_1 \oplus \mathfrak{o}e_2]$, $t = [\mathfrak{p}^d e_1 \oplus \mathfrak{p}e_2]$.
- **5.2.** En déduire que G agit transitivement sur l'ensemble des paires de sommets à distance fixée.
- **5.3.** Soit $K = \operatorname{GL}(n, \mathfrak{o})$ le compact maximal standard de G. En utilisant la décomposition de Cartan, montrer qu'un ensemble de représentants pour les classes de K-conjugaison de sommets de X est donné par $\{s_k \; ; \; k \in \mathbb{N}\}.$
- **5.4.** Soit $k \in \mathbb{N}$. Montrer que la K-orbite de sommets passant par s_k est égale à la sphère S_k de centre s_0 et de rayon k.

Soit V l'espace vectoriel des fonctions complexes définies sur l'ensemble des sommets de X. L'espace V est naturellement une représentation de G dont on note \tilde{V} la partie lisse. On définit le laplacien Δ sur \tilde{V} comme étant l'endomorphisme donné par

$$(\Delta f)(s) = \sum_{t \sim s} f(t) \ , \ s \text{ sommet de } X \ ,$$

où $t \sim s$ signifie : "s est un sommet voisin de t".

Enfin, on fixe $\lambda \in \mathbb{C}$ et on pose

$$\tilde{V}_{\lambda} = \{ f \in \tilde{V} \; ; \; \Delta f = \lambda f \} \; .$$

- **5.5.** Montrer que \tilde{V}_{λ} est une représentation lisse de G.
- **5.6.** En utilisant la question 5.3, montrer que l'application Φ de \tilde{V}_{λ}^K dans l'ensemble des suites de complexes, donnée par

$$\Phi(f)_n = f(s_n) \ , \ n \in \mathbb{N}$$

est injective.

5.7. En utilisant la question 5.4, montrer qu'une suite $(u_n)_{n\in\mathbb{N}}$ est dans l'image de Φ si et seulement si :

$$\begin{cases} (q+1)u_1 - \lambda u_0 &= 0 \\ qu_{n+2} - \lambda u_{n+1} + u_n &= 0 \\ , n \in \mathbb{N} \end{cases}$$

- 5.8. Déterminer la dimension de \tilde{V}_{λ}^{K} .
- **5.9.** Soit Y_{λ} la sous-représentation de \tilde{V}_{λ} engendrée par \tilde{V}_{λ}^{K} . Montrer que $Y_{\lambda}^{K} = \tilde{V}_{\lambda}^{K}$.
- **5.10.** Soit Z_{λ} la somme de toutes les sous-représentations Z de Y_{λ} telles que $Z \cap Y_{\lambda}^{K} = \{0\}$. Montrer que Z_{λ} est l'unique élément maximal de l'ensemble ordonné par l'inclusion :

$$\{Z \text{ sous-représentation de } Y_{\lambda} \ ; \ Z \cap \tilde{V}_{\lambda}^K = \{0\} \ \ \}$$

Montrer que la représentation $W_{\lambda} = Y_{\lambda}/Z_{\lambda}$ est irréductible et que $\operatorname{Dim}_{\mathbb{C}} W_{\lambda}^{K} = 1$.

5.11. En déduire que la représentation W_{λ} est une représentation de la série principale.