
Two generalizations of the PRV 
onje
turePL. Montagard, B. Pasquier and N. RessayreAbstra
tLet G be a 
omplex 
onne
ted redu
tive group. The PRV 
onje
ture, whi
h was provedindependently by S. Kumar and O. Mathieu in 1989, gives expli
it irredu
ible submod-ules of the tensor produ
t of two irredu
ible G-modules. This paper has three aims. First,we simplify the proof of the PRV 
onje
ture, then we generalize it to other bran
hingproblems. Finally, we �nd other irredu
ible 
omponents of the tensor produ
t of twoirredu
ible G-modules that appear for �the same reason� as the PRV ones.1. Introdu
tion1.1 The original PRV 
onje
tureParthasarathy-Ranga Rao-Varadarajan 
onje
tured in the sixties the followingThe PRV 
onje
ture. Let G be a 
omplex 
onne
ted redu
tive group with asso
iated Weyl group
W . Let VG(µ) and VG(ν) be two irredu
ible G-modules with highest weights µ and ν respe
tively.Then, for any w ∈ W , the irredu
ible G-module VG(µ + wν) with extremal weight µ+wν, o

urswith multipli
ity at least one in VG(µ) ⊗ VG(ν).This 
onje
ture was proved independently by S. Kumar in [Kum88℄ and O. Mathieu in [Mat89℄.The aim of this paper is to simplify the proof of the PRV 
onje
ture and to generalize it in twodire
tions.1.2 Two generalizationsWe now assume that G is a subgroup of a bigger 
onne
ted redu
tive group Ĝ. Fix a Borelsubgroup B̂ and a maximal torus T̂ ⊂ B̂ of Ĝ su
h that B = B̂ ∩ G is a Borel subgroup of Gand T = T̂ ∩ G is a maximal torus of G. Consider the restri
tion map ρ : X(T̂ ) −→ X(T ) fromthe 
hara
ter group of T̂ to the one of T . Let λ̂ be a dominant weight of T̂ and VĜ(λ̂) be theirredu
ible Ĝ-module of highest weight λ̂. Let ŵ ∈ Ŵ . The �rst aim of this paper is the followingQuestion. Does the irredu
ible G-module VG(ρ(ŵλ̂)) with extremal weight ρ(ŵλ̂) o

ur withmultipli
ity at least one in VĜ(λ̂)?Although the answer may be NO (examples are given in Se
tion 2.4.3 or in Se
tion 3.1), thePRV 
onje
ture exa
tly asserts that the answer is YES if G is diagonally embedded in Ĝ = G×G.2000 Mathemati
s Subje
t Classi�
ation 22E46, 17B10,14L24Keywords: Tensor produ
t de
omposition, Bran
hing rules, PRV 
onje
tureN.R. was partially supported by the Fren
h National Resear
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PL. Montagard, B. Pasquier and N. RessayreLet Ĝ/B̂ denote the 
omplete �ag variety of Ĝ, X◦
ŵ denote the G-orbit GŵB̂/B̂ and Xŵdenote its 
losure in Ĝ/B̂. If X◦

ŵ is 
losed in Ĝ/B̂, we easily 
he
k that the answer is YES. Wealso answer positively the question under a topologi
al assumption on Xŵ.Theorem 1. We assume Xŵ is multipli
ity free.Then, VG(ρ(ŵλ̂)) is a G-submodule of VĜ(λ̂).Here, Xŵ is said to be multipli
ity free if its 
y
le 
lass in the 
ohomology of Ĝ/B̂ is a linear
ombination with 
oe�
ients 0 or 1 of S
hubert 
lasses. This assumption, whi
h 
an be hard to
he
k, is ful�lled for example if G is a spheri
al subgroup of Ĝ of minimal rank (see [Res10b℄ forthe 
omplete list of su
h subgroup). In parti
ular, G is a spheri
al subgroup of G×G of minimalrank and Theorem 1 implies the original PRV 
onje
ture.Our se
ond generalization of the PRV 
onje
ture deals with the de
omposition of tensorprodu
ts: we exhibit new 
omponents.Theorem 2. Let λ, µ, ν be three dominant weights of T . We assume that there exist v, w ∈ W ,a simple root α and an integer k su
h that(i) l(sαv) = l(v) + 1, l(sαw) = l(w) + 1;(ii) λ = vµ + wν − kα;(iii) 0 6 k 6 〈vµ, α∨〉, and 0 6 k 6 〈wν,α∨〉.Then, VG(λ) is a submodule of VG(µ) ⊗ VG(ν).Here, α∨ denotes the 
oroot asso
iated to α, and 〈·, ·〉 denotes the pairing between weightsand 
oroots. We obtain the original PRV 
onje
ture by applying Theorem 2 with extremal valuesof k in (iii).1.3 About proofsThe two key ingredients in our proofs are the normality of Xŵ, and the fa
t that for any Ĝ-linearized and globally generated line bundle L on Ĝ/B̂, the restri
tion map H0(Ĝ/B̂,L) −→
H0(Xŵ,L) is surje
tive (see Theorem 6 below). An analogue version of these two results wasalready stated by M. Demazure in the 
ase of any S
hubert varieties in �ag varieties [Dem74℄, butthere were gaps in the proofs. Corre
t proofs were obtained 
ombining several works of Andersen,Joseph, Ramanan-Ramanathan and Seshadri (see [And85, Jos85, RR85, Ses87℄). The version weused for Ĝ = G × G was proved by S. Kumar in [Kum88℄. We also use the generalization due toM. Brion for any G, Ĝ and multipli
ity free Xŵ (see [Bri03℄). These two ingredients also play a
entral role in Kumar's proof. But, Kumar's proof also uses a 
omplete des
ription of H0(Xŵ,L)mainly due to Bott and the Joseph �ltration. We make these two latter ingredients super�uousby using an argument of semistability.1.4 Link with a saturation problemIn the general situation G ⊂ Ĝ, we 
onsider the set LR(G, Ĝ) of pairs (λ, λ̂) of dominant weights of
T and T̂ su
h that VG(λ) o

urs in VĜ(λ̂). By a Brion-Knop's theorem, LR(G, Ĝ) is a �nitely gen-erated semigroup. From a theoreti
 viewpoint, the 
onvex 
one LR(G, Ĝ) generated by LR(G, Ĝ)is well understood: the 
omplete and minimal list of inequalities is parametrized by expli
it 
o-homologi
al 
onditions (see [Res10a℄). There are so many inequalities that it is not obvious to2



Two generalizations of the PRV 
onje
ture
on
retely des
ribe this 
one and espe
ially to 
onstru
t points in this 
one. A starting point inthe proof of Theorem 1 is the following well-knownProposition 1. Let λ̂ be a dominant 
hara
ter of T̂ and ŵ ∈ Ŵ .Then, there exists a positive integer n su
h that VG(nρ(ŵλ̂)) is a G-submodule of VĜ(nλ̂).In other words, (ρ(ŵλ̂), λ̂) belongs to LR(G, Ĝ).With the additional assumption that Xŵ is multipli
ity free, Theorem 1 asserts that (ρ(ŵλ̂), λ̂)belongs to LR(G, Ĝ). The question of understanding the di�eren
e between LR(G, Ĝ) and LR(G, Ĝ)is known as a saturation problem. Let Λ be the subgroup of X(T )×X(T̂ ) generated by LR(G, Ĝ).The semigroup LR(G, Ĝ) is said to be saturated along a half-line if the �rst non-zero point of
Λ on this half-line belongs to LR(G, Ĝ) (and LR(G, Ĝ) is said to be saturated if it is along anyhalf-line in LR(G, Ĝ)). Theorem 1 shows that if Xŵ is multipli
ity free, LR(G, Ĝ) is saturatedalong all the half-lines given by Proposition 1.Knutson-Tao proved in [KT99℄ that LR(SLn,SLn × SLn) is saturated. Belkale-Kumar provedin [BK07℄ that LR(Sp2n,Sp2n×Sp2n) and LR(Spin2n+1,Spin2n+1×Spin2n+1) are saturated up toa fa
tor 2: the se
ond point of Λ on any half-line belongs to LR. Kapovi
h-Leeb-Millson obtainedimportant results on the saturation question for semigroups LR(G,G × G) (see [KLM08℄).We 
an now explain Theorem 2 in this 
ontext. Fix two dominant weights µ and ν of T .The interse
tion of LR(G,G × G) with X(T ) ⊗ Q × {µ} × {ν} is a polytope P (µ, ν) (namely,a moment polytope). The original PRV 
onje
ture gives �nitely many points in P (µ, ν) thatgenerate saturated half-lines. Theorem 2 gives �nitely many segments in P (µ, ν) all whose rationalpoints generate saturated half-lines (see Se
tion 4.3.2 for examples).1.5 Link with Wahl's 
onje
tureSolving a Wahl's 
onje
ture, S. Kumar proved in [Kum92℄ the surje
tivity of the Gaussian mapfor �ag varieties. The 
onsequen
e in terms of tensor produ
t de
omposition is the followingTheorem 3. (see [Kum10℄) Let µ and ν be two dominant weights of T and α be a positive root.We set λ = µ + ν − α and assume that(i) λ is dominant;(ii) for all simple root β su
h that 〈µ, β∨〉 = 0 or 〈ν, β∨〉 = 0, α − β is neither a root nor 0.Then, VG(λ) is a submodule of VG(µ) ⊗ VG(ν).The 
ase when α is simple in Theorem 3 
an also be obtained applying Theorem 2 with
v = w = e and k = 1. Condition (ii) in Theorem 3 asserts that 
ondition (iii) in Theorem 2is satis�ed. Nevertheless, the 
on
lusion of Theorem 2 does not hold if α is only assumed tobe positive (see Se
tion 4.3.1). Our Theorem 2 is not a stri
t generalisation of Theorem 3; forexample, take G = Sp4, µ = ν = ω1 +ω2 and α = α1 +α2 (with notation of Se
tion 4.3.1 below).Note that our proof does not work in this example be
ause the 
on
lusion of Lemma 6 is notsatis�ed (the 
orresponding spa
e has dimension three instead of one).Aknowledgment. The authors would like to thank S. Kumar to have paid a parti
ular attentionto this paper and also for his judi
ious remarks.3



PL. Montagard, B. Pasquier and N. Ressayre2. Restri
tion to a subgroup2.1 SettingLet G be a 
omplex 
onne
ted redu
tive group, with a �xed Borel subgroup B and maximal torus
T ⊂ B. Let X(T ) denote the 
hara
ter group of T . For any dominant weight λ ∈ X(T ), let VG(λ)denote the irredu
ible G-module with highest weight λ. Let W be the Weyl group of (G,T ). Forany 
hara
ter λ, the orbit W.λ interse
ts the dominant 
hamber in one point denoted by λ̄. Wewill denote by w0 the longest element of the Weyl group W .We now assume that G is a subgroup of a 
onne
ted redu
tive group Ĝ. Let T̂ and B̂ be amaximal torus and a Borel subgroup of Ĝ su
h that T ⊂ T̂ ⊂ B̂ ⊃ B. We will use hats to denoteobje
ts relative to Ĝ instead of G; for example we will write Ŵ , ŵ0, . . . For a given dominant
hara
ter λ̂ of T̂ , we are interested in the followingProblem. Find irredu
ible G-submodules of VĜ(λ̂)?2.2 G-orbits in the 
omplete �ag manifold of ĜFor any ŵ ∈ Ŵ , we set X◦

ŵ = GŵB̂/B̂ and Xŵ its 
losure. We also denote by σŵ the 
y
le 
lassof the S
hubert variety B̂ŵB̂/B̂ in Ĝ/B̂. It is well known that
H∗(Ĝ/B̂, Z) =

⊕

ŵ∈Ŵ

Z.σŵ. (1)Let V be an irredu
ible subvariety of Ĝ/B̂. The 
y
le 
lass [V ] of V in H∗(Ĝ/B̂, Z) 
an beexpanded as follows
[V ] =

∑

ŵ∈Ŵ

cŵ(V )σŵ, (2)where the cŵ(V ) are non-negative integers. The variety V is said to be multipli
ity free if for any
ŵ ∈ Ŵ , cŵ(V ) = 0 or 1.2.3 The statementConsider the restri
tion map ρ : X(T̂ ) −→ X(T ). We now state a slightly more general versionof Theorem 1.Theorem 4. With above notation, let λ̂ be a dominant 
hara
ter of T̂ and ŵ ∈ Ŵ . We assumethat one of the following assumption holds:(i) X◦

ŵ is 
losed;(ii) G is spheri
al of minimal rank in Ĝ;(iii) Xŵ is multipli
ity free;(iv) Xŵŵ0
is multipli
ity free.Then, VG(ρ(ŵλ̂)) is a G-submodule of VĜ(λ̂).The �rst 
ase is easy and 
ertainly well known.Proof in 
ase (i). Sin
e X◦

ŵ is 
omplete, the isotropy group of ŵB̂/B̂ in G is a paraboli
 subgroup4



Two generalizations of the PRV 
onje
tureof G. But, it is 
ontained in ŵB̂ŵ−1, so it is solvable. It follows that B′ := ŵB̂ŵ−1 ∩G is a Borelsubgroup of G 
ontaining T . Then there exists w ∈ W su
h that w−1Bw = B′.Let v be a non-zero ve
tor of VĜ(λ̂) of highest weight λ̂. It is 
lear that ŵv is an eigenve
torof weight ρ(ŵλ̂) for B′ (here, we identify X(T ) and X(B′) by the restri
tion morphism). Itfollows that wŵv is an eigenve
tor of weight wρ(ŵλ̂) for B, so that wρ(ŵλ̂) is dominant and
wρ(ŵλ̂) = ρ(ŵλ̂). The theorem follows.We now prove 
ase (iv) assuming that 
ase (iii) is known.Proof in 
ase (iv). We apply the theorem in 
ase (iii) to the dominant weight −ŵ0λ̂ and theelement ŵŵ0 of Ŵ . We obtain that VG(ρ(−ŵλ̂)) is 
ontained in VĜ(−ŵ0λ̂) = VĜ(λ̂)∗. Sin
e
−ρ(ŵλ̂) is an extremal weight of VG(ρ(ŵλ̂))∗, we dedu
e that VG(ρ(ŵλ̂))∗ is a G-submodule of
VĜ(λ̂)∗. The theorem follows by duality.2.4 The spheri
al 
aseIn this subse
tion, we look at a situation where we 
an 
he
k when assumption (iii) is ful�lled.This will allow us to dis
uss the various assumptions on examples and to in
lude 
ase (ii) in
ase (iii).2.4.1� Assume that G is a spheri
al subgroup of Ĝ; i.e. G a
ts on Ĝ/B̂ with �nitely manyorbits. In [Bri01℄, M. Brion de�ned an oriented graph Γ(Ĝ/G) whose verti
es are the G-orbit
losures in Ĝ/B̂. The edges, whi
h 
an be simple or double, are labeled by the simple roots of Ĝ.The assumption �Xŵ is multipli
ity free� 
an be easily read o� this graph: Xŵ is multipli
ity freeif and only if for any path from Xŵ to Ĝ/B̂ there is no double edge. In parti
ular, by [Res10b,Proposition 2.1℄, if G is spheri
al of minimal rank, any G-orbit 
losure in Ĝ/B̂ is multipli
ityfree. In parti
ular, 
ase (ii) of Theorem 4 is a 
onsequen
e of 
ase (iii).We now study two examples where G is spheri
al, whi
h illustrate Theorem 4.2.4.2� Let Ĝ = Sp4 and G = Gl2 be the Levi subgroup of a maximal paraboli
 subgroupof Sp4 that stabilizes an isotropi
 plane in C4. Then G is a spheri
al subgroup of Ĝ and theoriented graph Γ(Ĝ/G) (with arrows pointed down) is the following (α̂ and β̂ denote respe
tivelythe short and the long simple roots of Sp4).

◦

◦

β̂

◦

α̂
w

w

w

w

◦

β̂

◦

α̂

◦

β̂

◦

α̂

◦

β̂

◦

α̂β̂

◦

β̂α̂

◦

β̂In this example, the varieties Xŵ 
orrespond to the four verti
es at the bottom of the graph
Γ(Ĝ/G) and they are in fa
t the four 
losed G-orbits in Ĝ/G. So Theorem 4 
an be applied herefor all ŵ ∈ Ŵ . This gives an example where we need to use hypothesis (i) of Theorem 4 to applyit, be
ause two of the 
losed G-orbits above are not multipli
ity free.5



PL. Montagard, B. Pasquier and N. Ressayre2.4.3� Let Ĝ = SL3 and G = SO3 naturally embedded in SL3. Let α, α̂ and β̂ denotethe simple roots of SO3 and SL3. Also denote by ωα, ωα̂ and ωβ̂ the 
orresponding fundamentalweights. Then G is a spheri
al subgroup of Ĝ and the oriented graph Γ(Ĝ/G) is the followingdiagram.
◦

◦==
==

α̂=
==

=

◦

====
β̂====

◦

α̂β̂We 
an read on the graph that there exist exa
tly two not-
losed G-orbits in Ĝ/B̂ withmultipli
ity, namely X◦
sα̂

and X◦
s
β̂
. An easy 
omputation gives us that ρ(sα̂ωα̂) = ρ(sβ̂ωβ̂) = 0.But we 
an also 
he
k that VG(0) is neither in VĜ(ωα̂) nor in VĜ(ωβ̂), so that the 
on
lusion ofTheorem 4 is not satis�ed in these two 
ases.We have just seen that (0, ωα̂) is not in the semi-group LR(G, Ĝ) de�ned in the introdu
tion.But we 
an remark that (0, 2ωα̂) ∈ LR(G, Ĝ), while (0, ωα̂) is in the subgroup of X(T )×X(T̂ ) gen-erated by LR(G, Ĝ) (be
ause we 
an 
ompute that (2ωα, ωβ̂) and (2ωα, ωα̂+ωβ̂) are in LR(G, Ĝ)).Then LR(G, Ĝ) is not saturated along the half-line generated by (0, 2ωα̂).The rest of Se
tion 2 is devoted to the proof of Theorem 4.2.5 A result of Geometri
 Invariant TheoryLet X be an irredu
ible proje
tive G-variety. As in [MFK94℄, we denote by PicG(X) the groupof G-linearized line bundles on X. Let L ∈ PicG(X) and let H0(X,L) denote the G-module ofregular se
tions of L. A point x ∈ X is said to be semistable with respe
t to L if there exists n > 0and τ ∈ H0(X,L⊗n)G su
h that τ(x) 6= 0.Remark. Note that this de�nition of semistable points is not standard. Indeed, it is usuallyagreed that the open subset de�ned by the non-vanishing of τ is a�ne. This property, whi
h isuseful to 
onstru
t a good quotient, is automati
 only if L is ample; hen
e, our de�nition 
oin
ideswith the usual one if L is ample.A line bundle L on X is said to be semiample if a positive power of L is base point free. If Lis a line bundle on X and x is a point in X, Lx denotes the �ber in L over x. We will need thefollowing lemma mainly due to Kostant.Lemma 1. Let L ∈ PicG(X) be semiample and x ∈ X be a T -�xed point. We assume that T a
tstrivially on Lx.Then x is semistable with respe
t to L.Proof. Let n be a positive integer, su
h that the natural morphism
ϕ : X −→ P(H0(X,L⊗n)∗)is well de�ned. Set V = H0(X,L⊗n)∗. Let v ∈ V be a non-zero ve
tor on the line ϕ(x). Theassumption implies that v is �xed by T . 6



Two generalizations of the PRV 
onje
tureLet U be the unipotent radi
al of B. Then, as an orbit of an unipotent group in an a�nevariety, U.v is 
losed in V (see [Ros61, Theorem 2℄); and, B.v = U.v. Sin
e G/B is 
omplete, itfollows that G.v is 
losed in V . We dedu
e that there exists a G-invariant homogeneous polynomial
P of degree d on V su
h that P (ϕ(x)) 6= 0. It follows that there exists a G-invariant se
tion τ of
L⊗nd su
h that τ(x) 6= 0.2.6 The Borel-Weil theoremLet P be a paraboli
 subgroup of G. Let ν be a 
hara
ter of P . Let Cν denote the �eld C endowedwith the a
tion of P de�ned by p.τ = ν(p)τ for all τ ∈ Cν and p ∈ P . We de�ne the line bundle
G ×P C−ν on G/P as the quotient of G × C−ν by the following equivalent relation

∀g ∈ G, ∀τ ∈ Cν and ∀p ∈ P, (g, τ) ∼ (gp, p−1.τ).It is a G-linearized line bundle on G/P , denoted by Lν. In fa
t, the map
X(P ) −→ PicG(G/P)

ν 7−→ Lνis an isomorphism.We assume that P 
ontains B (in that 
ase, P is said to be standard). Then, X(P ) identi�eswith a subgroup of X(T ). For ν ∈ X(P ), Lν is semiample if and only if it has non-zero se
tionsif and only if ν is dominant. Moreover, H0(G/P,Lν) maps onto H0(P/P,Lν) ≃ C−ν and is theirredu
ible G-module of extremal weight −ν, that is VG(ν)∗. For ν dominant, Lν is ample if andonly if ν 
annot be extended to a subgroup of G bigger than P .2.7 The Brion theoremWe will need the following theorem, due to Brion, on multipli
ity free subvarieties of G/B.Theorem 5. [Bri03, Theorem 1℄ Let V be a multipli
ity free subvariety of G/B and L be anysemiample G-linearized line bundle on G/B, then(i) V is normal;(ii) the restri
tion map H0(G/B,L) −→ H0(V,L) is surje
tive.2.8 Proof of Theorem 42.8.1� We �rst prove an asymptoti
 version of Theorem 4, that is Proposition 1 of theintrodu
tion.Proof of Proposition 1. Set X = Ĝ/B̂. By the Borel-Weil theorem, we have
H0(X,Lλ̂) = VĜ(λ̂)∗.It remains to prove that, for some n > 0, L⊗n

λ̂
admits a non-zero se
tion that is an eigenve
torof weight −nρ(ŵλ̂) for the opposite Borel subgroup B− of G. This is made more pre
isely inLemma 2 below.Lemma 2. There exists n > 0 su
h that L⊗n

λ̂
admits a se
tion τ whi
h is an eigenve
tor of weight

−nρ(ŵλ̂) for B− su
h that the restri
tion of τ to X◦
ŵ is non-zero.7



PL. Montagard, B. Pasquier and N. RessayreProof. Consider the variety Y = X × G/B− endowed with the diagonal a
tion of G given by:
g′.(ĝB̂/B̂, gB−/B−) = (g′ĝB̂/B̂, g′gB−/B−). Let L−

−ρ(ŵλ̂)
be the G-linearized line bundle on

G/B− su
h that B− a
ts on the �ber over B− by the 
hara
ter ρ(ŵλ̂). We also 
onsider the linebundle M := Lλ̂ ⊠L−

−ρ(ŵλ̂)
on Y . Note that M is semi-ample be
ause λ̂ is dominant and −ρ(ŵλ̂)is dominant with respe
t to B−.By de�nition of ρ(ŵλ̂), there exists v ∈ W su
h that ρ(ŵλ̂) = vρ(ŵλ̂). Then, it is 
lear that Ta
ts trivially on the �ber in M over the point y := (vŵB̂/B̂,B−/B−). Now, applying Lemma 1,we obtain, for some n > 0, a se
tion τY ∈ H0(Y,M⊗n)G su
h that τY (y) 6= 0.De�ne τ as the restri
tion of τY to X × B−/B− seen as a se
tion of Lλ̂ on X. Sin
e τY is

G-invariant, τ is B−-equivariant of weight −nρ(ŵλ̂). It is 
lear that τ(vŵB̂/B̂) 6= 0, so that therestri
tion of τ to X◦
ŵ is non-zero. The lemma is proved.2.8.2� We have already seen that it is su�
ient to prove Theorem 4 under assumption (iii).By Theorem 5, it is su�
ient to prove the followingTheorem 6. Let λ̂ be a dominant 
hara
ter of T̂ and ŵ ∈ Ŵ . We assume that(i) Xŵ is normal;(ii) the restri
tion map H0(Ĝ/B̂,Lλ̂) −→ H0(Xŵ,Lλ̂) is surje
tive.Then, VG(ρ(ŵλ̂)) is a G-submodule of VĜ(λ̂).Proof. Consider the following restri
tion maps:

H0(Ĝ/B̂,Lλ̂) H0(Xŵ,Lλ̂) H0(X◦
ŵ,Lλ̂).Sin
e the �rst one is surje
tive and G-equivariant, it is su�
ient to �nd VG(ρ(ŵλ̂))∗ in H0(Xŵ,Lλ̂).We will �rst prove that VG(ρ(ŵλ̂))∗ is a submodule of H0(X◦

ŵ,Lλ̂) without multipli
ity. Next, wewill prove that the 
orresponding B−-equivariant se
tion on X◦
ŵ extends to Xŵ using both theasymptoti
 version and the normality of Xŵ.By Lemma 3 below, there exists a (unique up to s
alar multipli
ation) non-zero regular se
tion

σ of Lλ̂ on X◦
ŵ whi
h is B−-equivariant of weight −ρ(ŵλ̂).Let n > 0 and τ be as in Lemma 2. Then, τ|X◦

ŵ
and σ⊗n are two non-zero regular se
tionsof Lnλ̂ on X◦

ŵ whi
h are B−-equivariant of weight −nρ(ŵλ̂). By Lemma 3, it follows that τ|X◦

ŵand σ⊗n are proportional. In parti
ular, σ⊗n extends to a regular se
tion of Lnλ̂ on Xŵ. Sin
e
Xŵ is normal, it follows that σ also extends to a regular se
tion of Lλ̂ on Xŵ. The theorem isproved.Notation. If H is an algebrai
 a�ne group, χ is a 
hara
ter of H and V is a H-module, we set:

V (H)χ = {v ∈ V | ∀h ∈ H, h.v = χ(h)v}.Lemma 3. The G-module VG(ρ(ŵλ̂))∗ has multipli
ity exa
tly one in H0(X◦
ŵ,Lλ̂).Proof. Let Gŵ ⊂ G be the isotropy group of ŵB̂/B̂ so that X◦

ŵ is isomorphi
 to the homogeneousspa
e G/Gŵ. Let us de�ne µ = ρ(ŵλ̂). Sin
e Gŵ a
ts on the �ber (Lλ̂)ŵB̂/B̂ by the 
hara
ter −µ,the line bundle L on X◦
ŵ is isomorphi
 to G ×Gŵ

C−µ.8



Two generalizations of the PRV 
onje
tureThen by using the Frobenius de
omposition, the spa
e of global se
tions H0(G/Gŵ , G ×Gŵ

C−µ) 
an be identify with:
⊕

χ

V ∗
G(χ) ⊗ (VG(χ))(Gŵ)µ ,where the sum is over the set of dominant weights of G. So, we have to prove that the ve
torspa
e VG(µ)(Gŵ)µ is one-dimensional. First, sin
e Gŵ = G ∩ ŵB̂ŵ−1 
ontains T , the dimensionof VG(µ)(Gŵ)µ is smaller than one.The dimension is exa
tly one if Gŵ is 
ontained in the paraboli
 group PG(µ) asso
iated to theweight µ. By Lemma 2, there exist an integer n and a se
tion τ ∈ H0(Xŵ,Lnλ̂)(B

−)−nµ su
h thatthe restri
tion of τ to X◦
ŵ is non-zero. So the dimension of H0(X◦

ŵ,Lnλ̂)(B
−)−nµ is bigger than one.By using the Frobenius de
omposition as above, we dedu
e that the dimension of VG(nµ)(Gŵ)nµ isbigger than (and so equal to) one, and that the paraboli
 group PG(nµ) asso
iated to the weight

nµ 
ontains the group Gŵ. We 
on
lude by saying that PG(nµ) = PG(µ).3. Appli
ations3.1 Appli
ations to the Krone
ker produ
tThe aim of this se
tion is to detail our results for Gl(E) × Gl(F ) ⊂ Gl(E ⊗ F ). This problemis equivalent to the question on the de
omposition of tensor produ
ts of representations for thesymmetri
 group.A partition π is a sequen
e π = (π1, π2, . . . , πk) of weakly de
reasing non-negative integers.By 
onvention, we allow partitions with some zero parts, and two partitions that di�er by zeroparts are the same. If several parts are equal we denote the multipli
ity of this part by anexponent. For example (32, 24, 1) means the partition (3, 3, 2, 2, 2, 2, 1). For any partition π, wede�ne |π| = π1 + π2 + · · · + πk and l(π) as the number of non-zero parts of π.Re
all that if V is a �nite dimensional ve
tor spa
e, then the Gl(V )-irredu
ible polynomialrepresentations are in bije
tion with the partitions π su
h that l(π) 6 dimV : we denote by SπVthe representation asso
iated to π.Let E,F be two ve
tor spa
es of respe
tive dimension m,n, and 
onsider G = Gl(E)×Gl(F )and Ĝ = Gl(E⊗F ). Let γ be a partition su
h that l(γ) 6 mn. We 
an de
ompose the irredu
iblerepresentation Sγ(E ⊗ F ) as a G-representation:
Sγ(E ⊗ F ) =

∑

α,β

Nαβγ SαE ⊗ SβF ,where the sum is taken over partitions α, β su
h that |α| = |β| = |γ|, l(α) 6 m and l(β) 6 n.Remark. The irredu
ible representations of the symmetri
 group Sn 
orrespond bije
tively withthe partitions π su
h that |π| = n; we denote by [π] the representation 
orresponding to π. Byusing the S
hur-Weyl duality, we 
an show that Nαβγ is also the multipli
ity of [γ] in [α] ⊗ [β](see for example [FH91, Chapter 6℄). Now, the fa
t that the representations of Sn are self-dualimplies that Nαβγ is symmetri
 in α, β and γ.By �xing basis, we denote by TE and TF the maximal tori of Gl(E) and Gl(F ) 
onsisting ofdiagonal matri
es. For i = 1, . . . ,m, denote by ηi the 
hara
ter that maps an element of TE to9



PL. Montagard, B. Pasquier and N. Ressayreits ith diagonal 
oe�
ient. Similarly, we de�ne the 
hara
ters δj 's of TF . The basis of E and Findu
e a natural basis of E ⊗F indexed by pairs (i, j). Let T̂ denote the 
orresponding maximaltorus of Ĝ and ε̂i,j the 
hara
ter of T̂ 
orresponding to (i, j). Note that ρ(ε̂i,j) = (ηi, δj).The 
oordinates of 
hara
ters of T̂ in the basis ε̂i,j , whi
h are indexed by pairs (i, j), will berepresented in tableaux of m rows and n 
olumns. For any tableau t (identi�ed with the 
orre-sponding 
hara
ter of T̂ ), ρ(t) is obtained by summing along 
olumns, to obtain the 
oordinatesof a 
hara
ter of TE , and along rows, to obtain the 
oordinates of a 
hara
ter of TF .In Theorem 4, the weights of the form ŵλ̂ are exa
tly the extremal weights of VG(λ̂). Inparti
ular, they do not depend on the 
hoi
e of a Borel subgroup of Ĝ but only on T̂ and therepresentation VĜ(λ̂). Here, we have �xed the torus and the representation: the extremal weightsof T̂ in Sγ(E ⊗ F ) are the tableaux m × n �lled by the parts of γ.For example, suppose that m = n = 3 and the two following tableaux 
orrespond to extremalweights of S14(E ⊗ F ):
1 21

1 1

1

2

1

1

1

1

1 11 3

1

2 1

1

0where the boxes 
orresponding to zero 
oordinates are left empty.In the �rst tableau, ρ(t) = ρ(t) = ((3, 1, 0), (2, 1, 1)). We 
an easily 
he
k that the irredu
iblerepresentation [14] (whi
h is the one dimensional representation given by the signature of S4)appears in the tensor produ
t [3, 1] ⊗ [2, 12].In the se
ond tableau, ρ(t) = ((2, 1, 1), (1, 1, 2)) and ρ(t) = ((2, 1, 1), (2, 1, 1)). We 
an 
he
kthat [24] appears in [4, 22] ⊗ [4, 22] whi
h mat
hes with our asymptoti
 result (Proposition 1).But, the irredu
ible representation [14] does not appear in the tensor produ
t [2, 12] ⊗ [2, 12].Then, Theorem 4 shows that some Gl(E)×Gl(F )-orbit 
losures of the form Xŵ of the 
omplete�ag variety of E × F are not multipli
ity free. A natural but probably di�
ult question appearshere: whi
h orbit 
losures Xŵ (for ŵ ∈ Ŵ ) are multipli
ity free?We 
an prove that the ŵ's in Ŵ su
h that the orbit X◦
ŵ is 
losed, 
orrespond bije
tively tostandard tableaux m × n. Now 
ase (i) of Theorem 4 gives the following rule to 
ompute some
omponents of the tensor produ
t of two representations of the symmetri
 group. We don't knowif this rule is already known.Rule. 1. Fill the tableau m × n by the parts of γ in weakly de
reasing order along rows and
olumns.2. Sum along rows and 
olumns to obtain α and β.Then, [γ] appears in [α] ⊗ [β].For example, the tableaux: 10
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onje
ture
2

1

1

2

2

2 1 1

11

13

4 4 3 3

2

10

3

7 34

1

4 3

23

3 2

1

1

9

10 7 4

6

6show that the representations [2, 14], [4, 32, 2, 12], [4, 33, 23, 12] appear in the respe
tive tensorprodu
ts: [4, 2] ⊗ [3, 2, 1], [7, 4, 3] ⊗ [10, 3, 1], [9, 6, 6] ⊗ [10, 7, 4].3.2 Appli
ation to a bran
hing ruleHere we apply Theorem 4 to the subgroup G = Sp(2n) of Ĝ = Gl(2n). This subgroup is spheri
alof minimal rank, so that Theorem 4 applies for any λ̂ and ŵ.We de�ne G as the subgroup of Gl(2n) whi
h preserves the alternate form given by the matrix:
I =













J 0 . . . 0

0 J
. . . ...... . . . . . . 0

0 . . . 0 J











where J =

(

0 1
−1 0

). Then we 
hoose for T̂ the group of invertible diagonal matri
es, and forany i ∈ {1, . . . , 2n}, we denote by ε̂i the usual 
hara
ter of T̂ . Set λ̂ = λ̂1ε̂1 + · · · + λ̂2nε̂2n. TheWeyl group Ŵ is the symmetri
 group S2n and ŵ−1λ̂ = λ̂ŵ(1)ε̂1 + · · · + λ̂ŵ(2n)ε̂2n, for ŵ ∈ S2n.Set T = G∩T̂ and de�ne, for any i ∈ {1, . . . , n}, the restri
tion εi = ρ(ε̂2i−1). Then (ε1, . . . , εn)is a basis of 
hara
ters of T and we have:
ρ(ŵ−1λ̂) = (λ̂ŵ(1) − λ̂ŵ(2), λ̂ŵ(3) − λ̂ŵ(4), . . . , λ̂ŵ(2n−1) − λ̂ŵ(2n)).The Weyl group W a
ts on the 
hara
ters of T by permuting 
oordinates and by multiplyingsome 
oordinates by −1. So ρ(ŵ−1λ̂) is obtained by arranging in a weak de
reasing order theabsolute values |λ̂ŵ(2i−1) − λ̂ŵ(2i)|, for i ∈ {1, . . . , n}. We summarize this in the followingRule. 1. Consider a permutation (λ̂ŵ(1), . . . , λ̂ŵ(2n)) of the 
oordinates of a dominant weight λ̂ of

Gl(2n).2. Order the n absolute values |λ̂ŵ(2i−1) − λ̂ŵ(2i)| to obtain a dominant weight µ of G.Then the multipli
ity of VG(µ) in V̂Ĝ(λ̂) is non-zero.We believe that this rule 
annot be easily dedu
ed from the 
ombinatorial rules as thoseexpli
ated in [Sun90℄. 4. Tensor produ
t de
ompositionThe aim of this se
tion is to prove Theorem 2 stated in the introdu
tion. We also give, at theend, two examples.Remark. 11



PL. Montagard, B. Pasquier and N. Ressayre(i) Condition (i) of Theorem 2 implies that 〈vµ, α∨〉 > 0 and 〈wν,α∨〉 > 0.(ii) Theorem 2 asserts that the half-line generated by (λ, µ, ν) is saturated in the Littlewood-Ri
hardson semigroup.Indeed, assume that λ = vµ+wν+kα with a rational number k satis�es (−w0λ+µ+ν)|Z(G) =
0. We obtain that −w0λ + µ + ν = (λ − w0λ) + (µ − vµ) + (ν − wν) + kα. But, λ − w0λ,
µ − vµ and ν − wν belong to the root latti
e. It follows that kα has to belong to the rootlatti
e and so k is an integer.The strategy of the proof of Theorem 2 is similar to that of Theorem 6. So, we �rst proveadaptations of Proposition 1 and of Lemma 3.4.1 Asymptoti
 versionTo prove Proposition 1, we used Lemma 1 mainly due to B. Kostant; here, in order to proveLemma 5 below, we will need to use the following strong result of semi-stability mainly due toD. Luna.Lemma 4. Consider the variety Y = (G/B)3. Let λ, µ and ν be three dominant weights of T .Let β be a root of (G,T ). Denote by S the neutral 
omponent of the Kernel of β in T . Let

(u, v,w) ∈ W 3 and C be the irredu
ible 
omponent of Y S 
ontaining (uB/B, vB/B, wB/B).We assume that uΦ+ ∩ vΦ+ ∩ wΦ+ 
ontains β.The following are equivalent:(i) C 
ontains semistable points with respe
t to Lλ ⊠ Lµ ⊠ Lν ;(ii) 













(uλ + vµ + wν)|S = 0

〈uλ, β∨〉 + 〈vµ, β∨〉 − 〈wν, β∨〉 > 0,
〈uλ, β∨〉 − 〈vµ, β∨〉 + 〈wν, β∨〉 > 0,
−〈uλ, β∨〉 + 〈vµ, β∨〉 + 〈wν, β∨〉 > 0.Proof. Let L be the 
entralizer of S in G; it is a Levi subgroup of G of semisimple rank one.The variety C is isomorphi
 to the produ
t of three 
opies of the 
omplete �ag manifold of L,i.e. (P1)3. Moreover, (Lλ ⊠Lµ ⊠Lν)|C is isomorphi
 as an abstra
t line bundle to O(〈uλ, β∨〉) ⊠

O(〈vµ, β∨〉) ⊠ O(〈wν, β∨〉). Note that 〈uλ, β∨〉, 〈vµ, β∨〉 and 〈wν, β∨〉 are non-negative integers,be
ause β ∈ uΦ+ ∩ vΦ+ ∩ wΦ+.It is not di�
ult to 
he
k that (P1)3 has semistable points for the a
tion of SL2 or PSL2 withrespe
t to O(a) ⊠O(b) ⊠O(c) (where a, b and c are non-negative integers) if and only if we have






a + b − c > 0,
a − b + c > 0,
−a + b + c > 0.Now, the �rst equation of (ii) means that S a
ts trivially on (Lλ ⊠Lµ ⊠Lν)|C ; and so, indu
esa L/S-linearized line bundle on C. The three inequalities of (ii) are equivalent to the fa
t that

C 
ontains semistable points for the a
tion of L/S (whi
h is isomorphi
 to SL2 or PSL2) withrespe
t to (Lλ ⊠ Lµ ⊠ Lν)|C . Now, it is 
lear that 
ondition (i) implies 
ondition (ii).The 
onverse impli
ation is a dire
t appli
ation of [Lun75, Corollary 2 and Remark 1℄ (seealso [Res10a, Proposition 8℄ for a formulation that 
an be dire
tly applied here).We use notation of Se
tion 2 with Ĝ = G×G. In parti
ular, X◦
v,w is the G-orbit of (vB/B,wB/B)in X = (G/B)2. 12



Two generalizations of the PRV 
onje
tureWe now prove the adaptation of Lemma 2.Lemma 5. With assumptions of Theorem 2, there exist n > 0 and a se
tion τ of (Lµ ⊠Lν)
⊗n ofweight −nλ for B− whose restri
tion to Xv,sαw is non-zero.Proof. We apply Lemma 4 with the dominant weights −w0λ, µ and ν, the root α and (sαw0, v, w) ∈

W 3. Then, the �rst equation of 
ondition (ii) of Lemma 4 is 
learly satis�ed and the three in-equalities of 
ondition (ii) are respe
tively equivalent to 





k 6 〈vµ, α∨〉,
k 6 〈wν,α∨〉,
k > 0.We now remark, be
ause of 
ondition (i) of Theorem 2, that {w0B/B} × Xv,sαw interse
ts

C ∩ ({w0B/B} × X) along an open subset, and we 
on
lude the proof of the lemma, using thesame arguments as in Lemma 2.4.2 Proof of Theorem 2In this se
tion, we suppose that all assumptions of Theorem 2 are ful�lled. We also set w̄ = sαwand we denote by Gu,w̄ the isotropy subgroup of (vB/B, w̄B/B) in G, i.e. Gv,w̄ = vBv−1∩w̄Bw̄−1.We now prove the equivalent of Lemma 3.Lemma 6. The spa
e C[G](B
−)

−λ×(Gv,w̄)vµ+w̄ν has dimension one.Proof. We �rst prove that
C[G](B

−)
−λ×(T )vµ+w̄νhas dimension one. Let us re
all a 
lassi
al property of some 
hara
ters of the representation

VG(λ): the weights λ − lα with l ∈ {0, · · · , 〈λ, α∨〉} have exa
tly multipli
ity one for T . Frobe-nius' theorem implies that C[G](B
−)

−λ×(T )vµ+w̄ν is isomorphi
 to VG(λ)(T )vµ+w̄ν . Assumption (ii)of Theorem 2 implies that vµ + w̄ν = λ− (〈wν,α∨〉 − k)α. Assumption (iii) of the same theoremimplies that 0 6 〈wν,α∨〉 − k 6 〈λ, α∨〉. We obtain the dimension of C[G](B
−)

−λ×(T )vµ+w̄ν fromthe above-mentioned 
lassi
al property.Let s be a non-zero element of C[G](B
−)

−λ×(T )vµ+w̄ν . Sin
e T is 
ontained in Gv,w̄, it is su�
ientto prove that for any h ∈ Gv,w̄, we have:
hs = (vµ + w̄ν)(h)s.By Lemma 5, there exist n and a non-zero sn ∈ C[G](B

−)
−nλ×(Gv,w̄)nvµ+nw̄ν . Consider the algebra

A = ⊕n>0C[G](B
−)

−nλ . Now, in A, s⊗n is a non-zero element of C[G](B
−)

−nλ×(Gv,w̄)nvµ+nw̄ν . Bythe �rst part of the proof, s⊗n and sn have to be proportional. It follows that for any h in Gv,w̄

(hs)⊗n = h.s⊗n = (nvµ + nw̄ν)(h)s⊗n = ((vµ + w̄ν)(h)s)⊗n.Sin
e A is the algebra of regular se
tions of powers of an ample line bundle over a P\G, itis integrally 
losed. But, for any h ∈ Gv,w̄, (hs
s )⊗n and ( s

hs)
⊗n belong to A. So, hs and s areproportional. There exists a regular map θ : H −→ C∗ su
h that

hs = θ(h)sfor any h ∈ Gv,w̄. We easily 
he
k that θ must be a 
hara
ter of Gv,w̄. But, the restri
tion of θ to
T equals vµ + w̄ν so that θ = vµ + w̄ν. The lemma follows.We now prove Theorem 2. 13



PL. Montagard, B. Pasquier and N. RessayreProof. It remains to prove that VG(λ)∗ is a submodule of VG(µ)∗ ⊗ VG(ν)∗. We interpret thelatter module as the spa
e of se
tions of Lµ ⊠ Lν on X and 
onsider the following sequen
e ofmorphisms:
H0((G/B)2,Lµ ⊠ Lν)

H0(Xv,w̄,Lµ ⊠ Lν)

H0(X◦
v,w̄,Lµ ⊠ Lν)

C[G]{1}×(Gv,w̄)vµ+w̄νThe surje
tivity of the �rst map is a parti
ular 
ase (known before) of Theorem 5. The inje
-tivity of the se
ond map is obvious. And the next isomorphism is obtained by applying Frobenius'theorem.Now, by Lemma 6, there exists a non-zero se
tion σ of Lµ ⊠ Lν on X◦
v,w̄ of weight −λ for

B−. Then, for some n > 0, σ⊗n extends to Xv,w̄ by Lemmas 5 and 6 together. Sin
e Xv,w̄ isnormal, it follows that σ also extends to a regular se
tion of Lµ ⊠Lν on Xv,w̄. Thus, the theoremis proved.4.3 Examples4.3.1� In the following example, we will see that the hypothesis on α to be simple, in Theorem 2,is ne
essary. Consider G = Sp4. Denote by α1 and α2 respe
tively the short and the long simpleroots, and ω1 and ω2 the asso
iated fundamental weights. Let µ = ν = ω2 (and v = w = Id).Then we 
an 
ompute that
VG(µ) ⊗ VG(ν) = VG(0) ⊕ VG(2ω1) ⊕ VG(2ω2).De�ne λ := vµ + wν − (α1 + α2) = ω2. Note that λ satis�es the 
onditions (ii) and (iii) ofTheorem 2 with α = α1 + α2, be
ause 〈ω2, (α1 + α2)

∨〉 = 2. We 
annot apply Theorem 2 justbe
ause α1 + α2 is not a simple root. And in fa
t, VG(λ) is not a submodule of VG(µ) ⊗ VG(ν).4.3.2� In this se
tion, we look at the positions of the dominant weights λ obtained inTheorem 2 for �xed µ, ν, α and varying k. We prove that, by this way, we obtain an �integralsegment� with at least one extremity 
orresponding to an original PRV 
omponent.Proposition 2. Let λ be a dominant weight as in Theorem 2. Suppose, for 
onvenien
e, that
〈vµ, α∨〉 6 〈wν,α∨〉. Set kmax = 〈vµ, α∨〉 and λk = vµ + wν − kα. Let k0 be su
h that λ = λk0

.Then, for any k0 6 k 6 kmax, λk is a dominant weight. Moreover, VG(λkmax
) = VG(sαvµ+wν)is an original PRV 
omponent of VG(µ) ⊗ VG(ν).Proof. Denote by S the set of simple roots of (G,B) and by ωγ the fundamental weight 
orre-sponding to the simple root γ. Then, for all 0 6 k 6 kmax, we 
an write λk =
∑

γ∈S aγ,kωγ , withthe (aγ,k)'s in Z. Note that
aα,kmax

= 〈λkmax
, α∨〉 = −〈vµ, α∨〉 + 〈wν,α∨〉 > 0.14



Two generalizations of the PRV 
onje
tureRemark also that
α =

∑

γ∈S

〈α, γ∨〉ωγ =
∑

γ∈S

bγωγ , with bα = 2 and bγ 6 0, ∀γ 6= α.Then, aα,k de
reases when k in
reases, and for any γ 6= α, aγ,k in
reases with k. Moreover, sin
e
aα,kmax

> 0, aα,k is non-negative for all 0 6 k 6 kmax. This implies that, as soon as λk isdominant, it stays dominant when k in
reases up to kmax. Now, the proposition follows from thefa
t that λ = λk0
is dominant.We now illustrate this proposition by the following example. Consider G = SL3 with simpleroots α1 and α2. Let µ = 7ω1 + 2ω2 and ν = ω1 + 3ω2. Then the following pi
ture represents theset of dominant weights λ su
h that VG(λ) is a submodule of VG(µ) ⊗ VG(ν). In this example,

µ + ν is an element of the root latti
e so that all weights of VG(µ)⊗VG(ν) are in the root latti
e.Then, in order to make the pi
ture ni
er, we only draw the root latti
e instead of the weightlatti
e.

Weight given by Theorem 2Weight given by the original PRVλ su
h that VG(λ) ⊂ VG(µ) ⊗ VG(ν)

ω2

Segment [λ0, λkmax
] as in Proposition 2

ω1

µ + ν

Referen
esAnd85 H. H. Andersen, S
hubert varieties and Demazure's 
hara
ter formula, Invent. Math. 79 (1985),no. 3, 611�618. MR 782239 (86h:14042)BK07 Prakash Belkale and Shrawan Kumar, Eigen
one, saturation and horn problems for symple
ti
and odd orthogonal groups, 2007.Bri01 M. Brion, On orbit 
losures of spheri
al subgroups in �ag varieties, Comment. Math. Helv. 76(2001), no. 2, 263�299. 15



Two generalizations of the PRV 
onje
tureBri03 Mi
hel Brion, Multipli
ity-free subvarieties of �ag varieties, Commutative algebra (Greno-ble/Lyon, 2001), Contemp. Math., vol. 331, Amer. Math. So
., Providen
e, RI, 2003, pp. 13�23.Dem74 Mi
hel Demazure, Désingularisation des variétés de S
hubert généralisées, Ann. S
i. É
ole Norm.Sup. (4) 7 (1974), 53�88, Colle
tion of arti
les dedi
ated to Henri Cartan on the o

asion of his70th birthday, I.FH91 William Fulton and Joe Harris, Representation theory, Graduate Texts in Mathemati
s, vol. 129,Springer-Verlag, New York, 1991, A �rst 
ourse, Readings in Mathemati
s.Jos85 A. Joseph, On the Demazure 
hara
ter formula, Ann. S
i. É
ole Norm. Sup. (4) 18 (1985), no. 3,389�419. MR 826100 (87g:17006a)KLM08 Mi
hael Kapovi
h, Bernhard Leeb, and John J. Millson, The generalized triangle inequalities insymmetri
 spa
es and buildings with appli
ations to algebra, Mem. Amer. Math. So
. 192 (2008),no. 896, viii+83.KT99 Allen Knutson and Teren
e Tao, The honey
omb model of GLn(C) tensor produ
ts. I. Proof ofthe saturation 
onje
ture, J. Amer. Math. So
. 12 (1999), no. 4, 1055�1090.Kum88 Shrawan Kumar, Proof of the Parthasarathy-Ranga Rao-Varadarajan 
onje
ture, Invent. Math.93 (1988), no. 1, 117�130.Kum92 , Proof of Wahl's 
onje
ture on surje
tivity of the Gaussian map for �ag varieties, Amer.J. Math. 114 (1992), no. 6, 1201�1220. MR 1198300 (94b:14049)Kum10 , Tensor produ
t de
omposition, Pro
eedings of the International Congress of Mathemati-
ians (Hyderabad, India), 2010.Lun75 D. Luna, Adhéren
es d'orbite et invariants, Invent. Math. 29 (1975), no. 3, 231�238.Mat89 Olivier Mathieu, Constru
tion d'un groupe de Ka
-Moody et appli
ations, Compositio Math. 69(1989), no. 1, 37�60. MR MR986812 (90f:17012)MFK94 D. Mumford, J. Fogarty, and F. Kirwan, Geometri
 invariant theory, 3d ed., Springer Verlag,New York, 1994.Res10a Ni
olas Ressayre, Geometri
 invariant theory and generalized eigenvalue problem, Invent. Math.180 (2010), 389�441.Res10b , Spheri
al homogeneous spa
es of minimal rank., Adv. in Math. (to appear) (2010), 1�16.Ros61 Maxwell Rosenli
ht, On quotient varieties and the a�ne embedding of 
ertain homogeneousspa
es, Trans. Amer. Math. So
. 101 (1961), 211�223.RR85 S. Ramanan and A. Ramanathan, Proje
tive normality of �ag varieties and S
hubert varieties,Invent. Math. 79 (1985), no. 2, 217�224. MR 778124 (86j:14051)Ses87 C. S. Seshadri, Line bundles on S
hubert varieties, Ve
tor bundles on algebrai
 varieties (Bombay,1984), Tata Inst. Fund. Res. Stud. Math., vol. 11, Tata Inst. Fund. Res., Bombay, 1987, pp. 499�528. MR 893610 (88i:14047)Sun90 Sheila Sundaram, Tableaux in the representation theory of the 
lassi
al Lie groups, Invarianttheory and tableaux (Minneapolis, MN, 1988), IMA Vol. Math. Appl., vol. 19, Springer, NewYork, 1990, pp. 191�225.PL. Montagard pierre-louis.montagard�math.univ-montp2.frUniversité Montpellier II - CC 51-Pla
e Eugène Bataillon - 34095 Montpellier Cedex 5 - Fran
eB. Pasquier boris.pasquier�math.univ-montp2.frUniversité Montpellier II - CC 51-Pla
e Eugène Bataillon - 34095 Montpellier Cedex 5 - Fran
eN. Ressayre ni
olas.ressayre�math.univ-montp2.frUniversité Montpellier II - CC 51-Pla
e Eugène Bataillon - 34095 Montpellier Cedex 5 - Fran
e16


