
Two generalizations of the PRV onjeturePL. Montagard, B. Pasquier and N. RessayreAbstratLet G be a omplex onneted redutive group. The PRV onjeture, whih was provedindependently by S. Kumar and O. Mathieu in 1989, gives expliit irreduible submod-ules of the tensor produt of two irreduible G-modules. This paper has three aims. First,we simplify the proof of the PRV onjeture, then we generalize it to other branhingproblems. Finally, we �nd other irreduible omponents of the tensor produt of twoirreduible G-modules that appear for �the same reason� as the PRV ones.1. Introdution1.1 The original PRV onjetureParthasarathy-Ranga Rao-Varadarajan onjetured in the sixties the followingThe PRV onjeture. Let G be a omplex onneted redutive group with assoiated Weyl group
W . Let VG(µ) and VG(ν) be two irreduible G-modules with highest weights µ and ν respetively.Then, for any w ∈ W , the irreduible G-module VG(µ + wν) with extremal weight µ+wν, ourswith multipliity at least one in VG(µ) ⊗ VG(ν).This onjeture was proved independently by S. Kumar in [Kum88℄ and O. Mathieu in [Mat89℄.The aim of this paper is to simplify the proof of the PRV onjeture and to generalize it in twodiretions.1.2 Two generalizationsWe now assume that G is a subgroup of a bigger onneted redutive group Ĝ. Fix a Borelsubgroup B̂ and a maximal torus T̂ ⊂ B̂ of Ĝ suh that B = B̂ ∩ G is a Borel subgroup of Gand T = T̂ ∩ G is a maximal torus of G. Consider the restrition map ρ : X(T̂ ) −→ X(T ) fromthe harater group of T̂ to the one of T . Let λ̂ be a dominant weight of T̂ and VĜ(λ̂) be theirreduible Ĝ-module of highest weight λ̂. Let ŵ ∈ Ŵ . The �rst aim of this paper is the followingQuestion. Does the irreduible G-module VG(ρ(ŵλ̂)) with extremal weight ρ(ŵλ̂) our withmultipliity at least one in VĜ(λ̂)?Although the answer may be NO (examples are given in Setion 2.4.3 or in Setion 3.1), thePRV onjeture exatly asserts that the answer is YES if G is diagonally embedded in Ĝ = G×G.2000 Mathematis Subjet Classi�ation 22E46, 17B10,14L24Keywords: Tensor produt deomposition, Branhing rules, PRV onjetureN.R. was partially supported by the Frenh National Researh Ageny (ANR-09-JCJC-0102-01).



PL. Montagard, B. Pasquier and N. RessayreLet Ĝ/B̂ denote the omplete �ag variety of Ĝ, X◦
ŵ denote the G-orbit GŵB̂/B̂ and Xŵdenote its losure in Ĝ/B̂. If X◦

ŵ is losed in Ĝ/B̂, we easily hek that the answer is YES. Wealso answer positively the question under a topologial assumption on Xŵ.Theorem 1. We assume Xŵ is multipliity free.Then, VG(ρ(ŵλ̂)) is a G-submodule of VĜ(λ̂).Here, Xŵ is said to be multipliity free if its yle lass in the ohomology of Ĝ/B̂ is a linearombination with oe�ients 0 or 1 of Shubert lasses. This assumption, whih an be hard tohek, is ful�lled for example if G is a spherial subgroup of Ĝ of minimal rank (see [Res10b℄ forthe omplete list of suh subgroup). In partiular, G is a spherial subgroup of G×G of minimalrank and Theorem 1 implies the original PRV onjeture.Our seond generalization of the PRV onjeture deals with the deomposition of tensorproduts: we exhibit new omponents.Theorem 2. Let λ, µ, ν be three dominant weights of T . We assume that there exist v, w ∈ W ,a simple root α and an integer k suh that(i) l(sαv) = l(v) + 1, l(sαw) = l(w) + 1;(ii) λ = vµ + wν − kα;(iii) 0 6 k 6 〈vµ, α∨〉, and 0 6 k 6 〈wν,α∨〉.Then, VG(λ) is a submodule of VG(µ) ⊗ VG(ν).Here, α∨ denotes the oroot assoiated to α, and 〈·, ·〉 denotes the pairing between weightsand oroots. We obtain the original PRV onjeture by applying Theorem 2 with extremal valuesof k in (iii).1.3 About proofsThe two key ingredients in our proofs are the normality of Xŵ, and the fat that for any Ĝ-linearized and globally generated line bundle L on Ĝ/B̂, the restrition map H0(Ĝ/B̂,L) −→
H0(Xŵ,L) is surjetive (see Theorem 6 below). An analogue version of these two results wasalready stated by M. Demazure in the ase of any Shubert varieties in �ag varieties [Dem74℄, butthere were gaps in the proofs. Corret proofs were obtained ombining several works of Andersen,Joseph, Ramanan-Ramanathan and Seshadri (see [And85, Jos85, RR85, Ses87℄). The version weused for Ĝ = G × G was proved by S. Kumar in [Kum88℄. We also use the generalization due toM. Brion for any G, Ĝ and multipliity free Xŵ (see [Bri03℄). These two ingredients also play aentral role in Kumar's proof. But, Kumar's proof also uses a omplete desription of H0(Xŵ,L)mainly due to Bott and the Joseph �ltration. We make these two latter ingredients super�uousby using an argument of semistability.1.4 Link with a saturation problemIn the general situation G ⊂ Ĝ, we onsider the set LR(G, Ĝ) of pairs (λ, λ̂) of dominant weights of
T and T̂ suh that VG(λ) ours in VĜ(λ̂). By a Brion-Knop's theorem, LR(G, Ĝ) is a �nitely gen-erated semigroup. From a theoreti viewpoint, the onvex one LR(G, Ĝ) generated by LR(G, Ĝ)is well understood: the omplete and minimal list of inequalities is parametrized by expliit o-homologial onditions (see [Res10a℄). There are so many inequalities that it is not obvious to2



Two generalizations of the PRV onjetureonretely desribe this one and espeially to onstrut points in this one. A starting point inthe proof of Theorem 1 is the following well-knownProposition 1. Let λ̂ be a dominant harater of T̂ and ŵ ∈ Ŵ .Then, there exists a positive integer n suh that VG(nρ(ŵλ̂)) is a G-submodule of VĜ(nλ̂).In other words, (ρ(ŵλ̂), λ̂) belongs to LR(G, Ĝ).With the additional assumption that Xŵ is multipliity free, Theorem 1 asserts that (ρ(ŵλ̂), λ̂)belongs to LR(G, Ĝ). The question of understanding the di�erene between LR(G, Ĝ) and LR(G, Ĝ)is known as a saturation problem. Let Λ be the subgroup of X(T )×X(T̂ ) generated by LR(G, Ĝ).The semigroup LR(G, Ĝ) is said to be saturated along a half-line if the �rst non-zero point of
Λ on this half-line belongs to LR(G, Ĝ) (and LR(G, Ĝ) is said to be saturated if it is along anyhalf-line in LR(G, Ĝ)). Theorem 1 shows that if Xŵ is multipliity free, LR(G, Ĝ) is saturatedalong all the half-lines given by Proposition 1.Knutson-Tao proved in [KT99℄ that LR(SLn,SLn × SLn) is saturated. Belkale-Kumar provedin [BK07℄ that LR(Sp2n,Sp2n×Sp2n) and LR(Spin2n+1,Spin2n+1×Spin2n+1) are saturated up toa fator 2: the seond point of Λ on any half-line belongs to LR. Kapovih-Leeb-Millson obtainedimportant results on the saturation question for semigroups LR(G,G × G) (see [KLM08℄).We an now explain Theorem 2 in this ontext. Fix two dominant weights µ and ν of T .The intersetion of LR(G,G × G) with X(T ) ⊗ Q × {µ} × {ν} is a polytope P (µ, ν) (namely,a moment polytope). The original PRV onjeture gives �nitely many points in P (µ, ν) thatgenerate saturated half-lines. Theorem 2 gives �nitely many segments in P (µ, ν) all whose rationalpoints generate saturated half-lines (see Setion 4.3.2 for examples).1.5 Link with Wahl's onjetureSolving a Wahl's onjeture, S. Kumar proved in [Kum92℄ the surjetivity of the Gaussian mapfor �ag varieties. The onsequene in terms of tensor produt deomposition is the followingTheorem 3. (see [Kum10℄) Let µ and ν be two dominant weights of T and α be a positive root.We set λ = µ + ν − α and assume that(i) λ is dominant;(ii) for all simple root β suh that 〈µ, β∨〉 = 0 or 〈ν, β∨〉 = 0, α − β is neither a root nor 0.Then, VG(λ) is a submodule of VG(µ) ⊗ VG(ν).The ase when α is simple in Theorem 3 an also be obtained applying Theorem 2 with
v = w = e and k = 1. Condition (ii) in Theorem 3 asserts that ondition (iii) in Theorem 2is satis�ed. Nevertheless, the onlusion of Theorem 2 does not hold if α is only assumed tobe positive (see Setion 4.3.1). Our Theorem 2 is not a strit generalisation of Theorem 3; forexample, take G = Sp4, µ = ν = ω1 +ω2 and α = α1 +α2 (with notation of Setion 4.3.1 below).Note that our proof does not work in this example beause the onlusion of Lemma 6 is notsatis�ed (the orresponding spae has dimension three instead of one).Aknowledgment. The authors would like to thank S. Kumar to have paid a partiular attentionto this paper and also for his judiious remarks.3



PL. Montagard, B. Pasquier and N. Ressayre2. Restrition to a subgroup2.1 SettingLet G be a omplex onneted redutive group, with a �xed Borel subgroup B and maximal torus
T ⊂ B. Let X(T ) denote the harater group of T . For any dominant weight λ ∈ X(T ), let VG(λ)denote the irreduible G-module with highest weight λ. Let W be the Weyl group of (G,T ). Forany harater λ, the orbit W.λ intersets the dominant hamber in one point denoted by λ̄. Wewill denote by w0 the longest element of the Weyl group W .We now assume that G is a subgroup of a onneted redutive group Ĝ. Let T̂ and B̂ be amaximal torus and a Borel subgroup of Ĝ suh that T ⊂ T̂ ⊂ B̂ ⊃ B. We will use hats to denoteobjets relative to Ĝ instead of G; for example we will write Ŵ , ŵ0, . . . For a given dominantharater λ̂ of T̂ , we are interested in the followingProblem. Find irreduible G-submodules of VĜ(λ̂)?2.2 G-orbits in the omplete �ag manifold of ĜFor any ŵ ∈ Ŵ , we set X◦

ŵ = GŵB̂/B̂ and Xŵ its losure. We also denote by σŵ the yle lassof the Shubert variety B̂ŵB̂/B̂ in Ĝ/B̂. It is well known that
H∗(Ĝ/B̂, Z) =

⊕

ŵ∈Ŵ

Z.σŵ. (1)Let V be an irreduible subvariety of Ĝ/B̂. The yle lass [V ] of V in H∗(Ĝ/B̂, Z) an beexpanded as follows
[V ] =

∑

ŵ∈Ŵ

cŵ(V )σŵ, (2)where the cŵ(V ) are non-negative integers. The variety V is said to be multipliity free if for any
ŵ ∈ Ŵ , cŵ(V ) = 0 or 1.2.3 The statementConsider the restrition map ρ : X(T̂ ) −→ X(T ). We now state a slightly more general versionof Theorem 1.Theorem 4. With above notation, let λ̂ be a dominant harater of T̂ and ŵ ∈ Ŵ . We assumethat one of the following assumption holds:(i) X◦

ŵ is losed;(ii) G is spherial of minimal rank in Ĝ;(iii) Xŵ is multipliity free;(iv) Xŵŵ0
is multipliity free.Then, VG(ρ(ŵλ̂)) is a G-submodule of VĜ(λ̂).The �rst ase is easy and ertainly well known.Proof in ase (i). Sine X◦

ŵ is omplete, the isotropy group of ŵB̂/B̂ in G is a paraboli subgroup4



Two generalizations of the PRV onjetureof G. But, it is ontained in ŵB̂ŵ−1, so it is solvable. It follows that B′ := ŵB̂ŵ−1 ∩G is a Borelsubgroup of G ontaining T . Then there exists w ∈ W suh that w−1Bw = B′.Let v be a non-zero vetor of VĜ(λ̂) of highest weight λ̂. It is lear that ŵv is an eigenvetorof weight ρ(ŵλ̂) for B′ (here, we identify X(T ) and X(B′) by the restrition morphism). Itfollows that wŵv is an eigenvetor of weight wρ(ŵλ̂) for B, so that wρ(ŵλ̂) is dominant and
wρ(ŵλ̂) = ρ(ŵλ̂). The theorem follows.We now prove ase (iv) assuming that ase (iii) is known.Proof in ase (iv). We apply the theorem in ase (iii) to the dominant weight −ŵ0λ̂ and theelement ŵŵ0 of Ŵ . We obtain that VG(ρ(−ŵλ̂)) is ontained in VĜ(−ŵ0λ̂) = VĜ(λ̂)∗. Sine
−ρ(ŵλ̂) is an extremal weight of VG(ρ(ŵλ̂))∗, we dedue that VG(ρ(ŵλ̂))∗ is a G-submodule of
VĜ(λ̂)∗. The theorem follows by duality.2.4 The spherial aseIn this subsetion, we look at a situation where we an hek when assumption (iii) is ful�lled.This will allow us to disuss the various assumptions on examples and to inlude ase (ii) inase (iii).2.4.1� Assume that G is a spherial subgroup of Ĝ; i.e. G ats on Ĝ/B̂ with �nitely manyorbits. In [Bri01℄, M. Brion de�ned an oriented graph Γ(Ĝ/G) whose verties are the G-orbitlosures in Ĝ/B̂. The edges, whih an be simple or double, are labeled by the simple roots of Ĝ.The assumption �Xŵ is multipliity free� an be easily read o� this graph: Xŵ is multipliity freeif and only if for any path from Xŵ to Ĝ/B̂ there is no double edge. In partiular, by [Res10b,Proposition 2.1℄, if G is spherial of minimal rank, any G-orbit losure in Ĝ/B̂ is multipliityfree. In partiular, ase (ii) of Theorem 4 is a onsequene of ase (iii).We now study two examples where G is spherial, whih illustrate Theorem 4.2.4.2� Let Ĝ = Sp4 and G = Gl2 be the Levi subgroup of a maximal paraboli subgroupof Sp4 that stabilizes an isotropi plane in C4. Then G is a spherial subgroup of Ĝ and theoriented graph Γ(Ĝ/G) (with arrows pointed down) is the following (α̂ and β̂ denote respetivelythe short and the long simple roots of Sp4).
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β̂In this example, the varieties Xŵ orrespond to the four verties at the bottom of the graph
Γ(Ĝ/G) and they are in fat the four losed G-orbits in Ĝ/G. So Theorem 4 an be applied herefor all ŵ ∈ Ŵ . This gives an example where we need to use hypothesis (i) of Theorem 4 to applyit, beause two of the losed G-orbits above are not multipliity free.5



PL. Montagard, B. Pasquier and N. Ressayre2.4.3� Let Ĝ = SL3 and G = SO3 naturally embedded in SL3. Let α, α̂ and β̂ denotethe simple roots of SO3 and SL3. Also denote by ωα, ωα̂ and ωβ̂ the orresponding fundamentalweights. Then G is a spherial subgroup of Ĝ and the oriented graph Γ(Ĝ/G) is the followingdiagram.
◦

◦==
==

α̂=
==

=

◦

====
β̂====

◦

α̂β̂We an read on the graph that there exist exatly two not-losed G-orbits in Ĝ/B̂ withmultipliity, namely X◦
sα̂

and X◦
s
β̂
. An easy omputation gives us that ρ(sα̂ωα̂) = ρ(sβ̂ωβ̂) = 0.But we an also hek that VG(0) is neither in VĜ(ωα̂) nor in VĜ(ωβ̂), so that the onlusion ofTheorem 4 is not satis�ed in these two ases.We have just seen that (0, ωα̂) is not in the semi-group LR(G, Ĝ) de�ned in the introdution.But we an remark that (0, 2ωα̂) ∈ LR(G, Ĝ), while (0, ωα̂) is in the subgroup of X(T )×X(T̂ ) gen-erated by LR(G, Ĝ) (beause we an ompute that (2ωα, ωβ̂) and (2ωα, ωα̂+ωβ̂) are in LR(G, Ĝ)).Then LR(G, Ĝ) is not saturated along the half-line generated by (0, 2ωα̂).The rest of Setion 2 is devoted to the proof of Theorem 4.2.5 A result of Geometri Invariant TheoryLet X be an irreduible projetive G-variety. As in [MFK94℄, we denote by PicG(X) the groupof G-linearized line bundles on X. Let L ∈ PicG(X) and let H0(X,L) denote the G-module ofregular setions of L. A point x ∈ X is said to be semistable with respet to L if there exists n > 0and τ ∈ H0(X,L⊗n)G suh that τ(x) 6= 0.Remark. Note that this de�nition of semistable points is not standard. Indeed, it is usuallyagreed that the open subset de�ned by the non-vanishing of τ is a�ne. This property, whih isuseful to onstrut a good quotient, is automati only if L is ample; hene, our de�nition oinideswith the usual one if L is ample.A line bundle L on X is said to be semiample if a positive power of L is base point free. If Lis a line bundle on X and x is a point in X, Lx denotes the �ber in L over x. We will need thefollowing lemma mainly due to Kostant.Lemma 1. Let L ∈ PicG(X) be semiample and x ∈ X be a T -�xed point. We assume that T atstrivially on Lx.Then x is semistable with respet to L.Proof. Let n be a positive integer, suh that the natural morphism
ϕ : X −→ P(H0(X,L⊗n)∗)is well de�ned. Set V = H0(X,L⊗n)∗. Let v ∈ V be a non-zero vetor on the line ϕ(x). Theassumption implies that v is �xed by T . 6



Two generalizations of the PRV onjetureLet U be the unipotent radial of B. Then, as an orbit of an unipotent group in an a�nevariety, U.v is losed in V (see [Ros61, Theorem 2℄); and, B.v = U.v. Sine G/B is omplete, itfollows that G.v is losed in V . We dedue that there exists a G-invariant homogeneous polynomial
P of degree d on V suh that P (ϕ(x)) 6= 0. It follows that there exists a G-invariant setion τ of
L⊗nd suh that τ(x) 6= 0.2.6 The Borel-Weil theoremLet P be a paraboli subgroup of G. Let ν be a harater of P . Let Cν denote the �eld C endowedwith the ation of P de�ned by p.τ = ν(p)τ for all τ ∈ Cν and p ∈ P . We de�ne the line bundle
G ×P C−ν on G/P as the quotient of G × C−ν by the following equivalent relation

∀g ∈ G, ∀τ ∈ Cν and ∀p ∈ P, (g, τ) ∼ (gp, p−1.τ).It is a G-linearized line bundle on G/P , denoted by Lν. In fat, the map
X(P ) −→ PicG(G/P)

ν 7−→ Lνis an isomorphism.We assume that P ontains B (in that ase, P is said to be standard). Then, X(P ) identi�eswith a subgroup of X(T ). For ν ∈ X(P ), Lν is semiample if and only if it has non-zero setionsif and only if ν is dominant. Moreover, H0(G/P,Lν) maps onto H0(P/P,Lν) ≃ C−ν and is theirreduible G-module of extremal weight −ν, that is VG(ν)∗. For ν dominant, Lν is ample if andonly if ν annot be extended to a subgroup of G bigger than P .2.7 The Brion theoremWe will need the following theorem, due to Brion, on multipliity free subvarieties of G/B.Theorem 5. [Bri03, Theorem 1℄ Let V be a multipliity free subvariety of G/B and L be anysemiample G-linearized line bundle on G/B, then(i) V is normal;(ii) the restrition map H0(G/B,L) −→ H0(V,L) is surjetive.2.8 Proof of Theorem 42.8.1� We �rst prove an asymptoti version of Theorem 4, that is Proposition 1 of theintrodution.Proof of Proposition 1. Set X = Ĝ/B̂. By the Borel-Weil theorem, we have
H0(X,Lλ̂) = VĜ(λ̂)∗.It remains to prove that, for some n > 0, L⊗n

λ̂
admits a non-zero setion that is an eigenvetorof weight −nρ(ŵλ̂) for the opposite Borel subgroup B− of G. This is made more preisely inLemma 2 below.Lemma 2. There exists n > 0 suh that L⊗n

λ̂
admits a setion τ whih is an eigenvetor of weight

−nρ(ŵλ̂) for B− suh that the restrition of τ to X◦
ŵ is non-zero.7



PL. Montagard, B. Pasquier and N. RessayreProof. Consider the variety Y = X × G/B− endowed with the diagonal ation of G given by:
g′.(ĝB̂/B̂, gB−/B−) = (g′ĝB̂/B̂, g′gB−/B−). Let L−

−ρ(ŵλ̂)
be the G-linearized line bundle on

G/B− suh that B− ats on the �ber over B− by the harater ρ(ŵλ̂). We also onsider the linebundle M := Lλ̂ ⊠L−

−ρ(ŵλ̂)
on Y . Note that M is semi-ample beause λ̂ is dominant and −ρ(ŵλ̂)is dominant with respet to B−.By de�nition of ρ(ŵλ̂), there exists v ∈ W suh that ρ(ŵλ̂) = vρ(ŵλ̂). Then, it is lear that Tats trivially on the �ber in M over the point y := (vŵB̂/B̂,B−/B−). Now, applying Lemma 1,we obtain, for some n > 0, a setion τY ∈ H0(Y,M⊗n)G suh that τY (y) 6= 0.De�ne τ as the restrition of τY to X × B−/B− seen as a setion of Lλ̂ on X. Sine τY is

G-invariant, τ is B−-equivariant of weight −nρ(ŵλ̂). It is lear that τ(vŵB̂/B̂) 6= 0, so that therestrition of τ to X◦
ŵ is non-zero. The lemma is proved.2.8.2� We have already seen that it is su�ient to prove Theorem 4 under assumption (iii).By Theorem 5, it is su�ient to prove the followingTheorem 6. Let λ̂ be a dominant harater of T̂ and ŵ ∈ Ŵ . We assume that(i) Xŵ is normal;(ii) the restrition map H0(Ĝ/B̂,Lλ̂) −→ H0(Xŵ,Lλ̂) is surjetive.Then, VG(ρ(ŵλ̂)) is a G-submodule of VĜ(λ̂).Proof. Consider the following restrition maps:

H0(Ĝ/B̂,Lλ̂) H0(Xŵ,Lλ̂) H0(X◦
ŵ,Lλ̂).Sine the �rst one is surjetive and G-equivariant, it is su�ient to �nd VG(ρ(ŵλ̂))∗ in H0(Xŵ,Lλ̂).We will �rst prove that VG(ρ(ŵλ̂))∗ is a submodule of H0(X◦

ŵ,Lλ̂) without multipliity. Next, wewill prove that the orresponding B−-equivariant setion on X◦
ŵ extends to Xŵ using both theasymptoti version and the normality of Xŵ.By Lemma 3 below, there exists a (unique up to salar multipliation) non-zero regular setion

σ of Lλ̂ on X◦
ŵ whih is B−-equivariant of weight −ρ(ŵλ̂).Let n > 0 and τ be as in Lemma 2. Then, τ|X◦

ŵ
and σ⊗n are two non-zero regular setionsof Lnλ̂ on X◦

ŵ whih are B−-equivariant of weight −nρ(ŵλ̂). By Lemma 3, it follows that τ|X◦

ŵand σ⊗n are proportional. In partiular, σ⊗n extends to a regular setion of Lnλ̂ on Xŵ. Sine
Xŵ is normal, it follows that σ also extends to a regular setion of Lλ̂ on Xŵ. The theorem isproved.Notation. If H is an algebrai a�ne group, χ is a harater of H and V is a H-module, we set:

V (H)χ = {v ∈ V | ∀h ∈ H, h.v = χ(h)v}.Lemma 3. The G-module VG(ρ(ŵλ̂))∗ has multipliity exatly one in H0(X◦
ŵ,Lλ̂).Proof. Let Gŵ ⊂ G be the isotropy group of ŵB̂/B̂ so that X◦

ŵ is isomorphi to the homogeneousspae G/Gŵ. Let us de�ne µ = ρ(ŵλ̂). Sine Gŵ ats on the �ber (Lλ̂)ŵB̂/B̂ by the harater −µ,the line bundle L on X◦
ŵ is isomorphi to G ×Gŵ

C−µ.8



Two generalizations of the PRV onjetureThen by using the Frobenius deomposition, the spae of global setions H0(G/Gŵ , G ×Gŵ

C−µ) an be identify with:
⊕

χ

V ∗
G(χ) ⊗ (VG(χ))(Gŵ)µ ,where the sum is over the set of dominant weights of G. So, we have to prove that the vetorspae VG(µ)(Gŵ)µ is one-dimensional. First, sine Gŵ = G ∩ ŵB̂ŵ−1 ontains T , the dimensionof VG(µ)(Gŵ)µ is smaller than one.The dimension is exatly one if Gŵ is ontained in the paraboli group PG(µ) assoiated to theweight µ. By Lemma 2, there exist an integer n and a setion τ ∈ H0(Xŵ,Lnλ̂)(B

−)−nµ suh thatthe restrition of τ to X◦
ŵ is non-zero. So the dimension of H0(X◦

ŵ,Lnλ̂)(B
−)−nµ is bigger than one.By using the Frobenius deomposition as above, we dedue that the dimension of VG(nµ)(Gŵ)nµ isbigger than (and so equal to) one, and that the paraboli group PG(nµ) assoiated to the weight

nµ ontains the group Gŵ. We onlude by saying that PG(nµ) = PG(µ).3. Appliations3.1 Appliations to the Kroneker produtThe aim of this setion is to detail our results for Gl(E) × Gl(F ) ⊂ Gl(E ⊗ F ). This problemis equivalent to the question on the deomposition of tensor produts of representations for thesymmetri group.A partition π is a sequene π = (π1, π2, . . . , πk) of weakly dereasing non-negative integers.By onvention, we allow partitions with some zero parts, and two partitions that di�er by zeroparts are the same. If several parts are equal we denote the multipliity of this part by anexponent. For example (32, 24, 1) means the partition (3, 3, 2, 2, 2, 2, 1). For any partition π, wede�ne |π| = π1 + π2 + · · · + πk and l(π) as the number of non-zero parts of π.Reall that if V is a �nite dimensional vetor spae, then the Gl(V )-irreduible polynomialrepresentations are in bijetion with the partitions π suh that l(π) 6 dimV : we denote by SπVthe representation assoiated to π.Let E,F be two vetor spaes of respetive dimension m,n, and onsider G = Gl(E)×Gl(F )and Ĝ = Gl(E⊗F ). Let γ be a partition suh that l(γ) 6 mn. We an deompose the irreduiblerepresentation Sγ(E ⊗ F ) as a G-representation:
Sγ(E ⊗ F ) =

∑

α,β

Nαβγ SαE ⊗ SβF ,where the sum is taken over partitions α, β suh that |α| = |β| = |γ|, l(α) 6 m and l(β) 6 n.Remark. The irreduible representations of the symmetri group Sn orrespond bijetively withthe partitions π suh that |π| = n; we denote by [π] the representation orresponding to π. Byusing the Shur-Weyl duality, we an show that Nαβγ is also the multipliity of [γ] in [α] ⊗ [β](see for example [FH91, Chapter 6℄). Now, the fat that the representations of Sn are self-dualimplies that Nαβγ is symmetri in α, β and γ.By �xing basis, we denote by TE and TF the maximal tori of Gl(E) and Gl(F ) onsisting ofdiagonal matries. For i = 1, . . . ,m, denote by ηi the harater that maps an element of TE to9



PL. Montagard, B. Pasquier and N. Ressayreits ith diagonal oe�ient. Similarly, we de�ne the haraters δj 's of TF . The basis of E and Findue a natural basis of E ⊗F indexed by pairs (i, j). Let T̂ denote the orresponding maximaltorus of Ĝ and ε̂i,j the harater of T̂ orresponding to (i, j). Note that ρ(ε̂i,j) = (ηi, δj).The oordinates of haraters of T̂ in the basis ε̂i,j , whih are indexed by pairs (i, j), will berepresented in tableaux of m rows and n olumns. For any tableau t (identi�ed with the orre-sponding harater of T̂ ), ρ(t) is obtained by summing along olumns, to obtain the oordinatesof a harater of TE , and along rows, to obtain the oordinates of a harater of TF .In Theorem 4, the weights of the form ŵλ̂ are exatly the extremal weights of VG(λ̂). Inpartiular, they do not depend on the hoie of a Borel subgroup of Ĝ but only on T̂ and therepresentation VĜ(λ̂). Here, we have �xed the torus and the representation: the extremal weightsof T̂ in Sγ(E ⊗ F ) are the tableaux m × n �lled by the parts of γ.For example, suppose that m = n = 3 and the two following tableaux orrespond to extremalweights of S14(E ⊗ F ):
1 21

1 1

1

2

1

1

1

1

1 11 3

1

2 1

1

0where the boxes orresponding to zero oordinates are left empty.In the �rst tableau, ρ(t) = ρ(t) = ((3, 1, 0), (2, 1, 1)). We an easily hek that the irreduiblerepresentation [14] (whih is the one dimensional representation given by the signature of S4)appears in the tensor produt [3, 1] ⊗ [2, 12].In the seond tableau, ρ(t) = ((2, 1, 1), (1, 1, 2)) and ρ(t) = ((2, 1, 1), (2, 1, 1)). We an hekthat [24] appears in [4, 22] ⊗ [4, 22] whih mathes with our asymptoti result (Proposition 1).But, the irreduible representation [14] does not appear in the tensor produt [2, 12] ⊗ [2, 12].Then, Theorem 4 shows that some Gl(E)×Gl(F )-orbit losures of the form Xŵ of the omplete�ag variety of E × F are not multipliity free. A natural but probably di�ult question appearshere: whih orbit losures Xŵ (for ŵ ∈ Ŵ ) are multipliity free?We an prove that the ŵ's in Ŵ suh that the orbit X◦
ŵ is losed, orrespond bijetively tostandard tableaux m × n. Now ase (i) of Theorem 4 gives the following rule to ompute someomponents of the tensor produt of two representations of the symmetri group. We don't knowif this rule is already known.Rule. 1. Fill the tableau m × n by the parts of γ in weakly dereasing order along rows andolumns.2. Sum along rows and olumns to obtain α and β.Then, [γ] appears in [α] ⊗ [β].For example, the tableaux: 10



Two generalizations of the PRV onjeture
2

1

1

2

2

2 1 1

11

13

4 4 3 3

2

10

3

7 34

1

4 3

23

3 2

1

1

9

10 7 4

6

6show that the representations [2, 14], [4, 32, 2, 12], [4, 33, 23, 12] appear in the respetive tensorproduts: [4, 2] ⊗ [3, 2, 1], [7, 4, 3] ⊗ [10, 3, 1], [9, 6, 6] ⊗ [10, 7, 4].3.2 Appliation to a branhing ruleHere we apply Theorem 4 to the subgroup G = Sp(2n) of Ĝ = Gl(2n). This subgroup is spherialof minimal rank, so that Theorem 4 applies for any λ̂ and ŵ.We de�ne G as the subgroup of Gl(2n) whih preserves the alternate form given by the matrix:
I =













J 0 . . . 0

0 J
. . . ...... . . . . . . 0

0 . . . 0 J











where J =

(

0 1
−1 0

). Then we hoose for T̂ the group of invertible diagonal matries, and forany i ∈ {1, . . . , 2n}, we denote by ε̂i the usual harater of T̂ . Set λ̂ = λ̂1ε̂1 + · · · + λ̂2nε̂2n. TheWeyl group Ŵ is the symmetri group S2n and ŵ−1λ̂ = λ̂ŵ(1)ε̂1 + · · · + λ̂ŵ(2n)ε̂2n, for ŵ ∈ S2n.Set T = G∩T̂ and de�ne, for any i ∈ {1, . . . , n}, the restrition εi = ρ(ε̂2i−1). Then (ε1, . . . , εn)is a basis of haraters of T and we have:
ρ(ŵ−1λ̂) = (λ̂ŵ(1) − λ̂ŵ(2), λ̂ŵ(3) − λ̂ŵ(4), . . . , λ̂ŵ(2n−1) − λ̂ŵ(2n)).The Weyl group W ats on the haraters of T by permuting oordinates and by multiplyingsome oordinates by −1. So ρ(ŵ−1λ̂) is obtained by arranging in a weak dereasing order theabsolute values |λ̂ŵ(2i−1) − λ̂ŵ(2i)|, for i ∈ {1, . . . , n}. We summarize this in the followingRule. 1. Consider a permutation (λ̂ŵ(1), . . . , λ̂ŵ(2n)) of the oordinates of a dominant weight λ̂ of

Gl(2n).2. Order the n absolute values |λ̂ŵ(2i−1) − λ̂ŵ(2i)| to obtain a dominant weight µ of G.Then the multipliity of VG(µ) in V̂Ĝ(λ̂) is non-zero.We believe that this rule annot be easily dedued from the ombinatorial rules as thoseexpliated in [Sun90℄. 4. Tensor produt deompositionThe aim of this setion is to prove Theorem 2 stated in the introdution. We also give, at theend, two examples.Remark. 11



PL. Montagard, B. Pasquier and N. Ressayre(i) Condition (i) of Theorem 2 implies that 〈vµ, α∨〉 > 0 and 〈wν,α∨〉 > 0.(ii) Theorem 2 asserts that the half-line generated by (λ, µ, ν) is saturated in the Littlewood-Rihardson semigroup.Indeed, assume that λ = vµ+wν+kα with a rational number k satis�es (−w0λ+µ+ν)|Z(G) =
0. We obtain that −w0λ + µ + ν = (λ − w0λ) + (µ − vµ) + (ν − wν) + kα. But, λ − w0λ,
µ − vµ and ν − wν belong to the root lattie. It follows that kα has to belong to the rootlattie and so k is an integer.The strategy of the proof of Theorem 2 is similar to that of Theorem 6. So, we �rst proveadaptations of Proposition 1 and of Lemma 3.4.1 Asymptoti versionTo prove Proposition 1, we used Lemma 1 mainly due to B. Kostant; here, in order to proveLemma 5 below, we will need to use the following strong result of semi-stability mainly due toD. Luna.Lemma 4. Consider the variety Y = (G/B)3. Let λ, µ and ν be three dominant weights of T .Let β be a root of (G,T ). Denote by S the neutral omponent of the Kernel of β in T . Let

(u, v,w) ∈ W 3 and C be the irreduible omponent of Y S ontaining (uB/B, vB/B, wB/B).We assume that uΦ+ ∩ vΦ+ ∩ wΦ+ ontains β.The following are equivalent:(i) C ontains semistable points with respet to Lλ ⊠ Lµ ⊠ Lν ;(ii) 













(uλ + vµ + wν)|S = 0

〈uλ, β∨〉 + 〈vµ, β∨〉 − 〈wν, β∨〉 > 0,
〈uλ, β∨〉 − 〈vµ, β∨〉 + 〈wν, β∨〉 > 0,
−〈uλ, β∨〉 + 〈vµ, β∨〉 + 〈wν, β∨〉 > 0.Proof. Let L be the entralizer of S in G; it is a Levi subgroup of G of semisimple rank one.The variety C is isomorphi to the produt of three opies of the omplete �ag manifold of L,i.e. (P1)3. Moreover, (Lλ ⊠Lµ ⊠Lν)|C is isomorphi as an abstrat line bundle to O(〈uλ, β∨〉) ⊠

O(〈vµ, β∨〉) ⊠ O(〈wν, β∨〉). Note that 〈uλ, β∨〉, 〈vµ, β∨〉 and 〈wν, β∨〉 are non-negative integers,beause β ∈ uΦ+ ∩ vΦ+ ∩ wΦ+.It is not di�ult to hek that (P1)3 has semistable points for the ation of SL2 or PSL2 withrespet to O(a) ⊠O(b) ⊠O(c) (where a, b and c are non-negative integers) if and only if we have






a + b − c > 0,
a − b + c > 0,
−a + b + c > 0.Now, the �rst equation of (ii) means that S ats trivially on (Lλ ⊠Lµ ⊠Lν)|C ; and so, induesa L/S-linearized line bundle on C. The three inequalities of (ii) are equivalent to the fat that

C ontains semistable points for the ation of L/S (whih is isomorphi to SL2 or PSL2) withrespet to (Lλ ⊠ Lµ ⊠ Lν)|C . Now, it is lear that ondition (i) implies ondition (ii).The onverse impliation is a diret appliation of [Lun75, Corollary 2 and Remark 1℄ (seealso [Res10a, Proposition 8℄ for a formulation that an be diretly applied here).We use notation of Setion 2 with Ĝ = G×G. In partiular, X◦
v,w is the G-orbit of (vB/B,wB/B)in X = (G/B)2. 12



Two generalizations of the PRV onjetureWe now prove the adaptation of Lemma 2.Lemma 5. With assumptions of Theorem 2, there exist n > 0 and a setion τ of (Lµ ⊠Lν)
⊗n ofweight −nλ for B− whose restrition to Xv,sαw is non-zero.Proof. We apply Lemma 4 with the dominant weights −w0λ, µ and ν, the root α and (sαw0, v, w) ∈

W 3. Then, the �rst equation of ondition (ii) of Lemma 4 is learly satis�ed and the three in-equalities of ondition (ii) are respetively equivalent to 





k 6 〈vµ, α∨〉,
k 6 〈wν,α∨〉,
k > 0.We now remark, beause of ondition (i) of Theorem 2, that {w0B/B} × Xv,sαw intersets

C ∩ ({w0B/B} × X) along an open subset, and we onlude the proof of the lemma, using thesame arguments as in Lemma 2.4.2 Proof of Theorem 2In this setion, we suppose that all assumptions of Theorem 2 are ful�lled. We also set w̄ = sαwand we denote by Gu,w̄ the isotropy subgroup of (vB/B, w̄B/B) in G, i.e. Gv,w̄ = vBv−1∩w̄Bw̄−1.We now prove the equivalent of Lemma 3.Lemma 6. The spae C[G](B
−)

−λ×(Gv,w̄)vµ+w̄ν has dimension one.Proof. We �rst prove that
C[G](B

−)
−λ×(T )vµ+w̄νhas dimension one. Let us reall a lassial property of some haraters of the representation

VG(λ): the weights λ − lα with l ∈ {0, · · · , 〈λ, α∨〉} have exatly multipliity one for T . Frobe-nius' theorem implies that C[G](B
−)

−λ×(T )vµ+w̄ν is isomorphi to VG(λ)(T )vµ+w̄ν . Assumption (ii)of Theorem 2 implies that vµ + w̄ν = λ− (〈wν,α∨〉 − k)α. Assumption (iii) of the same theoremimplies that 0 6 〈wν,α∨〉 − k 6 〈λ, α∨〉. We obtain the dimension of C[G](B
−)

−λ×(T )vµ+w̄ν fromthe above-mentioned lassial property.Let s be a non-zero element of C[G](B
−)

−λ×(T )vµ+w̄ν . Sine T is ontained in Gv,w̄, it is su�ientto prove that for any h ∈ Gv,w̄, we have:
hs = (vµ + w̄ν)(h)s.By Lemma 5, there exist n and a non-zero sn ∈ C[G](B

−)
−nλ×(Gv,w̄)nvµ+nw̄ν . Consider the algebra

A = ⊕n>0C[G](B
−)

−nλ . Now, in A, s⊗n is a non-zero element of C[G](B
−)

−nλ×(Gv,w̄)nvµ+nw̄ν . Bythe �rst part of the proof, s⊗n and sn have to be proportional. It follows that for any h in Gv,w̄

(hs)⊗n = h.s⊗n = (nvµ + nw̄ν)(h)s⊗n = ((vµ + w̄ν)(h)s)⊗n.Sine A is the algebra of regular setions of powers of an ample line bundle over a P\G, itis integrally losed. But, for any h ∈ Gv,w̄, (hs
s )⊗n and ( s

hs)
⊗n belong to A. So, hs and s areproportional. There exists a regular map θ : H −→ C∗ suh that

hs = θ(h)sfor any h ∈ Gv,w̄. We easily hek that θ must be a harater of Gv,w̄. But, the restrition of θ to
T equals vµ + w̄ν so that θ = vµ + w̄ν. The lemma follows.We now prove Theorem 2. 13



PL. Montagard, B. Pasquier and N. RessayreProof. It remains to prove that VG(λ)∗ is a submodule of VG(µ)∗ ⊗ VG(ν)∗. We interpret thelatter module as the spae of setions of Lµ ⊠ Lν on X and onsider the following sequene ofmorphisms:
H0((G/B)2,Lµ ⊠ Lν)

H0(Xv,w̄,Lµ ⊠ Lν)

H0(X◦
v,w̄,Lµ ⊠ Lν)

C[G]{1}×(Gv,w̄)vµ+w̄νThe surjetivity of the �rst map is a partiular ase (known before) of Theorem 5. The inje-tivity of the seond map is obvious. And the next isomorphism is obtained by applying Frobenius'theorem.Now, by Lemma 6, there exists a non-zero setion σ of Lµ ⊠ Lν on X◦
v,w̄ of weight −λ for

B−. Then, for some n > 0, σ⊗n extends to Xv,w̄ by Lemmas 5 and 6 together. Sine Xv,w̄ isnormal, it follows that σ also extends to a regular setion of Lµ ⊠Lν on Xv,w̄. Thus, the theoremis proved.4.3 Examples4.3.1� In the following example, we will see that the hypothesis on α to be simple, in Theorem 2,is neessary. Consider G = Sp4. Denote by α1 and α2 respetively the short and the long simpleroots, and ω1 and ω2 the assoiated fundamental weights. Let µ = ν = ω2 (and v = w = Id).Then we an ompute that
VG(µ) ⊗ VG(ν) = VG(0) ⊕ VG(2ω1) ⊕ VG(2ω2).De�ne λ := vµ + wν − (α1 + α2) = ω2. Note that λ satis�es the onditions (ii) and (iii) ofTheorem 2 with α = α1 + α2, beause 〈ω2, (α1 + α2)

∨〉 = 2. We annot apply Theorem 2 justbeause α1 + α2 is not a simple root. And in fat, VG(λ) is not a submodule of VG(µ) ⊗ VG(ν).4.3.2� In this setion, we look at the positions of the dominant weights λ obtained inTheorem 2 for �xed µ, ν, α and varying k. We prove that, by this way, we obtain an �integralsegment� with at least one extremity orresponding to an original PRV omponent.Proposition 2. Let λ be a dominant weight as in Theorem 2. Suppose, for onveniene, that
〈vµ, α∨〉 6 〈wν,α∨〉. Set kmax = 〈vµ, α∨〉 and λk = vµ + wν − kα. Let k0 be suh that λ = λk0

.Then, for any k0 6 k 6 kmax, λk is a dominant weight. Moreover, VG(λkmax
) = VG(sαvµ+wν)is an original PRV omponent of VG(µ) ⊗ VG(ν).Proof. Denote by S the set of simple roots of (G,B) and by ωγ the fundamental weight orre-sponding to the simple root γ. Then, for all 0 6 k 6 kmax, we an write λk =
∑

γ∈S aγ,kωγ , withthe (aγ,k)'s in Z. Note that
aα,kmax

= 〈λkmax
, α∨〉 = −〈vµ, α∨〉 + 〈wν,α∨〉 > 0.14



Two generalizations of the PRV onjetureRemark also that
α =

∑

γ∈S

〈α, γ∨〉ωγ =
∑

γ∈S

bγωγ , with bα = 2 and bγ 6 0, ∀γ 6= α.Then, aα,k dereases when k inreases, and for any γ 6= α, aγ,k inreases with k. Moreover, sine
aα,kmax

> 0, aα,k is non-negative for all 0 6 k 6 kmax. This implies that, as soon as λk isdominant, it stays dominant when k inreases up to kmax. Now, the proposition follows from thefat that λ = λk0
is dominant.We now illustrate this proposition by the following example. Consider G = SL3 with simpleroots α1 and α2. Let µ = 7ω1 + 2ω2 and ν = ω1 + 3ω2. Then the following piture represents theset of dominant weights λ suh that VG(λ) is a submodule of VG(µ) ⊗ VG(ν). In this example,

µ + ν is an element of the root lattie so that all weights of VG(µ)⊗VG(ν) are in the root lattie.Then, in order to make the piture nier, we only draw the root lattie instead of the weightlattie.

Weight given by Theorem 2Weight given by the original PRVλ suh that VG(λ) ⊂ VG(µ) ⊗ VG(ν)

ω2

Segment [λ0, λkmax
] as in Proposition 2

ω1

µ + ν
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