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Abstract

We use the Grossberg-Karshon’s degeneration of Bott-Samelson varieties to toric varieties
and the description of cohomolgy of line bundles on toric varieties to deduce vanishing results
for the cohomology of lines bundles on Bott-Samelson varieties.

Introduction

Bott-Samelson varieties were originally defined as desingularizations of Schubert varieties and
were used to describe the geometry of Schubert varieties. In particular, the cohomology of some
line bundles on Bott-Samelson varieties were used to prove that Schubert varieties are normal,
Cohen-Macaulay and with rational singularities (see for example [BK05]). In this paper, we will
be interested in the cohomology of all line bundles of Bott-Samelson varieties.

We consider a Bott-Samelson variety Z(w) over an algebraically closed field k associated to
an expression w = sg, ... S, of an element w in the Weyl group of a Kac-Moody group G over
k (see Definition 1.1 (i)).

In the case where G is semi-simple, N. Lauritzen and J.F. Thomsen proved, using Frobe-
nius splitting, the vanishing of the cohomology in positive degree of line bundles on Z(w) of
the form £(—D) where £ is any globally generated line bundle on Z(w) and D a subdivisor of
the boundary of Z(w) corresponding to a reduced expression of w [LT04, Th7.4]. The aim of
this paper is to give the vanishing in some degrees of the cohomology of any line bundles on Z(w).

Let us define, for all € = (ex)peqr,.. Ny € {+) —¥ and for all integers 1 <i < j < N,

ag; = (B, ( H s8,)(B;))-

1<k<j,ep=—

These integers are natural geometric invariants of the Bott-Samelson variety, they also appear, for
example, in [Wi06, Theorem 3.21] in product formula in the equivariant cohomology of complex
Bott-Samelson varieties .

Since Z(w) is smooth, we can consider divisors instead of line bundles. Thus, let us denote
by Zi,...,Zn the natural basis of divisors of Z(w) (see Definition 1.1 (ii)). Let D := Zfil a;Z;
be any divisor of Z(w).



Let i € {1,...,N}. We say that D satisfies condition (C;") if for all € € {+, —}", we have

Ci =a;+ Z aja; > —1

j>i,5j:+
and we say that D satisfies condition (C;) if for all € € {+, —}", we have

€. _ . € . —
Ci:=a;+ E aj;a; < —1.
j>t, €=+

The main result of this paper is the following.

Theorem 0.1. Let X = Z(w) be a Bott-Samelson variety and D a divisor of Z(w). Let n €
{+,—,0}". Define two integers n™ :=4{1 <j< N |nj=+} andn” :=4{1 <j< N |n; = —}.
Suppose that D satisfies conditions (C]") for alli € {1,...,N} such that n; # 0.
Then HY(X,D) =0, for all i <n~ and for all i > N —n™.

Let us remark that, Conditions (Cy;) and (Cy) are respectively ay > —1 and ay < —1, so
that ny can always be chosen different from 0. Thus, for any divisor D of Z(w), Theorem 0.1
gives the vanishing of the cohomology of D in at least one degree.

Although Theorem 0.1 gives us a lot of cases of vanishing, it does not permit to recover all
the result of N. Lauritzen and J.P. Thomsen. See Example 2.11 to illustrate this fact.

However, for lots of divisors, Theorem 0.1 gives the vanishing of their cohomology in all degrees
except one. More precisely, we have the following.

Corollary 0.2. Let D = Ziil aiZ; be a divisor of X = Z(w). Suppose that, for all i €
{1,...,N}, one of the following two conditions C;" and C; is satisfied:

A+
C:i Doa; > -1+ max€€{+7—}N(_ Zj>i,5j:+ agjaj)
Cz_ Do <=1+ min€€{+77}N(_ Zj>i,e]~=+ agjaj)

Then, H{(X,D) =0 for alli # #{1 < j < N | C’J_ is satisfied }.

Let us remark that, for all n € {+, =}, the set of points (a;) € Z" satisfying C’Jm for all
j € {l,...,N} is a non empty cone. So that Corollary 0.2 can be applied to infinitely many
divisors.

The strategy of the proof of Theorem 0.1 is the following. In Section 1, we define and describe
a family of deformations with general fibers the Bott-Samelson variety and with special fiber a
toric variety. The toric variety we obtain is a Bott tower, its fan has a simple and well understood
structure (for example it has 2N cones of dimension 1 and 2V cones of dimension N). In fact,
we rewrite a part of the theory of M. Grossberg and Y. Karshon [GK94] on Bott-towers from an
algebraic point of view. In Section 2, we describe how to compute the cohomology of divisors
on the special fiber and we prove the same vanishings as in Theorem 0.1 but for divisors on this
toric variety. Then Theorem 0.1 is a direct consequence of the semicontinuity Theorem [Ha77,
IIT 12.8].



1 Toric degeneration of Bott-Samelson varieties

In this section we rewrite the theory of M. Grossberg and Y. Karshon [GK94] on Bott-towers,
in the case of Bott-Samelson varieties and from an algebraic point of view over any algebraically
closed field.

Let A = (a;j)1<i,j<n be a generalized Cartan matrix, i.e. such that (for all 4, j) a; = 2, a;; <0
for i # j, and a;; = 0if aj; = 0. Let G be the “maximal” Kac-Moody group over k associated to A
constructed in [Ku02, Section 6.1] (see [Ti81a] and [Ti81b] in arbitrary characteristic). Note that,
in the finite case, G is the simply-connected semisimple algebraic group over k. Denote by B the
standard Borel subgroup of G containing the standard maximal torus 7. Let aq,...,a, be the
simple roots of (G, B,T) and sq,,..., S, the associated simple reflections generating the Weyl
Group W. For all i € {1,...,n}, denote by P,, := B U Bs,,B the minimal parabolic subgroup
containing B associated to «;. Let w € W, an expression of w is a sequence (sg,,...,Sg,) of
simple reflections sg,, ..., sg, such that w = sg, ...sg,. An expression of w is said to be reduced
if the number N of simple refections is minimal. In that case N is called the lenght of w and
equals the dimension of the Schubert variety X (w). Let w € W and @ := sg, ...sg, be an
expression (not neccessarily reduced) of w. For all i and j in {1,..., N}, denote by f;; the integer

(B Bj)-
Definition 1.1. (i) The Bott-Samelson variety associated to w0 is
Z(w) = P, xB .- xP Ps,/B
where the action of BY on Pg, x -+ x Pg,; is defined by
1y pN)-(b1,s - bN) = (p1b1, by *p2ba, ... by pbN), Vpi € Ps,, Vb; € B.

(ii) For alli € {1,..., N}, we denote by Z; the divisor of Z(w) defined by {(p1,...,pn) € Z(0) |
pi € B}. Thus (Z;)iequ,... Ny is a basis of the Picard group of Z(w), and if @ is reduced it is
the basis of effective divisor [LT04, Section 3].

In order to define a toric degeneration of a Bott-Samelson variety, we need to introduce
particular endomorphisms of G and B.
Since the simple roots are linearly independent elements in the character group of GG, one can

choose a positive integer ¢ and an injective morphism A : k* — T such that for all : € {1,...,n}
and all u € k*, a;(A(u)) = u?. And let us define, for all u € k*,
Yy: G —» G

g — Mu)gh(u)~L.

The morphism v from k* to the set of endomorphisms of B defined by 1(u) = ¢~u| B can be
continuously extended to 0. Indeed, the unipotent radical U of B lives in a group (denoted by
U® in [Ti81b]) where the action of ¢ € T by conjugation is, on some generators (except the
identity), the multiplication by some positive powers of a;(t) for some i € {1,...,n}. Then for
all x € U, ¢(u) goes to the identity when u goes to zero.

We denote, for all u € k, by 1, the morphism ¢ (u). Remark that 1)y is the projection from
BtoT.

We are now able to give the following



Definition 1.2. (i) Let X — k be the variety defined by
X:=kx Pg x - x Pg/BY
where the action of BY on k x Pg, x -+ x Pgy is defined by Vu € k, Vp; € Pg,, Vb; € B,
(w,p1, - pn)- (b1, - by) = (w, prbu, thu(b1) " p2ba, .. u(by-1) " pnby).
(ii) For all i € {1,..., N}, we denote by Z; the divisor of X defined by

{(w,p1,...,pN) € X | p; € B}.

Since X is integral and X — k is surjective, X is a flat family over k [Ha77, Chap.III Prop.
9.7]. For all u € k, we denote by X(u) the fiber of X — k over .

Proposition 1.3. (i) For all uw € k*, X(u) is isomorphic to the Bott-samelson variety Z ()
such that, for all i € {1,...,N}, the divisor Z;(u) := X(u) N Z; corresponds to the divisor

(ii) There is a natural action of the torus (k*)™ on X(0) such that an open orbit is isomorphic
to (k*)N.

We will see later that X(0) is a smooth toric variety with this action.

Proof. (i) Remark first that X(1) is by definition the Bott-Samelson variety and, that for all
ie{l,...,N}, Z;(1) = Z; . Now let u € k* and check that

Oy : X(1) — X(u)
(p1,...,pN) +— (p171£u(192)715u2(]93)7---ﬂﬁuNil(PN))-

is well-defined and is an isomorphism. Moreover, for all i € {1,...,N}, p; is in B if and
only if ¥y, (p;) is in B, so that 6,(Z;) = Z;(u).

(ii) Let Tp, be the maximal subtorus of T acting trivially on Ps,/B ~ PL. Now, since t(b)
commutes with 7" for all b € B, one can define an effective action of Hi\i1 T/Ts, ~ (k*)N on
X(0) as follows

Vt; € T, Yp; € Ps,, (t1, -, tN).(p1,- -, pN) = (tipity S tapaty Ly o ENDNEN)-

Moreover, since T/Tp, ~ k* acts on Ps,/B ~ PL with an open orbit, (k*)" acts also with
an open orbit in X(0).
O

For the general theory of toric varieties, one can refer to [Fu93] or [Od88]. But let us recall
briefly the principal points of this theory. A toric variety of dimension N is a normal variety
with the action of (k*)" such that it has an open orbit isomorphic to (k*)". Toric varieties are
classified in terms of fans: a fan F of RY is a set of cones generated by finitely many lattice points
(i.e. in Z), containing no lines and such that all faces of a cone in F are also in F, and such



that the cones of F intersect along their faces. Let X be a toric variety of dimension N. The
corresponding fan is constructed as follows. For all affine (k*)"-stable subvarieties X’ of X of
dimension N (not necessarily closed), consider the set Cx: of weights of (k*)" in the ring k[X].
Then R, Cyxs is a cone of RY generated by finitely many lattice points. Their duals are cones
generated by finitely many lattice points, containing no lines (the dual of C' is defined by the set
{v € RN | Vu € C(v,u) > 0}). And they form a fan of RY, that is the fan associated to X.
Remark that a fan is entirely defined by its maximal cones (which correspond to the closed affine
(k*)N-stable subvarieties X’ of X of dimension N), so that we can only consider maximal cones.
Moreover there is a natural one to one correspondence between (k*)V-stable divisor of X and
arrows of the fan of X, given via valuation of divisors.

Proposition 1.4. (i) X(0) is a smooth toric variety.

(ii) Let (ef,.¥,eﬁ) be a basis of ZN. Define, for all i € {1,...,N}, the vector e; = —e; —
Zj>i Bije; -
Then a fan F of X(0) consists of cones generated by subsets of {ef,...,e%,e;, coent

containing no subset of the form {e;r,e;}. (In other words,the fan whose mazimal cones
are the cones generated by e, ... e with e € {+,—}V.)

Moreover, for alli € {1,...,N}, Z;(0) is the irreducible (k*)N -stable divisor of X(0) corre-
sponding to the one dimensional cone of F generated by e;r and these divisors form a basis
of the divisor classes of X(0).

Example 1.5. If G = SL(3) and @ = s4,54,, we have the following fan.

i .

4

In fact, one can prove that the Bott-Samelson variety of Example 1.5 is isomorphic the toric
variety X(0). But this is not the general case. For example, if G = SL(2) and @ = Sq, Say, Z(W)
is a toric variety (it is in fact PL x L) but it is not isomorphic to X(0). And, if G = SL(4) and
W = SaySay SasSay, then Z(w) is not a toric variety.

Proof. We will prove (i) and (ii) together. Let us first write a few technical results. For all simple
roots a, there exists a unique closed subgroup U, of G and an isomorphism

Ug : Gq —> U, such that Vt € T, Vo € k, tug (2)t ™! = ug(a(t)z).



Moreover, the u, can be chosen such that n, = uq(1)u_q(—1)uq (1) is in the normalizer of T' in
G and has image s, in W. And for all z € k* we have

U_o(2) U (=2 Nu_o(z) = V(7 Hn_q.

See [Sp98, Chapter8| for the finite case. And we can reduce from the general case to the finite
case by construction of G.
Then for all z € k* we also have

N_gli—o(—z) = " () u_o(2)ua(—27) = u_o(z™Ha" (2)ua(—z 7). (1.5.1)

Remark also that, for all simple root «, the subgoup U_,, is a subgroup of P, and n_, € P,.
Then, for all € € {0,1}", we can define an embedding ¢, of k" in X(0) by

¢6($1’ t ’xN) = ((n—ﬁ1)€1u—ﬁ1((_1)61)x1)’ SR (n—ﬁN)eNu—ﬁN((_l)EN)xN)'

Note that, the ¢ (k") with e € {0,1}", are the maximal affine (k*)"-stable subvarieties of X(0).
In particular X(0) is covered by affine spaces k' so X(0) is smooth and, by Proposition 1.3 (ii),
X(0) is a toric variety.

Moreover, if for all i € {1,..., N}, x; € k*, we prove by induction, using Equation 1.5.1 and
the defintion of X(0), that

Se(xr, - an) = (u_pg (@B (@), us gy () B (@ g)Y)
= (up (") @ T ) (1.5.2)
7<i

Now, let us compute the weight of regular functions of all these affine subvarieties. We need
first to fix a basis of characters of (k*)V. Let us denote, for all i € {1,..., N}, by f; the function
in k(X(0)) = k(¢,. 0)((Ga)")) defined by f;((u—g, (1), ..., u_gy(zn)) = ;. Denote also by
(Xi)ie{l,...,N} the weights with (k*)N acts on (fi)ie{l,...,N}a and by (ej)ie{l,...,N} the dual basis of
(Xi)ieq1,...ny- Then, if x = 2521 kixi, we can check, using Equation 1.5.2, that

N + .
ks N . ki =(x,e;) >0 ife;=0
e ko (G —=Vie{l,...,N}, ¢ _ .
[[45 € @] = Vie (Lo, V) e ey 20 e
In other words, the cone associated to ¢. (k) is generated by eill, e ,ei}\’, where €; = + and — if

€; = 0 and 1 respectively. It proves the first result of the proposition.
For the last statement, just remark that Z;(0) is the divisor of X(0) defined by the equation
fi =0, and that f; has weight x; so that the valuation of Z;(0) corresponds to e O

i -

2 Cohomology of divisors on the toric variety X(0)

Let us first recall the result of M. Demazure [De70] on the cohomology of line bundles on smooth
toric varieties. For this result, we can also refer to [Fu93, Chap.5.3] in the case of complex toric



varieties.

Let X be a smooth complete toric variety of dimension N associated to a complete fan F.
Let A(1) be the set of primitive elements of one-dimensional cones of F. For all p € A(1), we
denote by D, the corresponding irreducible (k*)N-stable divisor of X. The Picard group of X
is generated by these divisors. Let D := )" pEA(1) a,D,. Let hp be the piecewise linear function
associated to D, i.e. if C is the cone generated by pi,...,pn then hppc is the linear function
which takes values a,, at p;.

Denote by X((k*)™) be the set of characters of (k*)V. For all m € X((k*)V), define the
piecewise linear function ¢p n, : n — (m,n)+hp(n). Let A(1)pm :={p € A1) | ¢pm(p) < 0}.
And define the simplicial complex ¥ p ., to be the set of all subset of A(1)p ,, generating a cone
of F (we refer to [Go58, Chapter 1.3] for cohomology of simplicial complexes).

The cohomology spaces H'(X, D) is a (k*)-module so that we have the following decompo-
sition

H(X,D)= @ H(X,D)m.
meX ((k*)V)

M. Demazure proved the following result.
Theorem 2.1 ([De70]). With the notation above,
(i) if Xpm =0, then H(X, D)., =k and H(X, D), = 0 for all i > 0;

(i3) if Xpm # 0, then H*(X, D), = 0, HY(X, D) = H*(Xp m,k)/k and H (X, D), = H"(Zp 1, k)
for all i > 1.

Remark 2.2. I took above M. Demazure’s notation and suppose that X is smooth. In his book
([Fu93]) W. Fulton consider the topological space

Fpm:={veR]|(m,v) > —hp(v)}.
This space contains the origin and might be RY. Then for general toric varieties, we have
H'(X,0(D)m ~ H' (R, R\ Fp m, k),

where the right side indicates relative singular cohomology with coefficients in k. By the long
exact sequence, this is isomorphic to the reduced singular cohomology H “HRN\F, D,m, k) for
i > 1. Now, for a simplicial fan, we can define a simplicial complex ¥ = ¥p ,, homotopic to
RN\ Fp . So that we recover Demazure’s Theorem above. Since M. Demazure only consider
smooth varieties and W. Fulton gives the theory of complex toric varieties, I didn’t know if all
this is still true in positive characteristic for not smooth varieties!

Still now, in order to simplify the notation, we write ¥,, and ¢,, instead of ¥Xp ,, and ¢p m,
respectively.

Applying Theorem 2.1 to X(0), with the notation of the first section, we can deduce the
following.



Corollary 2.3. Let D = Zf\;l a;Z; be a divisor of X and D(0) be the corresponding divisor
S, aiZi(0) of X(0).

(i) If there is an integer j such that qﬁm(ej’) > 0 and ¢p(e;) < 0, or, gbm(e;') < 0 and

dm(e; ) =0, then H!(%(0),D(0)),, =0 for all i > 0.

(ii) If the condition above is not satisfied, let jn,, = #{i € {1,...,N} | (bm(ej) < 0}, then
H(%(0),D(0))m = 0 for all i # jm and HI™(%(0),D(0)),, = k.

Remark 2.4. For all i € {1,..., N}, the sets
Ip,; = {m e Z" | H'(X(0),D(0)), =k}

are the lattice points of the union IIp; of convex polytopes of RY. And the disjoint union
IIp = ieq,.. vy Hp,i is a twisted-cube (non necessarily convex) as defined in [GK94]. More

precisely, IIp is the set of m € RY satisfying for all i € {1,..., N},

—a; <mi < =Y Bymjor — > Bym; <mi < —a;
> i>i

and we denote its vertices (z€).c {+,—}~, Where 2 € ZN is given by induction as follows:

c { —a; if ¢, =+
T; = .
1 . .p€ J—
-> j>i ﬁzjxj if ¢ =

We will see this in Lemma 2.6.

Example 2.5. If G = SL(3) and @ = $q, Sq,, if the simplical complex ¥, is not empty, it is one
of the following modulo symmetries.

NN

§>\%




In the first three cases, H(X,,,k) = k and the cohomology of ¥,, in positive degrees vanishes,
and we are in the case (i) of Corollary 2.3. In fourth and fifth cases, we are in the case (ii) of
Corollary 2.3. In fourth case, the non trivial cohomology are H%(3,,,k) = k? and H!(%,,,k) = k.
In fifth case, the only non trivial cohomology is H%(%,,, k) = k2.

Now, in the same example, the twisted-cubes corresponding to D(0) = —221(0) —225(0) and
D(0) = —22,(0) — 325(0) are respectively the following.

ot =(2,3) 2t = (3,3)

att =07t =(2,2)

x~~ =(0,0) v =(2,0) x~~ =(0,0) zt™ =(2,0)

Sketch of proof of Corollary 2.3. (i) Suppose qu(ej) > 0 and gbm(ej_) < 0. Then, all maximal
simplices of 3, contain e; , S0 that X, is contractible.

(ii) One can check that ¥,, is the set of faces of a j,,-dimensional convex polytope.
O

We will now prove two lemmas. In the first one, we give a necessary condition on m €
X ((k*)N) to satisfy the condition of Corollary 2.3 (ii). The second lemma will be used to com-
pute, in Case (ii), the possible values of j,, which depend on the Conditions (Czi)

Recall that we have already defined, in Remark 2.4, 2V elements of Z": the z¢ with ¢ €
{-I'v _}N'
Lemma 2.6. Let m € Z" such that for all i € {1,...,N}, we have either ¢p,(ef) > 0 and
dm(e;) = 0, or, dm(ef) <0 and dm(e;) <O0.

Then m is in the convex hull of the x¢ (in other words, the (T¢)ecqy —yn are the vertices of
IIp).

Proof. Since, for all i € {1,...,N}, dm(e]) = m; + a; and —dp(e; ) = m; + Zj>i Bijm; have
opposite signs, there exists N real numbers A1,..., Ay in [0,1] such that, for all 2 € {1,..., N},
mi = —Xia; — (1 = XA;) 3255, Bijm;. Denote, for all € € {+, —N_ by m€ the product

IT »x I a-».
1<i<N 1<i<N

€=+ € =—

Remark that m¢ € [0,1].



Let us prove by induction that for all ¢ € {1,..., N} we have m;
m = 256{4_7_}1\; mex®.
We will use the following easy fact: for all i € {1,..., N},

j— € € y
= Zee{%f}mei, i.e.

A= > m~ (2.6.1)
ee{+7_}N
€=+
In particular, for ¢ = N, we deduce, with the definition of z¢;, that zee{%f}zv mery = —Anan =

my.
Now let 4 < IN such that, for all j > i, m; = zee{Jr,f}N mexs. Then

m; = —Xa;— (1 —X\) Zﬁijmj
j>i
= —Na; — (1= X)) Zﬁzj Z me§

P> ee{+ -}V

= —)\Z'CLZ' — (1 — )\Z) Z me Zﬁwxj

ee{+,— J>i

Moreover, if for all € € {+, =}V, we define ¢ € {+, -}V by ¢; =¢j for all j # i and € = —¢;, we

have
e —.%'g lf € — —

2 By = { —af e =+

>
Then

m; = —Xia; — (1 —X;) Z (m® 4+ m* )xs.
€€{+77}N
€ =—

We conclude by 2.6.1 and by checking that, for all € € {+, —}¥ such that ¢; = —, we have

(1= X\)(me +m) =me.

O

Lemma 2.7. For all e € {+,—}" and alli € {1,...,N}, we have ¢y<(e;) = 0 and ¢ye(e; ) =

@i+ D5 e —q 05505 = CF if € = + (and the reverse if € = — ).

Proof. Fix e € {+,—}". The lemma follows from the three following steps.

Step 1. Let us first prove by induction that, for all i € {1,..., N},

N

k>1

i+1<h<N 1=19<i1 <---<ip=h

en=+ Vo<k, €, =—

10

k-1
= > > > (=1)k+1 1‘[05“”.%+1 an + { (;

a; ife =+

if e, = —



Let i € {1,..., N}. Remark that if ¢; = +, this equality is clearly true because for all k¥ > 1 there
exists no ¢ = ig < 41 < --- < i = h such that Vo < k, ¢;, = —. Remark also, for similar reason,
that the sum from h =i+ 1 to N can be replaced by the sum from h =i to N (always with the
condition €, = 4). Suppose now that ¢, = — and that for all j > ¢ the equality holds. Then

vo= =) By

Jj>i

k—1
. k+1lg. . . s
= -> > X Yo UM [ B [ant Y Biay
J>t J<h<N k>1 j=jo<ji<--<jr=h =0 j>i
ep=-=+ V!L’<k,€jz=7 ej:+

h k—1
_ k+2
= > | XX > V8 ] Brger | ant D Biay
irl<hen | 1R 2=0 y
€p=-=+ V!L’<k,€jzzf €=+

J=jo<ji<--<jr=h Jj>i

k-1
_ k2
= > > > (D2 T Buvivss [ an+ D Binan
ir1<h<N | ¥22 imig<ii<o<ip=h z=0 h>i
ep=-= Vo<k, €, =— €p=-=+

But for all h € {i +1,...,h}, Bin equals

k—1
> M B
=0

i=ig<i1<---<ip=h
Ve<lk, €, =—

when k£ = 1, so that we obtain the wanted equation.

Step 2. For alli € {1,...,N}and j € {i+1,...,N} we have

k—1
€ __ k+1 L.
Qij = Z Z (_1) H /Bthhq-
k21 io<in<o<ip=j z=0

Vo<k, €, =—

The proof, by induction on j, of this formula is the same as in [Pe05, Lemma 3.5] and is left to
the reader.

11



Step 3. Recall that ¢m(ej) = m; + a; and that ¢,,(e; ) = —my _Zj>i5ijmj- Then, if ¢, = +,

we have ¢ <(ef) = 0 and ¢ye(e; ) = —af — > j>i Bijr5. And, if ¢ = —, we have ¢yc(e; ) = 0
and ¢qe(e]) = a; + x5, In fact, we only have to compute ¢e(e;) in the case where ¢; = —,
i.e. a; + 5. Indeed, if ¢; = +, define € € {+,—}" by ¢; = ¢; for all j # i and € = —. Then
Pac(e) = e (€]). O

We are now able to prove the vanishing theorem for divisors on the toric variety X(0).

Theorem 2.8. Let D = Z@]L a;Z; be a divisor of X and n € {+,—,0}V. Suppose that the
coefficients (a;)ieq1,.. Ny satisfy conditions (C") for alli e {1,...,N} such that n; # 0. Then

H'(%(0),D(0)) =0, for alli <#{1 <j <N |n; =~} and for alli > N—4{1 < j < N |n; = +}.

Proof. Let m € X((k*)V) such that H*(X(0),D(0)),, is not zero for some i € {1,..., N}. Then,
by Corollary 2.3 (i) and Lemma 2.6, there exist non negative real numbers m¢ with ¢ € {4+, =}V
such that 3° oy yvm=1landm=3  cr yvmat

Then, by Lemma 2.7,

Pmlel) = Z mC§ and dm(e;) = Z m°Cy.
E€{+77}N E€{+77}N

€i=— €=+

Then, if Condition C; is satisfied, we have ¢,,(e) and ¢y, (e; ) are both negative. And if
Condition C; is satisfied and if the integers ¢y, (e;”) and ¢,,(e; ) are not both non-negative, then
one of them equals —1 (say for example ¢y, (e;)). It means that for all € € {+, —}" such that
€; = +, we have m® = 0. Then ¢,,(e; ) = 0 which is not possible by hypothesis on m and
Corollary 2.3 (i).

We conclude the proof by Corollary 2.3 (ii). O

Remark 2.9. We cannot tell that Theorem 2.8 gives all possible vanishings. Indead, in that
case, the problem of non-vanishing is the same as the problem of existence of lattice points in
parts of the twisted-cube IIp defined in Remark 2.4.

Example 2.10. If G = SL(3) and @ = s4, Sa,, the vanishings of the cohomology of the divisor
D = a1 21 + a3 22 obtained by Theorem 2.8 is reprensented in the following picture.
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a1:—1 a1:a2—1

H?=0

H'=H>=0

(122—1

H'=H?=0
H'=0

Let us now discuss, with a more general example, what sort of vanishings Theorem 0.1 gives.

Example 2.11. Let G = SL(4) and @ = S4,50,50354, (With natural notation). Let D =
2?21 a;Z; be a divisor of Z(w). Then, all the integers Cf we obtain are the followings:

1=4 a4
1=3 as, ag — a4
=2 a2, a2 — a4

t1=1 ai,a; —az, a1 —as, a; —as —as, ] — as + a4, a1 — as + aq, a1 — as — ag + 2a4.

In particular, Conditions (Cf)ie{1727374} are equivalent to ay > —1, a3 > a4 — 1, a2 > a4 — 1 and
a1 > ag + az — 1. In that case, Theorem 0.1 tells us that the cohomology of D vanishes in non
zero degree. But this fact can already be deduced by [LT04, Theorem 7.4]. Actually, the theorem
of N. Lautitzen and J.F. Thomsen gives us the vanishing of the cohomology of D in non zero
degree exactly for all D such that only if ay > —1, a3 > max(ag — 1,—1), az > max(aq — 1,—1)
and a; > max(az + a3 —ag — 1,—1).

Let us consider D = 27y 4+ 272y + 273 + 27,4, by the latter assertion the cohomology of D
in non zero degree vanishes. But one can compute that the cohomology of the corresponding
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divisor on X(0) is not trivial in degree 1 (indeed, we have for example H'(X(0), D(0)),, = k when
m = Lzt 4 a0y = (0, -2, -2, -3)).

Theorem 0.1 is not as powerful as the results of N. Lautitzen and J.F. Thomsen for “positive”
divisors (or also for “negative” divisors). But for all other divisors it gives many new vanishings
results.

For example, if ay > 0, ag > a4, ag < 0, Theorem 0.1 gives the vanishing of the cohomology
of D in degree 0, 3 and 4.

Remark 2.12. Theorem 0.1 is easy to apply to a given divisor of a Bott-Sameslon variety. Indeed,
we made a program that takes a triple (A4,w, Z) consisting of a Cartan matrix A, an expression
w and a divisor Z of Z(w), and that computes the vanishing results in the cohomology of Z given
by Theorem 0.1 (contact the author for more detail).

We can also obtain vanishing results in the cohomology of line bundles on Schubert varieties.
Indeed, if 7 : Z(w) — X(w) is a Bott-Samelson resolution and D a divisor of the Schubert
variety X (w) then for all i > 0 we have H!(X(w), D) = H(Z(w),7*D). These vanishings are
case by case computable. For example, let us consider the simplest non trivial case: G = SLs
and W = S4,5q0550; = SasSa;Sas- Then, applying Theorem 0.1 to both reduced expression of
w, we deduce vanishings of the cohomology of the lines bundles L£(ajwqy, + aowq,) on SL3 /B,
summarized in the following picture.

H'= H% =0

0y Yo

H'=H>=H’=0
H'= H% =0

Remark that, to obtain this result, we needed to consider both reduced expression of w (each
one gives different vanishings). We can also remark that we don’t obtain the vanishing of the
cohomology in degree 1 for all globally generated line bundles.
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We can also compare these vanishings in few simple cases (for example when G is of rank 2)
to the ones obtained in [Pa04] and [BSS04] in characteristic 0. We can’t have the same results
because our result is also true in positive characteristic (and even Borel-Weil-Bott Theorem is
not true in positive characteristic). However, it is natural to think that, unfortunately, we are
very far to obtain all possible vanishings. In fact we probably obtain all possible vanishings only
when a Bott-Samelson resolution of the Schubert variety is toric (for example, it is the case for
all proper Schubert varieties in SL3 /B).
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