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A survey on the singularities of spherical varieties
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We list combinatorial criteria of some singularities, which appear in the Minimal Model
Program or in the study of (singular) Fano varieties, for spherical varieties. Most of the
results of this paper are already known or are quite easy corollary of known results. We
collect these results, we precise some proofs and add few results to get a coherent and
complete survey.
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1. Introduction

Spherical varieties form a big family of rational and normal complex varieties, in-
cluding toric varieties and flag varieties. Here, we list some types of singularities of
these varieties and we give combinatorial criteria of these singularities. Most of the
results of this paper are already known or are quite easy corollary of known results.

We will only consider types of singularities that appear in birational geometry:
in the Minimal Model Program or in the study of (singular) Fano varieties.

The paper is organized as follows. In section 2, we describe the theory of
spherical varieties and fix notations. In section 3, we deal with smooth, locally
factorial and Q-factorial spherical varieties. In section 4, we quickly give the
criteria of Gorenstein and Q-Gorenstein singularities for spherical varieties. In
section 5, we characterize terminal, canonical and kawamata log terminal (klt)
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singularities for spherical varieties. And in section 6, we conclude by an overview
diagram.

We illustrate the theory of spherical varieties and their singularities with a
common example all along section 2 and in section 6.

2. Notations

In all the paper, G denotes a connected reductive algebraic group over C and va-
rieties are algebraic varieties over C.

A spherical variety X is combinatorially associated to:

• a lattice M of characters of a Borel subgroup B of G (and its dual N);

• a cone V in NQ := N ⊗Z Q (called the valuation cone);

• the finite set D of B-stable, but not G-stable, irreducible divisors of X;

• an injective map σ from the set of G-invariant valuations of C(X) to V ⊂ NQ
(and a map, still called σ from D to N);

• and a colored fan FX in NQ.

In this section, we describe all these objects and their connections to spherical
varieties, and we recall the results we will need in the next sections. The main ref-
erences of the theory summarized here are [LV83] and [Kno91] for the classification
of spherical varieties, [Bri89] for properties of divisors of spherical varieties, [Bri97]
and [Lun97] for the description of anticanonical divisors of spherical varieties.

2.1. Spherical embeddings.

Definition 2.1. A G-variety X is an algebraic variety over C equipped with an
algebraic action of G on X.

A spherical G-variety is a normal G-variety X such that there exists x ∈ X
and a Borel subgroup B of G satisfying that the B-orbit of x is open in X.

Remark that, since the Borel subgroups of G are all conjugated, we can fix a
Borel subgroup B of G and give the following equivalent definition.

Definition 2.2. A spherical G-variety is a normal G-variety with an open B-orbit.

In the rest of the paper, we also fix a maximal torus in B, so that we can work
with the root system of (G,B, T ).

When there is no possible confusion about the group acting on varieties, we
write spherical varieties instead of spherical G-varieties.

We can easily remark that spherical varieties have an open G-orbit, and have
finitely many B-orbits and G-orbits. The open G-orbit of a spherical variety X
is isomorphic to an homogeneous space G/H that is spherical as a G-variety. We
say that G/H is a spherical homogeneous space. Note that we can always choose
H such that BH is open in G.
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Among spherical varieties, we can distinguish several subfamilies of varieties:
flag varieties (when H is a parabolic subgroup of G and then X = G/H), toric va-
rieties (when G = (C∗)n and H = {1}), horospherical varieties (when H contains
a maximal unipotent subgroup of G) and symmetric varieties (when H is an open
subgroup of the fixed points set of an involution σ in the automorphism group of
G).

The classification of spherical varieties is divided into two parts : the classifi-
cation of spherical homogeneous spaces and the classification of spherical varieties
with some fixed open G-orbit (isomorphic to some fixed G/H). In this paper,
we explicitly use the second classification called the Luna-Vust theory of spherical
embeddings, and which generalizes the classification of toric varieties in terms of
fans.

Definition 2.3. Let G/H be an homogeneous space. A G/H-embedding is a pair
(X,x), where X is a normal G-variety and x is a point of X such that G · x is
open in X and H is the stabilizer of x in G.

Two G/H-embeddings (X,x) and (X ′, x′) are isomorphic if there exists a G-
equivariant isomorphism from X to X ′ that sends x to x′.

Note that, if G/H is a spherical (resp. toric, horospherical, symmetric) ho-
mogeneous space and (X,x) is a G/H-embedding, then X is a spherical (resp.
toric, horospherical, symmetric) variety. Conversely, if X is a spherical (resp.
toric, horospherical, symmetric) G-variety, let x be a point in the open G-orbit
of X and let H be the stabilizer in G of x; then G/H is a spherical (resp. toric,
horospherical, symmetric) homogeneous space and (X,x) is a G/H-embedding.

By abuse, we often forget the point x and say that X is a G/H-embedding if
X is a normal variety with an open G-orbit isomorphic to G/H.

Example 2.4. We consider the homogenous space G/H where G = SL3(C) and
H is the maximal unipotent subgroup of G consisting of lower triangular matrices
with ones on the diagonal. We fix T to be the set of diagonal matrices in G and
B to be the upper triangular matrices in G. Then it is easy to check that BH/H
is open in G/H so that G/H is spherical. In fact, since H is the unipotent radical
of the Borel subgroup B− of G consisting of lower triangular matrices in G, G/H
is a horospherical. Also note that the projection π : G/H −→ G/B− is a torus
fibration.

To construct a G/H-embedding, consider the trivial G-module C and the fun-
damental G-modules C3 and

∧
C3. Denote by (e1, e2, e3) the canonical basis of

C3. Let

x0 := [1, e3, e3 ∧ e2] ∈ P(C⊕ C3 ⊕
∧

C3) ' P6.

Then the stabilizer of x0 in G is H, and the closure X of G · x0 in P6 is a cone of
vertex [1, 0, . . . , 0] over the Grassmannian of planes in C4. Indeed, if (e0, e1, e2, e3)
denote the canonical basis of C ⊕ C3, then the map defined by x + y ∧ z 7−→
x∧ e0 + y ∧ z gives an isomorphism of G-modules from C3 ⊕

∧
C3 to

∧2 C4. And
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then, by an argument on dimensions, X is the cone of vertex [1, 0, . . . , 0] over the

Grassmannian SL4(C) · e3 ∧ (e0 + e2) in P(
∧2 C4).

In particular, (X,x0) (or by abuse X) is a G/H-embedding.

As an exercise, the reader can compute the seven G-orbits of X: one is open
and three are closed.

2.2. The lattices M , N , and the colors of G/H. The field C(X) of rational
functions on a spherical variety X can be described by a lattice M by noticing the
following multiplicity free property.

Remark 2.5. Let X be a spherical G-variety. The field C(X) of rational functions
of X is naturally a G-module. Let χ be a character of the Borel subgroup B and
f1, f2 be in C(X)\{0} such that, for any b ∈ B, b · f1 = χ(b)f1 and b · f2 = χ(b)f2.
Then f1

f2
is a rational function fixed by B. Since B acts with an open orbit on X,

we deduce that f1
f2

is a constant.

Definition 2.6. Let G/H be a spherical homogeneous space.

(1) We denote by M the lattice of weights χ of B such that there exists fχ ∈
C(G/H)\{0} satisfying, for any b ∈ B, b · fχ = χ(b)f . Note that, by
Remark 2.5, for any χ ∈M the rational function fχ is unique up to a scalar.
We say that fχ is a rational function of X of weight χ.

(2) The dual HomZ(M,Z) of M is denoted by N .

(3) We denote by MQ (resp. NQ) the Q-vector space M ⊗Z Q (resp. N ⊗Z Q).

(4) The colors of the spherical homogeneous space G/H are the B-stable irre-
ducible divisors of G/H.

(5) We denote by D the set of colors of G/H.

The rank of the lattice M (which is also the rank of N) is called the rank of
G/H (or the rank of X if X is any G/H-embedding).

Example 2.7. Let G/H be as in Example 2.4. Denote by $1 and $2 the funda-
mental weights of (G,B, T ) (ie $1((aij) ∈ B) = a11 and $2((aij) ∈ B) = a11a22).

Then, there are two particular functions fχ as in Definition 2.6 (1): f1 := f$1

and f2 := f$2 defined by the H-invariant maps (aij) ∈ SL3(C) 7−→ a22a33−a23a32
and (aij) ∈ SL3(C) 7−→ a33 respectively.

Hence, the lattice M equals the lattice of weights of B (ie Z$1 ⊕ Z$2). In
particular, N is the lattice genrerated by the two simple coroots α∨1 and α∨2 of
(G,B, T ). And the rank of G/H is 2.

Moreover, G/H has two colors: the two B-stable irreducible divisors D1 and
D2 of G/H defined as the zero sets of f1 and f2 respectively. In fact, D1 and D2

can also be defined as the inverse image by the fibration π of Schubert divisors of
G/B−.
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2.3. The valuation cone and the maps σ. Let first recall the definition of a
valuation in our context.

Definition 2.8. Let X be a normal variety. A valuation of X is a map ν from
C(X)\{0} to Q satisfying:

• for any f1 and f2 in C(X)\{0} such that f1 + f2 6= 0, ν(f1 + f2) ≥
min(ν(f1), ν(f2));

• for any f1 and f2 in C(X)\{0}, ν(f1f2) = ν(f1) + ν(f2);

• ν vanishes on constant functions.

Moreover, if X is a G-variety, the valuation ν is said to be G-invariant if for any
g ∈ G and for any f ∈ C(X)\{0} we have ν(g · f) = ν(f).

Definition 2.9. Let G/H be a spherical homogeneous space.

(1) The set of G-invariant valuations of G/H is a cone V that can be identified
to a cone in NQ by the injective map σ : V −→ NQ defined by, for any ν ∈ V
and any χ ∈ M , σ(ν)(χ) = ν(fχ) where fχ is as in Definition 2.6 (1). The
image of V in NQ is called the valuation cone of G/H.

(2) Any color D of the spherical homogeneous space G/H defines a B-invariant
valuation on C(G/H)\{0}, and then it defines (similarly to the definition of
σ) a point in NQ that we also denote by σ(D). It is called the image of the
color D in NQ. (In fact, σ(D) ∈ N .)

Remark 2.10. • The valuation cone of G/H equals NQ if and only if G/H
is horospherical [BP87, Corollaire 5.4].

• Since the colors of a spherical homogeneous space G/H are not G-stable, it
could happen that two colors of G/H have the same image in NQ.

• The opposite −V∨ of the dual in MQ of the valuation cone is simplicial, and
generated by positive roots of (G,B, T ) and sums of two strongly orthogonal
positive roots of (G,B, T ) [Bri90].

Definition 2.11. The primitive elements of the rays of the simplicial cone −V∨
are called the spherical roots of G/H.

Example 2.12. We still consider the same horospherical homogeneous space G/H
as in Examples 2.4 and 2.7. Then, by Remark 2.10, the valuation cone of G/H
equals NQ.

Moreover, since the colors D1 and D2 are defined as the zero sets of f1 and f2
respectively, it is easy to see that σ(Di)(fj) is zero if i 6= j and one if i = j. In
other words, for any i ∈ {1, 2}, σ(Di) equals the coroots α∨i .

2.4. Colored fans.

Definition 2.13. Let G/H be a spherical homogeneous space, NQ, D, V and σ
defined as above.

(1) A colored cone in NQ is a pair (C,F) such that

• F is a subset of D;
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• C is a cone in NQ generated by finitely many elements of N ∩ V and
the σ(D) with D in F ;

• the relative interior of C intersects V;

• σ(D) 6= 0 for any D ∈ F and C contains no line.

(2) A colored face of a colored cone (C,F) is a pair (C′,F ′) where C′ is a face of
the cone C, whose relative interior intersects V, and F ′ = {D ∈ F | σ(D) ∈
C′}. It is in particular a colored cone.

(3) A colored fan in NQ is a finite set F of colored cones such that: any colored
face of a colored cone of F is in F, and for any u ∈ NQ ∩ V there exists at
most one colored cone (C,F) of F such that u is in the relative interior of C.

(4) A fan is complete if
⋃

(C,F)∈F C ⊃ V.

Note that if G/H = (C∗)n, then D is empty (ie there is no color), V = NQ, and
the definitions of colored cones and colored fans are equivalent to the definitions
of cones and fans in toric geometry.

See Figure 2, at the end of the paper, to get several examples of complete
colored fans in the case where G/H is as in Example 2.4. Note that, in that case,
the images of the colors are all distinct. Then, to represent a colored fan, we only
draw the edges of the fan and we represent a color of the fan by bordering in grey
the white circle corresponding to the image of the color of G/H.

2.5. The classification ofG/H-embeddings. To anyG/H-embedding (X,x),
we associate a colored fan as follows.

For any G-orbit Y of X, denote by XY the G-stable subset {x ∈ X | G · x ⊃
Y }. Denote by DG,Y the set of G-stable irreducible divisors in XY and denote
by FY the set of D ∈ F such that the closure of D in XY contains Y . For
any D ∈ DG,Y , denote by σ(D) the image by σ of the G-invariant valuation on
C(G/H)\{0} associated to D. Denote by CY the cone in NQ generated by the
σ(D) with D ∈ DG,Y and the σ(D) with D ∈ FY .

We can now state the classification of G/H-embeddings when G/H is spherical.

Theorem 2.14 ([Kno91]). Let G/H be a spherical homogeneous space.
Let (X,x) be a G/H-embedding. Then, for any G-orbit Y of X, (CY ,FY ) is a

colored cone in NQ and the set of (CY ,FY ) with Y in the set of G-orbits of X is
a colored fan in NQ. It is called the colored fan of X and denoted by FX .

The map from the set of isomorphic classes of G/H-embeddings to the set of
colored fans in NQ that sends the class of (X,x) to FX is well-defined and bijective.

Moreover, X is complete if and only if FX is complete.

The set of colors of X (or of FX) is the union FX :=
⋃

(C,F)∈F F . It is a subset
of D.

Example 2.15. We consider the horospherical homogeneous space G/H and the
G/H-embedding X of Example 2.4. We can compute that there are three closed
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G-orbits: the vertex of the cone X, P(C3) and P(
∧2 C3). Also, there is only

one G-stable irreducible divisor X1 in X, which is the intersection of X with
P(C3 ⊕

∧2 C3) and is isomorphic to the Grassmannian of planes in C4.
It is easy to check that X1 contains the two 2-dimensional closed G-orbits, and

that the closures in X of the two colors of G/H contains the vertex of the cone X
and exactly one of the other closed G-orbits.

In fact, if we denote byW0,W1,W2,W3,W12,W13,W23 the coordinates in P(C⊕
C3⊕

∧2 C3), then the fonctions f1 and f2 (defining the colors D1 and D2 of G/H)
correspond to the functions W23

W0
and W3

W0
respectively. Also, the G-stable divisor

X1 is defined by W0 = 0. Hence, we also deduce that σ(X1) is −α∨1 − α∨2 .
Combining all we said above, we can prove that the colored fan of X is the

following one.

2.6. G-equivariant morphisms betweenG/H-embeddings. TheG-equivariant
morphisms between spherical G-varieties are very well understood. We state here
the description of birational G-equivariant morphisms (ie between two embeddings
of the same spherical homogeneous space).

Note that if f : X −→ Y is a proper morphism between algebraic varieties
such that f∗(OX) = OY , and if G acts on X, by a result of Blanchard (see also
[BSU13, Prop. 4.2.1]), then there exists a unique action of G on Y such that f is
G-equivariant. In particular, it is not so restrictive to only consider G-equivariant
morphisms.

Proposition 2.16. Let G/H be a spherical homogeneous space.
Let (X,x), (Y, y) be two G/H-embeddings. Then, there exists a G-equivariant

morphism f : X −→ Y with f(x) = y if and only if for any colored cone (C,F) ∈
FX , there exists a colored cone (C′,F ′) ∈ FY such that C ⊂ C′ and F ⊂ F ′.

See examples of proper G-equivariant morphisms between G/H-embeddings in
Figure 2, with G/H as in Example 2.4.

2.7. Divisors, Cartier divisors. Let G/H be a spherical homogeneous space.
Let (X,x) be a G/H-embedding associated to the colored fan FX . Denote by

X1, . . . , Xm the irreducible G-stable divisors of X (m ≥ 0). For any i ∈ {1, . . . ,m},
we denote by xi the image by σ of the valuation associated to Xi. Recall that it is
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a primitive element of an edge of FX that has no color (ie contains no σ(D) with
D ∈ FX).

Proposition 2.17. (1) Any Weil divisor of X is linearly equivalent to a B-
stable divisor, ie of the form δ =

∑m
i=1 δiXi +

∑
D∈D δDD.

(2) Such a divisor is Cartier if and only if for any (C,F) ∈ FX there exists
χ ∈ M such that for any i ∈ {1, . . . ,m} such that xi ∈ C, 〈χ, xi〉 = δi and
for any D ∈ F , 〈χ, σ(D)〉 = δD.

Then any Cartier divisor δ =
∑m
i=1 δiXi +

∑
D∈D δDD of a complete spherical

variety X is associated to a unique piecewise linear function hδ on FX (well-defined
function on V), linear on each cone in FX , such that ∀i ∈ {1, . . . ,m}, hδ(xi) = δi
and ∀D ∈ FX , hδ(σ(D)) = δD. In that case, for any maximal cone C of FX (ie for
any maximal colored cone (C,F)), we denote by χC,δ the element of M associated
to the linear function defining hδ on C.
Definition 2.18. A piecewise linear function hδ on FX is convex if:

• for any maximal cone C of FX and any x ∈ NQ, we have hδ(x) ≥ 〈χC,δ, x〉;
• and for any D ∈ D\FX , hδ(σ(D)) ≤ δD.

We say that it is strictly convex if:

• for any maximal cone C of FX and any x ∈ NQ\C, we have hδ(x) > 〈χC,δ, x〉;
• and for any D ∈ D\FX , hδ(σ(D)) < δD.

Proposition 2.19. A Cartier divisor δ =
∑m
i=1 δiXi +

∑
D∈D δDD of a complete

spherical variety X is globally generated (respectively ample) if and only if hδ is
convex (respectively strictly convex).

Anticanonical divisors of spherical varieties are described in [Bri97, Propos-
tion 4.1] and in [Lun97, Section 3.6], by dividing the colors of G/H into three
types. The description of these three types was recently reconsider in [Kno14] and
in [GH15] in a simpler way by using that B-orbits of G/H correspond to H-orbits
in B\G. In the following theorem, we gather together their results that we will
need later.

For any simple root α of (G,B, T ), denote by Pα the minimal parabolic sub-
group of G containing B such that −α is a weight of the Lie algebra of Pα.

Let G/H be a spherical homogeneous space.
Denote by P the stabilizer in G of the open B-orbit of G/H (it is a parabolic

subgroup of G containing B), and denote by SP the set of simple roots α of
(G,B, T ) such that Pα 6⊂ P .

Theorem 2.20. With the notation above, let D ∈ D. Choose a simple root α of
(G,B, T ), such that Pα ·D 6= D (in particular, α ∈ SP ).

Recall that the spherical roots of G/H are the primitive elements of −V∨. Then
one and only one of the following case occurs:

(a) α is a spherical root of G/H;
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(2a) 2α is a spherical root of G/H;

(b) neither α nor 2α is a spherical root of G/H.

Moreover, the case occurring does not depend on the choice of α. Then, we say
that D is of type (a), (2a) and (b) respectively.

Denote by α∨M the restriction to M of the coroot α∨; it is an element of N .
Then, the images σ(D) of D in NQ satisfy, respectively in each case:

(a) 〈α, σ(D)〉 = 1;

(2a) σ(D) = 1
2α
∨
M , in particular 〈α, σ(D)〉 = 1;

(b) σ(D) = α∨M .

For any D ∈ D, we define an integer aD as follows: if D is of type (a) or (2a),
aD = 1; and if D is of type (b), aD = 〈

∑
α∈R+

P
α, α∨〉 (which is greater or equal

to 2), where R+
P is the set of positive roots with at least one non-zero coefficient

for a simple root of SP .

Let (X,x) be a G/H-embedding. Denote by DX the set of irreducible G-stable
divisors of X. Then, an anticanonical divisor of a G-spherical embedding (X,x)
associated to a colored fan FX is

−KX =
∑
D∈DX

D +
∑
D∈D

aDD.

Corollary 2.21. For any B-stable irreducible divisor D of X, the coefficient at-
tached to D in −KX is a positive integer. Moreover, if D is not G-stable and
aD = 1, then σ(D) is not in the valuation cone V.

Proof. If aD = 1, then D is of type (a) or (2a). In particular, α or 2α is in −V∨.
Hence, for any v ∈ V ⊂ N , we get 〈α, v〉 ≤ 0. But we also have that 〈α, σ(D)〉 = 1.
Thus σ(D) is not in V.

Remark 2.22. If σ(D) is not in V, aD is not necessary 1. For example, if G =
SL2× SL2 and H is the diagonal in G, then G/H has only one spherical root that
is the strongly orthogonal sum of the two simple roots; in particular, the unique
B-stable divisor D of G/H is of type (b) and an easy computation gives aD = 2.

Example 2.23. We still consider the horospherical homogeneous space G/H of
the previous examples. Since the valuation cone of G/H is NQ, the cone −V∨ is
reduced to 0. Then G/H has no spherical root and all colors of G/H is of type
(b).

In that case, P = B, SP is the set {α1, α2} of simple roots of (G,B, T ) and R+
P

is the set of positive roots of (G,B, T ). In particular for any i ∈ {1, 2}, aDi = 2.
If X is the G/H-embedding defined in Example 2.4, then −KX = X1 + 2D1 +

2D2.
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In [GH15, Section 6], there are more examples of spherical homogeneous spaces
with their spherical data: SL2 /T , which admits two colors of type (a), where T is
a maximal torus; or SL2 /N , which admits one color of type (2a), where N is the
normalizer of a maximal torus; etc.

3. Smooth, locally factorial and Q-factorial varieties

Definition 3.1. A variety X is locally factorial if all Weil divisors of X are Cartier.
A variety X is Q-factorial if all Weil divisors of X are Q-Cartier.

The smoothness of spherical varieties is the type of singularities that is the
most complicated to characterize for spherical varieties. For toric varieties, it is
not difficult and well-known because any locally factorial toric variety is smooth
(see for example [Ful93]). For horospherical varieties, there is a more complicated
criterion, simultaneously obtained in [Pas06] and [Tim11], which mixes the combi-
natorial aspects of colored fans and root systems. For general spherical varieties,
a smoothness criterion was first given in [Bri91], and a more practical one was
recently given in [Gag15]. And if we admit a conjecture (satisfied by horospherical
varieties and symmetric varieties), then we get a very simple smoothness criterion
[GH17]. Moreover, there is another smooth criterion for horospherical varieties in
[BM13], which is expected to hold also for arbitrary spherical varieties.

In this paper, we will not write these smoothness criteria, but we have to
note that the main tool of their proofs is the local structure theorem of spherical
varieties [BP87, Proposition 3.4]. This tool easily permits to prove the following
useful (and well-known) result.

Proposition 3.2. Let X be a locally factorial spherical variety such that FX is
empty. Then X is smooth.

Proof. LetG/H be a spherical homogeneous space, and (X,x) be aG/H-embedding.
Recall that P is the stabilizer in G of the open B-orbit of G/H.

We apply the local structure theorem when FX is empty and we get that a P -
stable open set U of X is isomorphic to Ru(P )×Z, where Ru(P ) is the unipotent
radical of P and Z is a toric variety under the action of the neutral component
of a Levi of P . Moreover, this open set U equals X\

⋃
D∈DD (where D is the

closure of D in X). If FX is empty, then U intersects every closed G-orbit. If X
is locally factorial, then Z is a locally factorial toric variety and so Z is smooth.
We conclude that, if X is locally factorial with FX empty, X is smooth along all
its closed G-orbits. Hence X is smooth.

We now write and prove locally factorial and Q-factorial criteria.
Using the criterion of Cartier divisors of spherical varieties (Proposition 2.17),

we get the following result.

Proposition 3.3. Let X be a spherical variety associated to a colored fan FX .
Then X is locally factorial (respectively Q-factorial) if and only if for any (C,F) ∈
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FX , the colors of F have distinct images in NQ and there exists a basis (u1, . . . , uk)∪
(σ(D))D∈F of the lattice N (respectively of the vector space NQ) such that C is
generated by the family (u1, . . . , uk′)∪ (σ(D))D∈F (where k′ ≤ k are non-negative
integers).

Proof. The “if” part is quite easy, so we prove only the “only if” part.
Suppose that X is Q-factorial. Let (C,F) ∈ FX , and D1, D2 be two colors in

F . The Weil divisor δ = D1 is Q-Cartier, so that there exists χC,δ ∈ MQ such
that 〈χC,δ, σ(D1)〉 = 1 and 〈χC,δ, σ(D2)〉 = 0. In particular, σ(D1) 6= σ(D2).
Now, denote by u1, . . . , uk′ the primitive elements of the edges of C that are not
generated by some σ(D) with D ∈ F . We can suppose that u1, . . . , uk′ correspond
to the G-stable irreducible divisors X1, . . . , Xk′ respectively.

For any i ∈ {1, . . . , k′}, Xi is Q-Cartier, so there exists χC,Xi ∈ MQ such that
〈χC,Xi , ui〉 = 1, 〈χC,Xi , uj〉 = 0, for any j ∈ {1, . . . , k′}\{i}, and 〈χC,Xi , σ(D)〉 = 0,
for any D ∈ F . Similarly, for any D′ ∈ F , there exists χC,D′ ∈ MQ such that
〈χC,D′ , σ(D′)〉 = 1, 〈χC,D′ , uj〉 = 0, for any j ∈ {1, . . . , k′}, and 〈χC,D′ , σ(D)〉 = 0,
for any D ∈ F\{D′}.

Let b1, . . . , bk′ and, for any D ∈ F , bD be rational numbers such that b1u1 +
· · ·+ bk′uk′ +

∑
D∈F bDσ(D) = 0 (*). Applying χC,Xi for i ∈ {1, . . . , k′} and χC,D′

for D′ ∈ F to (*), we get that b1 = · · · = bk′ = 0 and bD = 0 for any D ∈ F .
The family (u1, . . . , uk′) ∪ (σ(D))D∈F is linearly independent (and generates C),
in particular we can complete it to get a basis (u1, . . . , uk) ∪ (σ(D))D∈F of NQ.

Suppose moreover that X is locally factorial. Then, we can choose the elements
χC,Xi for i ∈ {1, . . . , k′}, and χC,D′ for D′ ∈ F , in the lattice M . With the same
proof as above, we can prove that the family (χC,X1

, . . . , χC,Xk′ ) ∪ (χC,D)D∈F ) is
linearly independent. Also, for any element u in the intersection of N with the Q-
vector space generated by (u1, . . . , uk′) ∪ (σ(D))D∈F , we have u = 〈χC,X1

, u〉u1 +
· · ·+ 〈χC,Xk′ , u〉uk′ +

∑
D∈F 〈χC,D, u〉 and then u is in the sublattice generated by

(χC,X1 , . . . , χC,Xk′ ) ∪ (χC,D)D∈F . We conclude, by Lemma 3.4, that we can find
uk′+1, . . . , uk in N such that (u1, . . . , uk) ∪ (σ(D))D∈F is a basis of N .

A particular case of a classical theorem on free modules over a principal rings
[Lan02, III, Theorem 7.8] gives the following result.

Lemma 3.4. Let L be a lattice. Let E be a linearly independent family of elements
of L. Denote by L′ the sublattice generated by E and suppose that L′ equals the
intersection of L with the Q-vector space generated by E.

Then we can complete E into a basis of L.

Remark 3.5. A consequence of Propositions 2.16, 3.2 and 3.3 is that, for any
spherical variety X, a G-equivariant resolution f : V −→ X is given by erasing all
colors in FX and by sufficiently subdividing the cones in FX . (Such a subdivision
exists for example by [Cox00, Theorem 1.5].)

Moreover, the exceptional locus of f is G-stable. But, still by Propositions 3.2
and 3.3, G-stable irreducible subvarieties of V are smooth. Then, by blowing-up
the irreducible components of the exceptional locus of f of codimension at least 2,
we obtain a G-equivariant resolution f̃ : Ṽ −→ X such that the exceptional
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locus of f̃ is of pure codimension one. Remark also that, since FṼ is empty, the

exceptional divisors of Ṽ , which are G-stable, are smooth.
By the local structure theorem (already used in Proposition 3.2), we can also

prove that the exceptional locus of f̃ is a simple normal crossing divisor.

4. Gorenstein and Q-Gorenstein varieties

Definition 4.1. A normal variety X is Gorenstein (respectively Q-Gorenstein) if
the anticanonical divisor −KX is Cartier (respectively Q-Cartier).

The criterion of these types of singularities for spherical varieties is an easy con-
sequence of the criterion of Cartier divisors of spherical varieties (Proposition 2.17)
and the description of anticanonical divisor (Theorem 2.20).

Proposition 4.2. Let G/H be a spherical homogeneous space. For any color
D ∈ D, we define aD as in Section 2.7. Let (X,x) be a G/H-embedding associated
to a colored fan FX . Then X is Gorenstein (respectively Q-Gorenstein) if and only
if for any (C,F) ∈ FX , there exists mC ∈ M (respectively mC ∈ MQ) such that,
for any primitive element x of an edge of C that is not generated by some σ(D)
with D ∈ D, 〈mC , x〉 = 1, and for any D ∈ F , 〈mC , σ(D)〉 = aD.

5. (log) terminal and canonical singularities

Definition 5.1. Let X be a normal Q-Gorenstein variety. Let f : V −→ X be
a resolution of X (ie f is a proper birational morphism and V is smooth). Then
KV − f∗(KX) =

∑
i∈I ciEi where {Ei | i ∈ I} is the set of exceptional divisors

of f .
We say that X has

• canonical singularities if, for any i ∈ I, ci ≥ 0;

• terminal singularities if, for any i ∈ I, ci > 0.

Note that the definition does not depend on the choice of the resolution. More-
over, if X is spherical, recall that, by Remark 3.5, we can construct a resolution by
deleting the colors of X and by taking subdivision of the cones of FX . Then, still
with the criterion of Cartier divisors of spherical varieties, we get the following
characterizations of canonical and terminal singularities.

Proposition 5.2. Let G/H be a spherical homogeneous space. Let (X,x) be a
Q-Gorenstein G/H-embedding associated to a colored fan FX .

For any colored cone (C,F) of FX , denote by hC the linear function such that
for any D ∈ F , hC(σ(D)) = aD and, for any primitive element u of an edge of C
that is not generated by some σ(D) with D ∈ F , hC(u) = 1.

• X has canonical singularities if and only if for any colored cone (C,F) of
FX , for any x ∈ C ∩N ∩ V, hC(x) ≥ 1.
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• X has terminal singularities if and only if for any colored cone (C,F) of FX ,
for any x ∈ C ∩N ∩ V, hC(x) ≤ 1 implies that x is the primitive element of
an edge of C that is not generated by some σ(D) with D ∈ F (ie x = xi with
our notation).

We begin by proving the following result.

Lemma 5.3. Let G/H be a spherical homogeneous space. Let (X,x) and (V, v) be
two G/H-embeddings respectively associated to colored fans FX and FV . Suppose
that there exists a G-equivariant dominant morphism f : V −→ X. And let δ be
a Cartier divisor of X.

Recall that δ is associated to a piecewise linear function hδ on FX . Then, for
any colored cone (C,F) of FX , we denote by hC,δ the restriction of hδ on (C,F).
Moreover, there exists an element χC,δ of M such that hC,δ is the restriction of the
linear form χC,δ.

Let E be an exceptional divisor of f . Since f is birational and G-equivariant,
it is G-stable.

Then, for any (C,F) in FX such that σ(E) ∈ C, the coefficient attached to E
in f∗(δ) is hC,δ(σ(E)).

Proof of Lemma 5.3. To describe f∗(δ) we need to look deeper at the Cartier
criterion.

Since δ is a B-stable Cartier divisor of X, O(δ) is given by (UC , f−χC,δ), where
(C,F) runs through the set of maximal colored cones in FX , where UC is the open
set of X associated to the colored cone (C,F) and f−χC,δ is a non-zero rational
function on X associated to the weight −χC,δ (unique up to a scalar). Moreover,
for any maximal colored cones (C,F) in FX , div(f−χC,δ) equals −δ on the open set
UC . Then f∗O(δ) is given by (f−1(UC), f−χC,δ ◦ f).

Now, we remark that the map from C(X) to C(V ) that sends g to g ◦ f is a G-
equivariant isomorphism, so that f−χC,δ ◦ f is a rational function on V associated
to the weight −χC,δ. And we also notice that f−1(UC) is the union of the open set
of V associated to the colored cones (C′,F ′) of FV such that C′ ⊂ C (and F ′ ⊂ F).
Then, for any irreducible G-stable divisor E of V , the coefficient attached to E in
f∗(δ) is 〈χC,δ, σ(E)〉 for any maximal (C,F) ∈ FX such that σ(E) ∈ C.

Hence, for any (C,F) ∈ FX such that σ(E) ∈ C, the coefficient attached to E
in f∗(δ) is hC,δ(σ(E)).

Proof of Proposition 5.2. Let f : V −→ X be a G-equivariant resolution of X.
We can apply Lemma 5.3 to the Cartier divisor δ = −kKX for a large enough
positive integer k. In that case, for any (C,F) ∈ FX , hC,δ = khC . Then, for any
i ∈ I and for any (C,F) ∈ FX such that σ(Ei) ∈ C, the coefficient attached to Ei
in k(KV − f∗(KX)) is khC(σ(E))− k, so that the coefficient ci attached to Ei in
KV − f∗(KX) is hC(σ(Ei))− 1.

• Suppose that X has canonical singularities. Let (C,F) ∈ FX and x ∈ C ∩
N∩V. We can suppose that x is primitive in N . By Remark 3.5, there exists
a resolution V of X such that x is the primitive element of an edge without
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color of the colored fan of V . Then x is the image by σ of an exceptional
(G-stable and irreducible) divisor Ei of V . Since ci ≥ 0 and ci = hC(x)− 1,
we get hC(x) ≥ 1.

The “if” part proof works with the same arguments.

• The proof is almost the same as above with “>” instead of “≥”.

Definition 5.4. Let X be a normal variety and let D be an effective Q-divisor
such that KX +D is Q-Cartier. The pair (X,D) is said to be klt (Kawamata log
terminal) if for any resolution f : V −→ X of X such that KV = f∗(KX +D) +∑
i∈I ciEi, we have ci > −1 for any i ∈ I.
We say that X has log terminal singularities if X is Q-Gorenstein and (X, 0)

is klt.

Remark 5.5. (1) In fact, it is enough to check the above property for one log-
resolution to say that a pair (X,D) is klt.

(2) The condition “ci > −1 for any i ∈ I” can be replaced by: bDc = 0 and for
any i ∈ I such that Ei is exceptional for f , ci > −1.

Still with the criterion of Cartier divisors of spherical varieties (Proposition 2.17),
we get the following result.

Proposition 5.6. [AB04] Let X be a spherical variety. Then X has log terminal
singularities.

In fact, in [AB04], V. Alexeev and M. Brion proved that, if X is a spherical
G-variety and D be an effective Q-divisor of X such that D + KX is Q-Cartier,
bDc = 0 and D = DG + DB where DG is G-stable and DB is stable under the
action of a Borel subgroup B of G, then (X,DG + D′B) has klt singularities for
general D′B in the linear system |DB |.

We can give a short proof of the proposition.

Proof. Let f : V −→ X be G-equivariant log-resolution of (X, 0), ie such that the
exceptional locus of f is a simple normal crossing divisor (see Remark 3.5). With
the same arguments as in the first part of the proof of Proposition 5.2, we can
prove that, for any exceptional divisor Ei of f , we have ci = hC,δ(σ(Ei))−1 where
σ(Ei) ∈ C and δ = −KX .

By Proposition 2.20, we notice that hC,δ(x) > 0 for any x ∈ C\{0}. In partic-
ular hC,δ(σ(Ei)) > 0 and then ci > −1.

To complete what we know on klt singularities of spherical varieties, we note
that the author prove in [Pas16] the following result, by using Bott-Samelson
resolutions of flag varieties.

Theorem 5.7. Let X be a horospherical variety and let D be an effective Q-divisor
such that KX +D is Q-Cartier. The pair (X,D) is klt if and only if bDc = 0.

The author does not know if this result could be generalized to spherical vari-
eties.
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6. Conclusion and example

To complete the natural connections between these singularities we can also state
the following result.

Proposition 6.1. Any locally factorial spherical variety has terminal singulari-
ties.

And any Gorenstein spherical variety has canonical singularities.

Remark 6.2. By [KM98, Corollary 5.24], any variety with rational and Goren-
stein singularities have canonical singularities. But, spherical varieties are rational,
then the second assertion of Proposition 6.1 is already known.

Remark 6.3. Remark 6.2 cannot be made for the first assertion of Proposition 6.1.
Indeed, C. Casagrande points the author the following example of a locally facto-
rial variety with canonical but not terminal singularities, which is the variety X ′

described in [JPR05, Table A.4, No.25] with r = 2, r′ = 1 and d = 6. It is con-
structed as follows. Let Y be a smooth cubic threefold in P4 and let S be a general
linear section of Y , then S is smooth cubic surface. Let C be a general smooth
curve in |(−KY )|S | and let φ : X −→ Y be the blow-up of C in Y , then −KX is
globally generated and the anticanonical morphism φ : X −→ X ′ contracts the
strict transform D of S by φ to a point. By construction, X ′ has canonical but not
terminal singularities, and is a Q-factorial Fano variety. Moreover, there exists a
curve C ′ in S such that −KS · C ′ = 1, then the strict transform C ′′ of C ′ by φ
satisfies −KX · C ′′ = 0 and we have D.C ′′ = −1. Hence, we deduce that X ′ is
locally factorial.

Proof. Fix a spherical homogeneous space G/H.
Let X be a locally factorial G/H-embedding and let f : V −→ X be a G-

equivariant resolution of X. Let Ei be an exceptional divisor of f . And let (C,F) ∈
FX such that σ(E) ∈ C. By Proposition 3.3, the elements of F have distinct images
in NQ and there exists a basis (u1, . . . , uk)∪ (σ(D))D∈F of the lattice N such that
C is generated by the family (u1, . . . , uk′) ∪ (σ(D))D∈F (where k′ ≤ k are non-

negative integers). In particular, σ(Ei) =
∑k′

j=1 λiui +
∑
D∈F λDσ(D), where the

λi’s and the λD’s are non-negative integers. Moreover, either at least two of these
integers are not zero, or only one λD is not zero, because σ(Ei) is a primitive
element different from the ui’s. In the second case, we must have σ(D) in V so
that, by Corollary 2.21, aD ≥ 2.

Hence, hC(σ(Ei)) =
∑k′

j=1 λi +
∑
D∈F λDaD is at least two. We conclude by

Proposition 5.2.

The proof of the second assertion is easier.
LetX be a GorensteinG/H-embedding and let f : V −→ X be aG-equivariant

resolution of X. Let Ei be an exceptional divisor of f . And let (C,F) ∈ FX
such that σ(Ei) ∈ C so that hC(σ(Ei)) is positive. Then, since X is Gorenstein,
hC(σ(Ei)) is a positive integer. Hence, ci = hC(σ(Ei))−1 is a non-negative integer.
It implies that X has canonical singularities.
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We can now conclude the paper by the following diagram and example.

Figure 1. Relations between the singularities considered in this paper

Smooth

Locally factorial

Q-factorial Gorenstein

Q-Gorenstein

terminal
singularities

canonical
singularities

log terminal
singularities

if with rational singularities

in particular if spherical

if spherical

if spherical

Example 6.4. We consider the horospherical homogeneous space G/H that we
already considered in section 2 (Examples 2.4, 2.7, 2.12, 2.15 and 2.23).

Then we give in Figure 2 a list a colored fans (corresponding to projective G/H-
embeddings), by pointing those who are smooth, locally factorial, Q-factorial or
not Q-factorial, Gorenstein, Q-Gorenstein or not Q-Gorenstein, with terminal or
canonical singularities, or only with log terminal singularities. When the variety
X is not Q-Gorenstein, we can also precise if there exists, or not, a Q-divisor D
such that the pair (X,D) is klt.

We only write the optimal singularities.
We also represent by arrows all G-equivariant morphisms between these G/H-

embeddings.
In this example, we see in particular that there exist horospherical varieties

with terminal singularities that are either not Gorenstein or not Q-factorial. It
means that we list all possible implications in Figure 1.
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