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Abstract

We describe the Minimal Model Program in the family of Q-Gorenstein projective horo-
spherical varieties, by studying a family of polytopes defined from the moment polytope of a
Cartier divisor of the variety we begin with. In particular, we generalize the results on MMP
for toric varieties due to M. Reid, and we complete the results on MMP for spherical varieties
due to M. Brion in the case of horospherical varieties.
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1 Introduction

In this paper, we work over the complex numbers.

The Minimal Model Program (MMP) takes an important place in birational algebraic geome-
try in order to get a birational classification of algebraic varieties. A lot of progress has been done
in the last three decades. We come back here to an original version of the MMP, summarized by
Figure 1 where H denote a family of Q-factorial varieties (see [Mat02] to have a good overview
of this theory). For any Q-Gorenstein variety X, we denote by N E(X) the nef cone of curves on
X, by Kx a canonical divisor of X and by NE(X)g, <o (resp. NE(X)xk,>0) the intersection of
the nef cone with the open half-space of curves negative (resp. positive) along the divisor Kx.

When H is the family of Q-factorial toric varieties, M. Reid proved in 1983 that the MMP
works [Rei83]. In particular, the MMP ends (there is no infinite series of flips). Note that, for
this family, the cone NE(X) is polyhedral generated by finitely many rays, and is very well-
understood. Note also that, since toric varieties are rational varieties, a minimal model is then
a point. Moreover, for Q-factorial toric varieties, the general fibers of Mori fibrations are toric
varieties given by a simplex (but not only weighted projective spaces as explained in [Mat02,
Remark 14.2.3]).

When H is the family of Q-factorial spherical G-varieties, for any connected reductive algebraic
group G, M. Brion proved in 1993 that the MMP works [Bri93]. For this family, the cone NE(X)
is still polyhedral generated by finitely many rays and described in [Bri93]. Note that spherical
varieties are also rational varieties, so that minimal models are still points here. Nevertheless, it
is very difficult to compute concretely NE(X) and Kx, so that the application of the MMP to
explicit examples of this family is laborious. This is why we reduce the study to horospherical
varieties, for which a canonical divisor is well-known, and that is also why we present another
approach that does not need the computation of N E(X). Unlike the toric case, the general fibers
of Mori fibrations for Q-factorial spherical GG-varieties are not known.

In this paper, we first consider the case where H is the family of Q-Gorenstein projective
horospherical G-varieties. The family of horospherical varieties is contained in the family of
spherical varieties and contains toric varieties. Using a different approach than the one used by
M. Reid or M. Brion, we obtain the main result of this paper.

Theorem 1. The MMP described by Figure 2 works if H is the family of Q-Gorenstein projective
horospherical G-varieties for any connected reductive algebraic group G. Moreover, for any X in



Figure 1: Original MMP for Q-factorial varieties
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H and for any choice of an ample Cartier divisor of X, we can explicitly describe each step of
this MMP until it ends.

Remark that the main difference with the original MMP is that a divisorial contraction can
give a flip. This comes from the fact that the varieties are here not necessarily Q-factorial.

We use here convex geometry, and in particular continuous transformations of moment poly-
topes. This is why we need to restrict to projective varieties. To illustrate Theorem 1, we give
two first examples, both from the same toric variety X. Note that the result of the MMP applied
to a variety X is not unique: for the original MMP, it depends on the choices of a ray in the
effective cone of all varieties appearing in the beginning of each loop of the program, and here
it depends on the choice of a Q-Cartier ample divisor of the variety X (only in the beginning of
the program). Choosing a Q-Cartier ample divisor of a projective toric variety is equivalent to
choosing its moment polytope (see Section 2.3). In the following examples, we assume that the
reader is familiar with the classification of toric varieties in terms of fans. We refer to [Ful93] or
[Oda88] for more details.

Example 1. In Q3 consider the simple polytope @ defined by the following inequalities, where
(z,y, z) are the coordinates of a point in Q3.

z > -1
—r—y—2z > =5
2 — z > =3
—2r —z > -3
2y — z > =3
-2y —z > —=3.

It is a pyramid whose top vertex is cut by a plane.

The edges of the fan Fx of the toric variety X associated to @ are z; := (0,0,1), zo :=
(—=1,-1,-2), z3:= (2,0,—1), x4 := (—2,0,-1), x5 := (0,2, —1) and x4 := (0,—2,—1). And the
maximal cones of Fx are the cones respectively generated by (z1,x3,x5), (21,23, %), (21,24, T5),
(x1,x4,26), (x2,23,25), (x2,23,26), (T2, T4,x5), (T2,24,x¢). (See Section 2.3, to have an expla-
nation of the correspondence between moment polytopes and fans.)

Note that X is Q-factorial, because @ is simple (and Fx is simplicial).

We consider the family of polytopes Q¢ defined by the following inequalities:

z > —1+4c¢€
—r—y—2z > —5-4¢
2r — z > —3+e€
—2xr —z > —3+¢€
2y — z > —3+4e€
-2y —=z > —3+e

Note that, for € > 0 and small enough, it is the moment polytope of D + eKx, where D is the
divisor of X whose moment polytope is ), and Kx is the canonical divisor.



Figure 2: MMP for Q-Gorenstein projective horospherical G-varieties
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For e € [0,1], all polytopes Q¢ have the same structure so that they all correspond to the
toric variety X. For any e € [1,2[, the polytopes Q¢ are pyramids. They all correspond to the
toric variety Y whose fan Fy is described by the cones respectively generated by (z1,xs,x5),
(x1,x3,%6), (x1,24,25), (x1,24,¢), (T3, 74,75, 26). Remark that the last cone is not simplicial,
so that Y is not Q-factorial. The fact that Y is Q-Gorenstein comes from the fact that z3, x4,
x5 and xg are in a common plane. Note also that x9 is not an edge of Fy-.

And for € = 2, the polytope Q€ is a point. Then the family (Qe)ee[og} reveals a divisorial
contraction ¢ : X — Y and a Mori fibration from Y to a point.

We illustrate this example in Figure 3.

Polytope Q€ for e =1

Polytope Q€ for e = 2

Polytope @

Figure 3: Evolution of Q€ in Example 1 (view from the top of the pyramid)

Before we give the second example, we can notice that, in Example 1, the divisorial contrac-
tion ¢ goes from a QQ-factorial variety to a not Q-factorial variety. It does not contradict the
results of M. Reid, because ¢ is not the contraction of a ray of NE(X) but of a 2-dimensional
face of NE(X). This gives a reason to begin with Q-Gorenstein varieties instead of Q-factorial
varieties. Fortunately, what occurs in Example 1 can be observed only in very particular cases
(see Theorem 2). Now, we consider a second example, with a more general divisor D.



Example 2. Let Q€ be the polytopes defined by the following inequalities,

z > —1+4c¢€
—r—y—2z > —5+4c¢
2r — z > —4+e
—2r — 2z > —4d+e
2y — 2 > —3+e€
—2y —z > —3+e

The simple polytope QU is still a pyramid whose top vertex is cut by a plane. It is the moment
polytope of a Q-Cartier ample divisor of the toric variety X of Example 1.

For e € [0, %[, all polytopes Q€ have the same structure so that they all correspond to the toric
variety X.

Now, for € = %, Q° corresponds to the fan whose maximal cones are the cones respec-
tively generated by (z1,zs,5), (1,3, ¢), (1,24, 25), (1,24, 26), (T2, 24, 75), (T2, 24,26) and
(9,3, 25,x6). The associated toric variety Y is not Q-factorial. In fact, it is even not Q-
Gorenstein (because x, x3, 5 and xg are not in a common plane).

For € €] %, %[, the polytope Q¢ is the moment polytope of a divisor of the toric variety X+ whose

fan has maximal cones respectively generated by (z1,z3,25), (1,23, 26), (21,24, 25), (1,24, T¢),
(9,24, 25), (x2,24,76), (T2, 75,76) and (x3,75,76). The variety X is clearly Q-factorial, and
defines a flip X — YV +— XT.
Now, for € € [%,2[, Q¢ is a simple polytope with 6 vertices and the moment polytope of a
divisor of the toric variety Z whose fan has maximal cones respectively generated by (z1,x3,z5),
(x1,x3,%6), (1,24, 75), (x1,24,7¢), (3,25, 26) and (x4, 5, 2¢). And we get a divisorial contrac-
tion from X to Z.

To finish, for € = 2, Q¢ is the interval whose extremities are (—3,0,1) and (3,0,1), corre-
sponding to the toric variety P'. It gives a Mori fibration from Z to the projective line.

We illustrate this example in Figure 4.

Moreover, the general fiber of the Mori fibration is the toric variety associated to the polytope
in Q? defined by the inequalities z > —1, 2y — 2z > —3 and —2y — 2z > —3. Its fan is isomorphic to
the complete fan in Q? whose edges are (0,1), (—2,1) and (=2, —1). It is the weight projective
plane (1,1, 2).

Example 2 raises a natural question: can we recover the original MMP for Q-factorial projec-
tive horospherical varieties, by choosing a good divisor D? The answer is yes and given in the
following result.

Theorem 2. Suppose that X is Q-factorial. Then, by taking a general divisor D on X, we have
that

e at any loops of the MMP described in Figure 2 (until it ends), the morphisms ¢ and ¢* are
contractions of rays of NE(X) and NE(X™T);

e the MMP described in Figure 2 still works by replacing Q-Gorenstein singularities with
Q-factorial ones everywhere;



Polytope Q€ for € = %

Polytope Q

Polytope Q€ for e = 2
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Figure 4: Evolution of Q¢ in Example 2 (view from the top of the pyramid)

e the general fibers of Mori fibrations are projective Q-factorial horospherical varieties with
Picard number 1 (whose moment polytopes are simplexes intersecting all walls of a dominant
chamber along facets).

Remark 1. If X is smooth and D general, the general fibers of Mori fibrations are projective
smooth horospherical varieties with Picard number 1. These varieties have been classified in
[Pas09], in particular we get flag varieties and some two-orbit varieties. Hence, the general fibers
of smooth Mori fibrations are not only projective spaces as in the toric case.

The paper is organized as follows.
In Section 2, we recall the theory of horospherical varieties, we state the correspondence
between polarized horospherical varieties and moment polytopes, we rewrite the existence criterion



of an equivariant morphism between two horospherical varieties in terms of polytopes, and we
describe the curves on horospherical varieties using moment polytopes.

In Section 3, we study particular (linear) one-parameter families of polytopes in Q™ and we
define some equivalence relations in these families.

In Section 4, we prove Theorems 1 and 2, by using the previous two sections. In particular,
we construct a one-parameter family of moment polytopes whose equivalence classes describe all
loops of the MMP given in Figure 2.

In Section 5, we give five examples to illustrate what can happen in the MMP for horospherical
(and not toric) varieties. And we describe completely the process for any rank 1 projective
horospherical variety.

2 Horospherical varieties and polytopes

2.1 Notation and horospherical embedding theory

We begin by recalling briefly the Luna-Vust theory of horospherical embeddings and by setting
the notation used in the rest of the paper. For more details on horospherical varieties, we refer
the reader to [Pas08], and for basic results on Luna-Vust theory of spherical embeddings, we refer
to [Kno91].

We fix a connected reductive algebraic group G.

Definition 1. A closed subgroup H of G is said to be horospherical if it contains the unipotent
radical U of a Borel subgroup B of G.

We fix a maximal torus T of B. Then we denote by S the set of simple roots of (G, B, T).
Also denote by R the subset of S of simple roots of P. Let X(T) (respectively X(T')*) be the
lattice of characters of T' (respectively the set of dominant characters). Similarly, we define X (P)
and X(P)" = X(P) N X(T)*. Note that the lattice X(P) (and the dominant chamber X (P)™")
is generated by the fundamental weights w, with a € S\R and the weights of the center of G.

Proposition 3. (/Pas08, Prop. and Rem. 2.2]) Let H be a closed subgroup of G. The following
assertions are equivalent:

1. the subgroup H is horospherical;

2. there exists a parabolic subgroup P containing H such that the map G/H — G/P is a
torus fibration;

3. there exists a parabolic subgroup P containing H such that H is the kernel of finitely many
characters of P.

If the above assertions hold, then the parabolic subgroup P appearing in 2 and 3 is the normalizer
Ng(H) of H in G and contains a Borel subgroup B whose unipotent radical U is contained in H.



We denote by M the sublattice of X (P) consisting of characters of P vanishing on H. The
rank of M is called the rank of G/H and denoted by n. Let N := Homgz (M, Z).

For any free lattice L, we denote by Lg the Q-vector space L ®z Q.

For any simple root o € S\ R, the restriction of the coroot "V to M is a point of N, which we
denote by ay),. For any a € S\R, we define

Wap={me X(P)g | (m,a’)=0}.

Note that this hyperplane corresponds to the wall of the dominant chamber of the characters of
P.

Definition 2. A G/H-embedding is a couple (X, ), where X is a normal algebraic G-variety
and z a point of X such that G -z is open in X and isomorphic to G/H.

By abuse of notation, we will forget the point = and consider that a G/H-embedding is just
a normal G-variety X with an open G-orbit isomorphic to G/H.
Similarly to toric varieties, G/H-embeddings are classified by colored fans in Ng.

Definition 3. 1. A colored cone of Ng is an couple (C,F) where C is a convex cone of Ng
and F is a set of colors (called the set of colors of the colored cone), such that

(i) C is generated by finitely many elements of N and contains {a}, | a € F},

(i) C does not contain any line and F does not contain any « such that ay, is zero.

2. A colored face of a colored cone (C,F) is a couple (C’', F') such that C’ is a face of C and F’
is the set of o € F satisfying ay, € C'. A colored fan is a finite set F of colored cones such
that

(i) any colored face of a colored cone of F is in F,

(ii) and any element of Ng is in the interior of at most one colored cone of F.

The main result of Luna-Vust Theory of spherical embeddings is the following classification
result (see for example [Kno91]). For horospherical varieties, we will later in Section 2.2 rewrite
this result in terms of polytopes and describe explicitly the correspondence.

Theorem 4. There is an explicit one-to-one correspondence between colored fans and isomorphic
classes of G /H -embeddings.

Complete G/ H -embeddings correspond to complete fans i.e. to fans such that Ng is the union
of its colored cones.

If G = (C*)" and H = {1}, we recover the well-known classification of toric varieties.

If X is a G/H-embedding, we denote by Fx the colored fan of X in Ng and we denote by
Fx the subset U rer, F of S\R, which we call the set of colors of X.

A consequence of Theorem 4 is the following description of G-orbits of G/H-embeddings.

Proposition 5. The set of G-orbits of a G/H-embedding X is naturally in bijection with the set
of colored cones of Fx (reversing usual orders). In particular, the G-stable irreducible divisors
correspond to the colored edges of Fx of the form (C, o).
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We denote by X7, ..., X, the G-stable irreducible divisors of a G/H-embedding X. And for
any i € {1,...,r}, we denote by x; the primitive element in N of the colored edge associated to
X;.

2.2 Divisors of G/H-embeddings and moment polytopes

In this section, we recall the characterization of Cartier, Q-Cartier and ample divisors of horo-
spherical varieties due to M. Brion in the more general case of spherical varieties ([Bri89]). This
permits to define a polytope associated to a divisor of a horospherical variety. And we also give
some properties of this polytope.

First, we describe the B-stable irreducible divisors of a G/H-embedding X. The G-stable
divisors X1i,..., X, are already defined. And the other ones are the closures in X of B-stable
irreducible divisors of G/H, which are the inverse images by the torus fibration G/H — G/P
of the Schubert divisors of the flag variety G/P. Recall that the Schubert divisors of G/P are
indexed by the subset of simple roots S\ R and of the form Bwgs,P/P, where wy is the longest
element in the Weyl group of (G,T) and s, is the simple reflection associated to a simple root .
Hence the B-stable irreducible divisors of G/H are of the form Bwys,P/H, we denote them by
D, for any a € S\R.

Theorem 6. ([Bri89, Section 3.3]) Let G/H be a horospherical homogeneous space. Let X be
a G/H-embbeding. Then every divisor of X is equivalent to a linear combinaison of Xi,..., X,
and Dy with o € S\R. Now, let D =", a;X; + ZaeS\R aa Dy be a Q-divisor of X.

1. D is Q-Cartier if and only if there exists a piecewise linear function hp, linear on each
colored cone of Fx, such that for any i € {1,...,7}, hp(x;) = a; and for any o € Fx,
hp (o)) = aq.

2. Suppose that D is a divisor (i.e. ay,...,a, and the ay with « € S\R are in Z). Then D is
Cartier if moreover, for any colored cone (C,F) of Fx, the linear function (hp)c, can be
define as an element of M (instead of Mg for Q-Cartier divisors).

3. Suppose that D is Q-Cartier. Then D is ample if and only if the piecewise linear function
hp is strictly convex and for any o € (S\R)\Fx, we have hp(a);) < aq.

4. Suppose that D is Cartier. Let Qp be the polytope in Mg defined by the following inequal-
ities, where x € Mg: for any colored cone (C,F) of Fx, (hp) 4+ x > 0 on C, and for any
a € (S\R)\Fx, x(a);) + an > 0. Note that here the weight of the canonical section of D
is V0 1= > acs\R %a@a. Then the G-module HO(X, D) is the direct sum, with multiplicity
one, of the irreducible G-modules of highest weights x 4+ v° with x in Qp N M.

In all the paper, a divisor of a horospherical variety is always supposed to be B-stable, i.e. of
the form 2;21 a; X+ acS\R aaDy. We can now easily prove the following properties.

Corollary 7. Let X be a projective G/H-embedding and D = ;| a; X; + ZaES\R aa Dy be a
Q-divisor of X. Suppose that D is Q-Cartier and ample.
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1. The polytope Qp defined in Theorem 6 is of mazimal dimension in Mg and we have

Qp={me Mg | (m,x;) > —a;, Vi € {1,...,r} and (m,a);) > —aq, Yo € Fx}.

2. Let ¥ = ZaeS\R aa@qo. The polytope Qp = v° + Qp is contained in the dominant
chamber X (P)* of X(P) and it is not contained in any wall Wy, p, for o € S\R. Moreover,
Qp NWa,p # 0 if and only if « € Fx.

3. Let (C,F) be a maximal colored cone of Fx, then the element v° — (hp)|c of Mg is a vertex
of Qp. In particular, if D is Cartier, then Qp is a lattice polytope (i.e. has its vertices in
0
v+ M).

4. Conversely, let v be a vertex of Qp. We define C, to be the cone of Ng generated by inward-
pointing normal vectors of the facets of Qp containing v. And we set F, = {a € S\R | v €
Weap}. Then (Cy, Fy) is a mazimal colored cone of Fx.

5. With a natural construction, similar to the previous two items, we obtain a bijection between
faces of Qp and colored cones of the colored fan Fx.

6. The divisor D can be computed from the pair (Q,Q) as follows: the coefficients an with
a € S\R are given by the translation vector in X (P)T that maps Q to Q; and for any
i€ {l,...,r}, the coefficient a; is given by —(v;, z;) for any element v; € Mg in the facet
of Q for which x; is an inward-pointing normal vector.

Since we could not find precise references for Corollary 7, we give here a proof for the conve-
nience of the reader.

Proof. By the definition of hp and 4th item of Theorem 6,
Qp ={me Mg | (m,2;) > —a;, Vi € {1,...,r} and (m,a);) > —aqa, Yo € S\R}.

But since D is ample, for any « in (S\R)\Fx, we have hp(a),;) < an. Then if m € Mgy satisfies
m + hp > 0, we have (m,a") > —hp(ay;) > —aq. This means that the inequalities with
a € (S\R)\Fx are redundant, i.e.

Qp ={m e Mg | (m,2;) > —a;, Vi € {1,...,7r} and (m,a);) > —aqa, Yo € Fx} = {m € Mg | m+hp > 0}.

Moreover, since D is ample, for some big enough k € Z, C(X) is generated by quotients of two
sections in H°(X, kD). But, up to homothetie, the highest weight vectors of C(X) = C(G/H)
are in bijection with M ([Pas08, Section 2]), and the highest weight vectors of H°(X, kD) are the
points in kv + (k‘@ p N M). This implies that the lattice points of kQp generates M, and then
that Qp is of maximal dimension in My.

We have already seen that for any m € Qp and any a € S\R, we have (m,ay,) > —a,. But
by definition, (v°,a") = a,. We deduce easily that @p C X (P). By the first paragraph of the
proof, we also deduce that, if a & Fx, v° + m cannot be on the wall Wa.p.
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Let a € S\R. By the latter paragraph, if @p is contained in the wall W, p, then o is in
Fx and v + M is contained in We, p. This implies that M is contained in W, p (because both
contain 0), i.e. that ay, = 0. This contradicts the fact that o € Fy, by Definition 3 (ii).

We already proved that Qp N W, p # () implies that o € Fx. Inversely, let o € Fx. Let
(C, F) be the maximal colored cone such that ay, € C. Set m := —(hp)|c € Mg (m is uniquely
defined because C is of maximal dimension). Then it satisfies (m, a),) = —a4. And, by convexity
of the piecewise linear function hp, we have hp +m > 0. In particular v +m is in Qp N Wea,p-
Note that, since hp is strictly convex, the set where hp + m vanishes is exactly C. Hence, since
C is of maximal dimension in Mg, we have

{m} ={m e Mg | (m,z;) = —a;, Va; € C and (m,ay;) = —aq, Yajy; € C with o € Fx},

and for any x; € C, (m,x;) > —a;, and for any a € Fx such that o), € C, (m,ay);) > —ae. In
particular, m is a vertex of Qp. It is easy to check that the colored cone (Cp,, F,) equals (C, F).

Now let v be a vertex of Qp. Then, there exists A C {z1,...,2,} and B C Fx such that
for all i € {1,...,7}, (v,a;) > —a; with equality if and only if z; € A and for all « € Fx,
(m, ;) > —a, with equality if and only if & € B. In particular C, is generated by the x; in
A and the a), with a € B, it contains no line and it is of maximal dimension. Moreover, the
restriction of hp to C, is linear (it equals —v). Hence, by strictly convexity of hp, there exists a
maximal colored cone (C, F) in Fx such that C, C C. We must have C,, = C because v is the same
vertex m as the one defined in the latter paragraph from (C, F). To prove that (C,,F,) = (C, F),
it is enough to recall that for any a € Fx, o € F if and only if o}, € C.

To generalize this to faces of Qp, we just remark that any face of a polytope is the convex hull
of the vertices that it contains, and any colored cone of a complete colored fan is the intersection
of the maximal colored cones that contain it. We leave the details to the reader.

In particular, the set of facets of Qp is in bijection with the colored edges of Fy. For the last
statement, let i € {1,...,7}, then x; corresponds to the facet Qp N {m € Mg | (m,x;) = —a;}.
And then a; is —(v;, z;) for any element v; € Mg in the facet of Qp O

The polytope Qp is called the moment polytope of (X, D) (or of D). And let us call the
polytope Qp the pseudo-moment polytope of (X, D) (or of D).

2.3 Correspondence between projective horospherical varieties and polytopes

In this section, we classify projective G/H-embeddings in terms of G/H-polytopes (defined below
in Definition 4), and we give an explicit construction of a G/H-embedding from a G /H-polytope.

Definition 4. Let Q be a polytope in X (P)& (not necessarily a lattice polytope). We say that
@ is a G/H-polytope, if its direction is Mg and if it is contained in no wall W, p with o € S\ R.

Let @ and Q" be two G/H-polytopes in X(P)&. Consider any polytopes @ and Q' in My
obtained by translations from @ and Q' respectively. We say that @ and Q' are equivalent
G/ H-polytopes if the following conditions are satisfied.

1. There exist an integer j and 2j affine half-spaces ’Hf, e ,’H;r and ’H’f, e ,’H’;r of Mg
(respectively delimited by the affine hyperplanes 1, ...,H; and H'q,...,H';) such that Q
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is the intersection of the HZTF, Q' is the intersection of the H/;

;,and for all i € {1,...,5},
H;" is the image of ;" by a translation.

2. With notation of the previous item, for all subset J of {1,...,j}, the intersections N;c ;H;NQ
and N;eyH'; N Q' have the same dimension.

3. Q and Q' intersect exactly the same walls W, p of X(P)* (with a € S\R).

Remark that this definition does not depend on the choice of Q and Q'. Using Corollary 7,
we now rewrite the classification result of Luna-Vust Theory (Theorem 4).

Proposition 8. The correspondence between moment polytopes and colored fans gives a bijection
between the set of equivalence classes of G/H -polytopes and (isomorphism classes of) projective
G/ H -embeddings.

Moreover, the set of G-orbits of a projective G/H -embedding is in bijection with the set of
faces of one of its moment polytope (preserving the respective orders).

For later use (in Section 4.6), we give an explicit description of the G/H-embedding associated
to a G/H-polytope. For any dominant weight y, we denote by V(x) the irreducible G-module
of highest weight y, and we fix a highest weight vector v, in V(x). The Borel subgroup of G
opposite to B is denoted by B~. In the dual G-module V ()" we pick a highest weight vector v% ,
under the action of B™, of weight wgyy. Recall that wq is the longest element of the Weyl group of
(G, T). Choosing a basis of T-eigen vectors of V(x), the vector v is the dual of a highest vector

of V(x).

Proposition 9. Let Q be a G/H-polytope. Let D be a divisor of the corresponding G/H -
embedding X such that Q = Qp. Suppose that D is Cartier and very ample. Then X is isomorphic
to the closure of the G-orbit G- [}, c (o4 aryng Ux] i P(ByeworanngV (X))-

Remark 2. If D is Cartier and only ample, then (n —1)D is very ample ([Pas06, Theorem 0.3]).
In particular, the assumptions of Proposition 9 are not really restrictive. Indeed, if D is Q-Cartier
and ample, then there exists a non-zero integer p such that pD is Cartier and very ample, and X
is isomorphic to the closure of G - [}, ¢ (01 10)0p@) Vi) 1 P(Bye oo ranmp@V (X))-
If D is not very ample (but still ample), the closure X' of G-[37, c(y01a1)n0) Ux] I P(SyewotanneV (X))
is not normal (the proof of this fact is left to the reader: use [Pas06, Lemma 5.1] and affine B~-
stable open sets of X').

Proof. Since D is very ample, the morphism

¢p: X — P(H°(X,D)Y)
x — s s(z)]

is a G-equivariant closed immersion.

Let z¢ := woH/H in X. Recall that H contains the maximal unipotent radical U, then xg is
fixed by the unipotent radical U~ of B~ (recall that B— = woBwy and U~ = woUwy). And then
¢p(xg) is also fixed by U~. But, in a simple G-module, the U-stable line is the line of highest
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weight vectors. Hence, ¢p(zp) is a sum of some highest weight vectors under the action of B~
of weights woy for x € (v + M) N Q. But, for any x € (v + M) N Q, the section v, does not
vanish on X and, since B - z¢ is open in X, we have vy (zg) # 0. By definition of ¢p, it implies
that ¢p(zo) = 3o, cwo4a)ng AxVy; Where the A\ € C* for any x € (v + M) N Q. Since the vy
can be chosen up to a non-zero scalar, we can assume that A, equals 1 for any x € (WO 4+ M)NQ.

We complete the proof by the following remark. O

Remark 3. The stabilizer in G of [3_, (.01 11)nq vy] is the subgroup H" defined as the intersec-
tion of the kernels of the characters —wgy of P, for y € M. It is not conjugated to H! We can
explain this as follows. In all the previous papers on horospherical varieties, in order to simplify
the notations, we hid the choice to take C(G/H) to be the direct sum of the G-modules V() with
X in M instead of the direct sum of their duals. In other words, we study the G/H"-embeddings
instead of the G/H-embeddings.

But G/H-embeddings are in bijection with G/H"-embeddings. Indeed, we can assume as
in [Pas08, Proof of Proposition 3.10] that G is a direct product of a torus 7" (isomorphic to
P/H) and a semi-simple group G’ (that we can also assume to be simply connected). Let 1) be
the (outer) automorphism of G, trivial on the torus 7”, corresponding to the automorphism of
the root system —wyp (see [Bou75, Chapter VIII Section 7.5] and [OV90, Section 1.2.10]). Then
(H) = H" and the 9(G)-modules V(x)" are the G-modules V().

In particular, the closure of G - [3_, ¢ (004 ar)npo) Ux] 1 P(@yepuosannpeV (X)) is the G/H-
embedding corresponding to the embedding defined as the closure of G - [er(pvo +M)NpQ) v%] in

P(@Xe(pvoJrM)meV(X)v)-

2.4 (G-equivariant morphisms and polytopes

The existence of G-equivariant morphisms between horospherical varieties can be characterized
in terms of colored fans [Kno91]. In this section, we rewrite this characterization in terms of
moment polytopes.

Let (X, D) be a polarized G/H-embedding (i.e. a G/H-embedding X with an ample Q-
Cartier divisor D on X), let (X', D’) be a polarized G/H'-embedding and denote by @ and @’
the corresponding moment polytopes respectively. (We denote all data corresponding to G/H'
and X’ with primes: H', P', R', M', N’,...). Also we denote by Q and Q' the pseudo-moment
polytopes.

A first necessary condition for the existence of a dominant G-equivariant morphism from X
to X', is the existence of a projection 7 from G/H to G/H'. In particular H' > H, P’ D P
and R’ D R. The projection 7 induces an injective morphism 7* from M’ to M and a surjective
morphism 7, from N to N’. We suppose that this necessary condition is satisfied in the rest of
the section and we identify M’ with 7*(M’).

Proposition 10. (F. Knop) There exists a dominant G-equivariant morphism from X to X' if
and only if, for any colored cone (C,F) of X, there exists a colored cone (C',F') of X' such that
7«(C) C C' and for any element o € F, either « € R’ or a € F.
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Moreover, if there exists a dominant G-equivariant morphism from X to X', let O be a G-orbit
in X and denote by (C,F) the associated colored cone of Fx. Then ¢(O) is the G-orbit in X'
associated to the minimal colored cone (C',F') of Fxr such that m.(C) C C'.

Using Proposition 10, a dominant G-equivariant morphism from X to X’ permits to define a
map from the set of colored edges in Fx to Fxs (by taking (C’, 7') minimal such that 7.(C) C ',
even ({0},0) if m.(C) = {0}). In order to rewrite Proposition 10 in terms of moment polytopes,
we need to define the equivalent of this map in terms of polytope, i.e. a map 2 from the set of
facets of Q to the set of faces of Q' (including Q" itself).

First, note a general fact on polytopes: if P is a polytope in Q", then for any affine half-space
H' delimited by an affine hyperplane H in Q", there exists a unique face I of P and a point
r € Q" such that F is defined by z + H (ie. F =P N (z+H) and P C v+ H'). Then, for
any facet F of Q, let H* be the affine half-space in Mg, delimited by an affine hyperplane H,
such that F = HNQ and Q ¢ HT. If HT N Mg # My, it is an affine half-space in Mg, and,
applying the above fact to P = Q', it gives a unique face F” of Q'. We set Y(F) = F'. And if
HE N Mg = Mg, we set (F) = Q.

To understand better what does the map 1, we give two examples in the family of toric
varieties.

Example 3. The first two polytopes correspond respectively to the blow-up of a point in P? and
P2. Then ¢([AB]) = [A'B'], ¥([BC]) = [B'C’], ¥([CD]) = [C"A’] and ([AD]) = A’. The last
two polytopes correspond respectively P? and P!. Then ¢([AB]) = [A’'B], ¥([BC]) = B’ and
P([AC]) = A",

B C

A B A B

C D c’ A A B

Figure 5: Polytopes in Q2

We can now characterize the existence of dominant G-equivariant morphisms.

Proposition 11. Under the above necessary condition, there exists a dominant G-equivariant
morphism from X to X', if and only if

1. for any set G of facets of Q, NpegF # O implies Npegh(F) # 0, and
2. for any a € S\R such that QN Wu p # 0 , we have Q' N Wy p # 0.

Remark that, in Proposition 11, we could replace Q by Q (by extension of the definition of
¥).
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In Example 3, we can check that there is a (C*)2-equivariant morphism from the blow-up of
a point in P2 to P2, but there is no morphism from P? to P! (because [AC] N [BC] = C and

Y([AC]) NP([BC]) = 0).

Proof. For the second condition, remark that if « € S\R is in R’, then @’ is contained in W, p.
And, if @« € S\R', Q' "Wy p # 0 is equivalent to Q' N Wy pr # 0 because Q' C X(P') and
Wa.pr = X(P')NW,,p. Recall also that QNW,, p # 0 is equivalent to a € Fx (and Q'MW pr # 0
is equivalent to o € Fxv). In particular the second item in Proposition 11 is equivalent to: for
any « € S\R, a € Fx implies o € Fy: or a« € S\R'.

Since X and X' are complete, we can rewrite Proposition 10. Denote by y; with i € {1,... k}
(resp. y, with i € {1,...,k’}) the primitive elements of the egdes of the colored fan of X (resp.
X'). For all j € {1,...,k}, let J; be the minimal subset of {1,..., &'} such that m.(y;) is in the
cone C'; generated by the y; with i € J; (it is never empty because X' is complete). We prove
now that there exists a dominant G-equivariant morphism from X to X’ if and only if:

e for all (colored) cone C of X, generated by the y; with j € Je, the cone generated by the y;
with i € Uje.J} is contained in a (colored) cone of X';

e and Fyx is contained in R' U Fx.

Indeed, let C be a cone of X, generated by the y; with j € Je. If there exists a cone C’ of X’
such that m,C C C’, then C’ contains all y; with j € Je. Then by minimality of J]’~, it also contains
the cones C'; with j € Jc and then the cone generated by the y; with i € Uje.Jj. Conversely, if
the cone generated by the y; with i € Uje . J; is contained in a cone C" of X', then it is obvious
that m(C) C C’. And, the condition on colors is the same in both cases, since for any colored
cone (C, F) of a colored fan of a G/H-embedding Y, F = {a € Fy | o), € C}.

Now, the proposition comes from the bijective correspondence between colored cones of X
(resp. X') and faces of @ (resp. Q'), the first paragraph of the proof, and the following fact: the
intersection of some facets of () is not empty if and only if the cone generated by the inward-
pointing normal vectors corresponding to these facets is included in a cone of Fx (and this latter
cone corresponds to the face defined as the intersection of these facets). O

Corollary 12. Suppose there exists a dominant G-equivariant morphism ¢ from X to X'. Let
O be the G-orbit in X associated to a face NpegF (where G is a set of facets). Then ¢(O) is the
G-orbit in X' associated to the face Npegh(F) of Q'.

Proof. We just rewrite, in terms of polytopes, the last statement of Proposition 10. U

2.5 Curves in horospherical varieties

We begin this section by collecting, in the following theorem, some results on curves in spherical
varieties due to M. Brion [Bri93]. We denote by N;(X) the group of numerical classes of 1-cycles
of the variety X. Recall that NE(X) is the convex cone in Nj(X) generated by effective 1-cycles.
We denote by N'(X) the group of numerical classes of Cartier divisors of X, it is the dual of
Ny (X).
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Theorem 13 (M. Brion). Let X be a complete spherical variety. Let'Y and Z be two distinct
closed G-orbits in X. Note that Y and Z are flag varieties, so that they have exactly one point
fixed by B.

1. There exists a B-stable curve C containing the B-fixed points of Y and Z if and only if the
two (mazimal) colored cones in the colored fan Fx corresponding to the two closed G-orbits
Y and Z intersect along a one-codimensional colored cone . And, in that case, C' is unique,
isomorphic to P', we denote it by Cy.

2. The space N1(X)q is generated by the classes of the curves Cy, with ji any one-codimensional
colored cone in Fx, and some classes [Cpy] with' Y any closed G-orbit of X and D any
irreducible B-stable divisor of X not containing Y.

3. Any class [Cp,y]| that is not in a ray generated by the class of a curve C,, is represented by
a (not unique in general) B-stable curve Cpy admitting the B-fized point of Y as unique
B-fixed point.

4. The cone NE(X) is generated by all the classes [Cy] and [Cp.y].

In the proof of these results, M. Brion also gives some formulas [Bri93, 3.2]. Here, we write
them in the case of horospherical varieties, but they are true for spherical varieties. Recall, that
any Q-Cartier divisor ¢ of a G/H-embedding X defines a piecewise linear function hs, linear on
each cone of Fx.

Lemma 14 (M. Brion). Let X' be a complete G/H-embedding and let 6 = 37,1 a;Xi+) " peq\ g @aDa
be a Cartier divisor of X.

Let p be a one-codimensional colored cone of Fx. Denote by py and p— the two mazximal
colored cone of Fx containing p. Let x,, € M be a primitive element of the line orthogonal to
(in Mg). Consider x, as a linear function on Ng and suppose that x,, is positive on pi4. Then
the intersection & - C, is the rational number such that

(Ps) 1y — (hs)ju = (0 Cp) X

(Note that (hs)|,, — (hs)|u_ and x, both vanish on p, so they are collinear.)

Let Y be a closed G-orbit of X and D, be an irreducible B-stable divisor of X that does not
contain 'Y (with « € S\R). Denote by (Cy,Fy) the mazimal cone of Fx associated to the G-orbit
Y. Let C be a curve in the class Cp,y. Then

§-C = aa — (hs)icy (ayy)-

(Note that, ay; is not in Cy by hypothesis, but (h5)|cy 1s linear so it can be extend to a unique
linear function of Ng, and by abuse of notation, we call them both (hs)c, )

Now, in the particular case of horospherical varieties, we complete this collection of results
by the following proposition that describes an explicit curve in all the classes of the form [Cp y].
Note that a homogeneous G-space has a B-fixed point if and only if it is complete (projective),
so that the B-fixed points of a complete G-variety are the (unique) B-fixed points of its closed
G-orbits. Recall that s, is the simple reflection associated to a simple root «, and wq is the
longest element of the Weyl group of (G, T).
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Proposition 15. 1. Let X be a complete horospherical variety. If a B-stable curve C' in X
contains a unique B-fived point y, then C is contained in the closed G-orbit Y := G -y. In
particular, it is a Schubert subvariety of Y.

2. For any closed G-orbit Y and any divisor D that does not contain Y, the class of [Cp, y]
is represented by the Schubert variety of Y given by the simple root o (i.e. Bsy -y, where y
is the B-fized point of Y ). We denote it by Cyy .

Proof. 1. Let C be a B-stable curve in X. Suppose that C' is not contained in Y. By replacing
X by the closure of the biggest G-orbit of X that intersects C, we can assume that C
intersects the open G-orbit G/H, which is at least of rank one. And then the intersection
C N G/H is an open set of C. Recall that G/H is a G-equivariant torus fibration over the
flag variety G/P. Then C N G/H is the fiber P/H of this fibration over P/P. Indeed,
the B-orbits of G/H are the inverse image of the Schubert cells of G/P. The (unique)
smallest one is P/H, but by hypothesis, P/H has positive dimension. Then, since CNG/H
is B-stable, it is P/H. Moreover P/H has to be one-dimensional.

We now prove that C has two B-fixed points. By the previous paragraph, P/H is one-
dimensional, i.e. X is of rank one. Then, there exists a P!-bundle X over G/P and a
G-equivariant birational morphism ¢ : X — X (X' is the toroidal variety over X, see
[Pas06, Example 1.13 (2)]). The closure of the P-orbit P/H in X is the fiber P! over P/P.
Then it has exactly two B-fixed points corresponding to the two C*-fixed points of the toric
variety P1. Moreover, the two closed G-orbits of X are send, by ¢, to the two closed G-orbits
of X respectively (here we use that X is horospherical of rank one). Then C' = ¢(C) has
also two B-fixed points (and is isomorphic to P!).

2. Let Y be a G-closed orbit of X and let a € S\R such that D, does not contain Y. Let
Cay = Bsq -y, where y is the B-fixed point of Y. Let D = >/, b;X; + ZﬁeS\R bsDg
be a Cartier divisor of X. We want to compute D - C, y. Since D is Cartier, there exists
an eigenvector fy (D) of B in the set of rational functions on X such that the support of
D—div(fy (D)) is in the union of irreducible B-stable divisors that do not contain Y. Denote
by xy (D) the weight of the eigenvector fy (D). For any divisor X; with ¢ € {1,...,7} such
that Y ¢ X;, we clearly have X; - C,y = 0 because Y and X; are disjoint. Hence

D-Coy = (D —div(fy(D)) - Cay = > (bg— (xv(D),B¥)Dg - Cay-
B,YZDg

We conclude, by Lemmas 14 and 16.
O

Lemma 16. Let Y be a G-closed orbit of X and let o, f € S\R such that D, and Dg do not
contain Y. Then Dg - Cyy = o3, where § is the Kronecker delta.

Proof. Denote by y the B-fixed point of Y. Remark that y is also fixed by P. By [Pas06, Lemma
2.8], there exists a unique G-equivariant morphism ¢ from the open G-stable set Xy := {z € X |
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G -z D Y} to the closed G-orbit Y. Note that y = ¢(H/H) because y is the only point of Y fixed
by U C H and, similarly, ¢ is the identity on Y.

Recall that Dg is the closure in X of the B-orbit BsgwoP/H. Then DgNY is contained in
(and then equals) the closure of ¢(BsgwoP/H) in Y, which is the Schubert variety Bsgwy -y of
Y. Moreover, since Dg does not contain Y, DgNY is a divisor of Y. Hence Dg - Cyy equals
the intersection number (Dg NY') - Cyy, which is 6,5 (see for example [Bri05, Section 3.1] for
intersections of dual Schubert varieties in a flag variety). O

With the correspondence between colored fans and moment polytopes, if X is a projective
horospherical variety and D is an ample Q-Cartier divisor of X, we denote by C), for any edge
p of @p, and by Cy, for any a € S\R and any vertex v not contained in W, p, the curves
defined above in terms of the colored fans (one-codimensional colored cones correspond to edges
of moment polytopes, and closed G-orbits correspond to maximal colored cones and then to
vertices of moment polytopes).

The following results is a direct consequence of Lemma 14.

Proposition 17. Let X be a projective horospherical variety and D an ample Q-Cartier divisor
of X.

Then, for any edge p of the moment polytope Qp, the intersection number D.C,, is the integral
length of u, i.e. the length of pu divided by the length of the primitive element in the direction of
L.

And for any o € S\R and for any vertex v of Qp not in the wall Wy p, we have D.C,, =
(v,aV).

3 One-parameter families of polytopes

In this section, we study some one-parameter families of polytopes. This section can be read
independently from the rest of the paper. Note that Corollary 28 is an essential tool in the proofs
of Theorems 1 and 2.

3.1 A first one-parameter family of polytopes: definitions and results

Let n and m be two positive integers. Consider three matrices A, B and C respectively in
Mx1(Q), Mypx1(Q) and Myyx,(Q). Then we define a first family of polyhedrons indexed by
€ € QQ as follows:

P :={reQ" | Ax > B+ eC}.

We do not exclude the case where some lines of A are zero. Note that P¢ can be empty (even
for all e € Q).

If there exists € € Q such that P€ is a (not empty) polytope (i.e. is bounded), then there is no
non-zero x € Q™ satisfying Az > 0. Inversely, if there exists ¢ € Q such that P is not bounded
then there exists a non-zero x € Q" satisfying Az > 0 (indeed, P¢ contains at least an affine
half-line and = can be taken to be a generator of the direction of this half-line).
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From now on, we suppose that there is no non-zero x € Q" satisfying Az > 0, so that all P¢
are polytopes (maybe empty).

Let Iy := {1,...,m}. For any matrix M and any i € Iy, we denote by M; the matrix
consisting of the line ¢ of M. And more generally, for any subset I of Iy we denote by M the
matrix consisting of the lines ¢ € I of M.

Let € € Q. Denote by H the hyperplane {z € Q" | A;x = B; + ¢C;}. For any I C Iy, denote
by Ff the face of P¢ defined by

Ff = ([\H5)n P~
el
Note that for any face F° of P¢ there exists a unique maximal I C Iy such that F° = F} (we
include the empty face and P¢ itself).

Let I C Iy. Define Q(},Io to be the set of € € Q such that F7 is not empty; define Q},Io to be
the set of € € Q such that, if I’ C Iy satisfies F§ = FJ,, then I' C I. In other words, € € Q%Io if
and only if there exists x € Q™ such that Ax > B+ eC, and € € 9}7 1, if and only if there exists
r € Q" such that Arx = By + €Cy and App\jx > Bp\1 + €Cpp\ ;-

To simplify notation, we often write 7 instead of {i}, for any i € I.

Remark that if € € Q(}), Iy’ the polytope P€ is of dimension n (i.e. has a non-empty interior).
And, for any i € Iy, if € € Qil’[o and A; # 0, Ff is a facet of P°.

Example 4. Consider the following matrices

0 -1 —4 3

1 0 1 -1

-1 1 -1 1
A= 10 , B = 0 and C' = 0 )

0 1 0 0

-1 0 -5 3

defining a family of polytopes (P€).cq in Q?. In Figure 6, we represent three of these polytopes
with the 6 hyperplanes corresponding to the 6 lines of the above matrices.
Then Ip = {1,2,3,4,5,6}.
For I = {2,3,5}, we have QY 1, = — o0, 1] and o 1, = — 00, 1.
For I = {2,3}, we have Q(},Io =] — 00,1] and Q},Io = (.
For I = {4,5}, we have Q(},Io = {1} and Q},Io = 0.
For I = {2,3,4,5}, we have Q9 1, = 11} and ol 5, =11}
We also have Q%,IO =] — OO?%[? Q%,Io =] — o0, 1], QZIS,IO =] - OO’%[? Qzll,lo :]17%[7 QL}),IO =0,
Qé,lo =] — 00,0[ and Q(%),Io =] — 00, 2].

If a subfamily of (P¢).cq is a family of G/H-polytopes (where G/H is a horospherical ho-
mogeneous space), then the equivalence of G/H-polytopes given in Definition 6 restricts to an
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Figure 6: P~ P? and Pio

equivalence £ on the subfamily of (P€).cq. In this section, we independently define an equiva-
lence & on a particular subfamily of (P€).cq. We will prove later that & = & in the case where
the subfamily of (P€).cq is a family of G/H-polytopes (see Proposition 29).

Let Ky be the subset of Iy consisting of indices of zero lines of A. Fix a subset K of I

s — Ol 1

containing Ko and define Q9 := Q@,Io N ﬂielo\K @ 1,
Definition 5. Let € and n both in Q9. We say that the polytopes P¢ and P are equivalent
if, for any I C Iy, € and n are either both in Q} 1, €ither both in Q\Q? I,» OF both in Q? Io\Q},Io‘
(In other words, F} and FI" are either both not empty faces with I maximal, either both empty,
or both not empty with I not maximal.)

Example 5. In Example 4, if K = {4,5,6} we have Qg% =] —o00,1[. And the equivalent classes
in the family (PE)€€Q7KVLGIS(C) correspond to the two intervals | — oo, 0] and ]0, 1] and the singelton {0}.

22



Moreover, 1 € Qé 1, and P! can be defined without the second inequality.
The properties of the family (P€)ccq observed in this example can be generalized as follows.
Theorem 18. With the notation above, we get the following results.

1. If Q??}g is not empty, there exist an integer k and oy < -+ < ay in QU {£o0}, such that
the equivalence classes of polytopes in the family (Pe)eeﬂgfﬁ) correspond exactly to the open
intervals Ja;, iy 1| for any i € {0,...,k—1} and the singletons {o;} for anyi € {1,... k—1}
with o; € Q. In particular, QG =], agl.

2. Suppose that a € Q. If oy, € Qé I’ there exists 11 C Iy containing K such that Pt =
Pt i={zcQ" | Az > By, + a;Cr, } and oy, € QR (defined for the family (Pf))ceq)-

If ap, & Q(}) Iy’ there exist subsets Jy and Iy of Iy such that JyNI =0, P = Pﬁ’“Jl ={zx €
njeJl 7-[]0"“ | Apyz > Br, + axCr, } and oy, is in QZL?{’}QH (defined for the family (Plel,Jl)eeQ
of polytopes in ﬂjeJl H]O”“)

We have the same result for the other extremity ag of Q??}g (if it is finite).

3.2 Proof of Theorem 18

We study all the sets Q(},Io and Q},Io'
For any I C Iy, denote by I the complement of I in Iy.

Lemma 19. For any I C Iy, the sets Q? 1, and Q} 1, are conver subsets (possibly empty) of Q.

Proof. Let €1 and €3 be in Q(},Io' Then there exist 21 and zo in Q™ such that Ajx1 = By + 1Cy,
Arze = By + €Cr, Ajr; > B+ €,Cr; and Ajrs > Bj + €2C5. Then, for any rational number
A € [0,1], we get easily by adding equalities and inequalities that A;(Az1 + (1 — N)ze) = By +
(Aep + (1 = N)e2)Cr and Aj(Axy + (1 — N)xg) > Bi + (Aer + (1 — N)ea)Cr, so that Aep + (1 — A)eo
is in Q(},Io'

Replacing > by >, we similarly prove the convexity of 9}7 Io* O

Lemma 20. For any I C Iy, the set Q}Jo is either reduced to a point, or an open subset (possibly
empty) of Q. Moreover, if Q},Io is reduced to a point €y, the system A;X = By + ¢Cr has a
solution only if € = €o; in particular, in that case, QY 1, s also reduced to €.

Proof. Suppose that Q} I, is neither empty nor reduced to a point. Let €1 and €2 two different
points of Q},Io' Then there exist 1 and x5 in Q™ such that Ajx1 = Br+€1Cr, Ajxo = By + 6207,
Ajxy > By + €1Cf; and Apze > Bj 4 €2Cf. In particular both linear systems ArX = By and
A7 X = C7 have solutions, hence for any € € Q, the linear system A;X = By + ¢C; has a set of
solutions, depending continuously on €. More precisely, if g and x¢ are solutions of A; X = By
and A;X = C7 respectively, then the set of solutions of A; X = By + €Cy is ker(Ar) + zp + exc.
Now, let € € Q},Io’ and let y := o+ p +exc with z¢ € ker(Ay) such that A;y > By +¢eCy. Then
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there clearly exists a neighborhood V of € in Q such that A;(y + (n — €)x¢) > Bj + nCj for all
n € V. We also check easily that A;(y + (n — €)zc) = Br +nCr so that V C Q},Io'

To prove the last statement, we suppose that the system A; X = B; + €C7 has a solution for
at least two values of €, and then by the same arguments as above, we deduce that 9}7 I, 1s open,
which gives a contradiction. The result follows immediately. O

Lemma 21. For any I C Iy such that Q} 1, 8 not empty, we have ol 1, C QY I C o Io-

Proof. The first inclusion is obvious.

To prove the second one, remark that for all €1 € Q},Io and ey € Q?,Io’ the interval [eq, €]
(or ez, €1]) is contained in Q},Io' Indeed, if there exists 1 and x9 such that A;jxy = By + ,Cy,
Arzo = By + eC, Ajr1 > Bi+ 61C; and Ajxa > Bp + €Cf, then for any A €]0,1], z) :=
Az1 + (1 — N)zg and €y := Aeg + (1 — N)ea clearly satisfy Ajzy = Br + €\Cr, Ajzy > B + e\CF,
so that €y € Q},Io' This remark implies directly that any s € Q?,Io is in Q},Io’ as soon as Q},Io is
not empty.

Lemma 22. Let I C Iy be such that Q} 1, s not empty. Then the supremum and the infimum

(well-defined in R) of Q},Io are either infinite or rational numbers. Moreover, Q(},Io = Q},Io‘

Proof. If 9}7 I, 1s reduced to a point, by Lemma 21 we have nothing to prove, so we suppose that
9}7 1, contains at least two points.

Here (and only here), we need to consider the family of polytopes (P¢)ccr. Note that all
definitions and all results given until now are still available replacing Q by R. When it is necessary,
we denote by Q(Q) and by Q(R) the sets 2 defined respectively in Q and in R. Now, by Lemmas 19
and 21, it is enough to prove that, if they are finite, the supremum and the infimum of 9}7 Io (R)
are rational numbers contained in the set Q% 17,(Q)-

Suppose that the supremum ¢y € R of Q}JO(]R) is finite. Let €; € Q}’IO(R). Then, for any
€ € [e1, €0], the polytope P€ is contained in the polytope

plevcol .= {2 e R" | Az > Min(B + €,C, B + ¢,C)},

where the mimimum Min is taken line by line. Now for all € € [e1, €], let 2 € Ff such that
Ajx® > By + eCy (and Ajzx® = By + €C7). Since the points z¢ are in the compact set pleveol of
R”, there exists zg € R™ such that Ajzg = Br + ¢Cr and Ajzg > By + €Cr, i.e. z9 € F;°. It
means that €y is in Q(},Io (R).

Define the maximal subset J of Iy containing I such that for any « € F}° we have Ajz =
Bj+ €Cy. We may assume that Ajrg > Bj+ eC7. We now prove that, for any €; € Q},Io’ the
face F'' is empty. Indeed, if it is not empty, there exists x; € R" such that Ayz1 = Bj+ ¢Cy
and Ayz1 > Byj+€1Cy. Let np > 0, let x9 := xo+n(xo—21) and let €3 := €9 +n(€ep —€1). Then we
have Ajxy = By + €2C; and, for 1 small enough, we have Ajzry > By + 2C;. Hence F}* D F}?
is not empty, which contradicts the fact that ez > €g is not in Q% 1, (see Lemma 21).

We now claim that the intersection of the vector space Im(A ) with the affine line {B;+¢€C} |
e € R} is reduced to the point By + ¢9C. Indeed, By + ¢yCy clearly belongs to this intersection,
which can be either reduced to a point or the affine line. But, if some € € Q},Io is in this
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intersection, then there exists x3 € R™ such that Ajxs = By + ¢Cj. Then, for n > 0 small
enough, we can prove that nxs + (1 —n)xg is in '} with e; = ne + (1 —n)eg, which is not possible
because F§' is necessarily empty. To conclude that ey € Q, it is now enough to recall that A, B
and C have rational coefficients.

It remains to prove that zg can be chosen in Q™ so that ¢y is in Q% Io(@)' But x¢ can be
taken in an open set of the set of solutions of Ajx = By + ¢¢Cy. We conclude by noticing that
Bj + ¢9Cy has rational coefficients.

For the infimum of 9}7 I,» 1t is the same proof (for example by replacing ¢ and C by their
opposites). O

Corollary 23. Let I C Iy. We have the following cases:

1. O} 1, s an open interval of Q (with extremities in QU{+o0}) and QY 1, 8 the closed interval

ol 1, (may both be empty);

2. Q}Jo 1 a reduced to a point €y, then it equals Q(I]JO and the system ArX = By + eCt has a
solution only when € = €y,

3. Q}Jo is empty and Q?,Io is the closure of some Q}]JO with I & J C Iy.

Moreover, if I = () or reduced to an index i € Iy\ Ky, then only Cases 1 and 3 are possible, so
that Q1 1, 18 open (or empty).

Proof. The first two items, and the fact that we cannot have more cases, can be deduced directly
from Lemmas 20 and 22.

Suppose now that Q} 1.1, is empty, but not Q . Let J C Iy be the maximal set containing [
such that, for all € € Q, F P =F95 Then J # 1 by hypothesis. Indeed, if I = J then there exist
subsets Jy, ..., Ji of Iy whose intersection is I, and rational numbers €y, ..., € in QJI,IO’ ceey QJk,Io

respectively. Hence % is

in Q} 1, that is not possible.

Then 09 I = Q?l, 1, and by maximality of J, Q}] I, is not empty. We conclude by using the
first two items.

Now, for the last statement, remark that if I is empty or has a unique element i € I\ Ky, the

system A;X = By + €C7 has solutions for all ¢ and then, we cannot be in Case 2. O
We now prove three lemmas to get the connectedness of equivalence classes of polytopes.

Lemma 24. Let I C Iy such that Q(I]JO 1s bounded, but neither empty nor reduced to a point.
Denote by €1 and €5 the extremities of Q?,Io' Then, there exist Jy and Jo containing I such that
{a1} = Q}h,lo and {ea} = sz,lo' In particular, if €1 and ez are in QERG, P is not equivalent to

P

Proof. By Corollary 23, we can suppose that Q?,Io = Q},Io = [e1,€2]. Then, there exists j € T
such that x € P and Ajx = By + €1Cr imply that A;z = Bj + €C;. Let J; be the union of I
with the set of all such indices j. In particular, €; € Q}h, 1, Moreover, since Q}h, 1, is contained
in Q(},Io = [€1, €2], it cannot be open, and then by Corollary 23, Q}h,lo is reduced to €.
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Similarly, we prove the existence of Js.

In particular, if €1 and € are in Q7. by definition, the equivalence classes of P and P
are both reduced to one polytope and then distinct. ]

Lemma 25. Let I C Iy such that Q(},Io = {eo}, with ey € QG- There exists Iy C Iy such that
Q%, 1, i an interval, not reduced to a point and with upper extremity €.

Proof. First, we can suppose that I is the maximal subset of Iy such that Q% I = {e0}, (i-e. such
that Q}Jo = {€eo}). Then there exists xy € Q" satisfying Ajzg = Br+€oCr and Ajzg > Bj+¢Cj.

Consider a subset I of I such that there exists €1 < ¢q in 991, Io- Choose I} maximal in I with
this property. It exists (but can be empty) because € is in the open set Q??}g . Moreover I; # I.
Then there exist €; < ¢p and z; € Q" such that Ay, x1 = By, + €1Cp, and Aflxl > Bp, + qul.
Hence, for any e €lep, o, the element z¢ := (o—gertle=e)ro gutisfies Apx© = B, + €Cr, and

€0—€1

Apx® > Bp, + ¢Cp by maximality of I;. It proves that ]ei, e[C Q}I,IO' In particular, with

Corollary 23, Q} , is open with closure equal to Q9 ;.
1,40 1,10
It is now enough to prove that the upper extremity of Q?l I, 18 €0- Suppose the contrary, then
there exists €2 > €9 and xo € Q" such that Ay, zo = By, +€2C, and Aflxg > Bj, +eCf,. For any

€ €leg, €2[, the element y* := (62_5)21;_50)362 satisfies Ay, y© = B, +¢Cp, and Apy® > By, +€Cf,.
Moreover, for € = ¢ (i.e. y° = xp), we have A;y° = B + eC; and Ajy° > Bj + eCj. Then
by continuity, for any ¢ < €y big enough, we have Ay y® = By, + €Cr,, Ajy¢ > Bj + ¢Cf and
Apny© > Bpr, +€Cpg,- Choose such an € in Jer, ¢9[. Hence, there exist 2 in the interval |z<, y[
and some j € I\Ij such that Ay 2° = By, +eCp, Ap2° > By +¢Cj, and Ajz2° = B;j + €Cj.
This contradicts the maximality of I, hence we have proved that the upper extremity of Q?L Io
1S €.

Lemma 26. Let |n,e[C QR such that there exists I C Iy satisfying 0 # Q(},Io Cln,€[. Then P"
is not equivalent to P€.

Proof. Among the set of subsets I of Iy satisfying Q% Io Cln, €[, choose the one whose lower
extremity is minimal.

There are two cases: in the first one, Q% 1, = {€o}. By Lemma 25, there exist Iy C Iy and
€1 < €9 (may be —o0) such that Q(IJI,IO = [e1, €0]. By hypothesis of minimality, 1 is in Q(I]l,lo' But
€ is not in Q%, 1> SO that P is not equivalent to P<.

Consider the second case: Q% Iy = [€1,€2] with €; < eg. Let J be the maximal subset of I
such that: z € Q* and Ajx = By + ¢1Cy imply that Ajz = By + €,Cy. In particular, J strictly
contains I and € € Q}, I,- Then Q}, I, C Q% 1, cannot be open, hence it is reduced to a point and
we conclude by the first case. O

Proof of Theorem 18. 1. By the last statement of Corollary 23, the set Q12" is an open interval
of Q (with extremities in Q U {£o0}, or empty).

Now, let eg € Q. Prove that the equivalence class of P corresponds to a interval of
Q%‘lﬁ) or is reduced to P.
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If there exists I C Iy such that Q} I, = 1€0}, then the equivalence class of P is clearly
reduced to P?°. By Lemma 24, we get the same conclusion if there exists I C Iy such that
Q} 1, 1s not empty and ¢ € Q% 10\9}7 I (and also if there exists I C Iy such that € is an
extremity of Q% 1o+ by using Corollary 23 Case 3).

Suppose now that for all subsets I of I, Q},Io # {ep}, and ¢ is not an extremity of Q?,Io'
Then the set of e € Q% such that P¢ is equivalent to P is the intersection of open
intervals of Q. Indeed, it is the intersection of some open intervals Q} 1, and connected
components of some @\Q% 1, (by Lemma 26).

2. Now, let €; be an extremity of Q??}g Suppose that €; € Q(%),Io' Define Is to be the set
of indices i € Ip\K such that €; is not in Qil’lo. Denote by I; the complementary of I
in fp. Then by definition, /1 contains K and € is in the set Q%". Denote by P;ll the
polyhedron {z € Q" | Apx > B, + e1Cr,}, and prove that P1 = P!, We clearly
have P C P?, so that we have to prove that P;ll is contained in all closed half-spaces
7—[;61 ={x € Q" | Az > B; + €C;} with i € Iy, or equivalently that the interior
{z € Q" | Apz > Br, + e1Cp, } of P; (that is not empty because €1 € Q(}J,Io) is contained
in all open half-spaces ’H:"Fel ={r Q" | Ajx > B;+¢€,C;} with ¢ € I5. Since the interior
of P;! intersects the connected component (;cp, HT of QM\U,e 1, Hi's it is enough to
prove that the interior of Pfll does not intersect the union of hyperplanes | J,.;, H;'.

Let ¢ € I5. Suppose that the interior of Pfll intersects the hyperplane H;'. There exists
x1 € Q™" such that Ar,x1 > B, + €,Cr, and A;x; = B; + € C;. Since there also exists
xg € Q" such that Azg > B + ¢1C, any element 9 of the interval [x1,x[ is in the interior
of PE, in P! and in 7-[;1 for at least one j € I5. Let J C Is the maximal set such that
Ajxg = By + €1Cy. Then the set C := {x € Q" | Ajx > By + €1Cy} is a cone (of apex
z2 + ker(A;)) with non-empty interior. Let j € J such that H;' NC is a facet of C. By
Lemma 27 below, all hyperplanes 7—[;1 with j € J are different, then there exists y € ’H;l ne
that is not in the other hyperplanes H;' with j # ¢ € J. Since x3 is in the interior of P;;\J,
for any rational number A > 0 small enough, the point xo + A(y — z2) is in the interior of

i€ls

Pleol\ ;» also in H5' NC and not in H;* for all i € J different from j. This contradicts the fact
that ey & Q] .

Suppose now that €; & Qé I Let J; the maximal subset of I such that P¢! is contained in
the subspace Hj, = (;c;, H;' of Q" Then P is clearly the polytope {z € (;c;, H;' |
Ap\n® = B\ g, + €10\ g, b+ Then €1 € Q(}),Io\Jl (defined in for the family of polytopes in
Hy) Ife € Q%?f(h\hﬂo\h, then Iy = Iy\Ji gives the result. If not, €; is an extremity of
Q%ﬁ’é T\ I\ and €1 € Qé o\ Then we apply what we proved in the previous paragraph
in order to find I1 C Iy\J; that gives the result.

]

Lemma 27. If QR is not empty, then for any i and j in Ig\K, the existence of A € Qxo such
that A; = NA;j, implies that i = j.

27



Proof. Let e € Q. Suppose that there exists ¢ 7 j in Ip\K such that A; = AA; for some
A € Qso. Then, since ¢ € QZ 1N Q},Io’ there exist z and y in Q", such that A;x = B; + €C;,
Ajx > Bj+€Cj, Ajy = Bj+eCj and A;y > B;+€C;. And we have A\(B;j +€C)) < Mz = Ajx =
B+ €C; < Ajy = MAjy = A(Bj + €C}), which gives a contradiction. O

3.3 A second one-parameter family of polytopes

In Section 4, we apply Theorem 18 to a family (QE)66Q20 constructed by iteration from the family
(P€)ecq, using the last statement of Theorem 18 in the following way.

Definition 6. Let A, B and C be as in Theorem 18. Let K C Iy containing K. Suppose that
0 € QRar
K,Ip*
For any € € QZOHQ%#, define Q¢ to be P¢. If Qmax has a finite supremum €; and if ¢; € Qp
consider I; as in Theorem 18. Then we define, for any € € [e1, +00[N QR Q¢ to be the polytope
Pr . If 1 € Qp g, we stop the construction and we define Q¢ = 0 for any € > €; by convention.

Iterating the construction, we obtain a family of polytopes (Q6)66Q>0. Remark that the
construction depends on K. Also note that the process is finite because the sequence (I;); of
subsets constructed this way satisfies Ip 2 I; 2 -~ 2 K.

We say that QF is equivalent to Q" in the family (Q )ec, if they are both defined at the same
step of the construction above (in particular they correspond to P; and PI", with € and n both in
Qm‘”” for some I C Iy containing K) and if Pf and P} are equlvalent according to Definition 5.

Example 6. We still consider the same example as in Examples 4 and 5. We have already seen
that for K = {4,5,6} we have Q9" =] — oo, 1[ and 1 € Ql . Moreover, 1 € Q% =] —infty, 2
where I1 = {1,3,4,5,6}. Then for any € € [1, [ Q° is in the same equivalent class. And 3 A Q@ I
indeed Q% is a point.

To summarize this example, the equivalent classes in the family of polytopes (QE)EEQ>O are
given by the following intervals: {0}, ]0,1[, {1}, |1, 2[ and {2}. }

Applying Theorem 18 to each subfamilies (Pe) appearing in the construction of the family
(Q )56Q207 we obtain immediately the following result.

Corollary 28 (of Theorem 18). Suppose that QY and Q° are equivalent for € > 0 small enough
(to avoid what occurs in Example 6).

There exist non-negative integers k, jo, . . ., ji, rational numbers o j fori € {0,...,k} and j €
{0,...,7:} and g 41 € QsoU {400} ordered as follows with the convention that oy j,+1 = 11,0
forany i€ {0,...,k—1}:

1. Qp,0 = 0,‘
2. for any i € {0,...,k}, and for any j < j in {0,...,7; + 1} we have a;; < o ji;

and such that the equivalence classes in the family of polytopes (Q6)66Q>0 are given by the following
intervals: -
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1. oo, 041, with i €{0,...,k};

2.l j,ijyrl, withi € {0,...,k} and j € {1,...,5i};
3. {ai;} withie{0,... .k} and j € {1,...,5:};

4. if agj+1 # +oo, {ou 41} and lay j, , +00].

Remark 4. For any i € {0,...,k}, the rational numbers «;,...,;;, can come from several
consecutive steps of the construction of (Qe)ee(@>0 Indeed, for example, ayg j, is not necessarily

the supremum €; of Q" because {Q'} may be an equivalence class (see Example 6).

Remark 5. We have «ay,j, 11 = +oo if, in the construction of (QE)EEQZO, some set Qmax has no
upper bound. And if oy, j, 41 # +00, it is the upper extremity of some Q%‘If that is not an element
of Q@ ;- In this latter case, oy, j, 41, +00[ is the class of empty polytopes and oy, j, +1 corresponds
to the last not empty polytope. If C > 0, we are always in that case.

4 MMP via a one-parameter family of polytopes

Let X be a projective horospherical G-variety, with open G-orbit isomorphic to G/H. Let D be
an ample Q-Cartier divisor on X. Suppose that X is Q-Gorenstein (i.e. the canonical divisor Kx
of X is Q-Cartier). We keep the notation given in Section 2.

4.1 The one-parameter family of polytopes associated to X

To construct the one-parameter family of polytopes that permits to run the MMP from X, we start
in the same way as in the classical approach of the MMP. Indeed, for any rational number € > 0
small enough, the divisor D + eKx is still ample (and Q-Cartier by hypothesis), so that it defines
a moment polytope Q¢ and a pseudo-moment polytope Q€. More precisely, using Corollary 7,
(for € small enough) Q¢ := {x € v + Mg | Ax > B+ ¢C} and Q° := {x € Mg | Az > B+ ¢C}
where the matrices A, B, C, B, C and the vector v¢ are defined below.

Recall that x1,...,z, denote the primitive elements of the rays of the colored fan of X that
are not generated by a vector oy, with a € Fx. We choose an order in S\R and we then denote
by ai,...,as its elements. We fix a basis B of M and we denote by BY the dual basis in V.
Now define A € ./\/lr+87n(@) whose first r lines are the coordinates of the vectors z; in the basis
BY with i € {1,...,r} and whose last s lines are the coordinates of the vectors aVM in BY with
j € {l,...,s}. Let B be the column matrix such that the pseudo-moment polytope of D is
defined by {x € Mg | Az > B}. In fact, if D = 3"7_, b X; + 2 aes\r baDa, then B is the column
matrix associated to the vector (—by,...,—b.,—ba,,..., —bs,). Similarly, the column matrix C
corresponds to the vector (1,...,1,aa,,...,aq,), Where —Kx = 370 | X; + 3 co\gdaDa (the
coefficients are explicitly defined with a, = (2pp,a"), where pp is the sum of positive roots of
G that are not roots of P). Now, define v := ZaeS\R(ba — €aq)w,. Since QF = v¢ + Q°, we
compute that B and C are respectively the column matrices associated to the vectors (—b; +
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(1, Y nes\Rba@a), - —br +{@r, D pe g\ R Pa@a), 0, .., 0) and (1 — (21,3 e\ g Ga®a), -, 1 —
(xp, ZaES\R 6T04),0,...,0).

From the matrices A, B and C we construct the family (Q€)€GQ>O of polytopes in Mg (iso-
morphic to Q") as in Section 3. And for any € > 0 we define Q¢ = v* + Q°. Since C > 0, by
Remark 5, there exists €4; € Qo (it is the number oy, j,+1 given in Corollary 28) such that
for all € € [0, €maz[, QF is a G/H-polytope and for all € > €4, @° = 0. The polytope Qo=
is neither empty nor a G/H-polytope, but it is a G/H!'-polytope for some subgroup H' of G
containing H (see Section 4.2).

Proposition 29. The two partitions of [0, €maz| given by equivalence classes of G/]:I—polytopes
(Definition 4) in the family (Q°)cc(0,emas| @nd by equivalence classes in the family (Q°)c¢|
according to Definition 6 with K = {r +1,...,r + s} are the same.

075max[

Proof. Let € and n be two rational numbers.

Suppose that Q€ and Q" are equivalent G/H-polytopes. In Definition 4, take j to be minimal,
so that the hyperplanes H1,...,H; and H',...,H'; correspond respectively to H,--- ,ng and
HZ,...,HZ for J := {i1,...,1;} C{1,...,7+ s}. Then, if we denote by I the union J U K, the
polytopes Q¢ and Q" respectively equal Pf and P} such that € and n are in Q72%. Then we have
to prove that Pf and P} are equivalent according to Definition 5, which comes’directly from the
definition of equivalence of G/ H-polytopes.

Suppose now that Q¢ and Q" are equivalent according to Definition 6. They are constructed
at the same step so that there exists I C {1,...,7 + s} containing K such that Q¢ and Q"
respectively equal Pf and P, with € and 7 in QY. Then Q= {z¢c Mg | Ar > By +¢Cr} and
Q" ={x € Mg | A; > By +nCr}). This directly gives the first item of Definition 4. The second
item 1is also clear from Definition 5. And the third item comes from the fact that Q? ; contains
both € and 1 or none of the two, for any ¢ € K. , O

4.2 Construction of varieties and morphisms

We apply Corollary 28 to the family (Q)eeqs,- Then the family (Q°)ccq., gives a list of G/ H-
embeddings:

1. X;j forany i € {0,...,k} and j € {0,...,;}, respectively associated to moment polytopes
Q€ with € E]Oé@j, Oéi,j-i-l[;

2. Y, forany i € {0,...,k} and j € {1,...,7;}, respectively associated to moment polytopes
Q%

It also gives a projective horospherical G-variety Z associated to the moment polytope Q“me=.

Indeed, let Mé be the minimal vector subspace containing Q®me* and let M! := Mé N M. Let

R! be the union of R with the set of a € S\R such that Q%"= is contained in the wall W, p.

Then we define the subgroup H' of P! := Pp1 to be the intersection of kernels of characters of
Pl in M!. Then Q%ma= is a G/H'-polytope and corresponds to a G/H'-embedding Z.
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Remark that, by definition, M! € M and R C R! so that we have a projection 7 : G/H —
G/H'.

Now, by Proposition 11, we get dominant G-equivariant morphisms:
1. ¢ij: Xijo1 — Yy  forany i € {0,...,k} and j € {1,...,J;};

2. ¢gj : X, — Y forany i € {0,...,k} and j € {1,...,4:};

3. ¢i: Xij, — Xiy10 forany 1 € {0,...,k — 1}

4. and ¢ : Xy 5, — Z.

In the next section, we prove that the morphisms ¢;; and (ﬁj—j give flips (may be divisorial,
see Remark 5 and Example 12), that the morphisms ¢; are divisorial contractions and that the
morphism ¢ is a Mori fibration.

4.3 Description of contracted curves

Proposition 30. 1. For any i € {0,...,k} and j € {1,...,5;}, the curves C that are con-
tracted by the morphism ¢;; satisfy Kx,, , - C < 0; for any i € {0,...,k — 1}, the curves
C that are contracted by the morphism ¢; satisfy K X, -C < 0; and the curves C that are
contracted by the morphism ¢ satisfy KXlwk -C <0.

2. Foranyi € {0,...,k} andj € {1,...,4;}, the curves C that are contracted by the morphism
+ .
Iy satisfy Kx, ; - C > 0.

3. For any i € {0,...,k — 1}, the morphism ¢; contracts at least a G-stable divisor of X; j,.

Proof. 1. Let ]a,b] or [a,b[ corresponding to an equivalence class in the family of polytopes
(Q)ecqs,- In particular, there exists I C {1,...,7 + s} containing K such that for any

¢ €la, b, Q° = Pf and € € Q.

Denote by X the variety given by the G//H-polytopes Q¢ with € €]a, b[, denote by Y the
variety given by the G/H-polytope Q° or to the G/H'-polytope QP if b = ¢*ma=, And
denote by 1 the projective G-equivariant morphism from X to Y.

Fix ¢ €la,b]. Recall that a G-orbit of X corresponding to a face F§ of Q¢ with J C I, is
sent to the G-orbit of Y corresponding to the face Ff]’ of Q¥ (see Corollary 12).

Recall also that we described the curves on horospherical varieties in Section 2.5, we saw
in particular that a curve C), intersects exactly two closed G-orbits (in one point for each
closed G-orbit). Hence, a curve C, of X is contracted by 1 if and only if the G-orbit of X
intersecting C), in an open set (i.e. the G-orbit corresponding to the edge u of Q°) is sent
to a closed G-orbit of Y?; and a curve C,,, of X is contracted by 1 if the closed G-orbit
corresponding to v is sent to a closed G-orbit isomorphic to G/P’ where « is a root of the
parabolic subgroup P’. In other words, C), is contracted by ¢ if and only if for any J C I
such that p = F9, the face F}} of QP is in fact a vertex of Q. And Ca,v is contracted by 1
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if and only if for any J C I such that v = F§ (which is not in W, p), the vertex F} of @Q°
is in VVQ7 P-

Let D¢ be the Q-Cartier divisor on X defined by the moment polytope Q¢ and the pseudo-
moment polytope Q°. Then, for any € € [¢, b] the Q-Cartier (and ample) divisor of X defined
by (QF,Q°) is D°+ (e — ¢)Kx. But, by Proposition 17, (D + (¢ — ¢)Kx) - C,, is the integral
length of the edge p in Q€ for any € € [c,b], we get by continuity that C,, is contracted by ¢
if and only if (D + (b—¢)Kx)-C,, = 0. Similarly, since (D + (¢ — ¢)Kx) - Co = (v, ") for
any € € [c,b[, we get that C, o is contracted by ¢ if and only if (D + (b —¢)Kx) - Cq,» = 0.
In particular, for any curve C that is contracted by 1, we have Kx - C' < 0.

2. By very similar arguments, we prove that if |a,b[ is an equivalence class in the family of
polytopes (Q)ecq~,, if Y is the G/H-embedding associated to the G/H-polytope Q%,
and if ¥t : X — Y denotes the G-equivariant morphism, then for any curve C that is
contracted by ¥+, we have Kx - C' > 0.

3. Now consider the case where ]a,b[ (or [a,b[) and [b,d'[ correspond to two successive equiva-

lence classes in the family of polytopes (Q)ccg.,. The subset I of {1,...,7r+s}, the varieties

X and Yb, and the morphism 1 are defined as above. Here, by hypothesis, b & Q%af and

there exists a proper subset I’ of I containing K such that Q” = PIb,. Then for any ¢ €]a, b|

and for any i € I\I' C {1,...,r}, Ff is a facet of Q° (and corresponds to a G-stable di-

visor of X), but Fl-b is not a facet of Q° (and corresponds to a G-stable divisor of Y of
codimension at least 2). Hence, ¢ contracts these G-stable divisors.

O

4.4 Q-Gorenstein singularities

In this section, we prove in particular that all the varieties X;; defined in Section 4.2 are Q-
Gorenstein. We begin by giving a Q-Gorenstein criterion in terms of moment polytopes.

Proposition 31. Let X be a projective G/H -embedding and let D be an ample Q-Cartier divisor
on X. Denote by Q the pseudo-moment polytope of (X, D). Let A and C' be the matrices defined
in Section 4.1. For any vertex V of Q, we denote by Iy the mazimal subset of {1,...,7+ s} such
that V = FIV .

Then X is Q-Gorenstein if and only if, for any vertex V of Q, the linear system Ar, X = OIV
has a solution.

Proof. The proposition is just a translation, in terms of moment polytopes, of Theorem 6 applied
to the divisor Kx. (Recall that X is Q-Gorenstein if and only if Kx is Q-Cartier.) O

By applying this criterion to the family (QE)eEQZO, we easily get the following result.

Corollary 32. Let € > 0 such that Q° is a G/H-polytope. Let X be the G/H-embedding
corresponding to the G/H-polytope Q°. Denote by I the subset of Iy containing K, such that

Qf = Pr and e € Q. For any vertex V© of Q°, we denote by Iye the mazimal subset of I such
that V¢ = Fr,,..
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_ Then X* is Q-Gorenstein if and only if for any vertex V< of Q°¢, the linear system A, X =
Cr, e has a solution.

Now, using Section 3, we can exactly know which X¢ are Q-Gorenstein (except for 7).

Proposition 33. The varieties X; ; with i € {0,...,k} and j € {0,...,7;} are Q-Gorenstein.
And the varieties Y; j with i € {0,...,k} and j € {0,...,5;} are not Q-Gorenstein.

Proof. Let i € {0,...,k} and j € {0,...,;}. The variety X;; is defined by G/H-poltyopes Q°
with € in an open interval of Q>¢. In particular, for all these rational numbers e and for any
vertex V€ of Qe, the linear system Ay, X = B[ve + Eélve has a solution. Hence, A7, X = C~'1V6
has also a solution. It proves that X; ; is Q-Gorenstein.

Now, let i € {0,...,k} and j € {0,...,7;}. The variety Y; ; is defined by the G/H-poltyope
Q*. By Corollary 23, there exist J and I subsets of {1,...,7 + s} such that J C I and o ; is
the extremity of the interval Q?l, ;or {a; i} = Q}] ;- But by Lemma 24, we can always choose J
and I such that {a; ;} = Q}, ;- Moreover, by taking J maximal with this property, we get a vertex
V of Q% satistying {cy ;} = Q}V’ ;- In particular, by Corollary 23, the system Ar, X = C’IV has
no solution. It proves that Y ; is not Q-Gorenstein. U

4.5 Q-factorial singularities

In this section, we prove that, for D general, the MMP works for the family of projective Q-
factorial horospherical varieties.

Proposition 34. Suppose that X is Q-factorial. Choose D such that the vector B is in the open
set
U #'@Nm(4y),

IC{1,..r+s}, |I|>n

where 7y is the canonical projection of Q" to its vector subspace corresponding to the coordinates
in 1.
Then, for any i € {0,...,k} and any j € {0, ..., 4}, the variety X; ; is Q-factorial.

Proof. Applying Theorem 6, it is not difficult to check that a horospherical variety X is Q-factorial
if and only if all colored cones of Fx are simplicial and any color of X is the unique color of a
colored edge of Fx. In terms of moment polytopes, if ) is a moment polytope of X, then X is
Q-factorial if and only if @ is simple (i.e. each vertex belongs exactly to n facets, where n is the
dimension of @), @ intersects walls W, p with a € S\R, only along facets and a facet of @) is never
in 2 different walls (W, p and W p with a # 8 € S\R). Hence, with notation of Section 4.1, X
is Q-factorial if and only if, for any I C {1,...,r + s} of cardinality greater than n, the face F
of @ is empty. (And we have the same criterion for any variety associated to a polytope of the
family (Q°)ec(0,emas])- Let i € {0,...,k =1} and j € {0,...,4:}. Let € €]ay j, a; j11] so that Q° is
a moment polytope of X; ;. Let I C Iy containing K such that Qf = P; and € € QY.

Let V be a vertex of Q¢. Denote by Iy, the maximal subset of I such that V = F}.,. Note

that |Iy| > n. We want to prove that |Iy/| = n. The rational number € is a point of le, which
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is open (because it contains ]a; j, @ j+1[). It implies that, for any n € Q, By, +nCr,, is in the
image of Ay, . In particular, By, is in the image of Ay,. By hypothesis on D, the cardinality of
Iy has to be n. This proves that X; ; is Q-factorial. ]

Remark 6. The open set where B is chosen, is clearly not empty and dense in Q" "%, because for
any I of cardinality greater than n, the image of A is of codimension at least one. And, since X
is Q-factorial, any vector B € Q" gives a Q-Cartier divisor.

Taking D general, we also get the following result.

Proposition 35. Suppose that X is Q-factorial. If D is general in the set of ample Q-Cartier
divisors, all morphisms ¢; ;, (ﬁszj, ¢; and ¢ defined in Section 4.2 are contractions of rays of the
corresponding effective cone NE(X; ;).

Proof. Let Y be a projective Q-factorial G/H-embedding whose colored fan is made from some
edges generated by z; with i € {1,...,r} and o}, with o € S\R. In particular, the vector space
Cartier(X)qg of Q-Cartier divisors of X projects onto the vector space Cartier(Y)g of Q-Cartier
divisors of Y. Denote by py this projection. Let V' be a vector subspace of Ni(Y)qg of dimension
at least 2. Denote by V* the dual of V in N}(Y)g. Then V* + QKy is a proper vector subspace
of N}(Y)g. Hence, the intersection Zy, over all faces of NE(Y) of dimension at least 2 and of
direction a vector subspace V, of the sets N*(Y)\(V* + QKy) is a dense open set of N}(Y)gq.
If we denote by gy the projection of Cartier(Y)g in N'(Y)q, then (gy o py)~!(Zy) is open and
dense in Cartier(X)g.

Consider now, an ample Q-Cartier divisor D in the dense open intersection of the set given
in Proposition 34 with the sets (qy o py)~'(Zy) for all projective Q-factorial G /H-embeddings
Y whose colored fan is made from some edges generated by x; with ¢ € {1,...,r} and o), with
a € S\R. Then, for any i € {0,...,k} and j € {1,...,7;}, the divisor px,, (D) + a;;Kx,;_,
vanishes at most on a ray of NE(X; ;_1), so that ¢; ; is the contraction of a ray of NE(X; ;_1).
Similarly, for any i € {0,...,k} and j € {1,...,;}, the divisor px, ;(D) + a; jKx, ; vanishes at
most on a ray of NE(X,;), so that qﬁl'-fj is the contraction of a ray of NE(X; ;). And for any
i € {0,...,k}, the divisor px;, ; (D) + a;j+1Kx, ; vanishes at most on a ray of NE(X, ), so
that ¢; (¢ if i = k) is the contraction of a ray of NE(X, j,). O

Remark 7. Proposition 35 is not true without the hypothesis of Q-factoriality (at least for flips):
see Example 11 (such an example also exists for toric varieties of dimension 3).

4.6 General fibers of Mori fibrations

In this section, we study the general fibers of the morphism ¢ : X}, ;, — Z defined in Section 4.2
and we prove the last statement of Theorem 2. We may assume that £ = 1 and jy = 0, in
particular X1, , = X. And then, it is enough to prove the following more precise result.

Theorem 36. Let X be a Q-Gorenstein G/H-embedding. Let D be an ample Q-divisor on X.
Let € be the mazimal positive rational number such that for any e € [0, €1 the G/H -polytope Q¢
is equivalent to Q = QC.
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Suppose that Q! is not a G/H -polytope. And let H', P, R' and M defined as in Section 4.2.
In particular Q°' is a G/H"'-polytope. Denote by Z the associated G /H'-embedding and by ¢ the
G-equivariant morphism from X to Z.

Then the general fibers of ¢ are either the flag variety P'/P or a projective Q-Gorenstein
horospherical variety Fy. Moreover in the second case, Fy is a L'/ H?-embedding, where L' :=
H'/R,(H') and H? := H/R,(H") (R.(H') denoting the unipotent radical of H' in G). And a
moment polytope of Fy is the projection of Q in X(P)@/Mé.

Assume now that X is Q-factorial. Then, for general D, the general fibers P1/P or F, have
Picard number one.

Theorem 36 is proved by the following 5 lemmas.
We begin by the easiest case.

Lemma 37. Suppose that Q' has the same dimension as Q. Then the general fibers of the
morphism ¢ are isomorphic to the flag variety P'/P. Moreover, if X is Q-factorial, P'/P is of
Picard number one for general D.

Proof. In that case, Q! is in some wall W, p with a € S\R, i.e. R' # R. Moreover H!/H is
isomorphic to P!/P that proves the first claim.

By Proposition 35, if X is Q-factorial, then for D general, we have |R'\R| = 1 and then P!/P
has Picard number 1. Indeed, if |[R'\R| > 1, ¢ is not a contraction of an extremal ray, because
G/P — G/P! is clearly not a contraction of an extremal ray. O

Now we consider the case where the dimension of Q¢! is less than the dimension of (). Let xg
(resp. z{) be the unique point of the open G-orbit of X (resp. Z) fixed by H (resp. H?).

Lemma 38. A general fiber Fy of ¢ is isomorphic to the closure in X of the H'-orbit H' - .

Proof. Since G - x(l) is open in Z, the fiber ¢_1(x(1]) is a general fiber of ¢. This fiber intersected
by the open G-orbit G - xy of X is H' - xy. Moreover, since ¢ is G-equivariant, the open set
¢~1(G/H) of X is isomorphic to the bundle G x ' F,. Then Fj is irreducible and we get the
result. O

Note that, since an open set of X is isomorphic to the bundle G x H' Fy, the fiber Fy has
the same singularities as X (normal and Q-Gorenstein, Q-factorial or smooth according to the
hypothesis done on X).

Lemma 39. The variety Fy is a L' /H?-embedding.

Note that, by definition, H? contains the unipotent radical U/R,(H"') of the Borel subgroup
(BN HY/R,(H'Y) of L*. Moreover L' = H'/R,(H') is clearly reductive so that L'/H? is a
horospherical homogenous space.

Proof. By the previous lemma, F is a H'-variety. The unipotent radical R, (H') of H' (which
is also the unipotent radical of P!) acts trivially on zg, then it also acts trivially on H' - 2y and
Fy. Hence, Fy is a L'-variety. Also the open L!'-orbit of Fy is clearly isomorphic to L'/H?. We
already saw that F is normal because X is, hence Fy is a L'/H?-embedding. O
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Lemma 40. A moment polytope of Fy is the projection Q? of Q in X(P)@/M(é.

Proof. First describe the combinatorial data associated to the horospherical homogeneous space
L'/H?. The simple roots of L! are those of P!, i.e. the simple roots in R'. Then the normalizer
P? of H? in L' is the parabolic subgroup of L' whose set of simple roots is R. Moreover, the set
of characters of P? trivial on H? is isomorphic to the quotient of the set of characters of P trivial
on H with M!. Then we set M? := M/M?'. The set of colors of the horospherical homogeneous
space L'/H? is R'\R.

Let I be the maximal subset of {1,...,7+s} such that Q' C {x € M | Ajx = B’I—i—qé’[}. In
particular, M L equals the kernel of A;. Now, we prove that the projection of Q in M 2 = = Mg/ M !
is the polytope Q> ={zec Mg/ Ker(Ar) | Ajz > By}. One inclusion is obvious. To prove the
second one, let x + Ker(A;) € Q? be a vertex F? of Q? where J C I. Then Ajz = By and
Az > BI Moreover, by maximality of I, there ex1sts x' € Mg such that Az’ = BI + elCI
and Az’ > Bj+ 1Cy (where T = {1,...,7 + s}\I). Hence, for A > 0 small enough, we have

"= Xx+ (1 —N)a' satisfies Ajz” = BJ—i—e 'Cy, A[x" > BI —i—EI/C[ and Az” > Bj + €"Cy, with
"= (1 — M€y, so that 2’ is a point of the face Fj of Q. Since 0 < ¢’ < ey, the face Fy of Q
is not empty. But every point of F; projects in F2, which is a point. Then, every vertex of Q? is
the image of a point of Q by the projection in Mé, which proves the second inclusion.

By translation, we get that the projection of @ in X(P)@/M(é2 is the polytope Q? = {x €
v0 + Mg/ Ker(Ar) | Arz > By}, where o0 is the image of v in X(P)g/Myp.

Suppose now that D is Cartier and very ample (or replace D by a multiple of D, see Re-
mark 2). Then, by Proposition 9, X is isomorphic to the closure of G - [3_, c(,04 100 V] I
P(®yewo+anngV (x))- Then Fy is isomorphic to L' - D e@oranng vl in P(Byeworanng Vet (X))
But, for any Y € X(P) and any ' € M, the L'-modules V;1(x) and V;1(x + X’) are isomorphic,
so that Y is isomorphic to L' - > e@ormzyngz U] I P(D, o4 ar2)ng2 Vi (x))- 1t proves that Fy
is the L'/ H? -embedding associated to the polytope Q2. Remark that Q? is of maximal dimension
in Mg 2 hecause Q is of maximal dimension in My. O

Lemma 41. If X is Q-factorial, then, for general D, the variety Fy has Picard number one.

Proof. We prove that, for D general, the set I defined in the latter proof is of cardinality
codim(Q!) + 1 = dim(Q?) + 1, and that Q? is a simplex of M2 = MQ/Mé such that any
wall W, p2 in X(P?)g with o € RM\R gives a facet of Q. Suppose that D (and then B) sat—
isfies the following condition: for any subset J of {1,...,r + s} with |J| > dim(Im(A,)) +
By is not in the (proper) vector subspace of Q'+* generated by Im(A;) and Cj. Such a D is
general, since X is Q-factorial. Note that codim(Q') = codim(Ker(A;)) = dim(Im(Ay)). Now,
if |I] > codim(Q¢') + 1 then by hypothesis on D, Bj + ¢Cf is never in Im(A;), which contradicts
that F7' = Q' is not empty. Moreover, Q? is a polytope (and then bounded) of maximal dimen-
sion in Mé, so the number |I| of inequalities defining @? must be at least dim(Q?) + 1. Hence,
|I] = dim(Q?) + 1.

In particular, Q? is a simplex of Mg. 2. Moreover, the set R'\R of colors of L'/H? is clearly
contained in I by definition of I and R1 so that, for any o € R\R, W, o,p2 N Q? is a face of Q2.
In particular R'\R = FF,. Moreover, since each i € I corresponds necessarlly to a facet of Q2
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because |I| = dim(Q?) + 1, this latter face is necessarily a facet. And, with the same argument,
W p2 N Q?* # Ws p2 N Q?* for any a # 8 € R'\R.

But, by [Pas06, Eq. (4.5.1)] (or as corollary of Theorem 6), the Picard number of the Q-
factorial horospherical variety Fy of moment polytope Q? is

[{facets of Q}| — dim(Q?) + |R*"\R| — |FF, -

Then Fy is a projective Q-factorial L'/H?-embedding of Picard number 1. O

5 Examples

In this section we give 5 examples with G = SL3. The first three ones give the MMP for the same

horospherical smooth variety but with a different ample Cartier divisor. The fourth one gives a

flip consisting of exchanging colors (see [Bri93, Section 4.5]). And the last one give the MMP for

a Q-Gorenstein (not Q-factorial) variety, where we observe a flip from a divisorial contraction.
Fix a Borel subgroup B of G. Denote by « and § the two simple roots of G.

Example 7. Consider the horospherical subgroup H defined as the kernel of the character w, +
wg of B. In that case we have N and M isomorphic to Z. The horospherical homogeneous space
has two colors a and 8 whose image in N are respectively a), = 8y, = 1.

If x is a character of B, we denote by C, the line C where B acts by b-z = x(b)z for any
be Band z € C.

Let X be the P!-bundle X = GxPP(Cy®Cq,4w,) over G/B, it is a smooth G/H-embedding.
Its colored fan is the unique complete fan (of dimension 1) without color. Denote by X; and X,
the two irreducible G-stable divisors of X, respectively corresponding to the primitive elements
x1 =1and x2 = —1 of N. Here —Kx = X; + X5 + 2D, + 2Dg.

Choose D = X 4+ 2X3 + 2D, + 2Dg. Then the moment polytope @ is the interval [, +
wg,4(wq + wp)| in the dominant chamber of (G, B).

The family (Q)e>0 is given by:

e for any € € [0, 1], Q° is the interval [(1 — €)(wq + wg), (4 — 3€)(wa + w@3)];
o for any € € [1, %[, Q° is the interval [0, (4 — 3€)(wq + w3));
. Q% is the point 0.

Hence, the MMP from (X, D) gives a divisorial contraction from X to the projective G/H-
embedding with the two colors o and 3, which is not Q-factorial but Q-Gorenstein, and Fano. It
finishes by a Mori fibration from this Fano variety to a point.

Note that, here, the divisorial contraction contracts 2 divisors: the zero and infinite section
of the P-bundle X. In particular, it is not the contraction of a ray of NFE(X).

Example 8. We keep the same G/H-embedding X but we choose another ample divisor D =
X1+ 2X5+4 3D, +2Dg. Then the moment polytope @ is the interval [2w, + wg, bw, + 4wpg.
The family (Q)e>o is given by:
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e for any € € [0, 1], Q° is the interval 2w, + wg — €(wq + wg), bwe + 4wp — 3e(w + wp);

e for any € € [1, 3], Q° is the interval [wq, 5w, + 45 — 3€(wa + wg));

) Q% is the point w,,.

Hence, the MMP from (X, D) gives a divisorial contraction from X to the projective G/H-
embedding with the color 8. This is a contraction of the ray of NE(X) generated by Cg x,. It
finishes by a Mori fibration from this Q-factorial variety to the flag variety G/P,.

Example 9. We still keep the same G/H-embedding X and we now choose the ample divisor
D = X5+ 2D, + 2Dg. Then the moment polytope @ is the interval [2(w, + wg), 3(wa + wg)].
The family (Q)e>o is given by:

e for any € € [0, [, Q° is the interval [(2 — €)(wa + wg), (3 — 3€)(wa + @p)];

e Q2 is the point 3(wa + @p).

Hence, the MMP from (X, D) gives the Mori fibration X — G/B, whose fibers are projective
lines.

In the following example, we illustrate a flip consisting of exchanging colors.

Example 10. Consider the horospherical subgroup H defined as the kernel of the character
wo +2wg of B. In that case we have N and M isomorphic to Z. The horospherical homogeneous
space has two colors a and 8 whose image in N are respectively a), =1 and Sy, = 2.

Let X be the Q-factorial G/H-embedding whose colored fan is the complete fan with color
5. Denote by X the irreducible G-stable divisor of X, corresponding to the primitive elements
z1 = —1. Here —Kx = X1 + 2D, + 2Dg.

Consider D = 3X1+2D,+2Dg. Then the moment polytope @ is the interval [wq, 5w, +8wpg].

The family (Q)e>o is given by:

e for any € € [0, 1], Q° is the interval [(1 — €)@y, 5wa + 8ws — €(3wy + 4wg)];
e Q! is the interval [0, 2w, + 4wgl;

e for any € €]1, %[, Q¢ is the interval [2(e — 1)wg, 5w, + 8wy — €(3w, + 4wp));
) Q% is the point %w5.

Hence, the MMP from (X, D) first gives a flip X — Y «— X where Y is the G/H-
embedding corresponding to the complete colored fan with the two colors o and 3 and X7 is
the G/H-embedding corresponding to the complete colored fan with the color a. It finishes by a
Mori fibration from X7 to the flag variety G/P;.

In fact, in rank 1 we can describe the MMP for projective Q-Gorenstein horospherical varieties,
without using moment polytopes (by simply using the classifications of embeddings, equivariant
morphisms and divisors in terms of colored fans).
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Proposition 42. Let X be a projective horospherical variety of rank 1. Then the lattice M is
isomorphic to Z (and Mg ~ Q). Its colored fan Fx is a complete colored fan whose mazimal
cones are the two half-lines of Q from 0. Recall that an anticanonical divisor of X is > . X; +
ZaES\R ao Dy, for some positive interger ao (here v < 2). The colors of the open G-orbit G/H
of X can be partitioned as follows

k l
S\R=| |S;us®ul |s
=1 i=1

\
such that for any i € {1,...,k} the rational numbers i—f with o € S, are all equal and negative,
\
for any o € S° the integer ay, is zero and, for any i € {1,...,l} the rational numbers i—f

with o € S;r are all equal and positive. We order the sets S, and S;r such that for any i < j in
{1,....k} (respectively {1,...,1}), for any o € S; and B € S} (respectively o € S and B € S;T),
\2 \2
we have |O;—f| < |i—1;’|
Then X is Q-Gorenstein if and only if the set Fx of colors of X intersects at most one S,
and one S;". (And recall that Fx never intersects S°).
Suppose now that X is Q-Gorenstein.

A birational extremal contraction ¢ from X to 'Y consists in adding one color . We distin-
guish 3 cases:

1. the color « is in a half-line with no color of X, then ¢ is a divisorial contraction and Y is
Q-Gorenstein;

2. the color « is in the same subset S; or S;r as some color of X, then'Y is still Q-Gorenstein
but ¢ is not a divisorial contraction;

3. there exists some i € {1,...,k} (respectively {1,...,1}), some not empty A C S; (re-
spectively S;7), such that o is in some Sy (respectively S;r) with j # i, then Y is not
Q-Gorenstein and we have a flip map ¢T : XT — Y where Xt is the Q-Gorenstein
G/ H -embedding obtained from'Y by erasing all colors in A;

A not birational extremal contraction ¢ is

4. either a map from X to G/P’, where P’ is the parabolic subgroup of G containing B whose
set of simple roots is RU Fx;

5. or a map from X to the projective G/H'-embedding X' such that H' is the rank one horo-
spherical subgroup H N P', P’ is the parabolic subgroup of G containing B whose set of
simple roots is RU o with o € 89, and Fxr = Fx.

If C is a curve of X contracted by ¢, then, in the above 5 cases we have:

Vv
1. the sign of Kx.C is the sign of |O;—f| —-1;

2. Kx.C=0;
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3. the sign of Kx.C is the sign of j —i, and if CT is a curve of X+ contracted by ¢T, the sign
of K x+.CT is opposite to the sign of Kx.C;

4. Kx.C <0;
5 Kx.C <0.

The proof of this proposition is left to the reader.

Example 11. Consider the case where S\R = S; U S, US| with S; = {a}, S; = {B,7} and
S = {6}. Consider the projective Q-Gorenstein G/H-embedding X such that Fx = {3,v}.
Then we can add the color § and get a divisorial contraction. Or we can also add the color « and

get a flip X Ly <¢—+ Xt where Y and X are respectively the G/H-embedding such that
Fy ={a,B,7} and Fx+ = {a}. In that case, the morphism ¢ can factor in two ways as follows
Xt — Y — Y, where Fyr = {a, 3} or Fyr = {a,v}. In particular ¢t is not an extremal
contraction. Moreover in both cases Y’ is not Q-Gorenstein, so that we cannot have a flip from
the contraction ¢ such that ¢* is an extremal contraction and X is Q-Gorenstein.

We now give a last example in rank 2.

Example 12. Consider the case where the horospherical subgroup H is the maximal unipotent
subgroup U of B. Then the lattice M is the lattice of characters of B with basis (wq,wg), and
N is the coroot lattice with basis (¥, 3Y). Here a¥ = o), and ¥ = 3.

Let X be the G/H-embedding whose colored fan is the complete colored fan with color 3,
and edges generated by x1 := —Y, 29 := o and 23 := 8 — . Note that X is not Q-factorial
because 3" is not in an edge of Fx. An anticanonical divisor of X is Xy + Xo + X3+ 2D, + 2Dg,
and it is Cartier so that X is Q-Gorenstein.

Consider D = 3X; + X3 + Dy + Dg. Then D is an ample Cartier divisor whose moment
polytope @ is the triangle with vertices w,, @wq + 4wg and 5w, + 4wg. The matrices defining
the family (Q)e>o are

0 -1 —4 3
1 0 1 -1
A=1 -1 1 ,B=1 —1 and C' = 1
1 0 0 0
0 1 0 0

Note that these matrices are the same as in Example 4 without the sixth line.
Then the family (Q)e>o is given by:

e for any € € [0, 1], Q€ is the triangle with vertices (1 — €)w,, wq + 4w — €(wq + 3ws) and
5wy + 4wg — (4w + 3wg);

e Q' is the triangle with vertices 0, wg and w, + wg;

e for any € €]1, 3[, Q¢ is the triangle with vertices (e — 1)wg, (4 — 3€)wp and 5w, + 4dwg —
€(4wq + 3wp);
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Figure 7: Evolution of @€ in Example 12

) Q% is the point iw&

We illustrate the first three classes of the family (Q¢)e>o in Figure 7.

Hence, the MMP from (X, D) first gives a flip X — Y «— X where Y is the G/H-
embedding corresponding to the same complete colored fan as X but with the two colors o and
S and X is the G/H-embedding corresponding to the same complete colored fan as X but with
the color « (instead of 3). Note that the map X — Y contracts the divisor X5 and that the
map X — Y does not contract a divisor. It finishes by a Mori fibration from X to the flag
variety G/Pg.
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