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Abstract

The aim of these lectures is to give an overview on spherical varieties, especially recent
results. Spherical varieties form a very large class of varieties containing in particular toric
and flag varieties. They are very useful to test conjecture or theory, or simply to understand
better what can happen in algebraic geometry. And, to my point of view, there is still a lot
of results to prove for these varieties.
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Introduction

The idea to get classes of examples of varieties is to study particular varieties with a group action.
More precisely, let X be a normal algebraic variety over an algebraically closed field k. And let
G be a connected reductive algebraic group over k acting on X with an open orbit (equivalently
with finitely many orbits). For example take G = GL(n), SL(n), SO(n), Sp(2n) or (k∗)n.

What we can do now is to:

• define an invariant called the complexity, which is a non-negative integer (it is the minimal
codimension of an orbit under the action of a Borel subgroup)

• give a partial combinatorial description of spherical ones (i.e. with complexity zero); for
varieties of positive complexity very few is known.

• give a precise classification and a general theory for spherical ones when the open orbit is
isomorphic to a given homogenous space.

• give a classification of spherical varieties under the action of groups of type A, D (SLn,
SO(2n)) and E.

• describe more or less precisely some classes of spherical ones, for example: toric varieties,
flag varieties, horospherical varieties, symmetric varieties, wonderful varieties.

Even if some results are also true over all algebraically closed field, still now we will only work
over C.

Notice that spherical varieties have an equivalent in real symplectic geometry, indeed they
correspond to real symplectic manifold with a multiplicity-free Hamiltonian action of a compact
Lie group [Wo98]. But here, we will only consider the algebraic geometrical point of view of
spherical varieties.

1 Two well-known classes of spherical varieties

1.1 Toric varieties

To have more details to what we will say in this section, see for example [Fu93] or [Od78]. Here
the group acting will be an algebraic torus (C∗)n.

Definition 1.1. A toric variety of dimension n is a normal algebraic variety where (C∗)n acts
with an open orbit isomorphic to itself.

Examples 1.2. • Cn, Pn, BlY Pn for all Y stable under the action of (C∗)n,...
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• Products of toric varieties are toric varieties.

• A singular example: the surface xz = y2 in C3 where (C∗)2 acts by (a, b) · (x, y, z) =
(ax, by, b2

a z).

A way to construct affine toric varieties

Take a strictly convex cone C of Rn ⊃ Zn generated by finitely many elements of Zn. Define
the dual C∨ of C to be the subset of Rn (identified to its dual) of elements v such that 〈v, u〉 ≥ 0.
Then define

X = SpecC[Xχ, χ ∈ C∨ ∩ Zn]

where Xχ = Xχ1
1 · · ·Xχn

n for χ = (χ1, . . . , χn) in a fixed basis of Z and X1, . . . , Xn are variables.

Examples 1.3. We obtain a variety isomorphic to Cn as soon as C is generated by a basis of Zn.
The cone consisting of the origin 0 in Rn gives Cn\{0}.
The singular example above is obtained choosing C to be generated by (2, 1) and (0, 1).

Remark 1.4. Let us fix a basis of weight of (C∗)n. Then, to an affine toric variety X, we associate
a convex cone in Rn spanned by the weights of C[X]. The dual of this cone is then a strictly
convex cone CX of Rn. And both construction are inverse from each other.

A way to construct projective toric varieties

We now consider a convex lattice polytope Q of dimension n in Rn (i.e. whose vertices are in
Zn). And we define

X = (C∗)n · [1, . . . , 1] ⊂ P(⊕χ∈Q∩ZnCχ)

where Cχ is the affine line where acts by (t1, . . . , tn) · z = tχ1
1 · · · tχn

n z for χ = (χ1, . . . , χn) in a
fixed basis of Zn.

Examples 1.5. The simplex with vertices the origin and the elements of a basis of Zn gives the
projective space Pn.
The square with vertices (0, 0), (1, 0), (0, 1) and (1, 1) gives P1×P1 in P3 via the Segre embedding.

We construct in fact, by this way, polarized varieties i.e. projective varieties together with
an ample line bundle. In the examples above, the ample line bundles are respectively O(1) and
O(1)×O(1).

A classification in terms of fans

Definition 1.6. A fan F in Rn ⊃ Zn is a finite set of strictly convex cones generated by finitely
many lattice points such that:

• every face of a cone of F in also in F;

• two cones intersect along a common face.
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Proposition 1.7. Let X be a toric variety. Then the set of cones associated to the (C∗)n-stable
affine subvarieties of X is a fan denoted by FX .

The map X 7−→ FX from the set of isomorphism classes of toric varieties of dimension n and
the set of isomorphism classes of fans in Rn is a bijection.

A lot of properties of a toric variety can be seen directly on its fan. Here is some examples of
such properties.

Proposition 1.8. • X is complete if and only if the fan FX is complete (i.e.for all point x
of Rn, there exists a cone of FX containing x).

• X is smooth if and only if all cones of FX are generated by a part of a basis of Zn.

• X is Q-factorial if and only if all cones of FX are generated by linearly independent elements
of Zn (i.e. all cones are simplicial).

• The orbits of (C∗)n in X of dimension d are in bijection with the cones of codimension D of
Fn. In particular, fixed points are parameterized by cones of dimension n and (C∗)n-stable
divisors by one-dimensional cones.

Proposition 1.9. • The group of Weil divisors of X is presented by generators X1, . . . , Xr

indexed by the one-dimensional cones of FX and the following relations

for all v ∈ Zn,
r∑

i=1

〈v, xi〉Xi = 0

where xi is the primitive element of the i-th one-dimensional cone of FX .
In particular, if X is Q-factorial, the Picard number ρ equals r − n.

• An anticanonical bundle of X is −KX = X1 + · · ·+ Xr.

Proposition 1.10. Let X be a (complete) toric variety and D be a Weil divisor of the form∑r
i=1 biXi where the bi are integers.
Then D is Cartier if and only if for all cone C of FX , there exists χC in Zn such that for all

primitive element xi of an edge of C, 〈xi, χC〉 = bi.
When D is Cartier, we can define a piecewise linear function hD of Rn as follows. Let x ∈ Rn.

There exists a unique maximal cone C of FX such that x ∈ C and then we define hD(x) = 〈x, χC〉.
Then a Cartier divisor D is ample if and only if the piecewise linear function hD is strictly

convex (i.e. for all distinct maximal cones C and C′ of FX and for all element x in the interior
of C we have hD(x) = 〈x, χC〉 > 〈x, χ′C〉).
The Fano case

Definition 1.11. A normal projective variety is said to be Fano if it is Gorenstein and if its
anticanonical divisor is ample.
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V. Batyrev classified Fano toric varieties in terms of particular lattice polytopes called reflexive
polytopes [Ba94]. Geometric properties of Fano toric varieties can be characterized by properties
of its reflexive polytope: for example the anticanonical degree (−KX)n of a Fano toric variety X
is the volume of the polytope dual to the reflexive polytope associated to X.

V. Batyrev used this classification to obtain a result of mirror symmetry on Calabi-Yau sub-
varieties of Fano toric varieties. But this classification was also used to have results on the degree
[De03], on the Picard number and on the pseudo-index [Ca06] of Fano toric varieties.

1.2 Flag varieties

The references to have more details on algebraic groups (or Lie algebras) and flag varieties are
[Hu75], [Sp98] and [Bo75]. In this section, G is a semi-simple (i.e. the radical R(G) of G is trivial
where R(G) is the maximal closed, connected, normal, solvable subgroup of G) and connected,
algebraic group over C. Such groups are almost classified by there Dynkin diagrams (of type An,
Bn, Cn, Dn, E6, E7, E8, F4 and G2) or equivalently by their root systems.

Let me give a very short summary of this classification (due to C. Chevalley). One can read
this summary together with the example of SLn below in order to understand what really happens.

Fix a Borel subgroup of G (i.e. a maximal solvable closed and connected subgroup of G)
and a maximal torus T ⊂ B. Let g be the Lie algebra of G, it is a semi-simple Lie algebra, and
denote by [·, ·] the Lie Bracket. There is a natural representation of g in GL(g), called the adjoint
representation, defined by ad(x)(y) = [x, y]. Let t be the Lie algebra of T , it is a maximal torus
of g, then we said that a character α of t is a root of (g, t) if it is a weight of t in g via the adjoint
representation i.e. if there exists a non-zero x ∈ g such that for all h ∈ t, [h, x] = α(h)x. We
denote by R the set of roots, it is a finite subset of characters of t. Define also gα the set of
eigenvector of weight α i.e. the element x ∈ g satisfying the latter condition. Then we have

g = t⊕
⊕

α∈R

gα.

Now let b be the Lie algebra of B. Let R+ be the set of roots α such that gα ⊂ b. Denote by R−

the complementary of R+ in R. Then we have

b = t⊕
⊕

α∈R+

gα and R− = {−α | α ∈ R+}.

The elements of R+ (resp. R−) are called positive (resp. negative) roots. There exists a unique
basis S of R+ (i.e. such that all positive roots are linear combinations of elements of S with
positive integer coefficients). The elements of S are called simple roots.

Denote by X the set of characters of T , by X∨ := HomZ(X,Z) the set of cocharacters of T
and by 〈·, ·〉 the pairing between X and X∨. Define now the Weyl group of (G, T ) (or (g, t)) to
be the quotient NG(T )/T . It is a finite group acting on X by: for all w ∈ W , χ ∈ X, t ∈ T ,
w·χ(t) = χ(w−1tw). For all α ∈ R define Gα to be the subgroup of G with Lie algebra g−α⊕t⊕gα.
Then there is a unique non trivial element in W which have a representative in NGαT , we denote
it by sα. The sα for α ∈ R are reflections and the sα for α ∈ S generate W . Remark that
G−α = Gα and s−α = sα.
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Now, for all α ∈ R, there exists a unique element α∨ of X∨ with 〈α, α∨〉 = 2 such that for all
x ∈ X, sα(x) = x− 〈x, α∨〉α. Remark that if α ∈ R then (−α)∨ = −(α∨). The α∨ for α ∈ R are
called the coroots of (G,T ). The set of coroots is denoted by R∨, it is a finite subset of X∨.

The quadruple (X, R,X∨, R∨) is called the root datum of (G,T ) and characterize uniquely G.
The root data of semi-simple connected algebraic groups satisfy a lot of nice properties (for

example, for all two roots α 6= ±β we have 〈α, β∨〉 = 0, −1, −2 or −3. And there are classified
in terms of Dynkin diagrams. The Dynkin diagram associated to G is the graph Γ defined as
follows:
- the vertices of Γ are indexed by the set of simple roots S;
- if, for α and β in S, 〈α, β∨〉 = 0, there is no arrow between α and β;
- if, for α and β in S, 〈α, β∨〉 = 〈β, α∨〉 = −1, there is a simple not oriented arrow between α and
β;
- if, for α and β in S, 〈α, β∨〉 = −2 and 〈β, α∨〉 = −1,there is a double arrow from α to β;
- if, for α and β in S, 〈α, β∨〉 = −3 and 〈β, α∨〉 = −1,there is a triple arrow from α to β.
(Other cases are not possible.)

Here is all possible Dynkin diagrams.

A

B

C

D

E6

E7

E8

F4

G2

We can represent the root system of rank n (the cardinality of S or the dimension of T ) in
an n-dimensional space such that the coroot of a root α is α∨ = 2α

(α,α) where (·, ·) is the canonical
product (with (α, α) = 2 for the smallest roots). For example, the root systems A1 ×A1, A2, B2

(that is the same as C2) and G2, of rank 2 are represented as follows (respectively).
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The points ω1 and ω2 are the fundamental weights that will be defined at the end of the section.

Example 1.12. Let G = SLn, choose T to be the diagonal matrices and B to be the upper
triangular matrices. Then g = sln the set of n × n matrices of zero trace and the Lie bracket
is define by [x, y] = xy − yx. The Lie subalgebras t and b of g are respectively the diagonal
and upper triangular matrices with zero trace. The roots of (G,T ) are the characters αij : h =
diag(h1, . . . , hn) 7−→ hi−hj of t for 1 ≤ i 6= j ≤ n. We can also see these characters as characters
αij : t = diag(t1, . . . , tn) 7−→ tit

−1
j of T . And the Lie subalgebra gαij of g is generated by the

matrix Eij with 0 everywhere excepted for the coefficient on the ith line and jth column that
equals 1. Then R+ = {αij | 1 ≤ i < j ≤ n} and S = {αi := αi(i+1) | 1 ≤ i ≤ n− 1}.

7



Now W is isomorphic to the symmetric group Sn, we can represent it in SLn by the group of
permutation matrices. Then, for 1 ≤ i < j ≤ n, sαij is the transposition (i j) and represented in
SLn by the permutation matrix

∑
k 6=i,j Ekk + Eij −Eji.

For all 1 ≤ i, j ≤ n − 1, the integer 〈αi, α
∨
j 〉 equals 2 if i = j, 0 if |i − j| > 2 and −1 if

|i− j| = 1. So the Dynkin diagram of G is An−1, we say that G is of type An−1.

Remark 1.13. In the latter example, we could replace SLn by PSLn and we would have exactly
the same sets of roots and coroots, but we would also remark that they have the same Lie
algebra. Indeed we have a bijective correspondence between simple Lie algebra and Dynkin
diagram, however a simple Lie algebra can be the Lie algebra of several simple algebraic groups
(but finitely many). To each Dynkin diagram corresponds a “maximal” and a “minimal” simple
algebraic group: a simply connected one and one with trivial center. For An−1, SLn is simply
connected and PSLn has trivial center (by definition PSLn is the quotient of SLn by its center).
We can also remark that the group character of T in PSLn is smaller than the group character
of SLn.

In lots of situations (for example for flag varieties and horospherical varieties) we will not take
care of the choice of the semi-simple algebraic groups of fixed type because it does not matter.
But we will see that, for symmetric varieties or wonderful varieties, the choice of the semi-simple
algebraic groups of a given type has to be taken into consideration, and in these cases we will
always assume (without loss of generality) that G is simply connected.

Now, we can interest us in flag varieties.

Proposition 1.14. The complete homogeneous spaces are the G/P where P is a closed subgroup
containing a Borel subgroup of G. In that case P is called a parabolic subgroup of G and G/P is
called a flag variety.

Flag varieties are smooth projective varieties.

Remark 1.15. All Borel subgroup are conjugated, so we can assume that P contains a fixed
Borel subgroup B.

With the notations above, the set of parabolic subgroups of G containing B (and then also
the set of isomorphism classes of flag varieties with G fixed) is in bijection with the set of subsets
of S.

Example 1.16. Let G = SLn. Recall that S is in bijection with {1, . . . , n − 1} (see example
1.12). Then to a subset S\I = {0 = i0 < i1 < · · · < is < is+1 = n} (s ≥ 0) we associate the
parabolic subgroup PI consisting of upper triangular block matrices with diagonal blocks of size
i1 − i0, . . . , is+1 − is. For example, B = P∅ corresponds to the parabolic subgroup associated to
{1 < 2 < · · · < n− 1}. Another example is for maximal parabolic subgroup PI where S\I = {i1}
then G/P is the grassmannian of i1-dimensional subspaces of Cn, denoted by Grassi1,n.

Remark 1.17. We have PI ⊂ PJ if and only if I ⊂ J .

To understand the geometry of flag varieties, we often use their decomposition into B-orbits.
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Proposition 1.18 (Bruhat decomposition).

G = tw∈W BẇB

where ẇ is a representative of w in G (in fact, by abuse of notations, we always note w instead
of ẇ). In particular,

G/B = tw∈W BẇB/B and G/P = tw∈W/WP
BẇP/P

where, if P = PI , WP is the subgroup of W generated by the simple reflections associated to
elements of S\I.

Since W is finite we have the remarkable following.

Corollary 1.19. Flag varieties have an open orbit under the action of a Borel subgroup.

The closure of the B-orbits in G/P are called the Schubert varieties (denoted by X(w)), they
play an important role in the study of G/P . The dimension of X(w) equals the length l(w) of w
(i.e. the minimal number of simple reflections needed to write w as product of simple reflections).
In particular, there exists a unique element w0 of maximal length in W/WP .

Here is few properties of flag varieties.

Proposition 1.20. • The Picard group of G/PI is the free group generated by the divisors
X(w0sα) for α ∈ S\I.

• Flag varieties are locally rigid, i.e. they admit no local deformation or in other words
H1(G/P, TG/P ) = 0 (in fact H i(G/P, TG/P ) = 0 for any i > 0).

• Flag varieties are Fano varieties and −KX =
∑

α∈S\I aαX(w0sα) where the aα are integers
≥ 2 depending on G and P = PI , defined by aα = 〈∑β∈R+\R+

I
β, α∨〉 where R+

I is the set
of positive roots generated by the simple roots in I.

Corollary 1.21. Flag varieties of Picard number one are the G/P where P is a maximal proper
parabolic subgroup of G. In particular, for G = SLn, flag varieties of Picard number one are the
grassmannians.

Remark 1.22. If G is not semi-simple but reductive (i.e. G contains no normal closed subgroup
isomorphic to Cn), then G/P is isomorphic to G′/G′ ∩ P where G′ is the semi-simple part (or
equivalently, the derived subgroup) of G and then it is still a flag variety.

A canonical way to embed flag varieties in projective spaces

Assume here that G is simply connected. The set X of characters of T is generated by
characters ωα called the fundamental weights for α ∈ S. They can be defined by the dual basis
of (α∨)α∈S relatively to 〈·, ·〉. In fact, ωα is a generator of the character group of the maximal
parabolic subgroup P (ωα) := PS\{α}. A character is said to be dominant if it is the linear
combination of the fundamental weights with non-negative coefficient. And for all dominant
character χ, there exists a unique simple G-module V (χ) of highest weight χ, i.e. a simple G-
module containing a non-zero element v such that for all b ∈ B we have b · v = χ(b)v. A such
element v is called a highest weight vector (of highest weight χ), it is unique up to scalar and
denoted by vχ.
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Proposition 1.23. Let χ be a dominant character of T . Then the G-orbit of [vχ] in P(V (χ)) is
isomorphic to G/PI where I = {α ∈ I | 〈χ, α∨〉 = 0}. In fact, PI is the stabilizer of [vχ] in G.

In particular for all α ∈ S, we have a highest weight module V (ωα) and a natural embedding
of G/P (ωα) −→ P(V (ωα)) defined by g 7−→ g · vωα.

Example 1.24. Let G = SLn. For all i ∈ {1, . . . , n− 1}, ωαi(Diag(t1, . . . , tn)) = t1 · · · ti and the
highest weight module V (ωαi) is the vector space

∧iCn with the natural action of SLn. Let fix
(e1, . . . , en) a basis of C (the same basis used to write elements of G as matrices). Then a highest
weight vector of V (ωαi) is vωα−i = e1 ∧ · · · ∧ ei. The embedding Grassi,n −→

∧iCn is called the
Plücker embedding.

Remark that if G = PSLn, the character ωα1 is not well-defined, as well as the G-action on
the corresponding module Cn. Nevertheless the G-action is well-defined on P(Cn).

Remark 1.25. We have constructed, by this way, polarized flag varieties.

2 Spherical varieties: definition and theory of Luna-Vust

From now on, G can be any reductive and connected algebraic group over C. Then we can define
the root system of G to be the root system of the semi-simple part G′ of G. So we refer to section
1.2 for the notations. The only difference between semi-simple and reductive group is that we
can have characters of X that are not generated by the ωα with α ∈ S, because there is also
characters of the center C(G) of G (that is finite if G is semi-simple).

Examples 2.1. Let G = (C∗)n. Then G′ = {1} so that the root system of G is empty (there is
no root, no fundamental weight...). But the set of characters of T = G = C(G) is isomorphic to
Z.

Let now G = GLn. Then G′ = SLn, C(G) = {λ Id | λ ∈ C∗}. Then the root system of G is
the root system of SLn and the character group X is freely generated by the ωα with α ∈ S and
the determinant.

In this section, we give the definitions of spherical varieties and a horosphercial varieties.
And we explain the theory of Luna-Vust that classify the embeddings of a fixed (horo)spherical
homogeneous space.

2.1 Definitions and the general theory in an ”easy” case

Definition 2.2. Let X be a normal G-variety. Then X is said to be spherical if X contains an
open orbit under the action of a Borel subgroup of G. In particular, it contains an open G-orbit.

At the same way, an homogeneous space G/H is said to be spherical if it contains an open
orbit under the action of a Borel subgroup of G. Then a spherical variety is a G/H-embedding
for a spherical homogeneous space G/H (i.e. a normal G-variety with an open orbit isomorphic
to G/H).

Examples 2.3. the first examples of spherical varieties are toric varieties (a Borel subgroup of
(C∗)n is (C∗)n itself) and flag varieties.
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The B-stable divisors of spherical varieties will play an important role in their study. We
distinguish the G-stable ones (denoted by X1, . . . , Xm) and the B-stable but not G-stable ones.
These latter divisors are indeed the closure in X of the B-stable divisors of the open orbit G/H
of X that are called the colors of G/H.

Example 2.4. For toric varieties, there are no colors (because G = B) and the G-stable divisors
are in correspondence with the one-dimensional cones of the associated fan (see 1.1).

For flag varieties, there is no G-stable divisors and the colors are the codimension one Schubert
varieties (see 1.2).

Another more general but not too difficult example: horospherical varieties

Definition 2.5. An homogenous space G/H is said to be horospherical if it is a torus bundle
over a flag variety G/P , or equivalently if H contains the unipotent radical of a Borel subgroup,
or equivalently if H is the kernel of characters of a parabolic subgroup P of G. The dimension of
the torus, fiber of G/H −→ G/P , is called the rank of G/H and denoted by n.

Remark 2.6. The parabolic subgroup P in the definition is uniquely defined as the normalizer
NG(H) of H in G. And we also have P = TH = BH for all maximal torus T of B contained in
P and all Borel subgroup B of G contained in P .

Example 2.7. Here is some examples of horospherical homogenous spaces.

G H rank dimension
1 (C∗)n {1} n n

2 G un sous-groupe parabolique P 0 dimG− dimP

3 SL2 U = {
(

1 ∗
0 1

)
} 1 2

4 SL2 × C∗ U = {
(

1 ∗
0 1

)
} × {1} 2 3

5 SL2 × SL2 U = {
(

1 ∗
0 1

)
} × {

(
1 ∗
0 1

)
} 2 4

6 SL3 U = {



1 ∗ ∗
0 1 ∗
0 0 1


} 2 5

Let G/H be a horospherical homogenous space. Then, the colors of G/H are the inverse
images of the codimension one Schubert varieties of G/P by the torus fibration G/H −→ G/P .
Thus there are indexed by the elements of S\I where I is the subset of S such that P = PI (see
section 1.2). We denote the colors by Dα, for α ∈ S\I.

The Luna-Vust theory for horospherical varieties

Fix a horospherical homogenous space G/H. And keep the notations of the latter paragraph.
Choose B and T contained in P .
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Denote by M the lattice of characters of P whose restriction to H is trivial. This lattice
is of rank n (the rank of G/H). Define now N to be the dual of M and MR = M ⊗Z R and
NR = N ⊗Z R.

We denote by C(G/H)(B) the set of rational functions f on G/H such that there exists a
character χf of T (and of B) such that for all b ∈ B and g ∈ G, f(bgH) = χf (b)f(gH). (We
denote by gH the class of g in G/H.)

Lemma 2.8. The map f 7−→ χf is a bijection from (C(G/H)(B)\{0})/C∗ to M .

Proof of the injectivity. Let f1 and f2 two non zero elements of C(G/H)(B) with associated char-
acters χ1 = χ2. Then the quotient f = f1/f2 is still an element of C(G/H)(B) with associated
character χ1 − χ2 = 0. Then f is constant in the open B-orbit of G/H so it is constant every-
where.

Remark 2.9. The hypothesis that there exists an orbit under a Borel subgroup is used to prove
that there is no multiplicity in the decomposition of C(G/H) into simple G-module.

We are now able to define special points of the lattice N . Let α ∈ S\I, then recall that the
color Dα is a B-stable divisor of G/H. Then, the application from C(G/H)(B) to Z the degree of
zeros or poles of a rational function on the divisor Dα, is an element of N using the last lemma.
It is called the image of the color Dα and denoted by α∨M . It is in fact the restriction to M of the
coroot α∨ : ωβ 7−→ 1 if α = β and 0 if not.

As the same way, for a G-stable irreducible divisor D of a G/H-embedding we can associate
an element σ(D) of N .

We are now able to give the classification of G/H-embedding in the particular case of horo-
spherical varieties.

Definition 2.10. (ı) A colored cone is a pair (C,F) with C ⊂ NR and F ⊂ S\I having the
following properties:

• C is a convex cone generated by the α∨M with α ∈ F and finitely many elements of N ;

• C contains no lines and α∨M 6= 0 for all α ∈ F .

(ıı) A colored face of a colored cone (C,F) is a pair (C′,F ′) such that C′ is a face of C and F ′
is the subset of F of elements α satisfying α∨M ∈ C′.

(ııı) A colored fan is a finite set F of colored cones with the following properties:

• every colored face of a colored cone of F is in F;

• for all u ∈ N , there exists at most one (C,F) ∈ F such that u is in the relative interior of C.
(ıv) The support of a colored fan F is the set of elements of N contained in the cone of a colored

cone of F. A color of a colored cone of F is an element of D such that there exists (C,F) ∈ F such
that D ∈ F .
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Let X be a G/H-embedding. Let X ′ be a G-stable open subvariety of X containing a unique
closed G-orbit (such a variety is called a simple G/H-embedding). Let X1, . . . , Xm′ the G-stable
divisors of X. Let F ′ be the set of α ∈ S\I such that the closure of Dα in X contains the closed
orbit of X ′. Let C′ be the cone of NR generated by the α∨M with α ∈ F ′ and the σ(Xi) with
i = 1 . . . m′. Then (C′,F ′) is a colored cone of NR. Moreover the set of colored cones constructed
on this way from X and their colored faces form a colored fan. We denote it by FX .

Theorem 2.11 (Luna-Vust). The map X 7−→ FX is a bijection from the isomorphism classes of
G/H-embeddings and the set of colored fans.

Remark 2.12. In the theorem, isomorphisms are isomorphisms of G/H-embeddings (i.e. G-
equivariant isomorphisms φ : (X,x) −→ (X ′, x′) where x and x′ are in the open G-orbit of X and
X ′ such that φ(x) = x′).

Example 2.13. The horospherical homogeneous space SL2 /U , of rank 1, is isomorphic to C2\{0}.
We can choose B (respectively U) equal to the set of upper triangular matrices of SL2 (respectively
upper triangular matrices with ones on the diagonal). Here P = B, S = {α}, I = ∅ and U is
the kernel of ωα : b = (bij)1≤i,j≤2 ∈ B −→ b11 in B. We can remark that the morphism
SL2 /U −→ SL2 /P is the usual projection from C2\{0} to P1.

The natural action on SL2 on C2 induces an action of SL2 on P2 ' P(C ⊕ C2). If we denote
by x0, x1, x2 the homogenous coordinates of P2, we remark that P2 is a SL2 /U -embedding. In
fact SL2 /U corresponds to the open set {[1, x1, x2] | (x1, x2) ∈ C2\{0}} of P2. Denote by 0
the fixed point [1, 0, 0] of P2 under the action of SL2, D the line {[x0, x1, x2] ∈ P2 | x0 = 0}
(so that P2\D = C2), and E exceptional divisor of the blow-up of 0 in P2. Then non-trivial
SL2 /U -embeddings are the 5 following varieties.

SL2 /U -embedding SL2-stable closed color
X divisor(s) SL2-orbit(s) of X

1/ C2 ∅ {0} Dα

2/ P2\{0} D D ∅
3/ P2 D D and {0} Dα

4/ blow-up of 0 in C2 E E ∅
5/ blow-up of 0 in P2 D and E D and E ∅

For SL2 /U , the unique color is {Dα} = {[1, x1, 0] | x1 ∈ C∗}. The embeddings 1/, 2/ and 4/
only have one closed SL2-orbit; they are the simple SL2 /U -embeddings. The embeddings 2/, 4/
and 5/ have no color; there are said to be toröıdal. We also remark that the blow-up of 0 in P2

is covered by the blow-up of 0 in C2 and P2\{0}, and also that P2 is covered by P2\{0} and C2.
In this example, the lattices M and N are isomorphic to Z. The following represents the line

NR with the images by σ of the B-stable divisors of the blow-up of 0 in P2:

0 NR�(D) �(D�) = �(E)
The non-trivial colored fans of NR are the following:
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2/4/ 1/

5/ 3/

The colored fan i/ corresponds to the SL2 /U -embedding i/ and the trivial colored fan {({0},∅)}
corresponds to the trivial SL2 /U -embbeding SL2 /U .

Let us now give few properties of horospherical varieties via the classification.

Proposition 2.14. • X is complete if and only FX is complete i.e. if for all element x ∈ NR
there exists a cone of FX containing x [LV83].

• There is a bijective correspondence between G-orbits in X and the colored cones in FX .

• There is a smoothness criterion given independently at the same time in [Pa06a] and [Ti06].
In particular, every G-stable subvariety of a smooth horospherical variety is smooth.

• There are also locally factoriality and Q-factoriality criteria.

Proposition 2.15. • If X is Q-factorial, the Picard number of X equals m + ](S\I)− n =
r− n + ](S\I)− ]DX where r is the number of 1-dimensional colored cones in FX and DX

is the set of colors of X (that is a subset of S\I).
• An anticanonical divisor of X is −KX = X1 + · · ·+ Xm +

∑
α∈S\I aαDα where the aα are

the same as in Proposition 1.20 [Br97a].

In [Br89], M. Brion described the Picard group of all spherical varieties and gave criteria for
Weil divisors to be Cartier, globally generated and ample. Here is a summary of these results
in the case of complete horospherical varieties. Note that these criteria are very similar to the
criteria given for toric varieties in Proposition 1.10.

Theorem 2.16 ([Br89]). Let X be a complete G/H-embedding and D a Weil divisor of the form

m∑

i=1

biXi +
∑

α∈S\I
bαDα,

where the bi and bα are integers.
Then D is Cartier if and only if for all colored cone (C,F) of FX , there exists χC in M such

that for all primitive element xi of an edge of C, 〈xi, χC〉 = bi and ∀α ∈ F , 〈α∨M , χC〉 = bα.
When D is Cartier, we can define a piecewise linear function hD of NR as follows. Let

x ∈ NR. There exists a unique maximal colored cone (C,F) of FX such that x ∈ C and then we
define hD(x) = 〈x, χC〉.

Then a Cartier divisor D is ample if an only if:
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(i) the piecewise linear function hD is strictly convex (i.e. for all distinct maximal colored
cones (C,F) and (C′,F ′) of FX and for all element x in the interior of C we have hD(x) =
〈x, χC〉 > 〈x, χ′C〉);

(ii) for all colored cone (C,F) of FX and for all α ∈ (S\I)\F , we have hD(α∨M ) = 〈α∨M , χC〉 < bα.

A way to construct projective horospherical varieties

We consider a convex lattice polytope Q of dimension in MR whose lattice points are dominant
characters. Then we define

X = G · [
∑

χ∈Q∩M

vχ] ⊂ P(⊕χ∈Q∩MV (χ)).

It is a projective horospherical (with open orbit G/H if Q is n-dimensional).

Examples 2.17. • Let us consider G = SLn and the segment Q = [ωαi , ωαi+1 ] in X with
1 ≤ i ≤ n− 2. Define

X = G · e1 ∧ · · · ∧ ei + e1 ∧ · · · ∧ ei+1 ⊂ P(
i∧
Cn ⊕

i+1∧
Cn) = P(V (ωαi)⊕ V (ωαi+1)).

Then X is horospherical of rank one with open orbit G/H where H = Ker(ωαi − ωαi+1) ⊂
PS\{αi,αi+1}.

In fact, in that case, X is isomorphic to Grassi+1,n+1. Indeed, let e0 such that e0, . . . , en is
a basis of Cn+1. Then the morphism

∧iCm ⊕∧i+1Cm −→ ∧i+1Cm+1

x + y 7−→ x ∧ e0 + y

is an isomorphism. Moreover e1 ∧ · · · ∧ ei + e1 ∧ · · · ∧ ei+1 is send to e1 ∧ · · · ∧ ei ∧ (ei+1± e0)
so that X is a subvariety of Grassi+1,n+1. We conclude comparing the dimension.

• Let us now consider G/H = SL3 /U and the triangle Q with vertices 0, ωα, ωβ in M = X.
Then, using the same trick as above, we can prove that X is a cone of basis the grassmannian
Grass2,4. In particular, it is not smooth (it is only locally factorial).

2.2 The Luna-Vust theory in the general case

Good references for this theory in the general case are the original paper of D. Luna and T. Vust
[LV83], the paper of F. Knop [Kn91] where he proves the result in any characteristic and notes
of M. Brion [Br97b].

Here G/H is a spherical homogeneous space, i.e. containing an open B-orbit for a Borel
subgroup B of G. Then we fix this Borel subgroup B and a maximal torus T of B.

Define M as the set of characters χ such that there exists a non-zero f ∈ C(G/H)(B) of weight
χ. Then, as before, M is isomorphic to (C(G/H)(B)\{0})/C∗.
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We denote by D the set of irreducible B-stable divisor of G/H (i.e. the set of colors). Then
we have an application σ from D to N ”defining by the degree of zeros and poles of rational
functions”.

Denote by V the cone of NR generated by the image in N of the set of G-stable valuations of
G/H. It is a convex polyhedral cone. We have V = NR if and only if G/H is horospherical.

Definition 2.18. (ı) A colored cone is a pair (C,F) with C ⊂ NR and F ⊂ D having the following
properties:

• C is a convex cone generated by σ(F) and finitely many elements of V;

• the relative interior of C intersects V non trivially;

• C contains no lines and 0 6∈ σ(F).

(ıı) A colored face of a colored cone (C,F) is a pair (C′,F ′) such that C′ is a face of C, the
relative interior of C′ intersects non trivially V and F ′ is the subset of F of elements D satisfying
σ(D) ∈ C′.

(ııı) A colored fan is a finite set F of colored cones with the following properties:

• every colored face of a colored cone of F is in F;

• for all v ∈ V, there exists at most one (C,F) ∈ F such that v is in the relative interior of C.
(ıv) The support of a colored fan F is the set of elements of V contained in the cone of a colored

cone of F. A color of a colored cone of F is an element of D such that there exists (C,F) ∈ F such
that D ∈ F .

We can now define the colored fan associated to a G/H-embedding as in the horospherical
case and we still have the following.

Theorem 2.19 (Luna-Vust). The map X 7−→ FX is a bijection from the isomorphism classes of
G/H-embeddings and the set of colored fans.

Theorem 2.20. • X is complete if and only FX is complete i.e. if for all element x ∈ V
there exists a cone of FX containing x.

• There is a bijective correspondence between G-orbits in X and the colored cones in FX .

• If X is Q-factorial, the Picard number of X equals m+ ](S\I)−n = r−n+ ](S\I)− ]DX .

• There is no general smoothness criterion but a description of the local structure of spherical
varieties [Br89, Chap.1].

• An anticanonical divisor of X is −KX = X1 + · · · + Xm +
∑

D∈D aDD where the aD are
positive integers [Br97a].

• There is an ampleness criterion for divisor on spherical varieties [Br89] very similar to the
case of horospherical varieties (Theorem 2.16.
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2.3 Some examples

Let G = SO3 (it is of type A1, in fact isomorphic to PSL2). Let us consider the G-module C3

with the natural action. Let q be a G-invariant non-degenerate quadratic form on C3. Let X0

and X1 be the fibers of 0 and 1, respectively, of q : C3 −→ C. There are affine spherical varieties
(left to the reader) which are non G-equivariantly isomorphic because X0 has two G-orbits and
X1 has only one G-orbit.

Denote by 〈·, ·〉 the scalar product associated to q. Fix a basis (e1, e0, e−1) of C3 such that
〈ei, ej〉 = 1 if i = −j and 0 if not. Denote by (f1, f0, f−1) the dual basis. Then C[X0] =
C[f1, f0, f−1]/(f2

0 + 2f1f−1) and C[X1] = C[f1, f0, f−1]/(f2
0 + 2f1f−1 − 1).

Let B be the Borel subgroup of G define by B = StabG e1. Then f−1 is a highest weight
vector of weight 2ωα : (bij) ∈ B 7−→ b11 = b−1

33 . Then we can prove that for i = 0 and 1, the
lattice M of weights of C[Xi] is the sublattice of characters of T generated by 2ωα.

For X0, we can observe that the decomposition of C[X0] into simple G-module is the de-
composition into polynomials of same degree (C[f1, f0, f−1]d/(f2

0 + 2f1f−1) = V (2dωα)∗). We
have one color D whose closure in X0 is the divisor defining by f−1(x) = 0 (it is in fact the line
generated by e1). Then σ(D) = α∨/2. The divisor D defines a G-invariant valuation ν which to
a polynomial associates its minimal degree. Seen as an element of N , it has an inverse −ν, which
also comes from a G-invariant valuation, which to a polynomial associates minus its maximal
degree. Then the valuation cone of G/H in this case is NQ, in fact X0 is an horospherical variety
(StabG e1 is the kernel in B of 2ωα).

For X1, we have two colors that are the irreducible components of the divisor defined by
f−1 = 0 (if f−1 = 0 then f0 = 1 or f0 = −1). They have the same image α∨/2 by σ. Now let ν be
a G-invariant valuation of G/H. Then ν(f1) = ν(f0) = ν(f−1) and 0 = ν(1) = ν(f2

0 + 2f1f−1) ≥
min(ν(f2

0 ), ν(f1f−1)) = 2ν(f−1) so that the image of ν in NQ is in the half line generated by
−α∨/2. In fact, the valuation cone of G/H in that case is the half line of NQ not containing the
color.

In fact X1 is a symmetric homogeneous space G/H (see Definition 3.5) where H = Gθ :=

{g ∈ G | θ(g) = g} and θ : G −→ G, g 7−→ JgJ with J =




0 0 1
0 −1 0
1 0 0


 (here we chose to

take H = StabG(e1 + e2) so that BH/H is open). And the only non-trivial G/H-embedding is
the quadric Q2 in P[C ⊕ C3] where G acts trivially on C and by the usual action on C3. We
could also consider the following symmetric homogenous space G/NG(H). Note that NG(H)/H
is finite (in that particular case, H is a maximal torus and G/NG(H) is isomorphic to the Weyl
group W = S2). The unique non-trivial G/NG(H)-embedding is P(C3). For this symmetric ho-
mogeneous space, we have the same invariants as for G/H except that we have only one color
(still with image α∨/2 by σ).

Note that X1 degenerates into X0, it is a general fact: spherical varieties degenerate into
horospherical varieties and also into toric varieties.

These varieties belong to a class of spherical varieties classified by D. Akhiezer: smooth com-
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plete G-varieties with an open orbit and a boundary consisting of homogeneous divisors [Ak83].

3 A general classification?

For the moment, the spherical homogeneous spaces are only classified in very special cases. Nev-
ertheless, I.V. Losev recently proved a uniqueness property for spherical homogeneous spaces.

3.1 A theorem of uniqueness

We have already seen combinatorial invariants of spherical homogeneous spaces: the lattice M of
weights of C(G/H), the valuation cone and the set D of colors of G/H together with a map σ
from D to the dual N of M . We just have to add one natural natural family of invariants (the
stabilizers in G of the colors) in order to have the uniqueness of spherical homogenous spaces,
more precisely:

Theorem 3.1 (I.V. Losev). Let G/H1 and G/H2 be two spherical homogeneous spaces with the
same weight lattice M , the same valuation cone in N := HomZ(M,Z) and set of colors D1 and D2

respectively (together with maps σ1 and σ2 from D1 and D2 to N respectively) such that there exists
a bijection ι : D1 −→ D2 satisfying, for all D ∈ D1, σ1(D) = σ2(ι(D)) and StabG D = StabG ι(D).

Then G/H1 and G/H2 are G-equivariantly isomorphic.

We can refer to [Lo09a] for the complete proof or to [Lo09b] for a good summary of the proof.

Remark 3.2. We can also replace the valuation cone by the so called spherical roots defined by
the set Σ of primitive elements of M such that V = {n ∈ NQ | 〈n,m〉 ≤ 0, ∀m ∈ Σ}.
Example 3.3. The addition condition on the stabilizers of the colors in G is necessary as the
following example shows us.

Let G = SLn with n ≥ 5, B a Borel subgroup of G and T a maximal torus. Let H1 be the
kernel in P (ωα1) ∩ P (ωα2) of the fundamental weight ωα1 . Let H2 be the the kernel of the same
weight ωα1 but in the P (ωα1)∩P (ωα3). Then, both G/H1 and G/H2 are horospherical, with the
same weight lattice M = Z generated by ωα1 (and so with the same valuation cone R because
they are horospherical) and each with 2 colors whose images in N are the same (α∨1M and 0).
But the stabilizers of the colors in G are not the same (for the color with image 0). In fact we
could have already noticed that G/H1 and G/H2 are not isomorphic because they do not have
the same dimension!

In fact a more simple example can also be found just in flag varieties.

For other examples, see previous section.

3.2 Classification in very special cases

3.2.1 Horospherical varieties

Proposition 3.4. The horospherical G-varieties are classified by couple (I, M) where I is a subset
of the set S of simple roots and M is a subgroup of the group X(PI) ⊂ X of characters of PI .
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Proof. We fix a Borel subroup B and we consider the horospherical homogeneous spaces G/H
such that H contains the unipotent radical U of B. Since all Borel subgroup are conjugated, we
obtain in this way all other horospherical G/H.

Recall that, for each horospherical homogenous space G/H, we define I to be subset of S such
that NG(H) = PI and M to be the subgroup of X consisting of characters of PI whose restriction
to H is trivial.

Inversely, for all couple (M, I), then the subgroup H equal the intersection of kernels of
characters of M in PI .

3.2.2 Symmetric varieties

Definition 3.5. Let G be connected semi-simple algebraic group over C and θ be an involution
of G. Let H be a closed subgroup of G such that Gθ ⊂ H ⊂ NG(Gθ). Then G/H is said to be a
symmetric homogeneous space. And G/H-embeddings are called symmetric varieties. (We will
always assume that θ is not the identity.)

Examples 3.6. The homogenous spaces X1 = SO(3)/H and SO(3)/NSO3H of section 2.3 are
symmetric.

For all connected semi-simple algebraic group G, G ×G/G where G is diagonally embedded
in G×G, is a symmetric homogeneous space.

The classification of involutions for each G was established by E. Cartan in the 1920ies (see
in Wikipedia website or in appendix A of [BC08]). And then T. Vust proved that symmetric
varieties are spherical and described the valuation cone and the colors associated to a symmetric
space [Vu90]. Let us describe quickly the combinatorics of symmetric homogeneous spaces.

First, let T 1 be a torus in G such that ∀t ∈ T 1, θ(t) = t−1 and maximal for this property.
And let T be a maximal torus of G containing T 1. Then T is θ-stable and the set R of roots of
(G, T ) inherits an involution θ. Define the restricted root system associated to θ to be

RG,θ := {α− θ(α) | α ∈ R}.

Moreover we may choose a Borel subgroup B of G containing T such that for all positive root
relative to B we have: θ(α) is either α or a negative root. Then BH is open in G and the set
SG,θ := {α− θ(α) | α ∈ S} is a basis of RG,θ. We denote by γ1, . . . , γs the elements of SG,θ.

Then the lattice M can be identified to the character group of T 1/(T 1∩H) and the valuation
cone V is the antidominant Weyl chamber of the dual root system R∨

G,θ, i.e. V = {x ∈ NQ |
〈αi, x〉 ≤ 0, ∀i = 1, . . . , s}.

The image of the colors by σ are the simple coroots γ∨1 , . . . , γ∨s in R∨
G,θ. Then, for all i =

1, . . . , s, there exist at most two colors (and at least one) with image γ∨i . The set of images of colors
is fixed by G and θ, but the set of colors depends on the subgroup H such that Gθ ⊂ H ⊂ NG(Gθ)
(see Examples 2.3).

Examples 3.7. Here is the combinatorics for the symmetric spaces G/H where G is simple of
rank 2 (i.e. S of cardinality 2).
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α1

α2

θ = −Id

V

γ∨
1

V

γ∨
2

γ∨
1

2α2

2α1

θ

A I G = SL3 and H = SO3, rk(G/H) = 2. A IV G = SL3 and H = GL2, rk(G/H) = 1.
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2α1 + 2α2

θ = −Id

θ
2α2

2α1

V

γ∨
1

γ∨
1

γ∨
2

B I G = SO5 and H = SO2×SO3, rk(G/H) = 2. B II G = SO5 and H = SO4, rk(G/H) = 1.

Drawing the corresponding picture in the following case is left to the reader: G G = G2 and
H = SL2×SL2, rk(G/H) = 2, θ acts on R by −Id.

3.2.3 Wonderful varieties

Wonderful varieties play a central role inside the theory of classification of spherical varieties.
Indeed, to every spherical G-varieties X, we can associate in a functorial way a wonderful variety
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X such that X is determined by the spherical system of X together with some additional data
[Lu01, Th. 3]. The wonderful variety associated to a spherical variety is often used to obtain
results on spherical varieties.

Definition 3.8. An algebraic G-variety X is said to be wonderful of rank n if

1. it is smooth and complete,

2. it has an open G-orbit whose complement is the union of smooth irreducible G-divisors Di

for i = 1, . . . , n with normal crossings and such that ∩n
i=1Di 6= ∅,

3. if x, x′ are such that {i | x ∈ Di} = {i | x′ ∈ Di} then the orbits of x and x′ are the same.

A wonderful variety X is called strict if each of its points has a selfnormalizing stabilizer.
The type of a wonderful variety is the type of G (or the type of the Dynkin diagram of G).

Theorem 3.9 ([Lu96]). Wonderful varieties are projective and spherical.

In particular, a wonderful variety with open orbit G/H is the unique G/H-embedding which
is wonderful.

Examples 3.10. • Flag varieties are wonderful varieties of rank 0.

• The only toric and wonderful variety is the point. Indeed, a complete toric variety does not
satisfy ∩n

i=1Di 6= ∅ except in zero dimension.

• The unique non-trivial G/H-embeddings Q2 and P2 seen in Section 2.3 are wonderful vari-
eties of rank 1.

• For all symmetric homogenous space G/H, C. De Concini and C. Procesi constructed the
wonderful G/H-embedding in [DP83].

D. Luna introduced several invariants attached to any wonderful variety X, called together
the spherical system of X. Let us define these invariants and some of there properties. We will
give give the complete definitions only for strict wonderful varieties, so see [Lu01] or [BL09] for
the complete definitions and details in the general setting).

Let X be a wonderful G-variety. Let Y be the (unique) closed G-orbit of X and z ∈ Y be the
(unique) point fixed by the opposite Borel subgroup B− of B (the subgroup B− is the unique
Borel subgroup of G such that B ∩ B− = T . The spherical roots of X are the weights of T of
the quotient TzX/TzY where TzX (resp. TzY ) denotes the tangent space at z of X (resp. of Y ).
Denote by ΣX the set of spherical roots.

Then ΣX is a finite subset of the monöıd NS, the rank of X is the cardinality of ΣX and Σ
is a basis of the lattice M associated to the open orbit G/H of X.

We say that an element of NS is a spherical root of G if it is the spherical root of a wonderful
variety of rank 1. Note that the spherical roots of all reductive connected algebraic group are
known because of the classification of wonderful varieties of rank 1 (or equivalently, equivariant
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completions of homogeneous algebraic varieties by one homogeneous divisor), due to D. Akhiezer
[Ak83].

Let PX be the stabilizer of the point z ∈ Y , it is a parabolic subgroup of G. Let Sp
X be the

subset of S such that PX = PSp
X

. Then PX coincides with the stabilizer of the colors of X.
In the case of strict wonderful varieties, the couple (Sp

X ,ΣX) shares nice properties: it is a
strict spherical system for G. Spherical systems were introduced by D. Luna in [Lu01] as triples
which fulfill certain axiomatic conditions. Let us give the definition of strict spherical systems.

Definition 3.11. A couple (Sp,Σ) is a strict spherical system for G if it consists of a subset Sp

of simple roots and a set Σ of spherical roots of G that satisfy the following properties:
(Σ0) Σ ∩ S = ∅;
(Σ1) If 2α ∈ Σ ∩ 2S then 1

2〈γ, α∨〉 is a non-positive integer for every γ ∈ Σ\{2a};
(Σ2) If α, β ∈ S are orthogonal (i.e. 〈α, β∨〉 = 0) and α + β ∈ Σ or 1

2(α + β) ∈ Σ then
〈γ, α∨〉 = 〈γ, β∨〉 for every γ ∈ Σ;
(S) For every γ ∈ Σ, there exists a wonderful G-variety X of rank 1 such that {γ} = ΣX and
Sp = Sp

X ;
(R) For every γ ∈ Σ, there exists no rank 1 wonderful G-variety X such that {2γ} = ΣX and
Sp = Sp

X ;

In full generality, a spherical system is defined by D. Luna as a triple (Sp,Σ,A) with (Sp, Σ)
as above satisfying conditions (Σ0), (Σ1), (Σ2) and (S). The datum A is a multiset of functionals
on ZΣ = M related to the simple roots in Σ with some extra conditions.

Definition 3.12. The set of colors D of a given strict spherical system (Sp, Σ) is defined as
D = (S\Sp)/ ∼ with α ∼ β whenever α and β are orthogonal and α + β ∈ Σ or 2(α + β) ∈ Σ.
We denote by Dα the color associated to α ∈ S\Sp.

We define a map σ : D −→ (ZΣ)∗ = N as follows: if 2α ∈ Σ then σ(Dα) is the restriction to
M of 1

2α∨ and otherwise σ(Dα) is the restriction to M of α∨. In particular σ is injective.
The set of colors of a spherical system can be also defined, it depends on A and σ is then not

necessarily injective.

In the case where the spherical system is given by a wonderful G-variety X, the set D coincides
with the set of colors of the open orbit G/H of X.

Conjecture 3.13 ([Lu01]). Wonderful varieties are classified by their spherical systems.

Theorem 3.14. This conjecture has been answered positively for wonderful varieties:

• of rank 2, by B. Wasserman in [Wa96];

• of type A, by D. Luna in [Lu01];

• of type D, by P. Bravi and G. Pezzini in [BP05];

• of type E, by P. Bravi in [Br07];

• and strict wonderful varieties, first by P. Bravi and S. Cupit-Foutou in [BC08] and also,
with a smaller proof, by S. Cupit-Foutou in [Cu08].
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4 Fano horospherical varieties

We have already defined Fano varieties in Definition 1.11. Fano varieties play an important role in
order to understand algebraic varieties, indeed Mori’s program predicts that every uniruled variety
is birational to a fiberspace whose general fiber is a Fano variety with terminal singularities. We
know all deformation families of smooth Fano varieties in dimension 1, 2 and 3, but in higher
dimension we only know that the number of these families is finite. That is why we are interested
in having classes of examples of Fano varieties as Fano toric varieties or more generally Fano
horospherical varieties.

4.1 Their classification

Let X be a complete G/H-embedding. Recall that −KX =
∑m

i=1 Xi +
∑

α∈S\I aαDα, where the
Xi are the irreducible G-stable divisors of X and the Dα are the colors and denote by h−KX

the
piecewise linear function associated to −KX (see Theorem 2.16). And define the set

Q(X) := {u ∈ NR | h−KX
(u) ≤ 1}.

When X is Fano, Q(X) is a G/H-reflexive polytope in the following sense.

Definition 4.1. Let G/H be a homogeneous horospherical space. A convex polytope Q in NR
is said to be G/H-reflexive if the following three conditions are satisfied:

(1) The vertices of Q are in N ∪ {α∨M
aα

| α ∈ S\I}, and the interior
o
Q of Q contains 0.

(2) Q∗ := {v ∈ MR | ∀u ∈ Q, 〈v, u〉 ≥ −1} is a lattice polytope (i.e. its vertices are in M).

(3) For all α ∈ S\I, α∨M
aα

∈ Q.

Examples 4.2. In the case where G/H = (SL2 ×C∗)/U , NR = R2 and there is one color which
is a primitive element. Consider the following colored fans:
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Then the corresponding Q(X) are the following polytopes (in general it is not necessarily a
polytope). The first two polytopes are G/H-reflexive. The third polytope is not G/H-reflexive
because its dual is not a lattice polytope.

23



Their dual polytopes are respectively:

Here is other examples of polytopes in the case where G/H = (SL2 × C∗)/U .

The first and the third polytopes are G/H-reflexive. But, the second one is not, because α∨M
aα

is
not in the polytope.

Then we have the following.

Proposition 4.3. Let G/H be a horospherical homogeneous space. Then the application X 7−→
Q(X) is a bijection between the set of isomorphism classes of Fano G/H-embeddings and the set
of G/H-reflexive polytopes.

For all Fano horospherical variety X, the dual polytope Q(X)∗ translated to 2ρP :=
∑

α∈S\I aαωα

lies in the cone of dominant weights of (G, B, T ), and it is the moment polytope of the polarized
G-variety (X,−KX). In other words, X can be embedded in

P(
⊕

χ∈Q(X)∗∩M

V (2ρP + χ))

as in the construction used in Example 2.17.

Remark 4.4. A. Ruzzi also give the list of all Fano symmetric varieties [Ru06].
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4.2 Some results on their geometry

Theorem 4.5 ([Pa08a]). Let X be a locally factorial Fano horospherical variety, of dimension d,
rank n and Picard number ρ.
If ρ > 1 then

(−KX)d ≤ d! ddρ+n.

And if ρ = 1, we have
(−KX)d ≤ d! (d + 1)d+n.

O. Debarre proved similar inequalities for smooth Fano toric varieties [De03]. Remark that a
locally factorial toric variety is always smooth, but there is locally factorial horospherical varieties
that are not smooth.

The proof of this result uses the fact that the degree of a Fano horospherical variety X can be
expressed as the integral of an explicit function on the dual polytope Q(X)∗ of the G/H-reflexive
Q(X).

Theorem 4.6 ([Pa08a]). Let X be a Q-factorial Fano horospherical variety, of dimension d, rank
n and Picard number ρ.

Then
ρ ≤ n + d ≤ 2d

with equality ρ = 2d if and only if d is even and X = (S3)d/2 where S3 is the blowing-up of three
general points in P2.

C. Casagrande proved exactly the same result for Q-factorial Fano toric varieties in [Ca06].
The next result answer positively a conjecture of L. Bonavero, C. Casagrande, O. Debarre and

S. Druel [BCDD], on the pseudo-index of smooth Fano varieties, in the special case of horospherical
varieties. This conjecture had been already proved in the case of toric varieties by C. Casagrande
[Ca06] and in dimension less or equal than 4 [BCDD].

Definition 4.7. The pseudo-index ιX of a Fano variety is the positive integer defined by

ιX := min{−KX · C | C rational curve in X}.

Theorem 4.8 ([Pa08b]). Let X be a Q-factorial horospherical Fano variety of dimension d,
Picard number ρX and pseudo-index ιX . Then

(ιX − 1)ρX ≤ d.

Moreover, equality holds if and only if X is isomorphic to (PιX−1)ρX .

To describe the pseudo-index combinatorially through G/H-reflexive polytopes, we used spe-
cial curves of spherical varieties and theirs intersections with the irreducible B-stable divisors,
described in [Br93].
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5 Smooth projective varieties with Picard number one

In this section we consider a special class of spherical varieties, those with Picard number one,
that can be seen as minimal varieties in the following sense.

Proposition 5.1. Let X be a projective spherical variety with Picard number one. Then every
G-equivariant birational morphism f : X −→ Y is an isomorphism.

5.1 Toric varieties and flag varieties

Proposition 5.2. The unique n-dimensional smooth projective toric variety with Picard number
one is the projective space P1.

Proof. By Propositions 1.8 and 1.9, the fan of such a variety is complete, with n + 1 edges such
that the primitive elements of each subset of n edges form a basis of Zn. Then it is easy to prove
that these (n + 1) edges are the cones generated respectively by elements of a basis (e1, . . . , en)
of Zn and −e1 − · · · − en. And the unique fan with such edges is the fan of Pn.

We have already seen that flag varieties are smooth and projective, and that the flag varieties
with Picard number one are the G/P with P maximal (Corollary 1.21).

5.2 Horospherical varieties

In the case of horospherical varieties, there exist non-homogeneous smooth projective varieties
with Picard number one. Most of the results of this section are picked up from [Pa09].

Let us begin with an infinite family of examples.

Example 5.3. Let ω be a skew-form of maximal rank on C2m+1. For i ∈ {1, . . . , m}, define the
odd symplectic grassmannian Grω(i, 2m+1) as the variety of i-dimensional ω-isotropic subspaces
of C2m+1. Odd symplectic grassmannians are horospherical varieties and, for i 6= 1, m they have
two orbits under the action of their automorphism group (the odd symplectic group) which is
a connected non-reductive linear algebraic group (see [Mi07] for more details). In fact we can
realize Grω(i, 2m + 1) in

P(
i∧
C2m ⊕

i+1∧
C2m) ' P(

i+1∧
C2m+1).

Odd symplectic grassmannians have nice properties. For example, they can be realized as
linear sections of (even) symplectic grassmannians. And they are locally rigid (i.e. they admit
no local deformation or equivalently H1(X, TX) = 0), like flag varieties.

Theorem 5.4. Let X be a smooth projective horospherical G-variety with Picard number 1.
Then we have the following alternative:

(i) X is homogeneous (under its automorphism group), or

(ii) X is horospherical of rank 1. Its automorphism group is a connected non-reductive linear
algebraic group, acting with exactly two orbits.
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Moreover in the second case, X is uniquely determined by its two closed G-orbits Y and Z,
isomorphic to G/PY and G/PZ respectively; and (G,PY , PZ) is one of the triples of the following
list.

1. (Bm, P (ωm−1), P (ωm)) with m ≥ 3

2. (B3, P (ω1), P (ω3))

3. (Cm, P (ωi), P (ωi+1)) with m ≥ 2 and i ∈ {1, . . . , m− 1}
4. (F4, P (ω2), P (ω3))

5. (G2, P (ω2), P (ω1))

Recall that P (ωi) is the maximal parabolic subgroup of G corresponding to the dominant weight
ωi (with the numbering of Bourbaki [Bo75]).

Note that Case 3 of Theorem 5.4 corresponds to odd symplectic grassmannians.

Steps of the proof. • It is not difficult to prove, using that ρ = 1 and that X is locally factorial,
that:
the maximal cones of FX are generated by n elements among e1, . . . , en,−e1− · · ·− en with
(e1, . . . , en) a basis of N ;
and for all α ∈ S\I, α is a color of FX and α∨M ∈ {e1, . . . , en,−e1 − · · · − en}.

• Then, using that X is smooth, we prove that X is a projective space if:
n ≥ 2;
and if n = 1 and there is at most one color.

• We give a list of 8 possible cases when X is of rank 1 and has two colors. In every case, we
can embedded X in the projectivization of the sum of two fundamental representation (as
in Example 2.17). Note also that X has 3 G-orbits (one open and two closed).

• In 3 cases, we prove directly that X is homogenous, exhibiting the corresponding flag variety.
And in the other 5 cases, we compute the global sections of the normal sheaf of the closed
G-orbits in X. For one of the two closed G-orbit, there is no global sections, so that this
orbit is stabilized by the automorphism group of X.

• Then we study more in details the automorphism group of X.

We can also complete this theorem by the following, remarking that the non-homogeneous
varieties in Theorem 5.4 have two orbits even when they are blown up at their closed orbit.

Theorem 5.5. Let X be a smooth projective variety with Picard number 1 and put G := Aut0(X).
Assume that X has two orbits under the action of G and denote by Z the closed orbit. Then

the codimension of Z is at least 2.
Assume furthermore that the blow-up of Z in X still has two orbits under the action of G.

Then, there exists two varieties X1 and X2 such that one of the following happens:
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• G is not semi-simple and X is one of the two-orbit varieties classified in Theorem 5.4;

• G = F4 and X = X1;

• G = G2 × PSL(2) and X = X2.

Note that two-orbit varieties are classified and are known to be spherical varieties [Cu03].
But in fact, to prove Theorem 5.5, we only use the classification of equivariant completions of
homogeneous algebraic varieties by homogeneous divisors [Ak83].

Two natural questions on these two-orbit varieties (that are already answered in the case of
odd symplectic grassmannians):

• Can we realize them as (linear) sections of flag varieties?

• Are they locally rigid?

The first question is still open except for odd symplectic grassmannians and the variety in
Case 3 of Theorem 5.4 that is an hyperplane section of the spinorial variety S10.

The answer of the second one follows from.

Theorem 5.6. Let X be one of the two-orbit varieties of Theorem 5.5, then we have the alter-
native:

• if X is the variety of Case 5 of Theorem 5.4, then H1(X,TX) = C and H i(X,TX) = 0 for
any i ≥ 2, moreover X deforms into the orthogonal grassmannian Grq(2, 7);

• else H i(X,TX) = 0 for any i ≥ 1.

This result is a quasi-immediate corollary of a more general vanishing theorem of the higher
cohomology of a subsheaf of the tangent bundle of some spherical varieties, called quasi-regular
varieties [PP08], including all smooth horospherical varieties and smooth spherical varieties of
rank one.

5.3 Symmetric varieties

We summarize here results of A. Ruzzi on smooth complete symmetric varieties with Picard
number one [Ru07] and [Ru08].

The idea to classify smooth complete symmetric varieties with Picard number one is the
following.

First, there is a smooth criterion for symmetric varieties. In particular, X smooth implies
that σ is injective, so that the cardinality of the set D of colors is n.

A second step is to use the Picard number expression to prove that there are exactly two
cases: either X is simple (i.e. FX has one maximal cone) and has n − 1 colors, or FX has two
maximal cones (of dimension n) and n colors.

A third step is to use in particular the smooth criterion to prove that G is either a torus or
a semi-simple group, and that in the second case the restricted root system is either irreducible
(i.e. is a root system of a simple group) or of type A1 ×A1.
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Then a case by case study permits to conclude (see Theorem 3.1 of [Ru07] to have the complete
list of smooth complete symmetric varieties with Picard number one). We can at lest mention
that for a given symmetric homogeneous space G/H there is at most one smooth complete G/H-
embedding with Picard number one and it is then projective.

Theorem 5.7 ([Ru08]). Let X be a smooth projective symmetric varieties with Picard number
one which are not homogeneous under the action of their automorphism group. Then its open
G-orbit G/H is one of the 6 following. And X is a linear section of a flag variety X.

G/H X linear section [Aut0(X) : Aut(X)]
1/ G2/(SL2×SL2) Grass3,7 ⊂ P34 section of dimension 27 1
2/ G2 = G2 ×G2/G2 S14 ⊂ P63 section of dimension 49 2
3/ SL3 /SO3 Grω(3, 6) ⊂ P13 hyperplane section 2
4/ SL3 = SL3×SL3 /SL3 Grass3,6 ⊂ P19 hyperplane section 4
5/ SL6 /Sp6 S12 ⊂ P31 hyperplane section 2
6/ E6/F4 E7/P7 ⊂ P55 hyperplane section 2

Remark that all these varieties are of rank 2.
Note also that the flag varieties X in Cases 3/, 4/, 5/ and 6/ are the Legendrian varieties in

the third row of the Freudenthal magic square (see for example [LM01] to know more about the
flag varieties of the Freudenthal magic square).

The proof of Theorem 5.7 is essentially a case by case study of smooth projective symmetric
varieties with Picard number one classified in [Ru07].
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[Lu96] D. Luna, Toute variété magnifique est sphérique, Transform. Groups, 1 (1996), 249-258.

[Lu01] D. Luna, Vari´et´es sph´eriques de type A, Inst. Hautes Études Sci. Publ. Math. 94
(2001), 161-226.

[LV83] D. Luna and T. Vust, Plongements d’espaces homogènes, Comment. Math. Helv. 58
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