Examen de 2e session, 15 juin 2010 Durée : 3 heures

Calculatrices et documents interdits

Barème indicatif: A: 4,5 points, B: 2,5 points, C: 4 points, D: 4 points, E: 5 points.

A. Caluler les limites des suites suivantes

a)
$$u_n = \frac{3n + \cos n}{\ln n + 2n}$$
 b) $v_n = \left(1 - \frac{2}{n}\right)^n$ c) $w_n = 2^n \ln \left(1 + \frac{1}{2^n}\right)$

B. Soit f une application continue définie sur \mathbb{R} à valeurs dans \mathbb{R} vérifiant pour tout x de \mathbb{R} la relation :

$$(f(x))^2 = 2 + f(x)$$

Quelles sont les valeurs possibles de f(x)? En déduire que f est une application constante.

- **C.** On considère la suite (u_n) définie pour tout $n \in \mathbb{N}$ par : $u_0 = 3$ et $u_{n+1} = \sqrt{u_n + 1}$
- 1. Montrer que la suite (u_n) est définie et qu'on a pour tout entier $n, u_n \ge 0$.
- 2. Si (u_n) converge qu'elle est sa limite?
- 3. Montrer que la suite (u_n) est minorée par $\frac{1+\sqrt{5}}{2}$.
- 4. Montrer qu'elle est décroissante et conclure sur sa convergence.

D. 1. Pour quelles valeurs du paramètre m l'application définie sur $]-\pi,+\pi[$ par :

$$f(x) = \frac{\sin(x+4x^2)}{\sin x}$$
 si $x \neq 0$, $f(0) = m$.

est-elle continue?

2. Calculer la limite quand x tend vers 0 de $\varphi(x) = \frac{\sin(x+4x^2) - \sin x}{x^2}$.

Indication: on pour untiliser la relation $\sin a - \sin b = 2\sin\left(\frac{a-b}{2}\right)\cos\left(\frac{a+b}{2}\right)$

- 3. Déduire de ce qui précède que si m=1, la fonction f est dérivable en 0, et préciser la valeur de f'(0).
- **E.** Montrer pour tout $n \in \mathbb{N}^*$ les inégalités : $\frac{1}{n+1} \le \ln(n+1) \ln(n) \le \frac{1}{n}$. (On pourra appliquer le théorème des Accroissements Finis à la fonction logarithme népérien.)

2. Pour
$$n \in \mathbb{N}^*$$
 on pose : $S_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$, $u_n = S_n - \ln(n+1)$, $v_n = S_n - \ln(n)$

- a) Montrer que les suites (u_n) et (v_n) sont adjacentes. on note c leur limite.
- b) En déduire l'existence d'une suite (ε_n) convergente de limite 0, telle qu'on ait :

$$S_n = \ln(n) + c + \varepsilon_n$$

c) En déduire les limites des suites : (S_n) , $\left(\frac{S_n}{n}\right)$ et $\left(\frac{S_n}{\ln{(n)}}\right)$.