Devoir n° 1

A rendre avant le 20 mars 2009

Exercice 1. On considère la suite $(x_n)_{n\geq 0}$ définie par $x_0=2$ et pour tout entier $n\geq 0$ par la relation :

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{2}{x_n} \right)$$

- 1. Montrer que, pour tout entier $n \ge 0$, x_n est définie et on a $x_n \ge \sqrt{2}$.
- 2. Montrer que la suite $(x_n)_{n>0}$ est convergente et déterminer sa limite.
- 3. Montrer que, pour tout entier $n \geq 0$, on a

$$0 \le x_{n+1} - \sqrt{2} \le \frac{\left(x_n - \sqrt{2}\right)^2}{2\sqrt{2}}$$

et en déduire que

$$0 \le x_n - \sqrt{2} \le 2\sqrt{2} \left(\frac{\sqrt{2} - 1}{2}\right)^{2^n}$$

puis que

$$0 < x_n - \sqrt{2} < 4^{1-2^n}$$

4. Calculer x_2 et montrer que x_2 est une valeur approchée de $\sqrt{2}$ à 2.10^{-2} près.

La suite (x_n) est appelée suite de Hénon, mathématicien grec.

Exercice 2. Soit f une fonction continue de [0,1] dans [0,1].

- 1. Montrer qu'il existe un réel $a \in [0,1]$ tel que $f(a) = \cos \frac{a\pi}{2}$.
- 2. On suppose de plus que f est strictement croissante sur [0,1]. Montrer que le réel a est unique.

Exercice 3. On considèe la fonction $f: \mathbb{R}_+ \to \mathbb{R}$ définie par

$$f(x) = \begin{cases} xE\left(\frac{1}{x}\right) & \text{si } x > 0\\ 1 & \text{si } x = 0 \end{cases}$$

- 1. (a) Etudier la continuité de f en 0.
 - (b) Montrer que f est continue sur tout intervalle de la forme $\left]\frac{1}{n+1},\frac{1}{n}\right]$ où n est un entier ≥ 1 .
 - (c) Montrer que f est continue sur l'intervalle]1, $+\infty$ [.
 - (d) Etudier la continuité de f aux points $\frac{1}{n}$ (on pourra distinguer les deux cas n=1 et n>1)
 - (e) Conclusion.
- 2. Dessiner le graphe de f sur l'intervalle $]1/5, +\infty[$

Exercice 4. Soit f une fonction continue sur $\mathbb R$ et vérifiant :

$$\forall x \in \mathbb{R}$$
, $f(2x) + f(x) = 0$

- 1. -Calculer f(0).
- 2. Soit x_0 un réel quelconque. Montrer : $\forall n \in \mathbb{N}^*$, $f(x_0) = (-1)^n f(\frac{x_0}{2^n})$.
- 3. En déduire que f est nulle sur \mathbb{R} .