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A probabilistic approach to the Yang–Mills heat equation
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Abstract

We construct a parallel transportU in a vector bundleE, along the paths of a Brownian motion in the underlying manifold,
with respect to a time dependent covariant derivative∇ onE, and consider the covariant derivative∇0U of the parallel transport
with respect to perturbations of the Brownian motion. We show that the vertical partU−1∇0U of this covariant derivative
has quadratic variation twice the Yang–Mills energy density (i.e., the square norm of the curvature 2-form) integrated along
the Brownian motion, and that the drift of such processes vanishes if and only if∇ solves the Yang–Mills heat equation.
A monotonicity property for the quadratic variation ofU−1∇0U is given, both in terms of change of time and in terms of
scaling ofU−1∇0U . This allows us to find a priori energy bounds for solutions to the Yang–Mills heat equation, as well as
criteria for non-explosion given in terms of this quadratic variation. 2002 Éditions scientifiques et médicales Elsevier SAS.
All rights reserved.

1. Introduction, notations

This article is concerned with the Yang–Mills heat equation for connections in a metric vector bundleE over a compact
Riemannian manifoldM . The Yang–Mills connections inE are critical points of the Yang–Mills functional (or energy
functional)

YM(∇) :=
∫
M

∥∥R∇∥∥2 dvol, (1.1)

whereR∇ ∈ Γ (Λ2T ∗M ⊗ End(E)) is the curvature 2-form of a metric connection∇ in E. Letting∇ depend smoothly on a
real parametert and differentiating Eq. (1.1) with respect tot yields

∂t YM
(∇(t))= 2

∫
M

〈(
d∇
)∗
R∇(t), ∂t∇(t)

〉
dvol,

where d∇ denotes the exterior differential and(d∇ )∗ its adjoint, see, e.g., [8]. Consequently, to deform a connection towards
the steepest descent of the Yang–Mills action we are led to solve the Yang–Mills heat equation

∂t∇(t)=−1

2

(
d∇
)∗
R∇(t). (1.2)
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The Euler–Lagrange equations associated to the Yang–Mills functional characterize Yang–Mills connections∇ by the property
that (

d∇
)∗
R∇ ≡ 0. (1.3)

The procedure of constructing Yang–Mills connections by starting from an arbitrary connection∇(0), solving the Yang–Mills
heat equation with initial condition∇(0), letting t tend to∞, taking a subsequence which converges (up to global gauge
transformations) to a Yang–Mills connection requires that Eq. (1.2) does not blow-up in finite time. Small time existence
is well-known, e.g., [25]: there always existsT > 0 such that Eq. (1.2) has a solution in[0, T [. If M is of dimension less
than or equal to 3, then blow-up never occurs, as proved in [19]. In the general situation, blow-up at timeT is characterized
by the fact that curvature does not stay bounded in]T − ε,T [ for any ε > 0. If M has dimension at least 4, one is led to
look for non-explosion criteria. An essential ingredient in [9] is the integral of‖R∇‖2 over “parabolic balls” of the form
[T − 4s2, T − s2] × ball(x,R0)⊂R+ ×M whereR0> 0 is fixed and sufficiently small, along with monotonicity ins of this
integral (see [17,18] for related integrals). In [9,17] the authors prove that if the integral is sufficiently close to zero for smalls

then‖R∇‖2 is bounded on some space–time set. Such estimates lead to non-explosion criteria in certain situations.
More can be said whenM has dimension 4, since curvature then can concentrate at timeT only at finitely many points inM

(see [26]). At every point where curvature concentrates, rescaling of space and time, along with gauge transformation, yields a
non-trivial Yang–Mills connection in a bundle overR

4 with the same fiber asE (see [23]).
The paper is organized as follows. In Section 2 we construct the main stochastic object which is the starting point of our

study. Let us briefly describe the set-up. Consider a smooth solution∇(t) to Eq. (1.2) on a vector bundleE over a compact
Riemannian manifoldM , defined on[0, T [ for someT > 0. Fix x ∈M and letXt be a Brownian motion starting fromx.
For u ∈ TxM let Xt(a,u) = expXt (a

√
t //0,t u) where//0,t denotes parallel transport inTM alongXt with respect to the

Levi-Civita connection. The basic object of our study is the semimartingale

s �→Nr,s :=U−1
r,s ∇a |a=0Ur,s, s ∈ [r, T ],

wherer ∈]0, T [ is fixed ands �→Ur,s(a,u) is the parallel transport inE alongXs starting atUr,r = idEXr , with respect to the
time-dependent connection∇(T − s). The semimartingaleNr,s has nice scaling properties (Remarks 2.1 and 3.1) and we prove
that it is a local martingale if and only if∇(t) solves the Yang–Mills heat equation (Lemma 2.2 and Proposition 2.3). See [6]
for similar results in the stationary case of Yang–Mills connections. As expected, a mean value formula holds (Corollary 2.5):
for 0< r � s � T and atXr we have

∇√r //0,ru(T − r)(·)= E
[
U−1
r,s ∇√s //0,su(T − s)(Ur,s ·)

∣∣ Fr ].
Unfortunately, as a consequence of non-linearity, the conditional expectation contains the parallel transportUr,s involving the
∇(t), t ∈]T − s, T − r[. The approach is analogous to the probabilistic interpretation of the heat equation for harmonic maps
(see, e.g., [2]).

As mentioned before, an important object in the study of singularities at(T , x) of the Yang–Mills heat flow is the energy
integral over parabolic balls and monotonicity properties of the integral. In Section 3 we work instead with the expected
quadratic variation of the martingale, constructed in Section 2, on the time interval[βs, s] where 0< β < 1 is some parameter,
that is

Φβ(s) := 1

2
E
[‖Nβs,s‖2].

Using a matrix Harnack estimate for positive solutions of the heat equation on a manifold (see [12]), we establish monotonicity
in s of Φβ(s). Our result differs from [12]. The method here is also slightly different from the one used in [9], but more natural
in our context. As a consequence of the monotonicity formula we establish convergence of

1

2 log(T /r)
E
[‖Nr,T ‖2]

asr tends to 0 (Proposition 3.9). The limit which we call here�(T , x) will play a crucial role in the description of singularities.
The key result in Section 4 says that ifΦβ(s) is sufficiently close to zero for smalls, then the energy is bounded by

Cf (s)−4 on [T − f (s)2, T [ × ball(x,f (s)) for someC > 0 and some positive increasing functionf , defined fors > 0, such
that lims→0f (s)= 0 (Theorems 4.2, 4.3 and Corollary 4.4). A similar result but with different assumptions can be found in [9].
Our proof is based on a submartingale inequality, which is an alternative to Moser’s Harnack inequality. We use estimates of
the exit time from small balls for Brownian motion inM , based on Bernstein’s inequality (Lemma 4.1).

From Theorems 4.2 and 4.3 we derive a non-explosion criterion for the Yang–Mills heat flow at(T , x) in terms of the
size ofΦβ , as well as in terms of�(T , x) (Proposition 4.5 and Corollary 4.6). We then establish existence of global solutions
to Eq. (1.2) in case YM(∇(0)) is sufficiently small; we already know that the solution exists on[0, T [ (Theorems 4.7, 4.10,
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Corollary 4.11). In particular, this gives non-explosion ifM has dimension less than or equal to 3, a result due to [19]. WhenM

is of dimension at least 4, an other consequence is that if explosion occurs at a small timeT , then the Yang–Mills energy
YM (∇(0)) must be greater than some positive constant depending onT . In the special case whenM is a sphere of dimension
greater than 4 andE a non-trivial bundle overM , we are able to recover Naito’s result [17]: if YM(∇(0)) is smaller than some
positive number depending ont > 0, then explosion occurs before timet (Corollary 4.12).

In Section 5 we consider a solution∇ to the Yang–Mills heat equation on[0, T [ and assume that explosion occurs at timeT .
We exhibit a sequence of martingales, as in Section 2, constructed from the rescaled Yang–Mills equation, which converges
in law to a non-trivial martingale (Proposition 5.2). In case of dimM = 4 we know by [26] that curvature concentrates only
in a finite number of points in the manifold, and our result can be seen as the stochastic analogue to Schlatter’s result [24] on
convergence of rescaled connections to a connection in a vector bundle overR

4. However, here we cannot choose the point
x ∈M where curvature concentrates since the support of our functionΦβ isM and not a small ball.

Section 6 of the paper finally is devoted to an ergodic theorem. Here we assume that dimM = 4. We fix a Yang–Mills
connection∇ onE and prove that the Pontryagin number of the vector bundle is the ergodic mean of an expression involving the
curvature of∇ along Brownian paths (Theorem 6.1). If∇ is self-dual (respectively antiself-dual), the expression is the quadratic
variation (respectively minus the quadratic variation) of the martingaleNr,s constructed in Section 2 (for the stationary case
∇(t)≡∇).

Throughout the paper we adopt the following conventions. Let(Ω,F , (Ft )t�0,P) be a filtered probability space on which
all the considered processes will be defined. LetM be a manifold and letπ :E→M be a vector bundle overM . By a covariant
derivative or connection on the vector bundleE we mean anR-linear map

∇ :Γ (E)→ Γ (T ∗M ⊗E)
satisfying the product rule

∇(fX)= df ⊗X+ f∇X, X ∈ Γ (E), f ∈ C∞(M),
and by a connection on the manifoldM we mean a covariant derivative or connection on the vector bundleTM . All covariant
derivatives (on various vector bundles) are denoted indifferently by∇.

A covariant derivative onE gives rise to a splittingTE =HE ⊕ VE into the horizontal and the vertical bundle. Ife ∈Ex ,
we denote byhe :TxM→HeE the horizontal lift and byve :Ex→ VeE the vertical lift. We denote byXh the horizontal lift in
Γ (TE) of a vector fieldX in Γ (TM), and byrv the vertical lift inΓ (T E) of a sectionr of E (an element ofΓ (E)). Given a
connection∇ onM and a covariant derivative∇ onE, there exists a unique connection∇h onE such that forX,Y ∈ Γ (TM),
r, s ∈ Γ (E),

∇hrv sv = 0, ∇hrv Yh = 0, ∇h
Xh
sv = (∇Xs)v, ∇h

Xh
Yh = (∇XY)h (1.4)

(e.g., [3]). LetF be a vector space isomorphic to the typical fiber ofE. A covariant derivative∇ onE gives rise canonically
to a covariant derivative on the vector bundleπ :Hom(F,E)→M of linear mapsF → Ex , again denoted∇, and defined as
follows: if W is a section of Hom(F,E) then(∇W)(w)=∇(W(w)), w ∈ F .

Assume that the manifoldM is endowed with a Riemannian metric(·, ·) and that the vector bundleπ :E→M is endowed
with a metric preserved by the covariant derivative∇. LetAp(E)= Γ (∧p T ∗M ⊗E) be thep-forms onM with values in the
vector bundleE and

A(E)= Γ
(∧

T ∗M ⊗E
)
=
⊕
p�0

Ap(E).

The covariant derivative∇ onE gives rise to a “differential” d∇ :A(E)→A(E), which sendsAp(E) into Ap+1(E), defined
by

d∇a(v1, . . . , vp+1)=
p+1∑
i=1

(−1)i+1(∇vi a)(v1, . . . , v̂i , . . . , vp+1),

wherea ∈Ap(E) andv1, . . . , vp+1 ∈ TxM . Alternatively d∇ is given at pointx ∈M by

d∇a(x)=
m∑
i=1

(ei , ·)∧∇ei a,

where(ei )1�i�m is an orthonormal frame inTxM .
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We consider also the co-differential(d∇ )∗ :A(E)→A(E),(
d∇
)∗
a(x)=−

m∑
i=1

∇ei a(ei , . . .),

where again(ei)1�i�m is an orthonormal frame inTxM . The image ofAp(E) under(d∇ )∗ now lies inAp−1(E).

Let a ∈Ap−1(E) andb ∈Ap(E) be such thata ⊗ b is of compact support. Then the following formula holds (e.g., [10],
Lemma 2.16, Eqs. (8.8) and (8.9)):∫

M

〈
d∇a, b

〉
dx =

∫
M

〈
a,
(
d∇
)∗
b
〉
dx. (1.5)

WhenM is the Euclidean spaceRm, then Eq. (1.5) is still valid under the assumption that both〈d∇a, b〉 and〈a, (d∇ )∗b〉, as
well asX= α., are inL1(Rm) whereα denotes the 1-formv �→ 〈(v, ·)∧ a, b〉. Indeed, we have

div(X)= 〈d∇a, b〉− 〈a, (d∇)∗b〉,
and one easily shows that if both a vector fieldY on R

m and its divergence div(Y ) areL1, then∫
Rm

div(Y )dy = 0.

In Section 4 we shall adopt the following assumption on(a, b,M) guaranteeing Eq. (1.5) to hold.

Assumption 1.1. Eithera⊗ b has compact support, or ifM =R
m thenα., 〈d∇a, b〉 and〈a, (d∇ )∗b〉 are inL1(Rm), whereα.

denotes the vector field associated to the 1-formα :v �→ 〈(v, ·)∧ a, b〉.

LetM be a manifold with connection∇. If X is anM-valued continuous semimartingale andα a section ofT ∗M , we denote
by
∫
0〈α, δX〉 the Stratonovich integral ofα alongX, and by

∫
0〈α,d∇ItôX〉 the Itô integral. Recall thatX is a∇-martingale if and

only if
∫
0〈α,d∇ItôX〉 is a local martingale for every suchα. In local coordinates, we have

〈α, δX〉 =
∑
i

(
αi(X)dX

i + 1

2

∑
j

∂αi

∂xj
(X)d

〈
Xi,Xj

〉)
and

〈
α,d∇ItôX

〉=∑
i

αi(X)

(
dXi + 1

2

∑
j

Γ ijk(X)d
〈
Xj ,Xk

〉)
,

whereΓ ijk are the Christoffel symbols of∇. Given a covariant derivative∇ onE, the parallel transport inE alongX is the

Hom(EX0,E)-valued semimartingale//E0,. defined by

//E0,0= idEX0
and δ//E0,t = h//E0,t (δXt ).

Note that//E0,t ∈Hom(EX0,EXt ). An equivalent definition for//E0,. is

//E0,0= idEX0
and d∇hItô //

E
0,t = h//E0,t

(
d∇ItôXt

)
,

see [11] for details.
In caseE = TM , with∇ the Levi-Civita connection induced by the Riemannian metric onM and//0,t the parallel transport

in TM alongX, there is an alternative definition for d∇ItôXt in terms of

d∇ItôXt = //0,t d
( t∫

0

//−1
0,s δXs

)
,

where d(
∫ t
0 //

−1
0,s δXs) is the usual Itô differential of the process

∫ t
0 //

−1
0,s δXs with values in the vector spaceEX0.

For anE-valued semimartingaleJ we define the Itô covariant derivativeDJ of J as the vertical part of d∇hItô J , considered
as an element ofE:

DJ = v−1
J

((
d∇hItô J

)vert)
.
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Alternatively,DJ may be expressed as

DJt = //E0,t d
(
//E0,t

−1J
)
,

where d(//E0,t
−1J ) is again the usual Itô differential of theEX0-valued semimartingale(//E0,t )

−1J . In local coordinates, writing
the covariant derivatives∇ on E, respectively∇ onM , as d+ A and d+ Γ whereA andΓ are 1-forms taking values in
End(E), respectively End(TM), the following general formula for(DJ)α holds (see [3]):

(DJ)α = dJα +Aα(d∇ItôX,J )+Aα(dX,dJ )+ 1

2

(
dAα(dX,dX,J )+Aα(dX,A(dX,J ))−Aα(Γ (dX,dX),J )).(1.6)

Let (J (a))a∈I be a family of semimartingales inE indexed by an open intervalI in R about 0, which isC1 in a with respect
to the topology of semimartingales (see [1]). We denote by∇aJ the covariant derivative ofJ with respect toa. In the sequel let
∇0 = ∇a |a=0, ∂0= ∂a |a=0; finally, R∇ denotes the curvature tensor associated to∇. The following formula has been proved
in [3] Theorem 4.5:

Theorem 1.2. The Itô covariant derivative of∇0J is given by the formula

D∇0J =∇0DJ +R∇
(
d∇ItôX,∂0X

)
J +R∇ (dX,∂0X)DJ − 1

2
∇R∇ (dX,∂0X,dX)J − 1

2
R∇ (D∂0X,dX)J.

2. A martingale description of the Yang–Mills heat equation

LetM be a Brownian complete Riemannian manifold endowed with the Levi-Civita connection∇. Fix T > 0 andI = [0, T [.
Let π :E→M be a vector bundle with a metric preserved under a smooth family of covariant derivatives∇(t), t ∈ I . Let
π̃ : Ẽ→ I ×M be the vector bundle overI ×M with fiber Ẽ(t,x)=Ex . The family∇(t), t ∈ I , induces canonically a covariant
derivative∇̃ on Ẽ as follows: if t �→ u(t) is a smooth path iñE with projectiont �→ (f (t), x(t)) in I ×M , then(∇̃Du)(t)= (∇D(f (t))u)(t). (2.1)

It is easy to prove that̃∇ is compatible with the metric iñE inherited from the metric inE.
LetX be a Brownian motion onM starting fromx, and denote by//0,. the parallel translation alongX. Fora ∈ R close to

0 andu ∈ TxM , we define a perturbation of the Brownian paths as follows:

Xs(a,u)= expXs
(
a
√
s //0,su

)
. (2.2)

The factor
√
s in Eq. (2.2) is justified by the scaling property explained in the following remark.

Remark 2.1. LetM be the Euclidean spaceRm, x = 0 andc > 0. The rescaled perturbed Brownian motion(cXs(a,u))s�0
has the same law as(Xc2s (a,u))s�0. For a general manifoldM , suppose thatX solves an Itô equation of the type

d∇ItôX =A(X)dB, X0≡ x ∈M,
whereA ∈ Γ (Rm ⊗ TM) is such thatA(x)A(x)∗ = idTxM for all x ∈M . HereB denotes anRm-valued Brownian motion
(m is not necessarily equal to dimM). Defining the rescaled Brownian motionXc by

d∇ItôXc = cA
(
Xc
)
dB, Xc0≡ x,

and the rescaled perturbed Brownian motion byXcs (a,u) = expXcs (c
√
s //c0,sau) with //c0,s denoting parallel transport inTM

alongXcs , we have again a scaling property in the sense that(Xcs (a,u))s�0 and(Xc2s(a,u))s�0 are equal in law.

Now fix 0< r < T . The parallel transport iñE along(T − s,Xs(a,u)), s ∈ [r, T ], will be denotedW̃ (T ,x)r,s (a,u), or simply
W̃r,s (a,u). By definition,W̃r,s (a,u) takes its values in Hom(Ẽ(T−r,Xr(a,u)), Ẽ(T−s,Xs(a,u))) and is determined by

D̃W̃r,s (a,u)= 0 and W̃r,r (a,u)= idEXr ,

whereD̃ is the covariant derivative ins with respect tõ∇ . LetU(T ,x)r,s (a,u), or simplyUr,s (a,u), denote the Hom(EXr(a,u),
EXs(a,u))-valued process given bỹWr,s(a,u). Then

D(T − s)Ur,s (a,u) := D̃W̃r,s (a,u)= 0 and Ur,r (a,u)= idEXr (a,u) , (2.3)
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whereD(t− s) is the covariant derivative ins with respect to∇E(t − s) (in local coordinatesD(T − s)Jαs is given by Eq. (1.6)
with Aα replaced byAα(T − s)). Then, almost surely,Ur,s(a,u) is an isometry for alls, a, u.

We writeUr,s or Ur,s(a) for Ur,s(a,u) ≡ U(T ,x)r,s (a,u). Given aC1 patha �→ v(a) in E, let∇a(t)v be the∇(t)-covariant
derivative ofv and∇0(t)v = ∇a(t)|a=0v. We define the∇-covariant derivative∇0Ur,s of Ur,s with respect toa, at a = 0,
as follows: if (v(a)) = (v(ω,a)) is anFr -measurable random variable taking values in theC1 paths inE which project to
a �→Xr(a,u), then

(∇0Ur,s)v(0) := ∇0(T − s)(Ur,sv)−Ur,s(0)
(∇0(T − r)v

)
. (2.4)

In other words, letting̃v(0) be the elementv(0) in Ẽ(T−r,Xr), we have

(∇0Ur,s)v(0)=
(∇̃0W̃r,s

)
ṽ(0),

where∇̃0W̃r,s takes its values in Hom(Ẽ(T−r,Xr), Ẽ(T−s,Xs)) and is the covariant derivative ofa �→ W̃r,s (a,u) at a = 0 with

respect to the canonical connectioñ∇(Ẽ)∗⊗Ẽ in Ẽ∗ ⊗ Ẽ induced bỹ∇.

Lemma 2.2. Let 0< r < T . The covariant derivativeD(T − s)∇0Ur,s is equal to

R∇
(
d∇ItôXs,

√
s //0,s ·

)
Ur,s −

(
1

2

(
d∇
)∗
R∇

(√
s //0,s ·

)
Ur,s + ∂t∇

(√
s //0,s ·,Ur,s

))
ds, (2.5)

whereR∇ , (d∇ )∗R∇ and∂t∇ are taken at timeT − s.
The drift ofU−1

r,s ∇0Ur,s is equal to

−
∫
r

(
1

2
U−1
r,s

(
d∇(T−s)

)∗
R∇(T−s)(//0,s ·)Ur,s +U−1

r,s ∂t∇(T − s)(//0,s ,Ur,s)
)√
s ds. (2.6)

The Riemannian quadratic variationSr,s = S(T ,x)r,s of the processU−1
r,s ∇0Ur,s with values inHom(TX0M,End(EXr )) satisfies

Sr,s =
s∫
r

2ρ
∥∥R∇(T−ρ)(Xρ)∥∥2 dρ. (2.7)

Proof. Using D(T − s)∇0Ur,s = D̃∇̃0W̃r,s and applying Theorem 1.2, along with the fact thatD̃W̃r,s = 0, D∂0Xs =
(1/(2

√
s)) //0,s ds (here∂0 stands for∂a |a=0) which givesD∂0Xs ∧ dXs = 0, we arrive at

D̃∇̃0W̃r,s = R∇̃
((−ds,d∇ItôXs

)
,
(
0,
√
s //0,s ·

))
W̃r,s − 1

2
∇̃R∇̃((−ds,dXs),

(
0,
√
s //0,s

)
, (−ds,dXs)

)
W̃r,s .

One then easily verifies that

R∇̃
((−ds,d∇ItôXs

)
,
(
0,
√
s //0,s

))
W̃r,s = R∇(T−s)

(
d∇ItôXs,

√
s //0,s

)
Ur,s − ∂t∇(T − s)

(√
s //0,s ,Ur,s

)
ds

and

∇̃R∇̃((−ds,dXs),
(
0,
√
s //0,s

)
, (−ds,dXs)

)
W̃r,s =

(
d∇
)∗
R∇(T−s)

(√
s //0,s ·

)
Ur,s

which gives (2.5). Formulas (2.6) and (2.7) are then direct consequences of (2.5), taking into account thatU−1
r,s ∇0Ur,s =

W̃−1
r,s ∇̃0W̃r,s . To establish Eq. (2.7) we use in addition the fact that bothUr,s and//0,s are isometries. ✷
An immediate consequence of Lemma 2.2 is the following proposition. As above letUr,s =U(T ,x)r,s . Again∇0Ur,s denotes

the∇-covariant derivative ofUr,s with respect to the parametera ata = 0 (compare with [6] Theorem 4.4 where a criterion for
a fixed covariant derivative to be Yang–Mills is given).

Proposition 2.3. Let x ∈M , T > 0 and I = [0, T [. Let (∇(t))t∈I be a smooth family of connections inE. The following two
statements are equivalent:

(i) ∇(t) is a solution to the heat equation onI ×M ,

∂t∇ =−1

2

(
d∇
)∗
R∇; (2.8)

(ii) ((Ur,s)−1∇0Ur,s)s∈[r,T ] is a local martingale for everyr ∈]0, T [.
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Proof. If ∇(t) satisfies Eq. (2.8) then the expression in (2.6) clearly vanishes, hence, (i) implies (ii). To prove the other direction,

assume that (ii) holds and fixr ∈]0, T [. Since((U(T ,x)r,s )−1∇0U
(T ,x)
r,s )s∈[r,T ] is a local martingale, the expression (2.6) vanishes,

and, hence, by continuity of the integrand in (2.6), almost surely for everys ∈ [r, T ],

U−1
r,s ∂t∇(T − s)(//0,s ,Ur,s)=−

1

2
U−1
r,s

(
d∇(T−s)

)∗
R∇(T−s)(//0,s ·)Ur,s .

Takings = r , along with the fact thatXr has a positive density inM and the continuity of∂t∇(T −r) and(d∇(T−r))∗R∇(T−r),
we get(

∂t∇(T − r)
)=−1

2

((
d∇(T−r)

)∗
R∇(T−r)

)
.

This holds true for allr ∈]0, T [, and, hence, for allr ∈]0, T ] by continuity. Thus (i) is verified and the proof is complete.✷
Remark 2.4. (1) LetWs(t)=Ws(a, t, u) be the parallel translation inE along the semimartingaleXs(a,u), with respect to a
fixed covariant derivative∇(t). For 0< r < T let

Wr,s(t)=Ws(t)
(
Wr(t)

)−1
.

One can prove that

Ur,s =Wr,s(T − s)ER
( .∫
r

W−1
r,ρ (T − ρ)∂tW(T − ρ)dρ

)
s

, (2.9)

whereER is the right stochastic exponential in Gl(EXr ). Recall that given a semimartingale(Ys)s�r with values ingl(EXr ),

thenER(Y ) is the solution to

δZs = δYs ·Zs, Zr = idEXr .

An alternative, but less simple proof of Lemma 2.2 without introducingẼ would have been possible by taking Eq. (2.9) as
definition.

(2) Yang–Mills connections have been characterized in terms of the holonomy along Brownian loops or Brownian bridges in

[4,7,22]. Here we characterize solutions to the Yang–Mills heat equation by the fact that(U
(T ,x)
r,s )−1∇0U

(T ,x)
r,s is a martingale.

This may be considered as an infinitesimal holonomy characterization, since our martingale is the derivative with respect toa

at a = 0 of the holonomy around the following loop: we start atXr to go toXr(a,u) along the minimizing geodesic, from
there we go toXs(a,u) along the path ofX(a,u), then toXs along the minimizing geodesic, and finally back toXr via the

backwards path ofX. Denoting for fixedt ∈ ]0, T ] by τ (T ,x)t (a,u) the parallel transport with respect to the connection∇(T − t)
fromEXt toEXt (a,u) along the minimizing geodesic, then we have

(
U
(T ,x)
r,s

)−1∇0U
(T ,x)
r,s = d

da

∣∣∣∣
a=0

((
U
(T ,x)
r,s

)−1(
τ
(T ,x)
s (a,u)

)−1
U
(T ,x)
r,s (a,u) τ

(T ,x)
r (a,u)

)
. (2.10)

To finish this section we give a mean value formula for solutions to the Yang–Mills heat equation. Again∇0(T − s) stands
for ∇a(T − s)|a=0.

Corollary 2.5. Let ∇ be a solution to the Yang–Mills heat equation(2.8) on I ×M and let0< r < s � T . For everyFr -
measurable patha �→ v(a) in EXr(a,u) which is a.s.C1 in a (for instance,v(a) = eXr (a,u) wheree is aC1 section ofE), we
have

∇0(T − r)v = E
[
U−1
r,s ∇0(T − s)(Ur,sv)

∣∣Fr ]. (2.11)

Proof. By definition, we have fors ∈ [r, T ],
U−1
r,s ∇0(T − s)(Ur,sv)=U−1

r,s (∇0Ur,s)v +∇0(T − r)v.
By Proposition 2.3 and Lemma 2.2, the right-hand side is a square integrable martingale ins which takes the value∇0(T − r)v
at times = r . This gives the claim. ✷
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3. Monotonicity properties related to variations of stochastic parallel transport

In this section,M is either a compact Riemannian manifold, orM =R
m (m� 1). We consider solutions∇(t) to

∂t∇ =−1

2

(
d∇
)∗
R∇ (3.1)

on I ×M whereI = [0, T [ for someT > 0. Keeping 0< r < T fixed, we are interested in monotonicity properties of the
quadratic variation(Sr,s)s∈[r,T ] to the local martingale(U−1

r,s ∇0Ur,s)s∈[r,T ] as defined in Section 2. More precisely, letting
0< β < 1 and

Φ
(T ,x)
β : ]0, T ] →R, s �→ E

[ s∫
βs

ρ
∥∥R∇(T−ρ)(Xρ)∥∥2 dρ

]
= 1

2
E

[
S
(T ,x)
βs,s

]
,

we look for conditions onM which insure thatΦ(T ,x)β is non-decreasing, or more generally, that there exists a constantC > 0
depending only onM such that for all 0< s1< s2< T ,

Φ
(T ,x)
β (s1)� C

(
Φ
(T ,x)
β (s2)+ (s2− s1)YM

(∇(0))). (3.2)

For 0< s < T let

ϕ(T ,x)(s)= E
[∥∥R∇(T−s)(Xs)∥∥2]

.

We then haveΦ(T ,x)β (s)= ∫ sβs rϕ(T ,x)(r)dr . For simplicity, writeΦβ =Φ(T ,x)β andϕ = ϕ(T ,x) in the sequel.

Remark 3.1. Let 0< c � 1. Along the rescaled perturbed Brownian motionXcs (a,u), introduced in Remark 2.1, we define a
transportUcr,s(a,u) by the equation

D
(
T − c2s)Ucr,s (a,u)= 0, Ucr,r (a,u)= idEXcr (a,u)

. (3.3)

Denoting byScr,s the Riemannian quadratic variation of(Ucr,s)
−1∇c0Ucr,s (where∇c(T − t) = ∇(T − c2t)) andΦβ(c, s) =

(1/2)E[Scβs,s], one easily verifies the relation

Φβ(c, s)=Φβ
(
c2s
)
.

As a consequence, all monotonicity results fors �→Φβ(s) can be interpreted in terms ofc �→Φβ(c, s), for a fixeds.

Lemma 3.2. Let t ∈]0, T [ be fixed. The following two statements are equivalent:

(i) for eachβ ∈]0,1[, the functions �→Φβ(s) is non-decreasing on]0, t];
(ii) the functions �→ s2ϕ(s) is non-decreasing on]0, t].

Proof. We follow the proof of Lemma 9.2 in [27]. If (i) is satisfied, thensΦ′β(s) � 0 for all 0< β < 1 and 0< s < t , which
yields

s2ϕ(s)− β2s2ϕ(βs)� 0.

This gives (ii). Conversely, assuming that (ii) is satisfied, let 0< s1< s2< t andλ := s2/s1> 1. Then

Φβ(s1)=
s1∫

βs1

r1ϕ(r1)dr1=
s2∫

βs2

1

r2

r22
λ2
ϕ

(
r2

λ

)
dr2 �

s2∫
βs2

r2ϕ(r2)dr2=Φβ(s2), (3.4)

where (ii) has been used for the inequality in (3.4). This achieves the proof.✷
Lemma 3.2 brings us to the study of the function

φ(T ,x)= φ : ]0, T [ →R, s �→ s2ϕ(s). (3.5)

For s ∈]0, T [ let gs be the density at times of Brownian motionX started atx. Thus

d

ds
gs = 1

2
Cgs =−1

2
d∗dgs . (3.6)
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We shall adopt the following assumption.

Assumption 3.3. For everyb ∈]0, T [, ‖R∇‖, ‖∇R∇‖ and‖∇∇R∇‖ are inL2(M), where∇ = ∇(b) denotes the covariant
derivative atb onE, respectively the induced covariant derivative on

∧2T ∗M ⊗E andT ∗M ⊗∧2T ∗M ⊗E.

Note that Assumption 3.3 is automatically satisfied ifM is compact. As in the proof of Theorem 9.1 in [27], but with an
additional term coming from the curvature ofM , the following monotonicity formula holds.

Proposition 3.4. Let Assumption3.3be satisfied. For anys ∈]0, T [, we have

φ′(s) = s2
∫
M

∥∥(d∇(T−s))∗R∇(T−s)− ıgrad loggsR
∇(T−s)∥∥2

gs dx

+ 2s
∫
M

〈
R∇(T−s),R∇(T−s) + sR∇(T−s) ◦ (∇(grad loggs)� id

)〉
gs dx, (3.7)

where(∇(grad loggs)� id
)
(u∧ v)= 1

2

(∇u(grad loggs)∧ v + u∧∇v(grad loggs)
)
.

Proof. We shall make use of the integration by parts formula, Eq. (1.5), at different stages of the proof. In these cases
Assumption 3.3 will imply Assumption 1.1.

First, we are going to computeϕ′(s). For the sake of brevity, we writeR∇ for R∇(T−s), ∇ for ∇(T − s), d∇ for d∇(T−s),
and(d∇ )∗ for (d∇(T−s))∗. It then follows fromR∇ = d∇ ◦ ∇ and Eq. (3.1) that

d

ds
R∇ = d∇ d

ds
∇ =−1

2
d∇
(
d∇
)∗
R∇ , (3.8)

see, e.g., [26], formula (10). Now since

ϕ(s)=
∫
M

∥∥R∇∥∥2
gs dx,

we have

ϕ′(s)= 2
∫
M

〈
d

ds
R∇ ,R∇

〉
gs dx +

∫
M

〈
R∇ ,R∇

〉 d

ds
gs dx. (3.9)

By the respective heat equations (3.8) and (3.6), this equals∫
M

〈
d∇
(
d∇
)∗
R∇ ,R∇gs

〉
dx − 1

2

∫
M

〈
R∇ ,R∇

〉
d∗ dgs dx (3.10)

and, by applying Eq. (1.5), we get∫
M

〈(
d∇
)∗
R∇ ,

(
d∇
)∗(
R∇gs

)〉
dx − 1

2

∫
M

(
d
〈
R∇ ,R∇

〉
,dgs

)
dx. (3.11)

Taking into account that(d∇ )∗(R∇gs)= ((d∇ )∗R∇ )gs − ıgradgsR
∇ , expression (3.11) may be written as∫

M

〈(
d∇
)∗
R∇ ,

(
d∇
)∗
R∇

〉
gs dx −

∫
M

〈(
d∇
)∗
R∇ , ıgrad loggsR

∇ 〉gs dx − 1

2

∫
M

(
d
〈
R∇ ,R∇

〉
, dgs

)
dx. (3.12)

We need to transform the last term. To this end we use

−1

2

∫
M

(
d
〈
R∇ ,R∇

〉
, dgs

)
dx =−

∫
M

(〈∇R∇ ,R∇ 〉, dgs
)
dx =−

∫
M

〈∇grad loggsR
∇ ,R∇

〉
gs dx. (3.13)

By means of a Bianchi identity, we find the following expression for∇R∇ : for u,v,w ∈ Γ (TM),
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∇uR∇ (v,w) = ∇vR∇ (u,w)−∇wR∇ (u, v)= d∇
(
ıuR

∇)(v ∧w)−R∇ (∇vu,w)+R∇ (∇wu,v)
= (

d∇
(
ıuR

∇)− 2R∇ ◦ (∇u� id)
)
(v ∧w).

With this equality the last expression in Eq. (3.13) becomes

−
∫ 〈

d∇
(
ıgrad loggsR

∇),R∇ 〉gs dx + 2
∫ 〈
R∇ ◦ (∇(grad loggs)� id

)
,R∇

〉
gs dx, (3.14)

or with Eq. (1.5),

−
∫ 〈
ıgrad loggsR

∇ ,
(
d∇
)∗(
R∇gs

)〉
dx + 2

∫ 〈
R∇ ◦ (∇(grad loggs)� id

)
,R∇

〉
gs dx. (3.15)

Exploiting once more(d∇ )∗(R∇g)= ((d∇)∗R∇ )g − ıgradgsR
∇ , we arrive at

−
∫ 〈
ıgrad loggsR

∇ ,
(
d∇
)∗
R∇

〉
gs dx +

∫ 〈
ıgrad loggsR

∇ , ıgrad loggsR
∇ 〉gs dx

+ 2
∫ 〈
R∇ ◦ (∇(grad loggs)� id

)
,R∇

〉
gs dx. (3.16)

Finally, combining Eqs. (3.12) and (3.16) gives

ϕ′(s)=
∫ ∥∥(d∇)∗R∇ − ıgrad loggsR

∇∥∥2
gs dx + 2

∫ 〈
R∇ ,R∇ ◦ (∇(grad loggs)� id

)〉
gs dx.

From here the proposition follows upon noting thatφ′(s)= s2ϕ′(s)+ 2sϕ(s). ✷
In particular, ifM is the Euclidean spaceRm, then∇ grad loggs = −(1/s) id. As a consequence we have the following

corollary:

Corollary 3.5. LetM = R
m be equipped with the standard metric, and assume that Assumption3.3 is satisfied. For every

0< s < T there holds

φ′(s)= s2
∫ ∥∥(d∇(T−s))∗R∇(T−s) − ıgrad loggsR

∇(T−s)∥∥2
gs dx. (3.17)

Consequently,φ is non-decreasing on]0, T [, as well asΦβ for everyβ ∈]0,1[.

The monotonicity ofφ (andΦβ ) holds in other situations as well. We say thatM has parallel Ricci tensor Ric if∇Ric= 0.
Similarly to [27] Theorem 9.1 we get the following result which differs from Hamilton’s monotonicity formula [13, Theorem C].

Theorem 3.6. Assume thatM is a compact manifold with parallel Ricci tensor and non-negative sectional curvatures. Thenφ

is non-decreasing on]0, T [, as well asΦβ for everyβ ∈]0,1[.

Proof. This is a consequence of Proposition 3.4 and the inequality

∇(grad loggs)�−1

s
id

which has been obtained by Hamilton [12] under the given assumptions.✷
For a general compact manifoldM , a correction term is needed. Again our result differs from [13, Theorem C]. For 0� t < T

let

YM(t)=
∫
M

∥∥R∇(t)∥∥2 dx (3.18)

be the Yang–Mills energy at timet . The mapt �→ YM(t) is non-increasing (see, e.g., [9]).

Theorem 3.7. Let M be a compact manifold of dimensionm � 1. There exist a constantC > 0 and a positive increasing
function f1 defined on]0,1] satisfyinglims→0f1(s) = 0, both depending only onM , such that for anyβ ∈]0,1[ and all
0< s1< s2< T ∧ 1, the following inequalities hold:
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φ(s1)� ef1(s2)φ(s2)+C(s2− s1)YM(0) and (3.19)

Φβ(s1)� ef1(s2)Φβ(s2)+C(1− β)(s2− s1)YM (0). (3.20)

Other monotonicity formulas have been established in [9,17]. The last reference is closer to our result but in [17] the
functionφ is not the same as ours andM is a sphere.

Proof. We first establish Eq. (3.19) in a way similar to Theorem 1.1 in [13]. Let 0< s < T ∧ 1. From Proposition 3.4 we get

φ′(s)� 2s
∫
M

〈
R,R + sR ◦ (∇(grad loggs)� id

)〉
gs dx. (3.21)

By [12, Theorem 4.3], there exist constantsB � 1 andC0> 0 depending only onM such that

∇(grad loggs)+ 1

s
id+C0

(
1+ log

(
B

sm/2gs

))
id � 0. (3.22)

A straightforward calculation ([13, Lemma 1.2]) shows that forx, y > 0,

x
(
1+ log(y/x)

)
� 1+ x logy,

hence, Eq. (3.22) yields

gs∇(grad loggs)+ gs 1

s
id �−C0

(
1+ gs log

(
B

sm/2

))
id . (3.23)

From this and Eq. (3.21) we get

φ′(s)�−2C0s
2 YM(T − s)− 2C0 log

(
B

sm/2

)
φ(s). (3.24)

The function

f (s) := s
(
m

2
+ log

(
B

sm/2

))
is positive on the interval]0, T ∧ 1[, bounded by a constantC1 and has derivative log(B s−m/2). Hence, lettingα(s) =
e2C0f (s)φ(s), Eq. (3.24) yields

α′(s)�−2C0s
2e2C0f (s)YM(T − s)�−2C0e2C0C1 YM(0). (3.25)

Integrating froms1 to s2 where 0< s1< s2< T ∧ 1 yields

α(s1)� α(s2)+ 2C0e2C0C1 YM(0)(s2− s1) (3.26)

which in turn gives

φ(s1)� e2C0(f (s2)−f (s1))φ(s2)+ 2C0e−2C0f (s1)e2C0C1 YM(0)(s2− s1). (3.27)

TakingC = (2C0∨ 1)e2C0C1 andf1(s)= 2C0f (s), we get Eq. (3.19).
As for Eq. (3.20), we letλ= s2/s1> 0. We then have

Φβ(s1) =
s1∫

βs1

φ(r1)

r1
dr1=

s2∫
βs2

φ(r2/λ)

r2
dr2 �

s2∫
βs2

ef1(r2)φ(r2)+Cr2(1− 1/λ)YM (0)

r2
dr2 by Eq. (3.19)

� ef1(s2)

s2∫
βs2

φ(r2)

r2
dr2+C(1− 1/λ)(s2− βs2)YM (0)= ef1(s2)

s2∫
βs2

φ(r2)

r2
dr2+C(1− β)(s2− s1)YM (0)

= ef1(s2)Φβ(s2)+C(1− β)(s2− s1)YM(0)

which is the desired formula.✷
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By means of formula (3.19) we obtain existence of limits ofφ andΦβ at 0, as stated in the following proposition.

Proposition 3.8. Let∇ be a solution to the Yang–Mills heat equation defined on[0, T [. Then for anyx ∈M and0< β < 1, the

limits limr→0φ
(T ,x)(r), limr→0Φ

(T ,x)
β (r) exist, and we have

lim
r→0

Φ
(T ,x)
β (r)= log(1/β) lim

r→0
φ(T ,x)(r).

Proof. We consider first limr→0φ
(T ,x)(r). Let rn be a decreasing sequence of positive numbers converging to 0 such that

lim
n→∞φ

(T ,x)(rn)= lim inf
r→0

φ(T ,x)(r).

Let n ∈N and 0< r < rn. By formula (3.19),

φ(T ,x)(r)� ef1(rn)φ(T ,x)(rn)+C(rn − r)YM (0),

whereC andf1 depend only onM , andf1(s) converges to 0 ass tends to 0. This clearly implies

limsup
r→0

φ(T ,x)(r)= lim
n→∞φ

(T ,x)(rn)= lim inf
r→0

φ(T ,x)(r),

so limr→0φ
(T ,x)(r) exists. From the bounds

inf[βr,r]φ
(T ,x) �

Φ
(T ,x)
β (r)

log(1/β)
� sup
[βr,r]

φ(T ,x),

we derive the results concerning limr→0Φ
(T ,x)
β (r). ✷

In the next proposition we express the limits ofφ andΦβ at 0 in terms ofL2 norms of the martingalesU−1
r,s ∇0Ur,s .

Proposition 3.9. LetUr,s =U(T ,x)r,s (0, u).

(1) If 0< s1 � s2 � s3 � T then∥∥U−1
s1,s3

∇0Us1,s3
∥∥2

2=
∥∥U−1
s1,s2

∇0Us1,s2
∥∥2

2+
∥∥U−1
s2,s3

∇0Us2,s3
∥∥2

2.

(2) We have

lim
n→∞

1

n

∥∥U−1
T/2n,T ∇0UT/2n,T

∥∥2
2= 2 lim

r→0
Φ
(T ,x)
1/2 (r).

(3) The equality in(2) generalizes to

lim
r→0

1

log(T /r)

∥∥U−1
r,T ∇0Ur,T

∥∥2
2= 2 lim

r→0
φ(T ,x)(r).

Proof. (1) Clearly

U−1
s1,s3

∇0Us1,s3 =U−1
s1,s2

U−1
s2,s3

∇0(Us2,s3Us1,s2)=U−1
s1,s2

∇0Us1,s2 +U−1
s1,s2

(
U−1
s2,s3

∇0Us2,s3
)
Us1,s2.

SinceUs1,s2 is an isometry, in order to prove the equality, we only need to check that

E
[〈
U−1
s1,s2

∇0Us1,s2,U
−1
s1,s2

(
U−1
s2,s3

∇0Us2,s3
)
Us1,s2

〉]= 0.

The left-hand side is equal to

E
[
E
[〈
U−1
s1,s2

∇0Us1,s2,U
−1
s1,s2

(
U−1
s2,s3

∇0Us2,s3
)
Us1,s2

〉 ∣∣ Fs2]]
and may be written as

E
[〈
U−1
s1,s2

∇0Us1,s2,U
−1
s1,s2

E
[
U−1
s2,s3

∇0Us2,s3
∣∣ Fs2]Us1,s2〉].

But E[U−1
s2,s3∇0Us2,s3 | Fs2] = 0 sinces �→ U−1

s2,s∇0Us2,s is anL2-martingale which vanishes ats = s2, and this gives the
desired equality.
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(2) LetΦ1/2=Φ(T ,x)1/2 . By Lemma 2.2,∥∥∥U−1
T/2k+1,T /2k

∇0UT/2k+1,T /2k

∥∥∥2

2
= 2Φ1/2

(
T/2k

)
for anyk � 0. Consequently, we get with (1)

1

n

∥∥∥U−1
T/2n,T ∇0UT/2n,T

∥∥∥2

2
= 2

1

n

n−1∑
k=0

Φ1/2
(
T/2k

)
,

and by Proposition 3.8 the right-hand side converges to 2 limr→0Φ1/2(r).
(3) Let 0< r � T and letn� 0 satisfy

T

2n+1
< r � T

2n

which is equivalent to

1

n+ 1
<

log 2

log(T /r)
� 1

n
.

Then (1) implies∥∥U−1
T/2n,T ∇0UT/2n,T

∥∥2
2 �

∥∥U−1
r,T
∇0Ur,T

∥∥2
2 �

∥∥∥U−1
T/2n+1,T

∇0UT/2n+1,T

∥∥∥2

2
,

and the result follows by remarking that

lim
r→0

Φ
(T ,x)
1/2 (r)= (log 2) lim

r→0
φ(T ,x)(r). ✷

4. A priori bounds on solutions of the Yang–Mills heat equation

In this section,M is assumed to be compact of dimensionm and I = [0, T [ whereT > 0. Let ∇ be a solution of the
Yang–Mills heat equation defined onI , andR∇ be the corresponding curvature. For 0< t < T andx ∈M let

e(t, x)= ∥∥R∇(t)(x)∥∥2
.

If X(x) denotes a Brownian motion onM started atx, we let fors ∈ [0, t]:
ϕ(t,x)(s)= E

[
e
(
t − s,Xs(x)

)]
and φ(t,x)(s)= s2ϕ(t,x)(s).

We keep the notation

YM(t)=
∫
M

e(t, x)dx,

and, forσ ∈ [0,√t], P(σ, t, x) = [t − σ2, t] ×  B(x,σ ), where B(x,σ ) is the closed geodesic ball with centerx and radiusσ .
Finally, for x ∈M andρ > 0, letτ(x,ρ)= inf{s � 0: Xs(x) /∈  B(x,ρ)}.

Lemma 4.1. There existsα0> 0 andη > 0, depending only onM , such that for allx ∈M , 0< ρ < 1 and0< α < α0,

P
{
τ(x,ρ) < αρ2}� exp

(
− η
α

)
. (4.1)

As a consequence,

lim
α→0

sup
x∈M

sup
ρ∈ ]0,1]

P
{
τ(x,ρ) < αρ2}= 0. (4.2)

Proof. Denote byg the metric onM and byd the distance associated withg. LetNs(x) := d2(x,Xs(x)). Then

τ(x,ρ)= inf
{
s � 0, Ns(x) > ρ

2},
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which gives{
τ(x,ρ) < αρ2}= { sup

s∈[0,αρ2]
Ns(x) > ρ

2
}
⊂
{

sup
s∈[0,αρ2]

Ns(x)� ε2ρ2
}
,

where 0< ε < 1 is less than the injectivity radius of(M,g). ButNs(x) stopped at the first time when it hitsρ2ε2 satisfies

dNs(x)= σs(x)dBs(x)+ bs(x)ds,
whereBs(x) is a real-valued Brownian motion. Moreover, there exists a constantC > 0 depending only onM such that
σ2
s (x)� Cρ2ε2 andbs(x)� C. SinceN0(x)= 0, this implies that forCαρ2 � (ε2ρ2)/2,

P

({
sup

s∈[0,αρ2]
Ns(x)� ε2ρ2

})
� P

({
sup

s∈[0,αρ2]

s∫
0

σr (x)dBr(x)� ε2ρ2/2

})
� e−ε2/(8Cα),

where the last bound comes from Bernstein’s inequality (see, e.g., Exercise 3.16, Chapter IV in [21]). This gives the result with
α0= ε2/(2C) andη= ε2/(8C). ✷

We continue with a prioriC1-bounds for solutions∇ of small energy.

Theorem 4.2. There exist constantsε0 = ε0(E) > 0 and0< α = α(E) < 1, a positive non-increasing functiony �→ ε1(y) =
ε1(E,y) defined on]0,∞[ with values in]0,1], and a positive non-decreasing functionr �→ f (r)= f (E, r) on ]0,1[ such that
for any solution∇ of the Yang–Mills heat equation on[0, T [ the following is true: if φ(t,x)(r)� aε0 for some(t, x) ∈ I ×M ,
0< a � 1 and somer ∈]0, ε1(a−1 YM(0))∧ t], then

sup
P(f (r),t,x)

e � 24a

α2f (r)4
.

Note a similar result but for a fixed Yang–Mills connection can be found in [18]. See also [9] for a related formula.

Proof. We follow the proof of Theorem 10.1 in [27]. Leta ∈]0,1], (t0, x0) ∈ I×M , r0 ∈]0, t0∧1], r1 ∈]0, r0/2] (in particular,
r1 �

√
r0/2). We want to prove that for someε0> 0, if φ(t0,x0)(r0)� aε0 then

sup
P(r1/2,t0,x0)

e� 24a

α2(r1/2)4
,

where the relation betweent0, r0 andr1 has to be determined. Letσ0 ∈ [0, r1[ such that

(r1− σ0)
4 sup
P(σ0,t0,x0)

e= max
σ∈[0,r1]

(
(r1− σ)4 sup

P(σ,t0,x0)

e
)
.

There exists(t∗, x∗) ∈ P(σ0, t0, x0) such that

e0 := sup
P(σ0,t0,x0)

e= e(t∗, x∗).

For e0 = 0, r1 = 2f (r0), and anyf such that 2f (r) <
√
r/2 we are done, so for the rest of the proof we assume thate0 > 0.

Let ρ0= (1/2)(r1− σ0). Then we have 0< σ0+ ρ0< r1, and

sup
P(ρ0,t

∗,x∗)
e � sup

P(ρ0+σ0,t0,x0)

e � (r1− σ0− ρ0)
−4(r1− σ0)

4e0= 16e0. (4.3)

On the other hand, there existsC1= C1(E) > 0 such that(
∂

∂t
− 1

2
C

)
e� C1

(
1+ e1/2)e (4.4)

(see [9, Lemma 2.2]). Define fors ∈ [0, ρ2
0]

Ys = e
(
t∗ − s,Xs(x∗)

)
.

Write τ = τ(x∗, ρ0). Then, denoting by
m= equality up to differentials of local martingales, we have on[0, τ ∧ ρ2

0],

dYs
m=
(
− ∂
∂t
+ 1

2
C

)
e
(
t∗ − s,Xs(x∗)

)
ds �−C1

(
1+ Y1/2

s

)
Ys ds �−C1(1+ 4

√
e0)Ys ds,
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where the inequalities come from Eqs. (4.4) and (4.3); this implies that

Zs := eC1(1+4
√
e0)sYs (4.5)

is a bounded submartingale on[0, τ ∧ ρ2
0]. As a consequence, for everys ∈]0, ρ2

0],
Z0 � E[Zs∧τ ]. (4.6)

We want to prove that ifφ(t0,x0)(r0)� aε0 whereε0 has to be determined, thenαρ2
0 �√a/e0 for someα = α(E) ∈]0,1[. If

αρ2
0 >

√
a/e0, (4.7)

then

e0= Z0 � E
[
Z(
√
a/e0)∧τ

]= E
[
Z√a/e0 1{√a/e0�τ }

]+E
[
Zτ1{√a/e0>τ }

]
� eC1(1+4

√
e0)
√
a/e0 E

[
Y√a/e0

]+ eC1(1+4/
√
e0)
√
a/e0 16e0 P

{√
a/e0 > τ

}
� e5C1 E

[
Y√a/e0

]+ e5C116e0 P
{
αρ2

0 > τ
}= e5C1

e0

a
φ(t

∗,x∗)(√a/e0 )+ e5C116e0 P
{
αρ2

0 > τ
}
.

According to Lemma 4.1, one can chooseα = α(E) > 0 such that

e5C116P
{
αρ2

0 > τ(x
∗, ρ0)

}
<

1

2
,

and we get

1

2
e0 � e5C1

e0

a
φ(t

∗,x∗)(1/√e0 ). (4.8)

Now by the monotonicity formula (3.19), lettingβ = t0− t∗ ∈ [0, r21[ andC′ = C ∨ ef1(1) whereC is the constant appearing
in Theorem 3.7, Eq. (4.8) implies

e0 � 2e5C1
e0

a
C′
(
φ(t

∗,x∗)(r0− β)+ (r0− β)YM (0)
)
. (4.9)

Dividing by e0/a and lettingC2= 2e5C1C′, we get

a � C2(r0− β)2
∫
M

e(t0− r0, x)p(r0− β,x∗, x)dx +C2(r0− β)YM (0), (4.10)

wherep(r, x, y) is the density aty ∈M at time r of a Brownian motion started atx. The function(r, x, y) �→ p(r, x, y) is
smooth on the compact set[r0/2,1] ×M ×M . Consequently, sinceβ < r21 < r1 � r0/2< 1 andd(x∗, x0)� r1, there exists
C3(r0) > 0 such that

p(r0− β,x∗, x) � p(r0, x0, x)+C3(r0) r1.

Substituting this in Eq. (4.10) yields

a � C2(r0− β)2
∫
M

e(t0− r0, x)p(r0, x0, x)dx +C3(r0)r1C2(r0− β)2 YM (t0− r0)+C2(r0− β)YM (0)

which in turn implies (sincet �→ YM(t) is non-increasing)

a � C2φ
(t0,x0)(r0)+C4(r0) r1 YM(0)+C2 r0 YM (0), (4.11)

whereC4(r0)= C2C3(r0)r
2
0. Moreover,r �→C4(r) may be chosen decreasing. Let

ε1(y)= 1

(3C2y)∨ 1
, f (r)= C2 r

2C4(r)
∧ r

4
, ε0= 1

3C2
.

If r0< ε1(YM (0)/a), r1 � 2f (r0) andφ(t0,x0)(r0)� aε0, then

C2φ
(t0,x0)(r0)+C4(r0) r1 YM(0)+C2 r0 YM (0) < a,

in contradiction to Eq. (4.11), and, hence, to Eq. (4.7). Thus we must have

e0 � a

α2ρ4
0

= 24a

α2(r1− σ0)
4
, (4.12)
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in particular,

max
σ∈[0,r1]

(
(r1− σ)4 sup

P(σ,t0,x0)

e
)
= (r1− σ0)

4e0 � 24a

α2
. (4.13)

Now lettingσ = r1/2= f (r0) which gives(r1− σ)4= f (r0)4, we get along with Eq. (4.13)

f (r0)
4 sup
P(f (r0),t0,x0)

e� 24a

α2
or sup

P(f (r0),t0,x0)

e� 24a

α2f (r0)
4

which proves the theorem.✷
An essential tool for the proof of Theorem 4.2 is the monotonicity formula (3.19) which involvesφ(t,x)(r). From a stochastic

point of view, the function

Φ
(t,x)
β (s)=

s∫
βs

rϕ(t,x)(r)dr (where 0< β < 1)

is more appealing since it allows a direct probabilistic interpretation:

Φ
(t,x)
β (s)= 1

2
E

[
S
(t,x)
βs,s

]
,

see Lemma 2.2. For this reason we give a variant of Theorem 4.2 in terms ofΦ
(t,x)
β .

Theorem 4.3. Let0< β < 1 and letε0, ε1, f be as in Theorem4.2. For any solution∇ of the Yang–Mills heat equation defined
on [0, T [ the following is true: if

Φ
(t,x)
β (r)� aε0 log(1/β)

for somea ∈]0,1], (t, x) ∈ I ×M and somer ∈]0, ε1(a−1 YM (0))∧ t], then

sup
P(f (βr),t,x)

e � 24a

α2f (βr)4
.

Proof. The equality

Φβ(r)=
r∫

βr

φ(s)

s
ds

implies

log(1/β) inf[βr,r]φ �Φβ(r),

and we are left to apply Theorem 4.2, along with the fact thatf is non-decreasing. ✷
From Theorem 4.2 we get an immediate but useful corollary which gives a similar result, but in terms ofφ(T ,x). For t > 0,

σ ∈ [0,√t] let

P ′(σ, t, x)= [t − σ2, t
[ ×  B(x,σ ).

Corollary 4.4. The notations are the same as in Theorem4.2. If φ(T ,x)(r) < aε0 for somex ∈M , 0< a � 1 and somer such
that 0< r < ε1(a

−1 YM(0))∧ T , then

sup
P ′(f (r),T ,x)

e� 24a

α2f (r)4
. (4.14)

Proof. Suppose that the assumptions of Corollary 4.4 are realized. By continuity oft �→ φ(t,x)(r), there existsε > 0 such that
r � ε1(a−1 YM(0))∧ T − ε andφ(t,x)(r)� aε0 for any t ∈ [T − ε,T [. Consequently, by Theorem 4.2,

sup
P(f (r),t,x)

e � 24a

α2f (r)4
.
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Since this is true for everyt ∈ [T − ε,T [, the claim follows. ✷
At this stage we are able to give criteria for existence of singularities.

Proposition 4.5. Let ε0 be defined as in Theorem4.2. The following five statements are equivalent:

(i) ∇ has a singularity at(T , x);
(ii) lim

r→0
φ(T ,x)(r)� ε0;

(iii) lim
r→0

φ(T ,x)(r) > 0;
(iv) lim

r→0
Φ
(T ,x)
β (r)� log(1/β)ε0;

(v) lim
r→0

Φ
(T ,x)
β (r) > 0.

Proof. Assume that (i) holds true. If (ii) is not satisfied, then we may chooser such thatr < ε1(YM (0))∧T andφ(T ,x)(r) < ε0.
By Corollary 4.4 we get

sup
P ′(f (r),T ,x)

e� 24

α2f (r)4
,

in contradiction to explosion at(T , x). Consequently (i) implies (ii).
Clearly (ii) implies (iii). We prove that (iii) implies (i): assume that no explosion occurs at(T , x). Then there existsε > 0

andC > 0 such that the energy is bounded byC on [0, T [ ×B(x, ε). On the other hand, fory /∈ B(x, ε) and 0< r � 1, we can
boundp(r, x, y) by some constantC′ > 0. Thus we get

φ(T ,x)(r) = r2
∫
M

p(r, x, y)e(T − r, y)dy = r2
∫

B(x,ε)

p(r, x, y)e(T − r, y)dy + r2
∫

B(x,ε)c

p(r, x, y)e(T − r, y)dy

� r2C

∫
M

p(r, x, y)dy + r2C′YM (T − r)� r2C + r2C′ YM(0)

which clearly converges to 0 asr tends to 0. Hence, (iii) implies (i).
The equivalence with (iv) and (v) is a consequence of equality

lim
r→0

Φ
(T ,x)
β (r)= log(1/β) lim

r→0
φ(T ,x)(r)

in Proposition 3.8. ✷
We have the following immediate corollary.

Corollary 4.6. LetUr,s =U(T ,x)r,s . The following five statements are equivalent:

(i) ∇ has a singularity at(T , x);

(ii) lim
n→∞

1

n

∥∥U−1
T/2n,T ∇0UT/2n,T

∥∥2
2 � 2(log 2)ε0;

(iii) lim
n→∞

1

n

∥∥U−1
T/2n,T ∇0UT/2n,T

∥∥2
2> 0;

(iv) lim
r→0

1

log(T /r)

∥∥U−1
r,T ∇0Ur,T

∥∥2
2 � 2ε0;

(v) lim
r→0

1

log(T /r)

∥∥U−1
r,T
∇0Ur,T

∥∥2
2> 0.

With Corollary 4.4 at hand we are able to obtain global existence results for solutions∇ of the Yang–Mills heat equation.
To this end, we shall exploit the fact that

p(t, x, y)= t−m/2q(t, x, y), (4.15)

whereq is bounded on]0,1] ×M ×M (see, e.g., [14]).
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Let (t, x) ∈]0, T ] ×M and 0< r � t . Write qr (x, y)= q(r, x, y). Then

φ(t,x)(r)= r2
∫
M

p(r, x, y) e(t − r, y)dy � r2−m/2
(

sup
M×M

qr

)
YM (t − r)� r2−m/2

(
sup
M×M

qr

)
YM (0)

sinces �→YM (s) is non-increasing.

Theorem 4.7. Let∇ be a solution on[0, T0[ of the Yang–Mills heat equation, and chooseε0, ε1 according to Theorem4.2. If
there existst ∈]0, T0 ∧ ε1(YM(0))[ such that

t2−m/2
(

sup
M×M

qt

)
YM (0) < ε0 (4.16)

then the solution∇ can be extended to[0,∞[.

Proof. Let T be the maximal existence time of the solution to the Yang–Mills heat equation started at∇(0). ThenT � T0.
Assume thatT <∞. Let T ′ ∈ ]0, T0 ∧ ε1(YM(0))[ satisfy

(T ′)2−m/2
(

sup
M×M

qT ′
)

YM(0) < ε0 (4.17)

and lett0= T − T ′. We are going to prove that for anyx ∈M ,

sup
P ′(f (T ′),T ,x)

e� 24

α2f (T ′)4 . (4.18)

Hence, letx ∈M . Since the energy is decreasing with time, we have

(T ′)2−m/2
(

sup
M×M

qT ′
)

YM(t0) < ε0. (4.19)

The family

∇′(s)=∇(t0+ s), 0 � s < T ′,
of covariant derivatives solves the Yang–Mills heat equation on[0, T ′[ with initial connection∇(t0) and initial energy
YM ′(0)=YM (t0). Denote byR′ its curvature and bye′ the norm ofR′. Let

(ϕ′)(T ′,x)(r)= E
[
e′
(
T ′ − r,Xr(x)

)]
and (φ′)(T ′,x)(r)= r2(ϕ′)(T ′,x)(r).

Then the calculation before Theorem 4.7 along with Eq. (4.17) shows that

(φ′)(T ′,x)(T ′)� (T ′)2−m/2
(

sup
M×M

qT ′
)

YM (t0) < ε0.

By Corollary 4.4 this implies that

sup
P ′(f (T ′),T ′,x)

e′ � 24

α2f (T ′)4 ,

or equivalently,

sup
P ′(f (T ′),T ,x)

e� 24

α2f (T ′)4 .

This holds true for allx ∈M , so

sup
[T−f (T ′)2,T [×M

e� 24

α2f (T ′)4 ,

in contradiction to the fact that the solution∇ explodes at timeT . As a conclusion, we haveT =∞. ✷
From Theorem 4.7 we derive two immediate corollaries:

Corollary 4.8. If m� 3 then a solution to the Yang–Mills heat equation does not blow up in finite time.
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Proof. There existsT0 > 0 such that the solution is defined at least on[0, T0[. Since 2− m/2> 0, we have for sufficiently
small t ∈]0, ε1(YM(0))∧ T0[,

t2−m/2C5 YM (0) < ε0,

where C5 is an upper bound forq on ]0,1] × M × M . Consequently Eq. (4.16) is satisfied and we are left to apply
Theorem 4.7. ✷
Corollary 4.9. If m� 4, and if the solution∇ blows up in finite timeT < ε1(YM(0)), then

T 2−m/2( sup
M×M

qT

)
YM (0)� ε0,

whereε0 andε1 are defined in Theorem4.2.

By means of Corollary 4.4 we can improve the conclusion of Theorem 4.7 with stronger assumptions on YM(0), and obtain
control on‖e‖∞ by

√
YM(0). The idea is to takea =√YM (0) in Corollary 4.4:

Theorem 4.10. Assumem � 4. There exist a positive non-decreasing functiont �→ ε2(t) and a positive functiont �→ C6(t)

defined on]0,∞[, depending only onE, such that if a solution∇ of the Yang–Mills heat equation defined on[0, T [
satisfiesYM(0) < ε2(T ), then for anyx ∈ M and t with T − f 2(T ∧ ε1(

√
YM (0))) � t < T , we have the estimate

e(t, x)� C6(T )
√

YM(0), wheref andε1 are defined in Theorem4.2.

Proof. Let

ε2(t)= 1∧ inf

{
y ∈R, y >

ε20

4C2
5

(
t ∧ ε1(√y)

)m−4
}

and C6(t)= 24

α2f (ε1(
√
ε2(t))∧ t)4

,

whereε0 andα are defined in Theorem 4.2, andC5 is chosen such thatp(t, x, y) �C5t
−m/2 for any(t, x, y) ∈]0,1]×M×M .

We already noted that if 0< t � T , 0< r � 1∧ t , x ∈M , then

φ(t,x)(r)� C5r
2−m/2 YM(0).

Let x ∈M . From the inequality YM(0) < ε2(T ) we get

C5
(
T ∧ ε1

(√
YM (0)

))2−m/2√YM(0)� ε0/2

which in turn impliesφ(T ,x)(r) < aε0 with a = √
YM (0) and r < T ∧ ε1(

√
YM (0)) = T ∧ ε1(a−1 YM (0)). Applying

Corollary 4.4 yields

sup
P ′(f (r),T ,x)

e� 24

α2f (r)4

√
YM (0).

By continuity this inequality remains true when replacingr by

r0 := T ∧ ε1
(√

YM(0)
)
.

From YM(0) < ε2(T ) and the fact thatε1 is non-increasing andf is non-decreasing, we conclude

sup
P ′(f (r0),T ,x)

e� C6(T )
√

YM (0).

Since this holds true for everyx ∈M , the proof is complete. ✷
Similarly to Theorem 4.7 we get the following corollary.

Corollary 4.11. Assumem� 4 and let∇ be a solution of the Yang–Mills heat equation defined on[0, T [. If YM(0) < ε2(T ),
then the solution∇ can be extended to[0,∞[, and for everyt � T , x ∈M , e(t, x) � C6(T )

√
YM(0), whereε2 andC6 are

defined in Theorem4.10.

The proof relies on Theorem 4.10. It is similar to the proof of Theorem 4.7, and hence omitted. Corollary 4.11 in turn yields
the following result on the sphere, which is due to Naito [17]:

Corollary 4.12. Assumem � 5. Let Sm be them-dimensional Euclidean sphere andE be a non-trivial vector bundle over
Sm. There exists a mapt �→ ε3(t) > 0 defined fort > 0, such that for every solution∇ of the Yang–Mills heat equation, if
YM (0) < ε3(t), then∇ blows up before timet .
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Remark 4.13. Although both Corollary 4.11 and 4.12 assume smallness of the initial energy, there is a major difference in
their assumptions, namely in Corollary 4.11 the solution∇ is supposed to be already defined on[0, T [. If in Corollary 4.11, we
further assume thatm� 5 andM = Sm, thenE is necessarily trivial.

Proof (of Corollary 4.12). Let

ε3(t)=
(m

2
)2

4C6(t)
2
∧ ε2(t).

Assume that YM(0) < ε3(t). We want to prove that the solution∇ blows up before timet . If not, then by Corollary 4.11, it can
be extended to[0,∞[ such that for everyt ′ � t , x ∈M ,

e(t ′, x)� C6(t)
√

YM (0) <
1

2

(
m

2

)
.

By [28] Theorem 1.5 there exists a subsequence∇(ti ) such thats−1
i ◦ ∇(ti ) ◦ si converges weakly inW1,p for any p > n

(hence, inC0) to ∇(∞), where thesi are global gauge transformations inW2,p . Moreover∇(∞) is weakly Yang–Mills and
its energye(∞) satisfies

sup
x∈M

e(∞, x)� C6(t)
√

YM(0) <
1

2

(
m

2

)
.

By [28] Corollary 1.4, the gauge transformations can be chosen in such a way that∇(∞) is strongly Yang–Mills. By [8,
Theorem C], this impliese(∞) ≡ 0, which is impossible sinceE is non-trivial. We conclude that our solution∇ blows up
before timet . ✷

5. Singularities of the Yang–Mills heat equation and convergence of rescaled martingales

In this section, the dimension ofM is assumed to be at least four. Again∇ is a solution of the Yang–Mills heat equation
defined onI = [0, T [. We assume that∇ blows up at timeT . LetRn be a decreasing sequence of positive numbers converging
to 0. We consider the rescaled connections∇n(s)=∇(R2

ns) for 0 � s < T/R2
n. Then∇n solves the Yang–Mills heat equation

whenM is endowed with the metricgn = R−2
n g.

Lemma 5.1. Let α > 0 be as in the proof to Theorem4.2. There existsε > 0 depending only onM , a sequence(xn)
in M , a sequence(tn) in ]0, T [ converging toT , and a sequence(rn) with 0< rn � R2

n, such that forn sufficiently large,
φ(tn,xn)(rn)= ε, and such that the curvaturesR∇n of the rescaled connections∇n satisfy

sup
[1,tn/R2

n]×M
∥∥R∇n∥∥2 � 28/α2,

where the norm is defined in terms of the rescaled metricgn.

Observe that Lemma 5.1 is similar in spirit to theC0 bound in [24]. A first difference is that we do not assume thatM

has dimension 4. A second difference is that our bound is obtained globally onM and not on a small ball, but we cannot
prescribe a limit for our sequence(xn), we confine ourselves to the statement that by extracting a subsequence(xn) converges
to a singularity at timeT . A third difference is that our proof relies on a submartingale inequality instead on Moser’s Harnack
inequality.

Proof (of Lemma 5.1). Let 0< ε < (2e5C1)−1 ∧ ε0 whereε0 andC1 are as in Theorem 4.2 and its proof, and

t ′n = sup
{
t ′ ∈ ]0, T [, sup

y∈M
sup

r∈ ]0,R2
n]
φ(t

′,y)(r)� ε
}

(we let t ′n = 0 in case the set on the right is empty). By the same argument as in the proof of Lemma 4.5,t ′n converges toT . For
n sufficiently large, lettn ∈]0, t ′n], rn ∈]0,R2

n], xn ∈M such thatφ(tn,xn)(rn)= ε. Note that sucht ′n tn, rn, xn exist, since by
Theorem 4.2

sup
t ′∈[0,T [

sup
y∈M

sup
r∈ ]0,R2

n]
φ(t

′,y)(r)� ε0.
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Necessarilytn converges toT . We now choose arbitrarysn ∈ [R2
n, tn] andzn ∈M . Let σ0 ∈ [0,Rn] such that

(Rn − σ0)
4 sup
P(σ0,sn,zn)

e= max
σ∈[0,Rn]

(
(Rn − σ)4 sup

P(σ,sn,zn)

e
)
.

There exists(s∗n, z∗n) ∈ P(σ0, sn, zn) such that

e0 := sup
P(σ0,sn,zn)

e= e(s∗n, z∗n).
Let ρ0= (1/2)(Rn − σ0). We have 0< σ0+ ρ0<Rn and

sup
P(ρ0,s

∗
n,z

∗
n)

e� sup
P(ρ0+σ0,sn,zn)

e� (Rn − σ0− ρ0)
−4(Rn − σ0)

4e0= 16e0. (5.1)

We want to prove thate0 � (α2ρ4
0)
−1. If this is not true, then 1/

√
e0 � αρ2

0 �R2
n/4, and as in (4.8) we get

1 � 2e5C1φ(s
∗
n,z

∗
n)(1/

√
e0)� 2e5C1ε,

where for the last inequality we use the definition oft ′n and the fact thats∗n � t ′n. Sinceε < (2e5C1)−1 we arrive at a
contradiction. Consequentlye0 � (α2ρ4

0)
−1. Takingσ0= Rn/2 we get

sup
P(Rn/2,sn,zn)

e� 28

α2R4
n

. (5.2)

Inequality (5.2) is true for allsn ∈ [R2
n, tn] andzn ∈M , hence, we obtain

sup
[R2
n,tn]×M

e� 28

α2R4
n

. (5.3)

Denoting byen the energy of the rescaled connection∇n, we haveen(s, y)= R4
ne(R

2
ns, y), and, hence, inequality (5.3) yields

sup
[1,tn/R2

n]×M
en � 28

α2

which is the desired result.✷
Clearly the accumulation points of the sequence(xn) belong to the singularity set of Eq. (1.2) at timeT . By extracting

a subsequence we may assume that(xn) converges to some pointx ∈M . Forn� 0 letXn be a Brownian motion with respect
to the metricgn, started atxn, which we construct for simplicity viaXns = XsR2

n
from a Brownian motionX ≡ X(xn) with

respect tog and starting pointxn. The following processes are defined as in Section 2:

Xns (a,u) :=XsR2
n
(a,u), Uns (a,u) :=U(tn,xn)0,sR2

n
(a,u),

(
Uns
)−1∇0U

n
s , (5.4)

where(∇0U
n
s )v(0) ≡ ∇0(tn − sR2

n) (U
n
s v) − Uns (0)∇0(tn)v. Note that we can taker = 0 in the definition ofU(tn,xn)r,s since

∇(t) is defined on[0, T [ andtn < T . We stop the processes at timetn/R2
n − 1 so that they are defined for all times and the last

one has a bounded bracket. (The processes listed in (5.4) could be defined more intrinsically with respect togn and∇n; for the
sake of clarity, we construct them with respect to the fixed metricg via the explicit time changes �→R2

ns.)
By means of parallel transport along minimizing geodesics we identify the fibersExn and Ex . In the same way,

(TxnM,gn(xn)) is first identified isometrically with(TxM,gn(x)) by parallel transport along the minimizing geodesic from
xn to x with respect to the Levi-Civita connection togn; then (TxM,gn(x)) is identified isometrically with(Rm,eucl).
Adopting these conventions, the(Uns )

−1∇0U
n
s may be considered as processes taking values in the fixed Euclidean vector

spaceT ∗x M ⊗End(Ex)=: Fx .
Let C(R+,Fx) be the space of continuous paths inFx . We endowC(R+,Fx) with the topology of uniform convergence

on compact sets, and say that a sequence(Vn) of Fx -valued processes indexed byR+ is C-tight if the sequence of the laws of
their paths is tight inC(R+,Fx). A random variableV with values inC(R+,Fx) is said to be a limit point of the sequenceVn
if some subsequence converges in law toV .

Proposition 5.2. The sequence((Un)−1∇0U
n)n�0 is C-tight. Any limit pointV , considered as a process, is a continuous

martingale in its own filtration, satisfying:

∀ s � 0, E
[‖Vs‖2]� 28

α2
s2 and E

[‖V2‖2]� (log2)ε.

In particular, the limit pointV is non-trivial.
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Remark 5.3. When dimM = 4, this result is clearly related to Theorem 1.3 and Lemma 2.4 in [24], where convergence of
rescaled connections to a non-trivial connection in a vector bundle overR

4 is established under suitable gauge transformations.
Observe that instead of gauge transformations we use here the moving framesUn. The question arises whether our limiting
processV is related to a finite energy Yang–Mills connection in a vector bundle overR

4 with the same typical fiber asE
(observe that this would not necessarily imply thatV has finiteL2 norm).

Proof (of Proposition 5.2). The tightness is obtained with [20, Corollary 6 p. 31 and Remark 6 p. 59]. To verify that the
conditions of Corollary 6 are fulfilled we only have to use the fact that by Lemma 5.1,

d
〈(
Un
)−1∇0U

n
〉
s
� 29

α2
s ds, (5.5)

where 〈(Un)−1∇0U
n〉 denotes the quadratic variation of(Un)−1∇0U

n. By extracting a subsequence we may assume
convergence in law of((Un)−1∇0U

n)n∈N. It implies the convergence

E
[∥∥(Uns )−1∇0U

n
s

∥∥2 ∧N]→ E
[‖Vs‖2 ∧N]

for anyN > 0. But

E
[∥∥(Uns )−1∇0U

n
s

∥∥2 ∧N]� 28s2/α2

by Eq. (5.5), so that the first inequality of the proposition follows. For the second inequality we use uniform integrability of
‖(Un2 )−1∇0U

n
2 ‖2. We have

E
[∥∥(Un2 )−1∇0U

n
2

∥∥2]= E

[∥∥∥(U(tn,xn)0,2R2
n

)−1∇0U
(tn,xn)

0,2R2
n

∥∥∥2]
� 2Φ(tn,xn)1/2 (2rn),

sinceR2
n � rn and

lim inf
n→∞ Φ

(tn,xn)
1/2 (2rn)�

log 2

2
ε

(as a consequence ofφ(tn,xn)(rn)= ε along with (3.19)), so that

lim inf
n→∞ E

[∥∥(Un2 )−1∇0U
n
2

∥∥2]� (log 2)ε.

On the other hand,E[‖(Un2 )−1∇0U
n
2‖2 ∧N] converges toE[‖V2‖2∧N] for anyN > 0. We want to find an upper bound for

E
[∥∥(Un2 )−1∇0U

n
2

∥∥21{‖(Un2 )−1∇0U
n
2 ‖2>N}

]
.

Let V ns = (Uns )−1∇0U
n
s . We have, successively by Hölder inequality, Bienaymé–Tchebyshev inequality, Burkholder–Davis–

Gundy inequality,

E
[∥∥V n2 ∥∥21{‖V n2 ‖2>N}

]
� E

[∥∥V n2 ∥∥4]1/2
P
(∥∥V n2 ∥∥2

>N
)1/2 � E

[∥∥V n2 ∥∥4]1/2 1

N
E
[∥∥V n2 ∥∥4]1/2= 1

N
E
[∥∥V n2 ∥∥4]

� C4

N
E
[〈
V n
〉2
2

]
� C4

N

(
28

α2
4

)2
,

where the constantC4> 0 comes from Burkholder–Davis–Gundy inequality:

E
[∥∥V n2 ∥∥4]� C4E

[〈
V n
〉2
2

]
.

Consequently,E[‖(Un2 )−1∇0U
n
2 ‖2] converges toE[‖V2‖2] and

E
[‖V2‖2]� 2 lim inf

n→∞ Φ
(tn,xn)
1/2 (2rn)� (log 2)ε. ✷

Corollary 5.4. The solution∇ to the Yang–Mills heat equation blows up atT if and only if there exists a sequenceRn converging
to 0, a sequencetn converging toT , and a sequencexn inM such that the sequence of the laws of the processes((

Un
)−1∇0U

n
)
n�0

as defined in(5.4)does not converge toδ0.



M. Arnaudon et al. / J. Math. Pures Appl. 81 (2002) 143–166 165

Proof. It is sufficient to prove that if∇ does not blow up atT then any sequence((Un)−1∇0U
n)n�0 converges in law toδ0.

However, this is clear since there existsC > 0 such thate is bounded byC on [0, T ] ×M . Hence, for everyt ∈ [0, tn/R2
n],

E
[∥∥(Unt )−1∇0U

n
t

∥∥2]= E

[∥∥∥(U(tn,xn)0,tR2
n

)−1∇0U
(tn,xn)

0,tR2
n

∥∥∥2]= 2

tR2
n∫

0

sE
[
e
(
tn − s,Xs(xn)

)]
ds � C t2R4

n

which converges to 0 asn tends to∞. ✷

6. Pontryagin numbers and ergodic theorem

In this section, we assume dimM = 4. Let∇ be a Yang–Mills connection inE, x ∈M , (Xs) a Brownian motion inM
started atx, and denote byUs :Ex → EXs the parallel transport inE alongXs (with respect to∇). Let N+ andN− be the
L(TxM,EndEx)-valued martingales

N+s =
s∫

0

√
r U−1

r

(
R∇

)+(d∇ItôXr, //0,r · )Ur and N−s =
s∫

0

√
r U−1
r

(
R∇

)−(d∇ItôXr, //0,r · )Ur,
where(R∇ )+ (respectively(R∇ )−) denote the self-dual (respectively antiself-dual) part ofR∇ . Observe thatN+s + N−s =
U−1
s ∇0Us , whereUs(a,u) is parallel transport along

Xs(a,u)= expXs (a
√
s//0,su), u ∈ TxM,

see Section 2.

Theorem 6.1. Ass tends to∞, almost surely,

1

s2

[〈
N+,N+

〉
s
− 〈N−,N−〉

s

]−→ 4π2i(E)

vol(M)
, where

i(E) := 1

4π2

∫
M

[∥∥(R∇)+∥∥2− ∥∥(R∇)−∥∥2]
(y)dy (6.1)

is the Pontryagin number of the bundleE, which is independent of∇.

Proof. We know that

1

s2

[〈
N+,N+

〉
s
− 〈N−,N−〉

s

]= 2

s2

s∫
0

r
[∥∥(R∇)+∥∥2− ∥∥(R∇)−∥∥2]

(Xr)dr = 2

s2

s∫
0

rf (Xr)dr, where

f (y)= [∥∥(R∇)+∥∥2− ∥∥(R∇)−∥∥2]
(y) for y ∈M.

Let F(s)= ∫ s0 f (Xr )dr . Integrating by parts gives

2

s2

s∫
0

rf (Xr)dr = 2

s2

[
rF(r)

]s
0−

2

s2

s∫
0

F(r)dr = 2

s
F(s)− 2

s2

s∫
0

r
1

r
F(r)dr. (6.2)

Since Brownian motionX is recurrent withµ(dy)= vol(M)−1 dy as invariant measure where dy is the Riemannian measure,
the ergodic theorem applies (see, e.g., [15, Theorem 1.3.12]). ThusF(s)/s converges almost surely to

∫
M f (y)µ(dy) ass tends

to ∞. Consequently, the last term of the right-hand side in (6.2) converges almost surely to
∫
M f (y)µ(dy) ass tends to∞.

According to definition (6.1), this proves the almost sure convergence of 2s−2 ∫ s
0 rf (Xr)dr to 4π2i(E)/vol(M) which is the

wanted result. ✷
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