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Abstract

We construct a parallel transpdrtin a vector bundlez, along the paths of a Brownian motion in the underlying manifold,
with respect to a time dependent covariant deriva¥iven E, and consider the covariant derivativgU of the parallel transport
with respect to perturbations of the Brownian motion. We show that the verticalpat¥oU of this covariant derivative
has quadratic variation twice the Yang—Mills energy density (i.e., the square norm of the curvature 2-form) integrated along
the Brownian motion, and that the drift of such processes vanishes if and owlysdives the Yang—Mills heat equation.
A monotonicity property for the quadratic variation bf-1VoU is given, both in terms of change of time and in terms of
scaling ofU~1VoU. This allows us to find a priori energy bounds for solutions to the Yang—Mills heat equation, as well as
criteria for non-explosion given in terms of this quadratic variatior2002 Editions scientifiques et médicales Elsevier SAS.
All rights reserved.

1. Introduction, notations

This article is concerned with the Yang—Mills heat equation for connections in a metric vector luodier a compact
Riemannian manifoldM. The Yang—Mills connections it are critical points of the Yang—Mills functional (or energy
functional)

YM(V) :=/||RV||2dvo|, (1.1)
M

whereRY e I'(A2T*M ® End(E)) is the curvature 2-form of a metric connectisnin E. Letting V depend smoothly on a
real parameter and differentiating Eq. (1.1) with respecttgields

#YM(V(D) = 2/((dV)*RV<’>, 3 V(1))dvol,
M

where &’ denotes the exterior differential aridY )* its adjoint, see, e.g., [8]. Consequently, to deform a connection towards
the steepest descent of the Yang—Mills action we are led to solve the Yang—Mills heat equation

FV(t) = —%(dv)*RV(’). (1.2)
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The Euler—Lagrange equations associated to the Yang—Mills functional characterize Yang—Mills coniebiyahe property
that

(dv)*RrY =0. (1.3)

The procedure of constructing Yang—Mills connections by starting from an arbitrary conn®¢pnsolving the Yang—Mills

heat equation with initial conditiofv(0), letting ¢ tend to oo, taking a subsequence which converges (up to global gauge
transformations) to a Yang—Mills connection requires that Eq. (1.2) does not blow-up in finite time. Small time existence
is well-known, e.qg., [25]: there always exists> 0 such that Eq. (1.2) has a solution[id 7'[. If M is of dimension less

than or equal to 3, then blow-up never occurs, as proved in [19]. In the general situation, blow-up Atisirakaracterized

by the fact that curvature does not stay bounded7in- ¢, T'[ for any ¢ > 0. If M has dimension at least 4, one is led to
look for non-explosion criteria. An essential ingredient in [9] is the integral BY |2 over “parabolic balls” of the form

[T — 452, T — s2] x ball(x, Ro) C Ry x M whereRg > 0 is fixed and sufficiently small, along with monotonicitysirof this

integral (see [17,18] for related integrals). In [9,17] the authors prove that if the integral is sufficiently close to zero fer small
then||RY ||2 is bounded on some space-time set. Such estimates lead to non-explosion criteria in certain situations.

More can be said whelW has dimension 4, since curvature then can concentrate aftiomy at finitely many points i/

(see [26]). At every point where curvature concentrates, rescaling of space and time, along with gauge transformation, yields a
non-trivial Yang—Mills connection in a bundle ovBf* with the same fiber a& (see [23]).

The paper is organized as follows. In Section 2 we construct the main stochastic object which is the starting point of our
study. Let us briefly describe the set-up. Consider a smooth solttionto Eq. (1.2) on a vector bundIE over a compact
Riemannian manifoldv, defined on[0, T[ for someT > 0. Fix x € M and letX; be a Brownian motion starting from.

Foru € Ty M let X;(a,u) = expy, (a\/;//o’tu) where//o’t denotes parallel transport iiM along X; with respect to the
Levi-Civita connection. The basic object of our study is the semimartingale

s+ Nys = Uy i ValamoUrs, s€lrTl,

wherer €]0, T'[ is fixed ands — Uy s (a, u) is the parallel transport i@ along X starting atU, = idEx, , with respect to the
time-dependent connectiof(7 — s). The semimartingal®/,. ; has nice scaling properties (Remarks 2.1 and 3.1) and we prove
that it is a local martingale if and only ¥ () solves the Yang—Mills heat equation (Lemma 2.2 and Proposition 2.3). See [6]
for similar results in the stationary case of Yang—Mills connections. As expected, a mean value formula holds (Corollary 2.5):
for 0 <r <s < T and atX, we have

V\/7//0’ru(T —ne)= E[U;Slv\/;//o’su(T —5)(Ur,s") ! fr]~

Unfortunately, as a consequence of non-linearity, the conditional expectation contains the parallel ttanspslving the
V(),t €]T —s, T —r[. The approach is analogous to the probabilistic interpretation of the heat equation for harmonic maps
(see, e.g., [2]).

As mentioned before, an important object in the study of singulariti€% at) of the Yang—Mills heat flow is the energy
integral over parabolic balls and monotonicity properties of the integral. In Section 3 we work instead with the expected
quadratic variation of the martingale, constructed in Section 2, on the time infgsvall where O< 8 < 1 is some parameter,
that is

1
(s) == E[IVps. 7],

Using a matrix Harnack estimate for positive solutions of the heat equation on a manifold (see [12]), we establish monotonicity
in s of @g(s). Our result differs from [12]. The method here is also slightly different from the one used in [9], but more natural
in our context. As a consequence of the monotonicity formula we establish convergence of

2

WE[IIM,TII ]
asr tends to 0 (Proposition 3.9). The limit which we call héf&, x) will play a crucial role in the description of singularities.

The key result in Section 4 says thatdg(s) is sufficiently close to zero for small, then the energy is bounded by
Cf(s)*4 on[T — f(s)z, T[ x ball(x, f(s)) for someC > 0 and some positive increasing functign defined fors > 0, such
that lim;_, o f(s) =0 (Theorems 4.2, 4.3 and Corollary 4.4). A similar result but with different assumptions can be found in [9].
Our proof is based on a submartingale inequality, which is an alternative to Moser’s Harnack inequality. We use estimates of
the exit time from small balls for Brownian motion i, based on Bernstein’s inequality (Lemma 4.1).

From Theorems 4.2 and 4.3 we derive a non-explosion criterion for the Yang—Mills heat figw.at in terms of the
size of @g, as well as in terms of(7, x) (Proposition 4.5 and Corollary 4.6). We then establish existence of global solutions
to Eq. (1.2) in case YNV (0)) is sufficiently small; we already know that the solution existg@ri'[ (Theorems 4.7, 4.10,
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Corollary 4.11). In particular, this gives non-explosiomfhas dimension less than or equal to 3, a result due to [19]. When
is of dimension at least 4, an other consequence is that if explosion occurs at a small, tihen the Yang—Mills energy

YM (V(0)) must be greater than some positive constant dependirig tmthe special case whe is a sphere of dimension

greater than 4 anfl a non-trivial bundle oveM, we are able to recover Naito's result [17]: if YM(0)) is smaller than some

positive number depending on- 0, then explosion occurs before timéCorollary 4.12).

In Section 5 we consider a solutidhto the Yang—Mills heat equation @, 7[ and assume that explosion occurs at tifne
We exhibit a sequence of martingales, as in Section 2, constructed from the rescaled Yang—Mills equation, which converges
in law to a non-trivial martingale (Proposition 5.2). In case of dim= 4 we know by [26] that curvature concentrates only
in a finite number of points in the manifold, and our result can be seen as the stochastic analogue to Schlatter’s result [24] on
convergence of rescaled connections to a connection in a vector bundi&bvidowever, here we cannot choose the point
x € M where curvature concentrates since the support of our funétjpis M and not a small ball.

Section 6 of the paper finally is devoted to an ergodic theorem. Here we assume thidt=citn We fix a Yang—Mills
connectionV on E and prove that the Pontryagin number of the vector bundle is the ergodic mean of an expression involving the
curvature ofV along Brownian paths (Theorem 6.1)Mfis self-dual (respectively antiself-dual), the expression is the quadratic
variation (respectively minus the quadratic variation) of the marting&lge constructed in Section 2 (for the stationary case
V() = V).

Throughout the paper we adopt the following conventions.(K&t¥ , (%), >0, P) be afiltered probability space on which
all the considered processes will be defined. Melbe a manifold and let : E — M be a vector bundle ove¥ . By a covariant
derivative or connection on the vector bundleve mean aR-linear map

V:I[(E)— I'(T*M Q E)
satisfying the product rule
V(fX)=df ® X+ fVX, Xel(E), feC™M),

and by a connection on the manifald we mean a covariant derivative or connection on the vector buhgie All covariant
derivatives (on various vector bundles) are denoted indifferently by

A covariant derivative orE gives rise to a splitting’E = HE & V E into the horizontal and the vertical bundlecl€ Ey,
we denote byi. : Tx M — H, E the horizontal lift and by, : E; — V. E the vertical lift. We denote byrh the horizontal lift in
I'(TE) of a vector fieldX in I'(T M), and byr? the vertical liftin "' (T E) of a section of E (an element of "(E)). Given a
connectionVv on M and a covariant derivativé on E, there exists a unique connecti®# on E such that forX, ¥ € r(rm),
r,s € I'(E),

Vis'=0,  VAhYh=0, Vi sU=(Vxs)', VA YM=(vxr) (1.4)

(e.g., [3]). LetF be a vector space isomorphic to the typical fibet=ofA covariant derivativev on E gives rise canonically
to a covariant derivative on the vector bundleHom(F, E) — M of linear mapsFF — E, again denote@, and defined as
follows: if W is a section of HorF, E) then(VW)(w) = V(W (w)), w € F.

Assume that the manifolgif is endowed with a Riemannian metric-) and that the vector bundle: E — M is endowed
with a metric preserved by the covariant derivatiWwelet A? (E) = I'(\” T*M ® E) be thep-forms onM with values in the
vector bundleE and

AE) =T (\T*MOE) =D AP(E).
p20

The covariant derivativ&¥ on E gives rise to a “differential” § : A(E) — A(E), which sends4” (E) into APTL(E), defined
by

p+1

dva(v, ..., Vpt1) = Z(—l)""l(vvia)(vb e Dy Upg1),s
i=1

wherea € AP (E) andvy, ..., v, 1 € Ty M. Alternatively d” is given at pointr € M by
m
dVax) = Z(e,', ) A Vea,
i=1

where(e;)1<; <m IS an orthonormal frame i, M.
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We consider also the co-differentia" )* : A(E) — A(E),
) ax) = Zve,a(e,,...,

where agairle;)1<; <m iS an orthonormal frame i, M. The image ofA? (E) under(d¥)* now lies inA?~1(E).
Leta € AP~1(E) andb € AP (E) be such that ® b is of compact support. Then the following formula holds (e.g., [10],
Lemma 2.16, Egs. (8.8) and (8.9)):

f(dva,b)dx =[<a, (d¥)*b)dx. (1.5)

When M is the Euclidean spadg™, then Eq. (1.5) is still valid under the assumption that botha, b) and (a, (d¥)*b), as
well asX = of, are inL1(R™) wherea denotes the 1-form - ((v, -) A a, b). Indeed, we have

div(X) = (dVa,b) — (a, (d¥)*b),
and one easily shows that if both a vector figlon R™ and its divergence di) are L1, then
/ div(Y)dy =0.

RW
In Section 4 we shall adopt the following assumption(enb, M) guaranteeing Eq. (1.5) to hold.

Assumption 1.1. Eithera ® b has compact support, ori = R” thena?, (dVa, b) and(a, (d¥)*b) are inL1(R™), wherea!
denotes the vector field associated to the 1-farm — ((v, ) A a, b).

Let M be a manifold with connectioW. If X is anM -valued continuous semimartingale and section off * M, we denote
by fo{e, 6X) the Stratonovich integral ef along X, and by fy(, dY. X) the Ito integral. Recall thaX is aV-martingale if and

1té
only if fy(a, dY. X) is a local martingale for every sueh In local coordinates, we have

1td

i, 1 9 iy
(a,8X) = Z(ai(x)dX + > Z P (X)d(x ,x/)) and

<a’dX6X)=ZO‘i(X)<Xm Z O dX7, xk)>

where]“]?k are the Christoffel symbols d¥. Given a covariant derivativ€ on E, the parallel transport i along X is the

Hom(Ex,, E)-valued semimartingalﬁ/gl defined by
o= idg,, and 8//5 = hye (8X1).
Note that//£, € Hom(Ey,, Ex,). An equivalent definition foy/& is

E . hE v
/lgo=1dEx, and &/l =h e (dipX1).

see [11] for details.
IncaseE = T M, with V the Levi-Civita connection induced by the Riemannian metriaoand//; , the parallel transport

in T M alongX, there is an alternative definition foﬁgx, in terms of

dioX: = //g,, d (/ iy LOX, )

where c(fo //(;Sl(sxx) is the usual Ité differential of the proce%;//axlaxs with values in the vector spadey,, .

For anE-valued semimartingalé we define the Itd covariant derivativeJ of J as the vertical part ofﬁg J, considered
as an element of':

DJ=v; ((dlto 7).
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Alternatively, DJ may be expressed as
DI = /&, (/& 71,

where d//E,~1J) is again the usual Ito differential of thiex, -valued semimartingale//&,) 1. In local coordinates, writing
the covariant derivative¥ on E, respectivelyV on M, as d+ A and d+ I where A and I" are 1-forms taking values in
End(E), respectively Endl’ M), the following general formula fofD J)* holds (see [3]):

(D)) =dJ* + A%(ds X, J) + A%(dX,dJ) + 5 (dA"‘(dX dX, J) + A%(dX, A(dX, J)) — A%(I"(dX, dX), J)).(1.6)

Let (J(a))qc be afamily of semimartingales ifi indexed by an open intervalin R about 0, which i1 in a with respect
to the topology of semimartingales (see [1]). We denot&by the covariant derivative af with respect ta:. In the sequel let
Vo = Valg—0, 9 = 34l4—0; finally, RV denotes the curvature tensor associate¥.tdhe following formula has been proved
in [3] Theorem 4.5:

Theorem 1.2. The Itd covariant derivative 0¥y J is given by the formula

1 1
DVoJ = VoDJ + RY (d5 X, 30X)J + RY (dX, 30X)DJ — EVRV(dx, doX, dX)J — ERV(Daox, dx)J.

2. A martingale description of the Yang-Millsheat equation

Let M be a Brownian complete Riemannian manifold endowed with the Levi-Civita connéétibix 7 > 0 andl = [0, T'[.
Let 7 : E — M be a vector bundle with a metric preserved under a smooth family of covariant derivetives € 7. Let
7 E — I x M be the vector bundle ovérx M with fiberE(,,x) = E,. The familyV(z), r € I, induces canonically a covariant
derivativeV on E as follows: iff > u(t) is a smooth path i with projections — (f(t), x(¢)) in I x M, then

(Vpu)(t) = (Vp (f(©)u) ). 2.1)

It is easy to prove tha¥ is compatible with the metric it inherited from the metric irE.
Let X be a Brownian motion oM starting fromx, and denote by/0 the parallel translation along. Fora € R close to
0 andu € T M, we define a perturbation of the Brownian paths as foliows:

X (a,u) =expy, (av/s /g 4u)- (2.2)
The factor,/s in Eq. (2.2) is justified by the scaling property explained in the following remark.

Remark 2.1. Let M be the Euclidean spad®™, x = 0 andc > 0. The rescaled perturbed Brownian moti@iX s (a, u))s>0
has the same law &% 2, (a, u));>0. For a general manifold/, suppose thak solves an Itd equation of the type

digX =A(X)dB, Xg=xeM,

whereA € I'(R™ @ T M) is such thatA (x) A(x)* = idr,_js for all x € M. Here B denotes aiR” -valued Brownian motion
(m is not necessarily equal to dim). Defining the rescaled Brownian motioff by

dypX¢ =cA(X)dB, X§=x,

and the rescaled perturbed Brownian motionXfy(a, u) = exXpye (e J/§ saw) with //5 . denoting parallel transport ifi M
along X¢, we have again a scaling property in the senseéta, u));>0 and(X 2, (a, u))s >0 are equal in law.

Now fixO<r <T. The parallel transport i® along(T —s, X5(a,u)), s € = [, T1, will be denotedwr(b )(a u), or simply
W” (a, u). By definition, W” (a, u) takes its values in HotﬂE(T —r X, (a,u))e E(T 5. Xs(a,u))) @nd is determined by

DW;s(a,u)=0 and Wr,r(a,u)zidEXr,

where D is the covariant derivative in with respect tov. Let U,(E”‘)(a, u), or simply Uy s (a, u), denote the HORE x, (4,4
Ex, (a,u))-valued process given by s(a, u). Then

D(T — $)Urs(a,u) := DWys(a,u) =0 and Uy, (a,u) = dEy, (- (2.3)
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whereD(r — ) is the covariant derivative inwith respect to&v £ (¢ — s) (in local coordinateD (T — 5)J& is given by Eq. (1.6)
with A% replaced byA® (T — s)). Then, almost surely/, s (a, ) is an isometry for alb, a, u.

We write U, s or Uy s(a) for Uy s(a,u) = U, (T x)(a u). Given acl patha — v(a) in E, let V,(¢t)v be theV(¢)-covariant
derivative ofv and Vo(t)v = V,(¢)|,=0v. We deflne thev-covariant derivativeVoU, s of U, ¢ with respect taz, ata =0,
as follows: if (v(a)) = (v(w, a)) is an F--measurable random variable taking values in dﬂ?epaths inE which project to
a Xr(a,u), then

(VoUr,)v(0) := Vo(T — ) (Ur,sv) — Ur,s(0)(Vo(T — r)v). (2.4)
In other words, letting(0) be the element(0) in E(T,,,Xr), we have

(VoUrs)v(0) = (VoWy,s)(0),
whereVoW, s takes its values in HonE(T X)) E(T s.X,)) and is the covariant derivative of— Wr s(a,u) ata = 0 with
respect to the canonical connectvﬁE) ®F in E* ® E induced byV

Lemma2.2. LetO < r < T. The covariant derivativé® (T — s)VoU, s is equal to
1
RY (@i X V5 o Vs = (@) R (5 YU + 0V (5l Ur) ) . 25)

whererY, (dV)*RY and 9,V are taken at timg — s.
The drift of U,}lvoUm is equal to

- f (%U,j}(dW*S))*RW*S)(//o,x-wr,s + U0V (T =)o Umo)ﬁ ds. (2.6)

r

The Riemannian quadratic variatia), ; = Sﬁg"‘) of the procesy;}VoUr,s with values inHom(7x, M, End E, )) satisfies

N
Sps = f 20| RYT=P) (X )| dp. 2.7)
r

Proof. Using D(T — s)VoUy.s = DVoW, s and applying Theorem 1.2, along with the fact tHat, ; = 0, DagX; =
(1/(2V/s)) //g ¢ s (heredg stands fold, |,—0) which givesDdgXs A dXs = 0, we arrive at

~ e~ S ~ 1~ ~
DVoWr.s = RY ((~ds. difs Xy ). (.75 /g 5 +)) Wrs = 5VRY ((=ds. dX). (0.5 /g ). (~dls. dX)) W .

One then easily verifies that

RY ((—ds, A5 Xy ). (0. V5 /fg.3)) Wrs = RYT = (Ao X N5 s Urs — V(T = $)(V5 /fg 5. Ur,s) s
and

TRV ((~ds. dXy). (0.5 //g )+ (~Gs. dX,) Wrs = (A7) RYT ) (5 Jjg, - ) Uris

WhICh glves (2.5). Formulas (2.6) and (2.7) are then direct consequences of (2.5), taking into accoUt;ﬂ}tﬁgU, s =
Wr B VOW, s- To establish Eq. (2.7) we use in addition the fact that l@gth and//0 are isometries.

An immediate consequence of Lemma 2.2 is the following proposition. As aboUg et U,(,f”‘). Again VU, s denotes
the V-covariant derivative ot/,. ; with respect to the parameteata = 0 (compare with [6] Theorem 4.4 where a criterion for
a fixed covariant derivative to be Yang—Mills is given).

Proposition 2.3. Letx e M, T > 0and I =[O0, T[. Let(V(¢));c; be a smooth family of connections #h The following two
statements are equivalent

(i) V() is a solution to the heat equation dnx M,
1
8tV=—§(dv)*RV; (2.8)

(i) ((U,,s)—lvoU,,x)xe[,,T] is a local martingale for every €10, T'[.
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Proof. If V(¢) satisfies Eq. (2.8) then the expression in (2.6) clearly vanishes, hence, (i) implies (ii). To prove the other direction,

assume that (ii) holds and fixe 10, T'[. Since((Ur(E"‘))—1voUr(,€’x))se[r,T] is a local martingale, the expression (2.6) vanishes,

and, hence, by continuity of the integrand in (2.6), almost surely for every, T1,
_ 1 _ _ _
U0V (T =)o 5 Urs) = =5 U H@ T =) RY T g .

Takings = r, along with the fact thaX - has a positive density iff and the continuity 08; V(T —r) and(d¥ (I —"y* gV{T—r)
we get

1 . T
(3 V(T —1r)) = _E((dV(T—r)) RY(T )).

This holds true for all €10, T[, and, hence, for all €10, T'] by continuity. Thus (i) is verified and the proof is completex

Remark 2.4. (1) Let W, (r) = Ws(a, t, u) be the parallel translation i along the semimartingal®; (a, u), with respect to a
fixed covariant derivative/(¢). For O<r < T let

Wrs (1) = Wy () (Wy (1)

One can prove that

Urs = Wy s(T — S)SR (/ WI‘T/}(T —0) s W(T — p) dp) , (2.9)

N

where& X is the right stochastic exponential in(@ly, ). Recall that given a semimartingalks ), >, with values ingl(Ey, ),
then&R () is the solution to

8Zs=8Yy Zs,  Zr=idg,, .

An alternative, but less simple proof of Lemma 2.2 without introduoﬁwould have been possible by taking Eq. (2.9) as
definition.

(2) Yang—Mills connections have been characterized in terms of the holonomy along Brownian loops or Brownian bridges in
[4,7,22]. Here we characterize solutions to the Yang—Mills heat equation by the fawﬂ{é‘f))*lvoUg”‘) is a martingale.
This may be considered as an infinitesimal holonomy characterization, since our martingale is the derivative with respect to
at a = 0 of the holonomy around the following loop: we start)gt to go to X, (a, u) along the minimizing geodesic, from
there we go taX(a, u) along the path o¥ (a, u), then toX, along the minimizing geodesic, and finally backXp via the
backwards path aX. Denoting for fixed € 10, T'] by r,(T”‘)(a, u) the parallel transport with respect to the connectaf —r)
from Ey, to Ex, (a, u) along the minimizing geodesic, then we have

_ d _ _
(Ur(,z’X)) lVOUr(,Y;’x) = & O((Ur(f"‘)) 1(1'§T’x)(a, u)) 1 U,(E"‘)(a, u) fr(T’x) (a, u)). (2.10)
a=

To finish this section we give a mean value formula for solutions to the Yang—Mills heat equation.Vg@in- s) stands
for Vo (T — 5)|4=0-

Corollary 2.5. Let V be a solution to the Yang—Mills heat equati(h8)on I x M and let0 < r < s < T. For every -
measurable patly — v(a) in Ex, (4, Which is a.sCLin a (for instance(a) = ex, (a,u) Wheree is a C1 section ofE), we
have

Vo(T — ryv =E[U;Vo(T —5)(Ur,sv) | F]. (2.11)

Proof. By definition, we have fos € [r, T],
U Vo(T — 5)(Ur,sv) = U7 H(VoUp,s)v + Vo(T — r)v.

By Proposition 2.3 and Lemma 2.2, the right-hand side is a square integrable martingafeidh takes the valu&q(T — r)v
at times = r. This gives the claim. O
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3. Monotonicity propertiesrelated to variations of stochastic parallel transport
In this sectionM is either a compact Riemannian manifold,;dr=R" (m > 1). We consider solutionS (¢) to
1
8,V=—§(dv)*Rv (3.1)

on I x M wherel = [0, T[ for someT > 0. Keeping O< r < T fixed, we are interested in monotonicity properties of the
quadratic variationSy,s)s¢[r, 7] to the local martingaIeUrfSlVoUr,s)selr,T] as defined in Section 2. More precisely, letting
O<pB<1land

N

T.x). - 2 sl
o710, T] - R, S’—>E|:/P”RV(T 7 (Xp) dp} = EE[S/(SS’;)]’
Bs

we look for conditions orM which insure thaw {7 is non-decreasing, or more generally, that there exists a cortar@
depending only oM/ such that forall O< 57 <s2 < T,

o s < (@57 52) + (52— 5D YM(V(0)) ). (32)
ForO<s < T let
o) =E[| RV 0x0)|?)

We then haveb}(gT’x)(s) = Jps roT¥) (r) dr. For simplicity, writedg = cD/gT’x) andg = ¢7*) in the sequel.

Remark 3.1. Let 0 < ¢ < 1. Along the rescaled perturbed Brownian motifi(a, ), introduced in Remark 2.1, we define a
transportUy ; (a, u) by the equation

D(T — czs)UrC’S(a, u)=0, Ui, (a,u)= idEX$ (3.3)

(a,u) :

Denoting byS; ¢ the Riemannian quadratic variation OI/,‘;X)*VSUES (wWhereVe(T —t) = V(T — czt)) and®g(c,s) =
(1/2)E[S"S <1, one easily verifies the relation

Dp(c,s) =Pg (czs).
As a consequence, all monotonicity resultsfes @g(s) can be interpreted in terms of—> ®g(c, s), for a fixeds.

Lemma3.2. Letr €]0, T[ be fixed. The following two statements are equivalent

(i) foreachp €]0, 1[, the functions — @g(s) is non-decreasing of0, ¢];
(i) the functions — s2¢(s) is non-decreasing oi0, ¢].

Proof. We follow the proof of Lemma 9.2 in [27]. If (i) is satisfied, them/g (s) >0forall0< B <1and O< s < t, which
yields

s%p(s) — Bs%p(Bs) > 0.
This gives (ii). Conversely, assuming that (ii) is satisfied, let < sy <t andi :=s2/s1 > 1. Then

51 52 2 52
1r r
2p0= [ nornti= [ Z20(Z)da< [ raviaara=op00, @)
Bs1 Bs2 Bs2

where (ii) has been used for the inequality in (3.4). This achieves the pragof.

Lemma 3.2 brings us to the study of the function
T =910, T[> R, s> 520(s). (3.5)

Fors €10, T[ let gs be the density at time of Brownian motionX started atc. Thus

d 1 1.
ags = EAgs = _Ed dgs. (3.6)
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We shall adopt the following assumption.

Assumption 3.3. For everyb €10, T[, RV, |[VRY| and |[VVRY || are inL2(M), whereV = V(b) denotes the covariant
derivative ath on E, respectively the induced covariant derivative A T*M ® E andT*M ® N> T*M @ E.

Note that Assumption 3.3 is automatically satisfiedfis compact. As in the proof of Theorem 9.1 in [27], but with an
additional term coming from the curvature #f, the following monotonicity formula holds.

Proposition 3.4. Let Assumptior.3be satisfied. For any €10, T'[, we have

#(s) = SZ/H (AT RYT=) g RV HZngx
M
+ 25 / (RVT=9) RV(IT=9) 4 RV(T=9) o (V(gradloggs) @ id ))gs dx, (3.7)
M
where

(V(gradloggs) ®id)(u A v) = %(VM (gradloggs) A v +u A Vy(gradloggy)).

Proof. We shall make use of the integration by parts formula, Eq. (1.5), at different stages of the proof. In these cases
Assumption 3.3 will imply Assumption 1.1.

First, we are going to computg (s). For the sake of brevity, we writgV for RV =) v for V(T — ), d¥ for dV(T—9),
and(d¥)* for (dVT—9))*_ |t then follows fromRY =dV o V and Eq. (3.1) that

d v_ wvd 1 v, vyxov
hl —dvV—_—v=_= .
@ d © 2d (d ) RY, (3.8)

see, e.g., [26], formula (10). Now since

o(s) = [ IRV |2, dx.
M

we have
o' (s) = 2[<%RV, Rv>gs dx +/(RV, RV)%g‘de. (3.9)
M M ‘
By the respective heat equations (3.8) and (3.6), this equals
f(dV(dV)*RV, RY gg)dx — %/(RV, RY)d* dg dx (3.10)
M M

and, by applying Eqg. (1.5), we get
[ R (@) (R o)) = 5 [ (ARY RY). dgs) . (3.11)
M M

Taking into account thad¥)*(RY g) = ((d¥)*RY)gs — 1gradg, R  €Xpression (3.11) may be written as

/((dv)*RV, (dV)*RV)gs dx — /((dv)*RV, Igradlogg, R ¥ )gs dx — %[(d(RV, RY), dgs)dx. (3.12)
M M M

We need to transform the last term. To this end we use

_% /(d(RV, Rv)v dgs) dr =— /(<VRV, Rv)7 dgx) dx =~ /(Vgrad |OggsRv, Rv)gs dx. (3.13)

M M M

By means of a Bianchi identity, we find the following expressionV(RV: foru,v,we I'(TM),
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VuRY (v, w) = VyRY (u, w) — ViRV (u,v) =d¥ (1uRY ) (v A w) — RV (Vyut, w) + R (Vypit, v)
= (dv (zu RV) —2RV o Vu ® id)) (v A w).
With this equality the last expression in Eq. (3.13) becomes

- / (d" (1gradioge, R¥). RY ) gs dr +2 / (RY o (V(gradlogg,) @id), RY) g dx, (3.14)
or with Eq. (1.5),

- f(:madloggskv, (d¥)*(RY gs))dx + 2[(RV o (V(gradloggy) @id), RY) gy dx. (3.15)
Exploiting once morgd”)*(RV g) = ((d¥)*RV)g — 1grade, R" . We arrive at

—/<lgrad|ogngV7 (dv)*Rv>8s dx + /(lgradloggsRv, lgradloggsRv)gs dx

+ 2/(RV o (V(gradloggs) @id), RV ) gs dx. (3.16)

Finally, combining Egs. (3.12) and (3.16) gives

¢'() =[|| (@)*RY — 1gradioge, RV |%es dx + zf(RV, RY o (V(gradloge,) ®id)) gy dx.
From here the proposition follows upon noting tiéts) = s2¢’(s) + 2s¢(s). O

In particular, if M is the Euclidean spad™, thenV gradlogg; = —(1/s)id. As a consequence we have the following
corollary:

Corollary 3.5. Let M = R™ be equipped with the standard metric, and assume that AssuntpBada satisfied. For every
0 < s < T there holds

@ (s) = 52 f [ (@ T=9)*RYT=9) _1adioge, RY T | gs dx. (3.17)

Consequentlyp is non-decreasing of0, T'[, as well as®g for everyp €]0, 1[.

The monotonicity ofp (and®g) holds in other situations as well. We say tivthas parallel Ricci tensor Ric ¥ Ric = 0.
Similarly to [27] Theorem 9.1 we get the following result which differs from Hamilton’s monotonicity formula [13, Theorem C].

Theorem 3.6. Assume thad is a compact manifold with parallel Ricci tensor and non-negative sectional curvatures¢rhen
is non-decreasing oi0, T'[, as well aspg for everyp €10, 1.

Proof. This is a consequence of Proposition 3.4 and the inequality
1.
V(gradloggs) > ——id
S
which has been obtained by Hamilton [12] under the given assumptians.

For a general compact manifoM, a correction term is needed. Again our result differs from [13, Theorem C]. EarQ T
let

YM (1) = / | RV |2 dx (3.18)
M

be the Yang—Mills energy at tinye The map — YM (¢) is non-increasing (see, e.g., [9]).

Theorem 3.7. Let M be a compact manifold of dimensi@n> 1. There exist a constanf > 0 and a positive increasing
function f1 defined on)0, 1] satisfyinglim;_,o f1(s) = O, both depending only o, such that for any8 €10, 1[ and all
0 <51 <s2 < T A1, the following inequalities hotd
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¢(s1) <102 (sp) + C(s2 — 51) YM(0)  and (3.19)
@p(s1) < /1D Dg(5p) + C(L— B)(s2 — 51) YM(0). (3.20)

Other monotonicity formulas have been established in [9,17]. The last reference is closer to our result but in [17] the
function¢ is not the same as ours aMlis a sphere.

Proof. We first establish Eq. (3.19) in a way similar to Theorem 1.1 in [13]. LetsO< T' A 1. From Proposition 3.4 we get

' (s) =25 /(R, R+ sRo (V(gradloggs) @id))gs dx. (3.21)
M
By [12, Theorem 4.3], there exist constaf®s> 1 andCg > 0 depending only o/ such that

V(grad loggs) + 1 id +Co<1+ Iog( 82 )) id> 0. (3.22)
sm/ gs

N
A straightforward calculation ([13, Lemma 1.2]) shows thatifop > 0,
x(1+log(y/x)) < 1+xlogy,
hence, Eq. (3.22) yields

1 B
gsV(gradloggs) + gs—id > —C0<1 + &5 Iog<m)) id. (3.23)

N

From this and Eq. (3.21) we get

¢/ (s) > —2Cos2YM(T —5) — 2co|og<w%)¢(s). (3.24)

The function

m B
f(S) = S(E + |Og<m)>

is positive on the interval0, T A 1[, bounded by a constarf; and has derivative lad s~""/2). Hence, lettinga(s) =
2Cof®) g (5), Eq. (3.24) yields

o/ (5) > —2Cos22C0S O YM(T — 5) > —2Ce20C1YM (0). (3.25)
Integrating froms, to so where O< 51 < s2 < T A 1yields

a(s1) < a(s2) + 2Co2C0CTYM (0)(s2 — 51) (3.26)
which in turn gives

b (s1) < eZCO(f(SZ)—f(Sl))d)(52) + 2C0e—2C0f(S1)e2C0C1 YM (0)(sp — s1). (3.27)

Taking C = (2Cq v 1)e2€0C1 and f1(s) = 2Co f (s), we get Eq. (3.19).

As for Eq. (3.20), we let. = s2/s1 > 0. We then have
P F F efird 1—1/1)YM(O
Pp(s1) = /¢(r1) dry = / B (ra/2) dr2</ $(r2) + Cra(1—1/2) YM( )dr2
1 n

r rp

Bs1 Bs2 Bs2

by Eq. (3.19)

82 52
< efil2) [ %2) drp + C(L— 1/1)(s2 — Bs2) YM () = &/162 f %2) drz + C(1 = p)(s2 = 5) YM(0)
Bso Bs2
— gfi(s2) Pg(s2) + C(1— B)(s2 —s1) YM(0)

which is the desired formula.o
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By means of formula (3.19) we obtain existence of limitgaind®g at 0, as stated in the following proposition.

Proposition 3.8. Let V be a solution to the Yang—Mills heat equation defined®'[. Then for anyc € M and0 < 8 < 1, the

limits lim,_, g ¢ (r), lim, .o qbg"‘)(r) exist, and we have

im T () = im T+
Jlim &g (r) =log(1/B) lim ¢™=+(r).

Proof. We consider first lim_, g ¢7*)(r). Letr,, be a decreasing sequence of positive numbers converging to 0 such that
lim ¢ @) = liminf T ).
n—00 r—0

Letn € Nand O< r < r,. By formula (3.19),
¢T9 () <MW T0 (1) + C(ry —r) YM(0),
whereC and f1 depend only or, and f1(s) converges to 0 astends to 0. This clearly implies

limsupg "D (r) = lim ¢ ) = limint 67 ().

r—0
so lim,_, @79 (r) exists. From the bounds

(T,x)
inf g7 < £ P 0 up 79,

[Br.r] Iog(l/ﬁ) 0 ﬁr,r]

we derive the results concerning |img cDéT’x)(r). O
In the next proposition we express the limitsgoand®4 at 0 in terms ofL2 norms of the martingaleﬂr}lvoUr,s.

Proposition 3.9. LetU, ; = U(T )0, u).

(1) F0< sy <s2<s3<T then

“ le Y3V0U~31 $3 “2 - ” le YZVOUALJZ “2 + “ UYZ Y3VOU~32 53 ”2
(2) We have

1 2o (T
n|l>moo n H UT/Z” TVOUT/Zn'T ”2 - 2)1710@1/2 ®.

(3) The equality in2) generalizes to

- (T.x)
rl—>olog(T/ )HU VoUrTH2_2 lim ¢4 (7).

Proof. (1) Clearly

U_l VOUS]_,X3 = U_l U_l VO(UYZ Y3UY1 Yz) =

-1 -1
51,53 51,52 Y 52,53 VOUY:L sp T+ U (U VOUsz,s3)Us1,s2~

31 52 §1,82\7 52,83

SinceUy, s, is an isometry, in order to prove the equality, we only need to check that

E[(Us;3,Y0Us1.50. Usy 5, (Usy Ry VoUsy.s3) Usy.s)] = 0.

The left-hand side is equal to
-1
E[E[<UY1 Y2v0U51s32’ Usl,xz (Uvz Y3V0U32 53)U31,32> | féz]]
and may be written as

E[{Us %5, Y0Us1.52: Usy 5, B[Usy 53 VoUsz.ss | Fs]Uss.s)]-

But E[Uj,; Y3VOUY2 s3 | Fs,1 = 0 sinces > Uy, YVOUY2 s is an L2-martingale which vanishes at= s, and this gives the
desired equality.
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2) Letdq o = o139 By Lemma 2.2,
/ 1/2

vl VoU. 2 2@y (T2
T/2k+1, 12k YOU T/ 2k41 T2k ||, = 1/2(T/2°)

for anyk > 0. Consequently, we get with (1)
-1
1.1 2 1% .
- H Uz 1 VoUr/20 7 HZ —2 ];)dil/z(T/Z ).

and by Proposition 3.8 the right-hand side converges to,2lig1/2(r).
(3) Let O< r < T and letn > 0O satisfy

T <T
2n+l<r\2_n

which is equivalent to
1 log2 1
— < —— <=
n+1 log(T/r) ~n
Then (1) implies

— 2 — 2 _ 2
[0z o 7 V0UT /20,715 < |07 £ 50U, 7[5 < |Ug s 1 VOUr 21 1|

and the result follows by remarking that

im @729 () — im T
Jlim @157 (r)=(log2) lim ¢*-*'(r). O

4. A priori boundson solutions of the Yang-Mills heat equation

In this section,M is assumed to be compact of dimensianand I = [0, T[ whereT > 0. Let V be a solution of the
Yang—Mills heat equation defined dnandRY be the corresponding curvature. For@ < T andx € M let

e(t,x) = | RV ()| %
If X (x) denotes a Brownian motion oW started at, we let fors € [0, ¢]:
o (s) =Ele(t — 5. Xs(x)] and 9 (s) =52 (s).
We keep the notation
YM(t) = /e(t,x)dx,
M

and, foro € [0, /7], P(o,t,x) =t — 2, 1] x B(x,0), where_l_?(x, o) is the closed geodesic ball with centeand radiuss.
Finally, forx € M andp > 0, lett(x, p) =inf{s > 0: X;(x) ¢ B(x, p)}.

Lemma 4.1. There exist&qg > 0 andn > 0, depending only oM, such that for allk e M,0< p <1and0 < « < «ag,
2 Ui
IP’{r(x,p) <ap } gexp(——). (4.1)
o

As a consequence,

lim sup sup IP’{I(x, p) < oz,oz} =0. 4.2)
a—~>0xeM pe]0,1)

Proof. Denote byg the metric onM and byd the distance associated wighLet Ny (x) := d2(x, X5 (x)). Then

7(x, p) =inf{s >0, Ns(x) > p?},
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which gives
{r(x,p) < apz} = [ sup  Ng(x) > p2] C sup  Ns(x) > azpz},
s€[0,ap?] s€[0,ap?]
where O< ¢ < 1 is less than the injectivity radius ¢M, g). But Ny (x) stopped at the first time when it hit€s? satisfies
dNy (x) = o5 (x) dBg (x) + bs (x) ds,

where B (x) is a real-valued Brownian motion. Moreover, there exists a congfantO depending only onM such that
02(x) < Cp?e? andb (x) < C. SinceNg(x) =0, this implies that folCap? < (¢2p?)/2,

N
P([ sup  N;(x) > 52,02]) < ]P’({ sup or(x)dBy(x) > 82,02/2}) < e—sz/(SCa)’
3 2 ) 2

s€[0,ap?] s€[0,ap ]0

where the last bound comes from Bernstein’s inequality (see, e.g., Exercise 3.16, Chapter IV in [21]). This gives the result with
ag=¢2/(2C) andn =£2/(8C). O

We continue with a priorC1-bounds for solution& of small energy.

Theorem 4.2. There exist constants) = ¢g(E) > 0 and0 < « = «(E) < 1, a positive non-increasing function— ¢1(y) =
e1(E, y) defined on0, oo[ with values in|0, 1], and a positive non-decreasing functior> f(r) = f(E, r) on]0, 1[ such that
for any solutionv of the Yang—Mills heat equation @8, 7| the following is trueif ¢\-*)(r) < asq for some(t,x) € I x M,
0<a<1andsome €10, e1(a"1YM(0)) A 1], then

2%

sup e< —5——.
P(firyx)  @2f(r)?
Note a similar result but for a fixed Yang—Mills connection can be found in [18]. See also [9] for a related formula.

Proof. We follow the proof of Theorem 10.1 in [27]. Lete 10, 1], (tg, xg) € I x M, rg €10, 1o A 1], r1 €10, ro/2] (in particular,
r1 < /r0/2). We want to prove that for sonsg > 0, if ¢0:*0) (rq) < asg then

P(ri/21000)  @2(r1/2)*
where the relation betweep, rg andry has to be determined. Lep € [0, r1[ such that
(r1— 00)4 sup e= max ((rl - 0)4 sup e).
P(oo,io.x0)  O€l0mal P(0,10,%0)
There existgt*, x*) € P(oqg, tg, xg) such that

eg:= SUp e=e(*,x").
P(00,10,%0)
Foreg =0, r1 =2f(rg), and anyf such that Z (r) < +/r/2 we are done, so for the rest of the proof we assumeethatO.
Let pg = (1/2)(r1 — og). Then we have & og + pg < r1, and
sup  e< sup e < (rp— 0 — po) " *(r1 — o) *en = 16eq. (4.3)

P(po,r*,x*) P(po-+00,10,X0)

On the other hand, there exists = C1(E) > 0 such that
a

1 1/2
<E—§A>6<C1(l+e /2)e (4.4)

(see [9, Lemma 2.2]). Define fore [0, p3]
Yy=e(t* —s, Xs(x™)).
Write T = 7(x*, pg). Then, denoting byE equality up to differentials of local martingales, we havegl@rr A pg],

0 1
dr, 2 <_E + §A>e(t* — 5, Xy (x*)) ds > —C1 (14 ¥3?) ¥y ds > —C1(1+4/eg) Y ds,



M. Arnaudon et al. / J. Math. Pures Appl. 81 (2002) 143-166 157

where the inequalities come from Eqgs. (4.4) and (4.3); this implies that

7, = C11+4/e0)s . (4.5)
is a bounded submartingale €& t A pg]. As a consequence, for everyg 10, pg],
Zo < E[Zsnz] (4.6)
We want to prove that i$0-*0) (rq) < asg wheresg has to be determined, theapg < JJajeq for somea = (E) €10, 1[. If
ard > afeo. @4.7)

then

eo=2Zp < IE[Z(«/a/eo)/\r] = IEI:Z«/a/eo ]l{«/a/eogr}] + IE[ZT]]‘{«/a/eo>r}]
eC1(l+4\/(5)«/a/80E[YW] +eC1(l+4/\/%)«/a/eo l&op{m> T}
0

< esclE[Ym] + escllGeoIP’{otpg >t1)= 5C16a—0 ¢(t*'x*)(\/a/eo) +€C116¢ P{apg >t}

According to Lemma 4.1, one can choese- «(E) > 0 such that

N

1
escllGP{apg >t(x*, po)} < >
and we get

20 <L G0 1) ag), (4.8)
a

Now by the monotonicity formula (3.19), lettingj= 7o — t* € [0, r%[ andC’ = € v &1 where( is the constant appearing
in Theorem 3.7, Eq. (4.8) implies

e0 <2812 (60" (rg — B) + (ro — B) YM(0). (4.9)
a
Dividing by eg/a and lettingCs = 2e°€1C’, we get
a< Co(ro— /3)2/6(10 — 10, x) p(rg — B, x*, x) dx 4 Ca(rg — ) YM(0), (4.10)
M

where p(r, x, y) is the density ay € M at timer of a Brownian motion started at The function(r, x, y) — p(r, x, y) is
smooth on the compact seb/2, 1] x M x M. Consequently, sincg < rf <r1<rp/2 <1 andd(x*, xg) < r1, there exists
C3(rg) > 0 such that

p(ro—B,x*,x) < p(ro, x0,x) + C3(ro) r1.
Substituting this in Eq. (4.10) yields

a < Calrg— B)? f e(tp — ro, x) p(ro, x0, x) dx + C3(r0)r1C2(ro — B)2 YM (tg — r0) + Ca(rg — B) YM (0)

M
which in turn implies (since — YM(¢) is non-increasing)
a < C2¢"00 (rg) + C4(rg) r1 YM(0) + C2r0 YM(0), (4.11)
whereCy(rg) = C2C3(ro)r§. Moreover,r — C4(r) may be chosen decreasing. Let
1 Cor r 1
==, = A -, = —.
A =Goovr P20 e 075

If rg <e1(YM(0)/a), r1 <2f(rg) and¢(’0’x0) (ro) < agg, then
C 6100 (75) + Ca(rg) 11 YM(0) + C279 YM(0) < a,
in contradiction to Eq. (4.11), and, hence, to Eq. (4.7). Thus we must have

a 246{

azpé a?(ry — og)*’

0 < (4.12)
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in particular,
4 4 2%a
max <(r1 —o)" sup e) =(r1—o00)’e0< —5- s
oel0,r1] P(0,10,x0) ¢

Now lettings = r1/2 = f(rg) which gives(r; — o)* = f(rg)*, we get along with Eq. (4.13)

0) sup e — or sup e< — 7
P(f(ro),io,x0) ¢ P(f(ro),t0,x0) @< f(r0)

which proves the theorem.o
An essential tool for the proof of Theorem 4.2 is the monotonicity formula (3.19) which invgl¢€3(-). From a stochastic
point of view, the function

N
<Dg’x)(s) =/r(p(t’x)(r) dr (whereO<p <1)
Bs
is more appealing since it allows a direct probabilistic interpretation:

%) Lo o(6,x)
@} (s)_2IE[SﬁSVS],

see Lemma 2.2. For this reason we give a variant of Theorem 4.2 in term/g’&.

Theorem 4.3. Let0 < 8 < 1 and leteq, £1, f be as in Theorem.2 For any solutionV of the Yang—Mills heat equation defined
on [0, T'[ the following is trueif

(p}g,X)(r) < agglog(1/B)
for somea €10, 1, (7, x) € I x M and some €10, e1(a~1 YM (0)) A 1], then
sup < Z
e S5 _——71-
P(f(pre)  @2f (Bt

Proof. The equality

,
Dp(r) = / @ ds
Br
implies
log(1/p) inf ¢ < Dg(r),
[Br.r]
and we are left to apply Theorem 4.2, along with the fact tha non-decreasing. O
From Theorem 4.2 we get an immediate but useful corollary which gives a similar result, but in tepfds*f Fors > 0,
o €[0, 1] let
P'(o,t,x) = [t — 0‘2, t[ X E(x, o).

Corollary 4.4. The notations are the same as in Theore If ¢+ (r) < asq for somex € M, 0 < a < 1 and some- such
thatO < r <e1(a"1YM(0)) AT, then

24a

sup e ——. (4.14)
PF) Ty @2f ()4

Proof. Suppose that the assumptions of Corollary 4.4 are realized. By continuitpap ) (r), there exists > 0 such that
r<e1(@TYMO) AT — ¢ andp 9 (r) <aeg for anyr € [T — &, T[. Consequently, by Theorem 4.2,

2%

sup e ———.
Pty @2f(r)?
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Since this is true for everye [T — ¢, T'[, the claim follows. O
At this stage we are able to give criteria for existence of singularities.
Proposition 4.5. Letgg be defined as in Theore#n2 The following five statements are equivalent
(i) V has a singularity a(T, x);

(i) lim ¢ () > eo;

r—0
@iy lim Ty > 0

r—0
W) lim @£ ) > log(1/)e0;

r—0

(v) rli_r)nocbg"‘)(r) > 0.

Proof. Assume that (i) holds true. If (i) is not satisfied, then we may cheaaech that < ¢1(YM (0)) AT andgT ¥ (r) < &g.
By Corollary 4.4 we get

sup < 2
e ——,
P'/(f(r),T,x) alf ()t

in contradiction to explosion &', x). Consequently (i) implies (ii).

Clearly (ii) implies (iii). We prove that (iii) implies (i): assume that no explosion occurdak). Then there exists > 0
andC > 0 such that the energy is bounded®yn [0, T[ x B(x, ¢). On the other hand, for ¢ B(x, ¢) and O< r < 1, we can
boundp(r, x, y) by some constar€’ > 0. Thus we get

oIy = 2 f p(r,x, y)e(T —r,y)dy =r? f p(r.x, y)e(T —r, y)dy +r? f p(r,x, y)e(T —r, y)dy
M B(x,e) B(x,e)¢
rZC/p(r,x,y) dy + r2C’ YM(T — r) < r?C + r?C’' YM(0)
M

which clearly converges to 0 astends to 0. Hence, (iii) implies (i).
The equivalence with (iv) and (v) is a consequence of equality

lim &™) (r) = log(1/8) lim ¢ T (r)
r—0 r—0
in Proposition 3.8. O

We have the following immediate corollary.

Corollary 4.6. LetU, s = U,(E’x). The following five statements are equivalent

(i) V has asingularity atT, x);
- . 1 -1 2
@) Jfim_~|Uzjzn rVoUr/2:.1 3> 2(log 2)e0;

L 1, _
(i) lim ;|{UT/12,1,TV0UT/2,1’TH§>0;

n—oo

S 1 - 2
(iv) J@OW||Ur,%VOUr,T||2> 2e0;

. 1 - 2
V) )@OWHUATIVOUM I2>0.

With Corollary 4.4 at hand we are able to obtain global existence results for solMiofishe Yang—Mills heat equation.
To this end, we shall exploit the fact that
Pt x,y) =124, x, y), (4.15)

whereg is bounded o0, 1] x M x M (see, e.g., [14]).
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Let(¢r,x) €10, T] x M and O< r < t. Write g, (x, y) = ¢q(r, x, y). Then

¢(t’x)(r) = rZ/p(r,x, y)ye(t —r,y)dy < rz_m/2< sup qr) YM(@# —r) < r2—m/2( sup qr> YM (0)
i MxM MxM

sinces — YM (s) is non-increasing.

Theorem 4.7. Let V be a solution ori0, Tp[ of the Yang—Mills heat equation, and choagge1 according to Theorerd.2 If
there exists €10, To A e1(YM (0))[ such that

t27m/2< sup q,) YM(0) < g (4.16)
MxM

then the solutiorV can be extended {®, oo[.

Proof. Let T be the maximal existence time of the solution to the Yang—Mills heat equation staff&@@)atThenT > Tp.
Assume that" < oo. Let T’ €]0, Tp A e1(YM (0))[ satisfy

(T’)Z_m/2< sup qT/) YM(0) < g (4.17)
MxM

and lettqg = T — T'. We are going to prove that for anye M,

24
P Tx) @ f(T)
Hence, letx € M. Since the energy is decreasing with time, we have

(T’)Z_m/2< sup qT/) YM (1) < €. (4.19)
MxM

The family
V/(s)=V(g+s), 0<s<T,

of covariant derivatives solves the Yang—-Mills heat equation[@rT’[ with initial connectionV(zg) and initial energy
YM’(0) = YM (t9). Denote byR’ its curvature and by’ the norm ofR’. Let

@)@ =E[ (T - r. X,@)] and @7 ¥ ) =rP) T D).
Then the calculation before Theorem 4.7 along with Eq. (4.17) shows that

@) Ty < ()22 ( sup g7) YM(1o) < 0.
MxM

By Corollary 4.4 this implies that
sup €< ZL
PI(f(T"), T x) a? f(T')4
or equivalently,
sup e< ZL
PIF(T Ty @2 f(THA
This holds true for alk € M, so
24
[T—f(;’l‘)jZFTT[xMe s a2 f (1%

in contradiction to the fact that the soluti®hexplodes at tim&. As a conclusion, we havE =co. O
From Theorem 4.7 we derive two immediate corollaries:

Corollary 4.8. If m < 3then a solution to the Yang—Mills heat equation does not blow up in finite time.
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Proof. There existsIy > 0 such that the solution is defined at least[6nTp[. Since 2— m/2 > 0, we have for sufficiently
smallz €10, e1(YM(0)) A Tgl,

2~"/2C5YM (0) < e,
where Cg is an upper bound fog on ]0,1] x M x M. Consequently Eq. (4.16) is satisfied and we are left to apply
Theorem 4.7. O

Corollary 4.9. If m > 4, and if the solutior’V blows up in finite tim&" < £1(YM(0)), then
72/2( sup g7 ) YM(0) > eo,
MxM
whereegg andey are defined in Theoremh.2

By means of Corollary 4.4 we can improve the conclusion of Theorem 4.7 with stronger assumptiong@nafid obtain
control onlle|leo by +/YM(0). The idea is to take = +/YM (0) in Corollary 4.4:

Theorem 4.10. Assumen > 4. There exist a positive non-decreasing functior ¢2(¢) and a positive functiom — Ceg(?)
defined on]0, co[, depending only orE, such that if a solutionv of the Yang—Mills heat equation defined f 7'[
satisfiesYM (0) < ¢2(T), then for anyx € M and r with T — f2(T A e1(/YM(0)) <t < T, we have the estimate
e(t,x) < Cg(T)~/YM(0), where f ande; are defined in Theoredh.2

Proof. Let
(=1 'nf{ R 88 (t ([))m_4} and Cg(t) 2
eo(t) = 1A eR, y> —2(tne = ,
? TERIT g Y O 2 (o) A

wheregg ande are defined in Theorem 4.2, agg is chosen such that(z, x, y) < Cst~"/2forany(z, x, y) €10, 1] x M x M.
We already noted thatif@ < 7,0<r <1At,x € M, then

¢V (r) < Csr2 M2 YM(0).
Let x € M. From the inequality YMO) < e2(T) we get

Cs(T A e1(VIM(0)))2 ™2 /YM(0) < £0/2

which in turn implies¢T*) (r) < agg with a = VYM(©) andr < T A e1(YMQ©) = T A e1(a~2YM(0)). Applying
Corollary 4.4 yields

pa

Sup €< ﬁ\/ YM (0)
PI(f().T.x)y  af(r)

By continuity this inequality remains true when replacingy
ro:=T Ae1(vYM(0)).

From YM(0) < e2(T) and the fact that4 is non-increasing and is non-decreasing, we conclude
sup e < Cg(T)/YM(O).
P'(f(ro),T,x)
Since this holds true for evenye M, the proof is complete. O

Similarly to Theorem 4.7 we get the following corollary.

Corollary 4.11. Assumen > 4 and letV be a solution of the Yang—Mills heat equation defined®@mi'[. If YM (0) < &x(T),
then the solutiorvV can be extended t®, oo[, and for everyr > T, x € M, e(t, x) < Cg(T)/YM(0), wheree, and Cg are
defined in Theorem.1Q

The proof relies on Theorem 4.10. It is similar to the proof of Theorem 4.7, and hence omitted. Corollary 4.11 in turn yields
the following result on the sphere, which is due to Naito [17]:

Corollary 4.12. Assumen > 5. Let S be them-dimensional Euclidean sphere aritlbe a non-trivial vector bundle over
S™. There exists a map+— &3(¢) > 0 defined forr > 0, such that for every solutioR of the Yang—Mills heat equation, if
YM (0) < €3(t), thenV blows up before time.
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Remark 4.13. Although both Corollary 4.11 and 4.12 assume smallness of the initial energy, there is a major difference in
their assumptions, namely in Corollary 4.11 the solufbis supposed to be already defined[6nT'[. If in Corollary 4.11, we
further assume that > 5 andM = §™, thenE is necessarily trivial.

Proof (of Corollary 4.12). Let
2
(2)
4Ce(1)?

Assume that YMO) < £3(7). We want to prove that the solution blows up before time. If not, then by Corollary 4.11, it can
be extended t§0, oo[ such that for every’ >t,x € M,

et x) < Co(t)/YM(0) < %(’Z)

By [28] Theorem 1.5 there exists a subseque¥¢g) such '[hatvl.’l o V(t;) o s; converges weakly inv1P for anyp >n

(hence, inCP) to V(co), where thes; are global gauge transformationsiie?: . MoreoverV (co) is weakly Yang—Mills and
its energye(co) satisfies

sup (oo, x) < Co(t)y/YM(0) < %(";)

xeM

e3(t) = Aea(t).

By [28] Corollary 1.4, the gauge transformations can be chosen in such a way dat is strongly Yang—Mills. By [8,
Theorem C], this implieg(co) = 0, which is impossible sinc& is non-trivial. We conclude that our solution blows up
before timer. O

5. Singularitiesof the Yang-Mills heat equation and conver gence of rescaled martingales

In this section, the dimension a@ff is assumed to be at least four. Againis a solution of the Yang—Mills heat equation
defined onZ = [0, T[. We assume thaf blows up at timeT'. Let R, be a decreasing sequence of positive numbers converging
to 0. We consider the rescaled connecti®ifgs) = V(R,%s) forO0<s < T/R,,Z. ThenV" solves the Yang—Mills heat equation
whenM is endowed with the metrig” = R,,’Zg.

Lemma 5.1. Let « > 0 be as in the proof to Theored.2 There existe > 0 depending only onM, a sequencexy,)
in M, a sequencét,) in 10, T[ converging to7', and a sequencér,) with 0 < r; < R,%, such that forn sufficiently large,
@) (1) = ¢, and such that the curvaturgg”’ of the rescaled connectiong” satisfy

sup  |RY" |2 <28/a?,
[1,t,/R2IxM

where the norm is defined in terms of the rescaled mgttic

Observe that Lemma 5.1 is similar in spirit to t6€ bound in [24]. A first difference is that we do not assume that
has dimension 4. A second difference is that our bound is obtained globallf and not on a small ball, but we cannot
prescribe a limit for our sequence,,), we confine ourselves to the statement that by extracting a subsequghoenverges
to a singularity at timeg". A third difference is that our proof relies on a submartingale inequality instead on Moser’s Harnack
inequality.

Proof (of Lemma 5.1). Let O< ¢ < (221)~1 A g9 wheregg andC are as in Theorem 4.2 and its proof, and

t =sup{t/ €10, T, sup sup ¢ V@) < g}
YEM re]0,R2
(we lets;, = 0 in case the set on the right is empty). By the same argument as in the proof of Lemmjacdriverges ta@". For
n sufficiently large, let, €10,,1, rn, €10, R2], x, € M such thap*») (r,,) = ¢. Note that such/, t,, rn, x, exist, since by
Theorem 4.2

sup sup sup V@) > e
'€[0,T[ yeM re]0,R2
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Necessarily;,, converges td@". We now choose arbitrany, € [R,%, ty] andz, € M. Letog € [0, R,] such that

(Rp —0p)* sup e= max ]((R,, —o)*  sup e).

P(00,51,2n) o€[0.R, P(0,80,2n)
There existgs;t, z;b) € P(00, sn, zn) such that
eg:= sup e=e(s).z)).
P(00,5n,2n)
Let pg = (1/2)(R, — 0g). We have O< og + pg < R, and
sup e<  sup  e<(Rn— 00— po) *(Rn —o00)*eq = 16e. (5.1)

P(po,s;,2;) P(po+00,5n,2n)
We want to prove thatg < (¢?pg) L. If this is not true, then A, /eg < ap3 < R2/4, and as in (4.8) we get
1< 2eC196n) (17, /eg) < 2€C1e,

where for the last inequality we use the definitionspfand the fact thak} < 1. Sinces < (2€2°1)~1 we arrive at a
contradiction. Consequenthy < (¢2p3) 1. Takingog = R, /2 we get

28
sup e ——. (5.2)
P(Rn/zssnszn) OlerLl1
Inequality (5.2) is true for alf;, € [R,Z,, t.] andz; € M, hence, we obtain
28
sup e ——. (5.3)
[R2.t,]xM «2R;}

Denoting bye” the energy of the rescaled connectioh, we havee” (s, y) = Rf,e(R,%s, y), and, hence, inequality (5.3) yields
28
sup "< —
[1,t:/R2IxM o

which is the desired result.0

Clearly the accumulation points of the sequeiieg) belong to the singularity set of Eq. (1.2) at tiriie By extracting
a subsequence we may assume thaj converges to some pointe M. Forn > 0 let X" be a Brownian motion with respect
to the metricg”, started aty,, which we construct for simplicity vi&Xy = X p> from a Brownian motionX = X (x,) with
respect tg and starting point,,. The following processes are defined as in Section 2:

Xia,u) =X go(a,w),  Ula,u) = Uéf:{gg)(a, w, (UM tvur, (5.4)
where (VoU{H)v(0) = Vo (1, — sR,%) (Ultv) — UM(0)Vo(tz)v. Note that we can take =0 in the definition ofUr(f;?”‘”) since
V(¢) is defined or[0, T[ andz, < T. We stop the processes at tinr,w,‘R,% — 1 so that they are defined for all times and the last
one has a bounded bracket. (The processes listed in (5.4) could be defined more intrinsically with rg8paet 8" ; for the
sake of clarity, we construct them with respect to the fixed metrim the explicit time change — R,Z,s.)

By means of parallel transport along minimizing geodesics we identify the fiBggsand E,. In the same way,
(Tx, M, gn(xn)) is first identified isometrically withTy M, g, (x)) by parallel transport along the minimizing geodesic from
xn to x with respect to the Levi-Civita connection g;; then (Ty M, g, (x)) is identified isometrically with(R™, euc).
Adopting these conventions, the/;’)—lvovg may be considered as processes taking values in the fixed Euclidean vector
spacel M ® End(Ey) =: Fy.

Let C(R4, Fy) be the space of continuous pathsAp. We endowC (R, Fy) with the topology of uniform convergence
on compact sets, and say that a sequéig¢ of F,-valued processes indexed By is C-tight if the sequence of the laws of
their paths is tight ir€ (R, Fy). A random variable/ with values inC (R4, Fy) is said to be a limit point of the sequeneg
if some subsequence converges in lawto

Proposition 5.2. The sequence(U”)*lvoU”)@o is C-tight. Any limit pointV, considered as a process, is a continuous
martingale in its own filtration, satisfying

28
¥s>0, E[IVsI?]< =552 and E[|IV2l] > (log2e.
o

In particular, the limit pointV is non-trivial.
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Remark 5.3. When dimM = 4, this result is clearly related to Theorem 1.3 and Lemma 2.4 in [24], where convergence of
rescaled connections to a non-trivial connection in a vector bundleR$Viar established under suitable gauge transformations.
Observe that instead of gauge transformations we use here the moving v&m&hbe question arises whether our limiting
processV is related to a finite energy Yang—Mills connection in a vector bundle Bfewith the same typical fiber ag
(observe that this would not necessarily imply thahas finiteZ2 norm).

Proof (of Proposition 5.2). The tightness is obtained with [20, Corollary 6 p. 31 and Remark 6 p. 59]. To verify that the
conditions of Corollary 6 are fulfilled we only have to use the fact that by Lemma 5.1,

-1 2°
d((U") " VoU"), < —5sds, (5.5)
o

where ((U")—lvoU”) denotes the quadratic variation ()U")—lvoU". By extracting a subsequence we may assume
convergence in law o@(U”)—lvoU")neN. It implies the convergence
E[| () " Vous |* A N] > E[1Vs 1 A N]
forany N > 0. But
E[2) ous 2 A N] < 252/’
by Eq. (5.5), so that the first inequality of the proposition follows. For the second inequality we use uniform integrability of

(U3 ~1vous 2. We have

sllws) vous ) == () vougsiy

2
(tn,Xn)
0,2R2? 0,2R2? ]22‘1)1/2 @rn),

sinceR2 > r, and

i (tn,xn) |092
Irllrilgg‘cbl/z (2rn)>Te

(as a consequence gf'-*n) (r,) = ¢ along with (3.19)), so that
. -1 2
liminf E[ | (U7)"VoU3 | ] > (log 2)e.
On the other handE[||(Ug)*1V0U§’ ||2 A N] converges t@&[|| V2||2 A N]foranyN > 0. We want to find an upper bound for
-1 2
E[](U3)""VoUs | "1y wy)-1voug 2> my]-

Let V]! = (US”)*lvoU‘?. We have, successively by Holder inequality, Bienaymé-Tchebyshev inequality, Burkholder—Davis—
Gundy inequality,

E[IV3 P2 gvgie-m] < BIVEITY2R(18 12 > Y2 < B[] vg |12 SRl vE |42 = < B{|v2 )]

Cy 2 Cy 28 \?
< WE[<V">2]<W(;4) ;

where the constan, > 0 comes from Burkholder—Davis—Gundy inequality:
4 2
E[|vz["] < CaE[(v")3].
ConsequentlyE[ | (U5)~1VoU2% %] converges t&[|| V,1] and
2 i (tn,Xn)
E[IIV2ll°] > 2liminf 175" (2ry) > (log2e. O

Corollary 5.4. The solutiorv to the Yang—Mills heat equation blows upfaif and only if there exists a sequenkg converging
to 0, a sequence, converging tol’, and a sequence, in M such that the sequence of the laws of the processes

((U")_lvoUn)n>o

as defined ir{5.4) does not converge .
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Proof. It is sufficient to prove that iV does not blow up ar’ then any sequenc(QU”)—lvoU"),,>o converges in law tég.
However, this is clear since there exists> 0 such that is bounded byC on [0, T'] x M. Hence, for every € [0, t,,/R,Z,],

1R?
_ -1 2
[ (0) vour 7] =E[| (viiat’) " vougst| =2 [ sEleln —s. Xt s < ¢ 2RE
0

which converges to 0 astends toco. O

6. Pontryagin numbersand ergodic theorem

In this section, we assume dith = 4. Let V be a Yang—Mills connection i, x € M, (Xs) a Brownian motion inM
started atr, and denote by/, : Ex — Ex, the parallel transport itf along X (with respect tov). Let NT and N~ be the
L(TyM,EndEy)-valued martingales

N N
N = [ PO RS @ Xr o, )Ur and Ny = [VFUTHRY) (@ Xre o, ) Ur.
0 0

where(RY)™T (respectively(RY) ™) denote the self-dual (respectively antiself-dual) parRSf. Observe thatv;™ + Ny =
Us_lvoUs, whereUs (a, u) is parallel transport along

Xs(a,u) =expy, (av/s/fg ). u€TxM,

see Section 2.

Theorem 6.1. Ass tends tooo, almost surely,

1 o 472 (E
SNt )~ (v v — T where
1 —_
i(E) :=41,7-[_2f”|(Rv)+||2_ H(RV) Hz](y)dy 61)

M

is the Pontryagin number of the bundie which is independent 6f.

Proof. We know that

N N

[V ) = N ] = 5 AR RS TPl dr = 5 [ where
0 0

FO =[I®) P [(RY)|P]o) foryem.

Let F(s) = foY f(X,)dr. Integrating by parts gives

hN| -

2 7 2 L2 7 2 2 [ 1
S—Z[rf(Xr)drz 3 [rF(N]— S—Z/F(r)dr = EF(s) - S—Z/r;F(r)dr. (6.2)
0 0 0

Since Brownian motiorX is recurrent withu (dy) = voI(M)*ldy as invariant measure where @ the Riemannian measure,
the ergodic theorem applies (see, e.g., [15, Theorem 1.3.12]). Auigs converges almost surely 1§, f(y) u(dy) ass tends
to co. Consequently, the last term of the right-hand side in (6.2) converges almost sufgly/iy) 1(dy) ass tends toco.
According to definition (6.1), this proves the almost sure convergence‘&f% rf(X,)dr to 472i(E)/vol(M) which is the
wanted result. O
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