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Abstract

We prove Cheng-Yau type inequalities for positive harmonic functions on Rieman-
nian manifolds by using methods of Stochastic Analysis. Rather than evaluating an
exact Bismut formula for the differential of a harmonic function, our method relies
on a Bismut type inequality which is derived by an elementary integration by parts
argument from an underlying submartingale. It is the monotonicity inherited in this
submartingale which allows to establish the pointwise estimates.
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1 Introduction

The effect of curvature on the behavior of harmonic functions on a Rieman-
nian manifold M is a classical problem. A quantitative measurement of this
behavior is encoded most directly in terms of gradient estimates and Harnack
inequalities involving constants depending only on a lower bound of the Ricci
curvature on M, the dimension of M, and the radius of the ball on which the
harmonic function is defined. Such estimates in global form, i.e., for positive
harmonic functions on Riemannian manifolds, are due to S.T. Yau [13]; local
versions have been established by Cheng and Yau [3].
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The classical proof of gradient estimates for a harmonic function u relies on
two ingredients. The first ingredient is a comparison theorem for the Laplacian
of the Riemannian distance function, which allows one to bound the mean
curvature of geodesic spheres from above in terms of a lower bound on the
Ricci curvature. The second ingredient is Bochner’s formula which is used
to give a lower bound on Algradu|? in terms of the lower bound on the
Ricci curvature. The gradient estimate itself then relies on a clever use of the
maximum principle, see [9].

From a probabilistic point of view, it seems tempting to work with Bismut type
representation formulas for the differential of a harmonic function. Theorem
1.1 below is taken from [11], [12] and gives a typical gradient formula; for
related and more general results the reader may consult [4]. See [10] for addi-
tional background on Bismut formulas.

Notation 1 Throughout this paper, M is an n-dimensional Riemannian man-
ifold with (-, -), V, div= V-, grad, A = V - grad, and Ric denoting (respec-
tively) the Riemannian metric, the Levi-Civita covariant derivative, the di-
vergence operator, the gradient operator, the Laplacian, and the Ricci tensor
on M. For v € T,,M, let |v| := <U,U>1/2, and for x,y € M, let d (z,y) denote
the Riemannian distance between x and y.

For a relatively compact open subset, D C M, let 0D denote the boundary
of D and for x € D let

be the distance of x to dD. (By convention, if the boundary 0D is empty we
set rp (x) = 00.) Let K = K (D) > 0 be the smallest non-negative constant
such that Ric (v,v) > —K |v|* for all v € TD C TM and let k = k(D) > 0 be
defined by the equation, K = (n — 1) k2.

Theorem 1.1 (Stochastic representation of the gradient) Let M be a
complete Riemannian manifold, D C M be a relatively compact open domain,
and u: D — R be a bounded harmonic function. Then, for any v € T, M and
r €D,

(du)v = —F [u(XT) /0 "(o, és,st>] , (1.1)

where:
(1) X is a Brownian motion on M, starting at x, and
r=inf{t > 0: X; ¢ D}

its first exit time from D, the stochastic integral is taken with respect to the
Brownian motion B in T, M, related to X by the Stratonovich equation



dB; = //;7'6X;, where //,: T,M — Tx,M denotes the stochastic parallel
transport along X.

(2) The process © takes values in the group of linear automorphisms of T, M
and is defined by the pathwise covartant ordinary differential equation,

d@t = —% R]C//t (®t) dt, @0 = idTmM’

where Ricy, = //;' o Ricg(t o //, (a linear transformation of T, M), and
(Ric? u, w) = Ric,(u, w) for any u,w € T,M, z € M.

(3) Finally, £, may be any adapted finite energy process taking values in T, M
such that by = v, £; =0 and

(/ et \étht)l/Q € L' for some e > 0,
0
where K = K (D) is as in Notation 1.

By making a clever choice for ¢;, it is possible to estimate the right hand side
of Eq. (1.1) so as to obtain sharp estimates of the form

lgrad u| (z) < C'(rp (z),n, K)sup |u (z)|,
z€D

where C (r,n, K) is a certain function of 7 > 0. See [12, Cor. 5.1] for details.

For positive harmonic functions however, one would like to estimate | grad u|(x)
in terms of u(x) only. Such estimates provide elliptic counterparts to the fa-
mous parabolic Li-Yau estimates for solutions of the heat equation, see [6].
It is an intriguing problem how to gain such estimates in probabilistic terms
from Bismut type formulas.

In this paper we deal with pointwise estimates of grad u(z) in terms of u(z)
for positive harmonic functions u. We show that such estimates may indeed be
derived by stochastic analysis methods involving certain basic submartingales.
In particular, we give a stochastic proof of the following gradient estimate due
to Cheng and Yau [3]. In addition, our approach provides an explicit value for
the constant ¢(n) appearing in (1.2), see (4.11) and (4.12).

Theorem 1.2 Let M be a complete Riemannian manifold of dimensionn > 2
and let D C M be a relatively compact domain. Let u: D — |0, 00[ be a strictly
positive harmonic function. Then

lgrad u(x)| < ¢(n) (k + - > -u(x), (1.2)

rp(zx)

where k = k (D) and rp (x) are as in Notation 1.

Our method of proof is inspired by the stochastic approach to gradient esti-
mates used in [12] for harmonic functions, and in [1] for harmonic maps, where



one represents, as described, the differential by a Bismut type mean value for-
mula which may then be evaluated in explicit terms. However in this paper,
we do not use the mean value formula directly. Roughly speaking, Bismut type
formulas are derived from certain underlying martingales by taking expecta-
tion. We sharpen this approach by constructing analogous submartingales (see
Theorem 3.1) which after taking expectation provide Bismut type inequalities
(see Eq. (3.6)). From these probabilistic inequalities we are able to establish
the pointwise estimates, see Theorem 3.2 and Corollary 3.5. Finally, as in [12],
explicit constants depend on a reasonable choice of a finite energy process
which is used for integration by parts on path space, see Theorems 4.1, 4.2,
and 4.3.

Acknowledgement. The authors are grateful to the referee whose careful read-
ing and detailed comments have significantly improved the paper.

2 Some elementary geometric calculations

Let M be a (not necessarily complete) Riemannian manifold of dimension n >
2, and u: M — R be a harmonic function. For x € M let p(z) = | grad u|(z).
For x € M with ¢(z) # 0, let n(xz) = p(z) ' grad u(z).

If f: M — R is a smooth function, then we have the well-known formula
Ograd f = grad Af + Ric* grad f, (2.1)

where [0 = trace V? denotes the rough Laplacian on I'(T'M), and where by
definition,
(Ric* X,Y) = Ric(X,Y), X,Y e '(TM).

Eq. (2.1) applied to u gives

Ograd u = Ric* grad u. (2.2)

In the following Lemma we calculate grad ¢ and Ay in terms of n.

Lemma 2.1 Let u: M — R be a harmonic function, ¢ = |gradul|, and n =
(grad u) /@ where it is defined. Then on M, where ¢ does not vanish,

Ay = ¢ [Ric(n,n) +|Vn[% |, (2.3)
gradlog ¢ = Vyn — (divn)n, (2.4)

and
lgradlog[* < (n—1) |Vnf . (2.5)



Proof (i) We start by proving Eq. (2.3). To this end, fix x € M such
that ¢(z) # 0 and choose an orthonormal frame (e;)1<i<n, at z such that
(Vee;)(z) =0 for all 4, 5. Then, we have at z,

O(en) = (Ap)n+2(V,, gradu,n) V. n+ o On. (2.6)

Since (n,n) = 1, we have 0 = v(n,n) = 2(V,n,n) for any v € T, M. Thus,
taking scalar product with n makes the second term of the right hand side of
(2.6) vanish and yields

Ap = (O(gn),n) — ¢ ([n, n).

It is easily seen that
(On,n) = — |Vn/’

H.S.?

so that with Eq. (2.2) the claimed equality for Ay follows.
(ii) To establish (2.4), note that Au = 0 writes as
0 =div(pn) = dp (n) + pdivn.
Let n = (n,-) = ¢! (grad u, -) = ¢~ 'du. Then on one hand,
Lnd’ = 1y (—go_ngp A du) = —¢ 2 (dp (n) du — du (n) dy)
= —¢p 2 (—go divndu — ¢ |n|° dgo)
=divn(n, ) + (gradlogy, -),
while on the other hand,
ndn’ = (Von, -) = (Vn,n) = (Vyn, -).
Comparing these last two equations proves Eq. (2.4).
(iii) Finally, to establish (2.5), note first that, as a consequence of (2.4),
igrad log ¢|* = (divn)? + |V,n[>.

Next, fix x € M such that ¢(z) # 0 and choose an orthonormal frame (€})1<;<n,
at « such that e/, = n. Then

2
n—1

|grad log ¢|” = (Z <Ve;,n, e;->) + |Van|?
=1

n—1 9

<(n—-1)Y (Ven, e;->2 + \Ve,ne;l

J=1

<(-)Y|Vor/ = (-1 |Vnp,. O
7j=1




3 Gradient estimates for positive harmonic functions
The following theorem gives the submartingale property which will be crucial
for our estimates, see Bakry [2] for related analytic results.

Theorem 3.1 Let M be a (not necessarily complete) Riemannian manifold
of dimension n > 2. Let X be a Brownian motion on M and let u: M — R

be a harmonic function. For any o > Z—j, the process
t
Y, i= | grad u/*(X,) exp{—%/ Ric(n,n)(Xr)dr} (3.1)
0
is a local submartingale, where by convention, Ric(n,n)(x) := 0 at points x

where grad u(zx) vanishes.

Proof First assume that grad v does not vanish on M. Then, making use of
Eq. (2.3), we have

Ap® = ap® Ap + o — 1) [grad |
= ap® (Ric(n,n) + [Vnl2 s + (o — 1) [gradlog¢|*) . (3.2)

Since our assumption on « is equivalent to « —1 > —1/(n — 1), it now follows
from the estimate in Eq. (2.5), that

1
Vafis + (o = 1) gradloggf” > [Vnff, — —— |gradlogo|” > 0.
Combining this estimate with Eq. (3.2) shows

Ap® > ap® Ric(n,n). (3.3)

An application of It6’s lemma now implies, Y; = N; + A; where

AN, = exp { =5 [ Ric(n m)(X,) dr} (/7" grad *(X,), dB),

and

dA, = % (A(p‘j (X,) — a Ric(n, n)(Xt)> Y, dt.
(Here //, is stochastic parallel translation along X and B is the T, M-valued
Brownian motion introduced in Theorem 1.1.) By the inequality (3.3), d4; > 0
and therefore, Y; is a local submartingale, which completes the proof under the
assumption that ¢ never vanishes on M. This assumption however is easily
removed by letting Ric(n,n)(z) = 0 in (3.1) at points x where grad u(z) = 0.



Indeed, let [0, ([ be the maximal interval on which our Brownian motion X is
defined. Fixing € > 0, we consider the partition

O0=m<o1<n<0p<n<...
of [0, ([ defined by
=inf{t>7_1:Y,<¢/2} and i, =inf{t >0;,:YV; >}, i>1.

Now consider Y, := Y; V € which is seen to be a local submartingale on each
of the sub-intervals of our partition. Indeed, on [0;, 7;| the process is constant,
Y¢ = ¢, while on [r;_1,04] it is a local submartingale, since there Y itself is
a local submartingale by It6’s formula, as shown above, using the fact that
X|[ri=1, 0i] takes its values in {z € M: gradu(x) # 0}. Now since each Y* is
a local submartingale, Y; = 1551 Y itself is a local submartingale. O

Remark 2 In (3.1) we adopted the convention that Ric(n,n)(z) = 0 at points
x where grad u(z) vanishes. It should be noted that any other convention also
gives a local submartingale as well.

Remark 3 In Appendix A we provide a generalization of Eq. (3.3), along
with a unified proof of the submartingale property of Y; in (3.1). The argument
there directly takes care of the possible vanishing of the gradient of v and does
not require the case distinction made in the proof of Theorem 3.1.

Theorem 3.2 Let M be a Riemannian manifold of dimension n > 2 and let
u: M — R be a harmonic functzon Further let o € [P 2 9] with a > 0, and
p>1,qg>1 such that p ' +q¢ ' = 1. Forx € M, letX be a Brownian
motion on M starting at x, and denote by T the first exit time of X from
some relatively compact neighbourhood D of x. Further assume that p is a
bounded stopping time with p < 7 and that ¢, is a real-valued decreasing,
adapted process with C* paths such that by =1, £, = 0. Then

|gradu|(z) < I («, p) - Ir(c, p) (3.4)

where

Li(a,p) =E l(/op | grad u|*(X,) ds) ap/Q] o and
IQ(a,p):]El(/ exp{ / Ric(n, n)( d}

Proof  Let Y; be the process defined in Eq. (3.1). Under our assumptions
Y, = »nt is a bounded non-negative local submartmgale which accordlng to
Doob-Meyer may be decomposed as V, =Yy + N, + A, where Ny = A, = 0;

1/aq

. 12/(2—a) ds) (Q—a)q/2‘|



N is the local martingale part, and A is the drift part. We further assert that
Y; is a L?-submartingale in the sense that

INoll} = E[(N, N)oo| <00 and [|Al, < o0. (3.5)

To verify the estimates in (3.5), let (7},)n,>0 be an increasing sequence of stop-
ping times converging almost surely to 400, such that each stopped process
Y™ := YT is a submartingale. Writing N® = N7» A" = AT we have by
Ito’s formula

~ ~ ~ ~ t . ~ t . ~
(N7, ), = (072 = (V)2 =2 [ ¥ra¥y < B2 =2 [ V7 dny
0 0

where R is an upper bound for Y. (Here we already used the fact that Y >0
and that A is non-decreasing.) Taking expectation yields E[(N™, N"),] < R?,
from which the first estimate in (3.5) follows by monotone convergence. To
bound the L?-norm of the total variation of fl, since A is non-decreasing, it
suffices to bound || Au||,. But since Yy := limy_,o, ¥; exists almost surely, it
follows that

[ Acslls < (Yoo = Yallo + [ Noolly < R+ [ Nl < o0.
Let .
. / Yyl ds.
0
Since Sy = Yy = ¢*(x) and dS; = ¢, dY},
t
Sy = ¢%(x) +/ £,dY,
0

is a local submartingale. Moreover, since ¢ is bounded and

t ~
Sont = ¢°(@) + /0 ¢, dy,,

it is clear that S, is also a L2-submartingale. In particular we have

©*(z) = So <E[S,] = -E [/Op Yl ds] =k [/OPYS s

ds] .

Combining this inequality with the definition of Y in Eq. (3.1) implies,

2

p
fe

%(z) <E [/0 ©*(X;) exp {—g /05 Ric(n, n)(X,) dr}

Assuming « < 2, an application of Holder’s inequality shows,

ds] . (36)

o(z) <E l( / * 2(x,) ds) " (3.7)

s . 2/(2—a (2-a)/2] /@
(/p exp {— a / Ric(n, n)(X,) dr} I 2 ds) ] .
0 2—alJo




One more application of Holder’s inequality to Eq. (3.7) then gives Eq. (3.4). O

To estimate I;(a, p) we use the following Lemma.
Lemma 3.3 For € ]0,1[, let
—9-1/2 F( 2 ) — 9 1/2 F( 2 ) (38)
f)/ﬂ 1 . .
r(z) VT

Then for every positive local martingale Z with infinite lifetime and determin-
wstic starting point Zy = z, we have

E[(2)27]" <,

where (Z) . = limyuo (Z), and (Z), is the quadratic variation process associ-
ated to Z.

Proof Without loss of generality we may assume that z = 1. Moreover, apply-
ing the Dambis, Dubins-Schwarz Theorem (cf. [7] or [8]), by “enriching” the
filtered probability space if necessary, we may assume there exists a Brownian
motion B started at 0 such that

Zt =1 + B<Z>t'

Let T :=inf{t > 0, 1 + B; = 0}. By the reflection principle,
1

and the scaling property of Brownian motion, we conclude that 7" has the
same law as 1/B?. Consequently,

1/8 _g11/8
B[r]"* —E[1B. )" =
Moreover, we have (Z)  <T a.s., so that

E[(2)/2]" <E[1?7]” =45 O

To exploit estimate (3.4) we now choose o € [2—:2 1[ ifn >3, a€]0,1]if

1?
n =2, and p > 1 such that g :=ap < 1.

Proposition 3.4 (Gradient estimate; general form) Let M be a Rieman-
nian manifold of dimensionn > 2 and D C M be a relatively compact domain.
For x € D, let X be Brownian motion starting at x, T be the first exit time of



X from D, and p be a bounded stopping time such that p < 7. Assume that
u: M — ]|0,00[ is a positive harmonic function and let n = grad u/| grad u|
when gradu # 0 and n = 0 otherwise. Further, let o € [2=3,1[N]0,1[ and
qg > 1 be such that § := q%la < 1. Then, for each x € D, the following
estimate holds:

| grad log u(x) (3.9)
s o (2-a)q/2] /24
Sf)/gEl(/opexp{— o /ORic(n,n)(XT)dr} 2e )ds> ]

2
2—«o

where vz is given by (3.8) and the process {5 is chosen as in Theorem 3.2.

Proof Lemma 3.3 applied to Z; := u(X/) gives

E l(/op ©*(X,) ds) MZ] v < ygu(z). (3.10)

Bounding the term I (a, p) in estimate (3.4) by means of (3.10), and dividing
by u(z), the claimed inequality follows from (3.4). O

Corollary 3.5 Keeping the assumptions of Proposition 3.4. If u: M — ]0, 00|
s a positive harmonic function, then

S

aKs}

(2—a)q/2 1/aq
. 2/(2-a)
/ d) (311
ok )] e

| gradlogu|(z) < 3 E [(/Opexp{

where Ric > —K = —K (D) as in Notation 1.

4 Explicit constants

In order to estimate the right hand sides in Egs. (3.9) and (3.11), we are
going to use the methods developed in [12]; see especially [12, Corollary 5.1].
Throughout this section the assumptions on « and ¢ from Proposition 3.4 will
be preserved.

Fix x € M and let D C M be a relatively compact open neighbourhood of
x in M with smooth boundary. Let f € C?(D) be a positive function on D
which is bounded by 1 and vanishing on dD and let X; be a Brownian motion
on M starting at z € D. Define

T(s):= /OS f2(Xy)dt, s<tp, and
p(t) :=inf {s > 0:T(s) > t}, (4.1)

10



where 7p is the first exit time of X from D. Alternatively we may express p
as:

T (t) if t <T (7p)
oo ift>T(1p),

p(t) =

from which we see that

1
T'(p (1))

In particular it follows that p(t) <t for t < T (7p). By [12, Proposition 2.3],
the process X := X, is a diffusion with generator, L' := % f?A, and infinite
lifetime and as a consequence, T (7p) = oo a.s.

p(t) = = f2(X ) fort<T(mp).

The idea now is to use the fact that T'(t) 1 oo, as t 1 7p, to construct the
required finite energy process ¢, meeting the crucial conditions ¢, = 1 and
¢, = 0. More precisely, we fix ¢ > 0 (p(¢) will be our p in Corollary 3.5) and
let

/ f 1{r<p ()} dT—T(,O(t)/\S)

Hence ho(s) = ho(p(t)) = T(p(t)) = t for s > p(t). Further let h; € C1([0, ], R)
be a function with non-positive derivative such that h;(0) = 1 and hy(t) = 0,
and define £; := (hy o hg)(s). Since £; has non-positive derivative, |{,|ds is a
probability measure on [0, p(t)].

Theorem 4.1 (Gradient estimate; specific form) Let M be a Rieman-
nian manifold of dimension n > 2, and D be a relatively compact open do-
main in M with smooth boundary 0D. Let f € C?(D) be strictly positive on D
and vanish on 0D, and K = K (D) > 0 be chosen so that Ric > —K as in
Notation 1. Further suppose that 0 < a € [2=2,1[ and ¢ > 1/ (1 — ). Then,

letting p = q/ (¢ — 1) be the conjugate exponent of q, for any positive harmonic
function u: M — )0, 00[ and any x € D, we have

dl < L F(l_%) " Cla, K 4.2
lgra ogu|(x)_f(x) ( F(%) ) (o, K,q, ) (4.2)

where

Cla K, g, 1) 1= sup {Kf2(y) = (FAN() + (aq + 1 grad f (1)}

yeD

Proof Our assumptions on « imply that pa < 1 and ¢ > 2/ (2 — «). Since
the inequality in Eq. (4.2) is invariant under scaling f by a positive constant,
we may assume without loss of generality that f is bounded above by 1. We

11



want to estimate /%4 where

() K
I::]E{(/p exp{a 8}
0 2 -«

By means of Jensen’s inequality, we get

I=E o exp okt s és
[ 0 2—a

S

o (2—a)q/2
)

a/(2—a)

2

} ds]
I 2
[ ro(t) K . (qa
=E /p exp{a2qs} 2 (aat2)/2 ds]
0

(2—-a)q/2
ds> ]

qa/2

2

.
)

(ga+2)/2 |

ho(s

fu (ho(s))| j[1 ds]

hu (ho(s))[**7 foe2(x,) ds]

:/texp{aTKqPT)} ‘ih( ‘(qa+2 Fe(x)d ]
_/ ‘hl qa+2 E[exp{aTKq p(r)} f_q"‘(X;)] dr. (4.3)

Let Z, = e*Kar(s)/2 f=aa(X!) Writing 2 for equality up to a differential of a
local martingale, we have

4z, 2 7, (0K (s) + FA(X0) (AF ) (X]) ds

2 2 7, (aKqf (X)) - aq(FAP)(X!) +aglag +1) [grad f (X)) ds

which implies
dZs < dMs;+ Ci1Zsds (4.4)

where M is a local martingale and

€y = 5 sup {aKa?(w) - aa(fAN)@) + aglag + 1) lgrad £ (2) ]

zeD

Let D, C D be an increasing sequence of relatively compact open subsets of
D such that z € D,, and UD,, = D. If ¢, is the first exit time of X' from D,
then M~ is a martingale, E[Z?"] < oo for all s, and from Eq. (4.4),

E[Zo"] < O, /0 E[Z07] dt.

It now follows by an application of Gronwall’s lemma along with Fatou’s

12



lemma that
E[Z,] < liminfEZJ" < Z0e1® = f7(g)es,
Using this estimate in Eq. (4.3) gives,

+2)/2 1/aq
‘(qa )/ ds)

/g < (/Ot F(z) eC1s h1(8)

1—e %

For a > 0, let J (t,a) := J (t, h;) where h;(s) := 1 — o
— e a
then follows by Corollary 3.5 (with p = p(t) <7 At < T) that

. o 1/aq
i (s) ‘(q +2)/2 ds)

1 -
=57 (t, hy) .

for s € [0,1]. It

1
| gradlogul(z) < 5~ J (t, ) (4.5)

where, by a simple computation,

o (ga+2)/(2aq) (1 _ o(Ci—(qa+2)a/2)t\ 1/
1—eat) (g + 2)a/2 — C4

J(t,a):(

Now suppose that a > 2C;/(qa + 2). Then

alaa+2)/2 )an

ggj(t, a) < tliff}o‘](t’ a) = <(qa+2)a/2 -G

and the minimum in a > 2C/(qa + 2) of latter expression is /2C)/aq =
C(a, K, q, f) which is attained at a = 2C}/aq. Consequently we have shown

(111>lg %Ege](t; a) < C(a7K7Q7f)

which combined with Eq. (4.5) (recall that 5 = ap and ~z is given as in Eq.
(3.8)) gives the estimate in Eq. (4.2).

Remark 4 Note that C(«a, K, g, f) in Theorem 4.1 differs from the constant
c1(f)/2 in [12] only by the coefficient, ag+1, which in [12] was the number “3”.

Remark 5 Let M be a complete Riemannian manifold, z € M, R(y) :=
d (z,y), Cut (z) C M denote the cut-locus of z, and for r > 0 let D = B, (x
(the open ball about z of radius r) and define f: D — R by

) = oos (5 ) (16)

13



It is shown in the proof of Corollary 5.1 in [12] that,

/K (n—1 2
|gradf|§27T—r and —Af< 2(T )+ZTZ on D\ Cut (z).

Hence it follows that on D \ Cut (z),

Kf* = (fAf) + (eq+1) grad f|* < C(a, q,7)

where
P?n+ag+1 7K@ -1)
C’(a,q,r)—ZT+§ r +K
™“n+ag+1l wk(n-—1)
S e B —1).
1 2 +2 " +k°(n—1)

Here K = (n — 1) k? is as in Notation 1.

Now suppose that r € |0, ¢,[, where ¢, = d (z, Cut (z)) is the distance from z to
Cut (z). In this case D is precompact (because M is complete), 9D is smooth,
and f € C? (D) with f > 0 on D and f = 0 on dD. Hence by Theorem 4.1,

if u is a positive harmonic function defined on a neighbourhood of D, then for
ally e D,

lgrad log u| () < (cos (%ﬁf@))‘l (Fr(l(za)p)> 1/ap Cla, g7,

where «, ¢, and p are as in Theorem 4.1. In particular, taking y = z in this
inequality shows,

l—ap 1/ap
F( )> \/Cl(a,q,r). (4.7)

lgrad logu| (z) < (7?
r()

When r > 1, the function d?(z,-) is no longer smooth on B, (z) and the
boundary of B, (z) need not be smooth either. Hence, it is not permissible
to apply Theorem 4.1 directly to obtain the estimate in (4.7). Nevertheless,
using the methods in the proof of [12, Corollary 5.1] the estimate in Eq. (4.7)
still holds for arbitrary r > 0.

Theorem 4.2 Let a,q, and p be as in Theorem 4.1 and continuing the nota-

tion used in Remark 5. Then for any r > 0 and positive harmonic function,
u: B, (x) =)0, 00[, the estimate in Eq. (4.7) holds.
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Proof Fix x € M and let R(y) := d(z,y). By Kendall [5, Corollary 1.2],
there exists a continuous adapted increasing process, L;, such that

d (R (X)) = (grad R (X)), //,dB;) + % AR (X,)dt — dL, (4.8)

where //, and B, are as in Theorem 1.1, and grad R (y) and AR (y) are inter-
preted to be zero at points y € M where R fails to be smooth. In particular,
if g € C? (R), then by Eq. (4.8) and It6’s formula we have

¢" (R (X)) |grad R (X,)|? dt. (4.9)

L1
2

Now at points where R is smooth,
A(g(R) =V (¢ (R)VR) =g (R) AR +¢" (R) |grad R|".

Hence Eq. (4.9) may be written as

A(9(R(X)) = (grad(goR) (X,), /s dB.)+ 5 Algo R)(X,) di—gf (R (X,)) dL.,

with the convention that A(go R) =0 and grad(g o R) = 0 at points where R
is not smooth.

Let f be defined as in Eq. (4.6), p (s) be as in Eq. (4.1), and X = X,) be as
above, then

! m 1 ! ! !
A(g(ROXN) 2 2 7 (X) A (g (B) (Xyo) ds — ¢ (R(OXD) ALy (410
—oq .
Let g(7) := (cos (%7)) and, as in the proof of Theorem 4.1, let

7, = e2Kap(s)/2 f*aq(X;) — eaK‘”’(s)/Qg(X').

S

Then, using Eq. (4.10) and the convention that Af (y) =0 and grad f (y) =0
at points ¥y € D where R is not smooth, we have

Az, 2 7, (aKap(s) + (X)) (AF 1) (XD)) ds

— KPR (R(X})) dLy)
m ]
< 5% (aKqf* (X)) — aq (fAS) (X)) + ag (aq + 1) [grad f(X})[*) ds,
where we have used —e®¥%()/2¢/ (R (X!)) > 0 and L, is increasing in s.

With this observation, the remainder of the proof of Theorem 4.1 starting with
Eq. (4.4) goes through without any further modification. Hence the statement
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of Theorem 4.1 holds for D = B,(z) and f = cos (mR/ (2r)). Therefore the
argument used to arrive at Eq. (4.7) is still valid provided u is a positive
harmonic function defined on a neighbourhood of B,(z). A simple limiting
argument shows that Eq. (4.7) is still valid even when w is a positive harmonic
function defined only on B, (z).

Theorem 4.3 (Gradient estimate) Let M™ be a complete Riemannian man-
ifold, n > 2, and let D C M be a relatively compact domain, k = k (D) > 0 be
chosen so that Ric > —(n — 1) k2, and rp(z) = dist(x,dD) as in Notation 1.
Ifu: D —0,00] is a strictly positive harmonic function, then

lgrad u(z)| < ¢(n) </€ + ) u(z) for allz € D,

rp(x)

e =T e (- (Y (). (411

where

- I‘( 1 ) (n—3/2)/(n—2)
c(n) = 3 (W) /3 (n—1)/2. (4.12)

As already mentioned, Theorem 4.3 is originally due to Cheng-Yau [3]. Our
approach however gives an explicit value for the constant ¢(n).

Proof Letr=rp(z). lf n=2,let ] 0in Eq. (4.7) to conclude that

1 1 1 ™ 3 7k
lgrad logu| (z) < \/iexp{ 5 / 5 I r2+2 r+k
nd ¢ =

Ifn>3leta=22 a
find

2= =2(n—1). Then again from Eq. (4.7) we

|grad10gu‘ ($) S Yap \I (TL - 1) <— — + = -k + ]{32

where (n—3/2)/(n—2)
1 n—3/2)/(n—2
o= L (M)
ap — 1 .
V2 \ r(})
This completes the proof of the theorem in view of the following simple esti-

mate,

2 2 2
3 1 T k 3 (1 ) -

2
= -4z < (2
4r2+2r+k_4 r+k
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Corollary 4.4 (Gradient estimate on geodesic balls) Let M be a com-
plete Riemannian manifold with Ric > —(n — 1)k?, k > 0. If u is a positive
harmonic function on a geodesic ball B,(x) C M, then

2
Mgc(n) (k—i—;)

Br/2(m) u

In particular, if Ric > 0 then any positive harmonic function v on M s
constant.

Corollary 4.5 (Elliptic Harnack inequality) Let M be a complete Rie-
mannian manifold with Ric > —(n — 1)k%. Suppose that u is a positive har-
monic function on a geodesic ball B.(x) C M. Then

sup u < exp (c(n) (2+ kT)) inf u. (4.13)
B, /5(z) B, j2(w)

Proof By the gradient estimate, we have supp_, ) | grad u|/u < c(n) (k + 2/7).
Let z1, 25 € B,5(z) be fuch that supp ) u = u(r) and infp_ ) u = u(22).
Then let o: [0,1] — B,/5(x) be a parametrization of the path following a
length minimizing geodesic from x, to x concatenated with a length minimiz-
ing geodesic joining = to z;. Then

u(z1) | [t dlogu(o(s))
u(zy) /o ds ds

< [ lgradiogul (o (5)) o’ (5)| ds
< cfn) (k+ %) /01 o (s)] ds
< ¢(n) (k—i—;) .

from which Eq. (4.13) follows. O

log

A Expansion on the submartingale proof

We start by generalizing inequality (3.3).

Lemma A.1 Let e > 0, u: M — R be a harmonic function,

M ={zx e M: gradu(z) #0}, ¢.=+/|gradul?+ €2,

~1/2
n, (z) == o' gradu = ( grad u|” + 62) / grad u,

and
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with the convention that ny (z) := 0 if x ¢ M'. Then for a € [Z—:f, 1],
Ap? > ap? Ric (ng,n,) (A.1)

where (A.1) holds for all x € M if e > 0 and for allz € M" if e = 0.

Proof  Suppose either ¢ > 0 or ¢ = 0 and gradu (z) # 0. We begin by
observing that

Ap® = ap® ' Ap. + a (o — 1) 272 |grad .|

A
= ap? {% + (o — 1) |grad log <p5|2} . (A.2)

£

Set f. (s) = (2 + )"/, so that ¢, (z) = fs( lgrad u (x)|2) Then

~3/2

fis) =

and for v € TM,

(52 + s)_1/2 and f(s) = —i (52 + s)

DN | =

vpe = 2f1 ( \grad u[? ) (V, grad u, grad u)
= ¢ ' (V, grad u, grad u)
= (V, gradu,n.) = (V,, grad u, v) (A.3)

where in the last equality we have used the fact that V has zero torsion. From
this equation it follows that

grad p. = V,_gradu = V,_(pn:) = ne: - 1. + Vi ng, (A.4)
and in particular that
gradlog ¢. = n.log . - n. + V. n.. (A.5)
Since
divn, = div ((pg_l grad u) = —¢-? (grad ¢, grad u) + o= Au
= — (gradlog ¢, n.) = —n. log ¢,
Eq. (A.5) may be written as
gradlog ¢. = V,,.n. — (divn,) n.. (A.6)
From Eq. (A.3) we also have
Ve ®e = <V12,®U grad u, n5> +(V, grad u, V,n,)
= (V2 gradu,n.) + (V, (penc) , Vo)
= <V§®v grad u, n5> + 0@, - (e, Vi) + e (Vone, Von,)

18



which upon summing on v running through an orthonormal frame shows

A(pg = <|:| gradu 115> + <n5; Vgradcp5n5> + Pe |Vu€|i.s.

<grad Au + Ric* grad u, n5> + (n, Virad ¢5n5> + ©e |Vn5|i_s_
< RIC# VU, n5> <I15, Vgradcpsns> + Qe ‘vnE‘Q

Pe

H.S.

{Rlc (ne; ne) 4 (e, Vradtog . 1te) + ‘vns‘i_s.} : (A7)

When ¢ # 0 and grad u (z) = 0, we see from Eq. (A.7) that

Ape (x) = - (z) [Vnely, (@)

and from Eq. (A.4) that (gradlog ¢.) () = 0. Combining these identities with
Eq. (A.2) gives

(Ag?) (2) = apf (z) [Vne[i g (2) > ap? (z) Ric (n.,n.) (z) =0.  (A.8)

This shows that Eq. (A.1) is valid for x ¢ M’'. To finish the proof it suffices
to show that Eq. (A.1) is valid for all x € M'.

So for the rest of the proof we will assume that z € M’'. Since (ng,ng) = 1
on M',

0=vl=2(Vyng,ng) forallve T,M and z € M". (A.9)

Taking ¢ = 0 in Eq. (A.7) gives

Ay = @o (RIC (no, mo) + | Vo[>, ) (A.10)
and from Eqs. (A.6) and (A.9) we find

lgrad log ¢o|” = |V, o|” + (divng)” (A.11)

on M'. Let F.(s) := (s*+¢2%)*” so that ¢® = F. () and by elementary
calculus,

F!(s) = as (82 + 62)_1 F. (s) and
F'(s)=a (52 + 62) - (52 - (1-a) 52) F, (s).
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Therefore we find
Ap® = AF. (p) = div (F! (po) grad ¢o) = F! (o) Apo + F' (o) |grad oo’
-1
= oo (903 + 52) F: (o) Ao
-2
+a(pg+e) (= (1—a)¢}) e (v0) lgrad v

—1 -2
> ap? {wo (e5+¢%) Apo— (g5 +€*)  (1—a)eglgrad soo|2}

| 2

2 2
2 Apq Po 2
= ap® — (1 -« rad lo
%%JrgQ{ 0 ( )%JrgQ g g ¥ol }
2
5 Apg 2
> — (1 — ) |grad lo
> %%HQ{ 0 ( ) Ig g @0l }
2
= ap? @291) - {Ric (no, no) + [V}, — (1 - @) lgradlog po*} (A.12)
0

where in the last equality we have used Eq. (A.10).

Letting {e;};_, be an orthonormal frame such that e, = ny shows

(divno)? = (z (Veino,ei>>2 - (f (Veino,ei)>2

Z n—1 22 n—1 )
<(n—=1) 3 (Veng,e) < (n—1) 3 [Vengl
i=1 i=1

and therefore, using Eq. (A.11),
|grad IOg §00|2 = |Vn0n0|2 + (le 110)2

n—1
<(n—1) Y [Veno? + [Ve,no2 < (n— 1) |Vnof2 .

=1

Combining this estimate with Eq. (A.12) shows

2
Ap? > ap? %ﬁ) S5 {Ric (no,no) + (1= (1= ) (= 1)) [Vnoly, }. (A.13)
Taking o > 2=2 (which is equivalent to 1 — (1 — ) (n — 1) > 0) in Eq. (A.13)
implies

¥
w5+ e
Combining this estimate with that in Eq. (A.8) proves inequality (A.1). O

Ap? > apl 5 Ric (ng, ng) = apg Ric (ne,ne) .

Theorem A.2 We keep the notation and the assumptions of Theorem 3.1.
For all o € [:—j, 1],

¢
Y; = |grad u (X;)|" exp {—%/O Ric (n, n) (X;) ds}
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s a local submartingale, where

lgradu (z)| ' gradu (z) if gradu(z) #0
n(z) :=ny(x) =
0 if gradu(z) =0

Proof Let € > 0, then by Ito’s formula along with Lemma A.1,

e (X,) = { (arad 02) (X,), /; dBL) + 5 (Ag2) (X,) di

— M + %wg (X,) Ric (n.,n.) (X;) dt + g% dt

where M* denotes the local martingale part and p] is a non-negative process.
In particular this implies that

d (exp {—% / "Ric (n,n,) (X,) ds} oo (Xt))
— exp {—% /Ot Ric (n,, n.) (X,) ds} dM:

¢
+ exp {—%/0 Ric (ng, n,) (X;) ds} p; dt.

Soife >0and o € [Z—j,l], then

Y (e) := (|gradu (X)) + 82)a/2 exp {—% /Ot Ric (ne, ne) (Xs) ds}

is a local submartingale. If 7 is the first exit time of X; from a precompact
open subset of M, Y/ (¢) is an honest submartingale. If G is a bounded non-
negative .%#s-measurable function, then

E[G(Y7 (6) = Y7 (e))]
=FE [G (/:AT exp {—% /OT Ric (n,, n.) (X5) ds} 05 dr)] > 0.

AT

Using the dominated convergence theorem, we may let £ | 0 in the above

inequality to conclude,
E[G(Y, -Y)]>0
which completes the proof. O
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