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Abstract

Using the coupling by parallel translation, along with Girsanov’s theorem, a new
version of a dimension-free Harnack inequality is established for diffusion semigroups
on Riemannian manifolds with Ricci curvature bounded below by —c (1+ p2), where
¢ > 0 is a constant and p, is the Riemannian distance function to a fixed point o on
the manifold. As an application, in the symmetric case, a Li-Yau type heat kernel
bound is presented for such semigroups.
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1 Introduction

The difficulties of extending the elliptic Harnack inequality to the parabolic
situation are well studied; see the classical work of Moser [19,20], as well as
[9,13,14]. In particular, it is in general not possible to compare, for instance on
compact sets, different values of a heat semigroup P,f (for f non-negative) by
a constant only depending on . There are several ways to deal with this defi-
ciency: typically the parabolic Harnack inequality is formulated by introducing
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a shift in time; another possibility is by seeking for Holder type inequalities
with an exponent strictly bigger than 1. For a discussion of the difficulties
to obtain Harnack inequalities by probabilistic methods from Bismut type
formulas, see for instance [23].

In 1997, a dimension-free Harnack inequality (with an exponent bigger than 1)
was established in [26] for diffusion semigroups with generators having cur-
vature bounded from below. This inequality has been applied and further
developed to the study of functional inequalities (see [1,22,27,29]), heat kernel
estimates (see [4,10]), higher order eigenvalues (see [28,30,11]), transportation
cost inequalities (see [5]), and short time behavior of transition probabilities
(see [2,3,16]). Due to the potential of applications, it would be useful to es-
tablish inequalities of this type also for diffusions with curvature unbounded
below. On the other hand, since the formulation of the inequality in [26] is
equivalent to an underlying lower curvature bound (see [31]), the formulation
of the resulting inequality will be slightly different in the present paper.

Let M be a connected complete Riemannian manifold of dimension d, either
with convex boundary M or without boundary. Let o € M be a fixed point,
p be the Riemannian distance function, and p,(z) := p(o,z), z € M. Consider
the (reflecting) diffusion semigroup P, on M generated by L := A+ Z for some
Cl-vector field Z. We assume that the corresponding (reflecting) diffusion
process is non-explosive. We shall prove the dimension-free Harnack inequality
for P, under the following condition.

Assumption 1 There exists a constant ¢ > 0 such that for all x € M,

Ric, := inf{Ric(X, X) : X € T, M, |X| =1} > —c(1+ p,(7)?),
hz(z) :=sup{(VxZ,X): X eT,M, |X|=1}<c(1+p,(x)), (1.1)
(Z,Vpo)(x) < c(1+ po()).

In this case we have no longer a gradient estimate like |VP,f| < CyP|V f|,
which has been crucial for deriving the original dimension-free Harnack in-
equality (cf. the proof of [26, Lemma 2.2]). Under our condition it is possible
to prove a weaker type estimate such as |VP,f|P < C,P|V f|P for p > 1, but
this is not enough to imply the desired Harnack inequality by following the
original proof. Hence, in this paper we develop a new argument in terms of
coupling by parallel translation and Girsanov’s theorem.

The main idea is as follows. Given two points zg # yo on M, let (zy,y;) be
the coupling by parallel translation of the L-diffusion process starting from
(20, %0)- To force the two marginal processes to meet before a given time 7T,
we make a Girsanov transformation of y;, denoted by #;, which is equal to
xy at t = T and is generated by L under a weighted probability Q := RP
with a density R induced by the Girsanov transform. Then, for any bounded



measurable function on M, one has

Prf1*(wo) = [Eolf (5] = [E[Rf (ar)]
< Prlf|*(wo) (BRYV])2, o> 1,

‘ «

To derive a Harnack inequality, it suffices therefore to prove that E[RP] < oo
for p > 1 and to estimate this quantity. We will be able to realize this idea
under Assumption 1 (cf. Section 2 and Section 3 below for a complete proof).

Theorem 2 Suppose that Assumption 1 holds. For any ¢ € 10, 1] there exits
a constant c(g) > 0 such that

(ea+1)p(z,y)?

2—¢e)(a—1)t

c(e)a?(a+1)?
(@ —1)°

+ 22 (14 pole) }

PI) < P @) exp{

(1+ oz, 9)?) plz,)?

holds for alla > 1,t > 0, x,y € M and any bounded measurable function f on
M, where p(x,y) is the Riemannian distance from x to y and p,(x) = p(o,x).

As an application of the above Harnack inequality, we present a heat kernel
estimate as in [10]. Assume that Z = VV for some C*function V on M,
such that P; is symmetric w.r.t. the measure u(dz) := €”®) dz, where dz is
the Riemannian volume measure. Let p;(x,y) be the transition density of P,
w.r.t. p; that is,

PI@) = [ pley)f@nldy). @€ M, >0, f € Cy(M).

Corollary 3 Suppose that Assumption 1 holds and let Z = VV. For any
d > 2 there ezists a constant c(§) > 0 such that for any t > 0,

exp {258 + c(0) (1 + 1+ + pol@)’ + po(v)’)}

V(B(z, V20)u(B(y, V21))

pt(xay) S ’ x,yEM,

where B(x,r) is the geodesic ball centered at x in M with radius .

2 Proof of Theorem 2 without cut-locus

To explain our argument in a simple way, we assume in this section that the
cut-locus is empty; that is, Cut(M) := {(z,y) € M x M : z € cut(y)} = &.



In the next section, we then treat the technical details for Cut(M) # @.
Moreover, if OM is convex, we may assume that M is a regular domain in a
Riemannian manifold such that the minimal geodesic linking any two points
in M is contained in M, see [32, Proposition 2.1.5]. Thus, according to the
proof of [25, Lemma 2.1], the reflection of the two marginal processes at the
boundary makes them move together faster. Hence, without loss of generality,
we may and will assume that OM = @. Finally, in the sequel we assume that
f is a nonnegative measurable bounded function on M.

We now recall the construction of coupling by parallel translation. Let B; be
a d-dimensional Brownian motion. Then the L-diffusion process starting at
xg € M can be constructed by solving the following SDE:

dzv, = V28, 0dB; + Z(z;) dt, xp € M, (2.1)
where ®; denotes the horizontal lift of x;; that is
d®, = He, odzy, @y € O, (M),
in terms of the horizontal lift operator H : 7*T'M — TO(M).

For given points z # y, let e(x,y): [0, p(z,y)] — M be the unique minimal
geodesic from z to y and let P, : T,M — T,M be the parallel transla-
tion along the geodesic e(z,y). In particular P,, = I, the identity operator.
Consider the Ito equation

dItéyt = \/ipa:t,ytq)t dBt + Z(yt) dt, Yo € M, (22)

where in coordinates the Ito differential is given by

R 1 L
(d"0y)* = dy; + 5 315 (w)dly}, i),

Y]
see Emery [8]. Recall that (2.2) is equivalent to the system of equations

dqjt:H\ytOdyt, \Il() € Oyo(M)a

dy, = V2, 0dB! + Z(y) dt, yo € M,
dB; =¥, 'P,,,,®,dB,,

where the last equation is an It6 equation in R? and ¥, is the horizontal lift
of y;. See [17, (2.1)] for an analogous construction (with the mirror reflection
operator). Since P, is smooth, y; is a well-defined L-diffusion process starting
at yo. We call the pair (z;,v;) the coupling by parallel translation of the L-
diffusion process.

To calculate the distance process p(xy,y:), let My,: ToM — T,M be the
mirror reflection operator along the geodesic e(z, y); that is, M, , X := P, , X



if X | ¢, while M,,X := —P,,X if X || é at the point z. Let {u’}’=; be an
orthonormal basis in R? such that ®,u’ = ¢é at z;. Define v’ := (¥, ' P,, ,, ®;)u,
i=0,...,d— 1. Since (®;u’, €)(x;) = 0 for all 7 # 0, we have

00 = — (U My, ,, P, o' = (U, M,,,,®)u’, i#0.
Then [17, Theorem 2 and (2.5)] implies
dp(xtayt) S IZ(xta yt) dta t S T, (23)

where 7 := inf{t > 0 : 2; = y;} is the coupling time and

d—1

Iz(z,y) = Z/o

=1

p(z,y) 9 . )
(|Vé(w,y)Ji| - <R(€($, y): JZ-)E(.’L‘, y): Jz))s ds

+ Zp(-,y) (@) + Zp(z, -)(y).

Here R denotes the Riemann curvature tensor, é(z,y) the tangent vector of
the geodesic e(z, y), and {J;}{=; are Jacobi fields along e(z, y) which, together
with é(z,y), constitute an orthonormal basis of the tangent space at z and y:

Ji(p(z,y)) = P(z,y) J;(0), i=1,...,d—1
To calculate Iz(z;,y;) we may take (®;(u)) at z; and (¥;(v?)) at y;. Let
K(z,y) := sup (—Ric,)¥,
z€e(z,y)

O(z,y) :=sup{{(VxZ,X),:z €e(x,y), X € T,M, |X|=1}.

We have

20 0)@) + 206, @) = [ Vet 2,600 0))s s < 5, 0)p(a,0).

Thus, by [32, Theorem 2.1.4] (see also [7] and [6]), we obtain

(o) < 2K (e g)d— 1) tanh (P20 iy fa— 1)

+6(z,y)p(z,y). (2.4)

To construct a coupling such that the coupling time is less than a given 7' > 0,
let us consider the equation

dltégt = \/§th,ﬂtq)t dBt + Z(gt) dt

- Zo, - ~
- (Iz(xt,yt) + W)n(yt;%) dt, 7o = yo, (2.5)

where n(y,z) := é(y,z)|y, = Vp(z,-)(y) € T,M for z # y. Since n(z,y) is
smooth outside the diagonal D := {(z,z) : x € M}, the solution §; exists and



is unique up to the coupling time 7 := inf{t > 0 : z; = §;}. We let g, = x; for
t > 7. Asin (2.3) we have

dp(ze, §) < —————dt, t<7,

so that 7 < T'. Let

I N p(wo, %)\ -
N L= = Pa: M q)ssty (I sy Ys 7) syds >7
t \/5/0 <1 5,Ys Z(QE Y ) + T n(y x ) (2 6)
Ry :=exp (Nt - §[N]t)

By Girsanov’s theorem, {7} is an L-diffusion under the weighted probability
measure Q := Ry P. Therefore,

Prf(y) = Eqolf(yr)] = E[Rr f(27)]
< (Blf*(zr))"* (BRE)Y?, o'+ B =1. (2.7)

By (2.4) and (2.6) we have

[N]r < %/OT (Iz(xt,zjt) + wy&

1

<3 /OT (2\/(d — VK (4, §t) + 0(z4, §e) p(24, T2) + P(x;:yo)> "

Exploiting the conditions (1.1) and the fact that p(zy, %) < p(xo,v0), We
obtain, given ¢ € 10, 1],

< [ {c1<1 + 00, 90)?) (1 + pulw)?) + g;(””_—y)}} it @8

for some constant ¢; = ¢;(¢) > 1. Next, by (1.1) and the Laplacian comparison
theorem, we get

dpo(zs) < \/idbt
+ /e (1+ po(2:)2)/(d — 1) coth

+ (14 po(zy)) dt
=:v2db, + U, dt,

po(e)/e (1 + pol0)?)/(d — 1)| dt

where b; is a one-dimensional Brownian motion. In particular, this gives

dpo(24)? < 2V/2 (1) dby + [2Usp, () + 2] dt
< 2\/5 po(xt) dbt + 02(1 + po(.’Et)Q) dt



for some constant ¢y > 0. Thus, for any v, > 0, we have
d e7(L+po(ze)?) €%
<My — v (5= &) (1+ po(31)”) — 4y €™ py(my)?) @7 HolD™ gy
for some local martingale M;. Letting 6 := ¢, + 4 we arrive at
E [exp{7(1 + po(a)2) e }] < expfy(1 + po(w0))}-
Therefore, there exists a constant dy € |0, 1] such that
E [exp{0o(1 + po(2:)*)}| < exp{l + po(z0)?}, t< 1. (2.9)

Let p:=1+¢, q := (1 4 ¢)/e. The proof of Theorem 2 is completed in two
more steps.

I. Assume that T < Ty := 280/ [c18(8p — 1)q(1 + p(xo, ¥0)?)]. We have
v = B(Bp — 1)ger (1 + p(0,40)*) T/2 < .
Then, by (2.8) and (2.9), we obtain
E[exp {8(Bp — 1)g[Nlr/2}]

< exp {B(ﬁp;(;)_‘”;(i?’ y‘))?} E lexp {% [ 0+ o) dtH

)
< oo | AT [ o (L4 o)
(
)

1+ po(z0)%}.

Combining this with (2.7) and the fact that

E[R7] = E [exp { BNy — pB” [N]r/2} exp {8(Bp — 1) [N]r/2}]
< (Eexp {p8 Nr = 0?8 [NIr/2} )" (Eexp {8(8p — Da[N]r/2} )"
= (Eexp {8(8p — Da[Nlr/2})"",

we conclude that

(PTf)a(yo) < PTfa(ZUO) exp {Oﬁ(p,ﬁ — 1)p($0, .UO)2

212—¢e)T
s 2 po(xof)} RCRT)



II. If T > T, then by (2.10) and Jensen’s inequality,

(Prf)*(vo) < (Pr,(Pr-m,f))* (%)

< Pr(Prn )" (a0) oxp{ WL DASIE L &0

< Prf®(z0) exp{c208(28 = 1)* (L+ plao, o) )p(ao, o)’

ot polan)?)}

for some ¢y = (). In conclusion, combining this with (2.10), the desired
inequality for some c(¢) > 0 is obtained.

3 Proof of Theorem 2 with cut-locus

As already explained in Section 2, we may assume that OM = &. When
Cut(M) # o, the idea (originally due to Cranston [7]) is to construct the
coupling by parallel translation outside of Cut(M) and to let the two marginal
processes move independently on the cut-locus. This idea has been realized in
[32] by an approximation argument. Since the present situation is different due
to the Girsanov transformation, we reformulate the procedure here in detail
for our purpose of achieving a coupling time smaller than a given T > 0.

By Itd’s formula it is easy to see that, when Cut(M) = &, the generator of
the coupling (zy, §;) is (cf. the proof of [15, Theorem 6.5.1])

L(z) + L(y) +2 ) (PoyXi(2), Y;(y)) Xi(2)Y; (y)

i,j=1

- (Iz(a:, y) + p(zo, yo)/T) n(y, ),

where L(z) and L(y) denote the operator L acting on the first and the second
components respectively, and {X;} and {Y;} are local frames normal at z and
y, respectively. Note that this operator is independent of the choices of the
local frames. Thus, in the general situation, we intend to construct a process
generated by

L(z,y) := L(z) + L(y) + 2 Lgcuon (@, 9) D (Poy Xi(2), Y;(9)) Xi(2) V()

ij=1

— ((TocuranI2) (@, ) + p(x0, y0)/T) nly,z),  (3.1)

where n(y,z) is set to be zero on Cut(M) U D. To this end, we adopt an
approximation argument as in [32, §2.1].



For any n > 1 and € € ]0, 1], let h, . € C°(M x M) such that
0<hye<1l—¢, hpCCut(M),=1—¢, hy,|Cut(M)y, =0,
where
Cut(M)n := {(z,9) : puxne((z,y), Cut(M)) <1/n}, n=>1

and par« s is the Riemannian distance on M x M. Consider the operator

Lue(@,y) = L(x) + L(y) + 2hae(2,y) I (PoyXi(2), Y;(y)) Xi(2)Y;(y)

,j=1

— Iz, y) + (1 = e, 9) T (2, 9) + p(z0, %0) /T )y, 7),
with J € C*°((M x M) \ D) such that

Lp(-,y)(x) + Lo(z, ) (y) < J(z,y), z#y.

Since lNLn,E is a uniformly elliptic second order differential operator with smooth
diffusion coefficients and the drift is smooth outside of D, it generates a unique
diffusion process (zt, y;”) up to the coupling time 7, . := inf{t > 0 : 2, = y;"*}
(cf. [24, Theorem 6.4.3]), which can be constructed by solving (2.1) and the
It6 SDE

dltéy?,s = 2hn,€(xt7 yll,g) P, s (I>t dBt

Tt,Yy
+ 201 = B (@, y7) UPF ABy + Z(yp) dt
— (Iz(@e, y) + (1 = hae(@e, y9)) (2, 47°) + p(@o, y0) /T )y, ) dt

with initial condition y5>° = vy, where ®; and ¥} are the horizontal lifts of
z; and y;”° respectively, and B; and B; are two independent d-dimensional
Brownian motions. Indeed, the last equation may be solved first neglecting
the drift term involving n(y;”*, x;) and then by applying Girsanov’s theorem.
We set y;° = z; for t > 7, .. By the choice of J and using Itd’s formula of the
radial process as presented in [18], we get

Aol ) < 21— by atp -8 gy < (39

where 0;”° is a one-dimensional Brownian motion. Therefore, letting Pro.40
be the distribution of (x4, y3")ico,r), Where here and in the sequel, (£.,n.) €
C(]0,T]; M x M) is the canonical path, we have

lim sup sup Py%.%° { sup p(&,m) > N} = 0. (3.3)

N—soo Mse te[0,T]



Since the first marginal distribution of P7% is P*, the distribution of the
L-diffusion process starting at z, it follows from (3.3) that

]P;UL?E’yO { sup pMXM((é-Sa 778)7 (§t7 77t)) Z N}

5,t€[0,T7

< P { sup (20(65,&) + (&) + plEtme)) > N}

s,t€[0,T7

< PR { sup p(€s, &) = N/4} + P { SFP]P(ft,nt) > N/4}
te[0,T

s,t€[0,T7

= P { sup p(&, &) > N/4} + Provo { sup p(&,m) > N/4} — 0,
5,L€[0,T] ’ te[0,T

as N — oo. Thus, by [21, Lemma 4] the family {P7%% : n > 1, ¢ € ]0,1[}

is tight. We take ny — oo and £, — 0 such that P;°% converges weakly to

some P20 (£ > 1) as k — oo while PZ2% converges weakly to some P*% as

¢ — oo. It is trivial to see that P*0¥ solves the martingale problem for L up
to the coupling time; that is, for any f € C§°((M x M) \ D),

t.
flem) = [ Li€,n)ds, t<T,

is a P*o¥%-martingale w.r.t. the natural filtration up to inf{¢ > 0 : & = n:}.
Moreover, according to the proof of [32, Theorem 2.1.1] and (3.2), there holds

p(0, Y0) dt, P™v._as. (3.4)

dp(&,me) < — T

Hence, there exist two independent d-dimensional Brownian motions B; and
B, on a complete probability space (2, .#,.%;,P), and two processes z; and g
on M such that equation (2.1) and
4G, =V2 1gcur(an) (€6 1) Prvye @ dBy + V2 Lowan) (20, §:) W1 d By + Z(§) dt
— (I, 31) + (0, 90)/T) nliie, ) dt, ¢ <7,

hold, where ®; and W, are the horizontal lifts of z; and 7; respectively, and
7:=1inf{t > 0: x; = §;}. Moreover, by (3.4) we have

p(an yo) d

dp(z, J:) < — T

2

as well as 7 < T'. Let y; = z; for t > 7 and let R; be defined as in Section 2
with

1 AT B 5
Nt = % /0 <Pw3,:1]3 (1CCut(M) (.’Es, ys)cbs st + 1Cut(M) (-TSa ys)llls dB;) )

(12(osr) + W)n(y 2)).

10



We conclude that g; is generated by L under the probability Q := RyP. The
remainder of the proof is analogous to the case where Cut(M) = @.

4 Proof of Corollary 3

Given t > 0, let T > 0, p € ]1,2[ and ¢ := p/2(p — 1) be such that gt < T.
Applying Theorem 2 with « := 2/p and € = 1, we obtain, for any bounded
nonnegative measurable function f,

I = ,u(B(:L" \/Q_t)) e C1 (1+t+t2+90(l')2)7t/(qut) (Ptf(:v))Z

</ Ptf‘“ )P exp{—01(1+t+t2+po(x)2)—Tiqt
(fjfi)pﬂpc(”a I B 1)1 o) b

Since on B(z,/2t) one has p,(y)? < 2p,(x)? + 4t, there exists a constant
¢1 = ¢1(p) > 0 such that

1< [ P e {5 20

Combining this with [10, (2.9)] we arrive at

<[ fw { (ﬁﬁ)}umy). (1)

Taking f(y) := (n A pi(z,y)) exp {n/\ %}, y € M, we obtain from (4.1)
that

/M(n A pi(z,y))? exp {n A /)(%7?)2} w(dy)

< &P {ci(p)(1 +t + 2 + po(x)?) +t/(T — qt)}
B 1(B(z,V2t) '

For any 6 > 2, letting 7" := 0t/2 and ¢q := 1/2 + §/4, we obtain

Es(z,t) := /M pe(z,y)? exp { p(xé,ty)Q } w(dy)

< &P {c(6)(1 +t+ 12 + po(z)?)}
- w(B(z, V2t)

11



for some ¢(d) > 0. Therefore, by [12, (3.4)] we have

pe(z,y) < exp {#} \/E(;(ac,t)E(;(y,t)

_ e {e@)(1+ ¢+ + po()? + po(y)?) — p(x,y)?/(261)}
B (B, V20 u(B(y, v21)
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