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MARC ARNAUDON, CLÉMENT DOMBRY, ANTHONY PHAN, AND LE YANG

Abstract. Consider a probability measure µ supported by a regular geodesic

ball in a manifold. For any p ≥ 1 we define a stochastic algorithm which con-

verges almost surely to the p-mean ep of µ. Assuming furthermore that the
functional to minimize is regular around ep, we prove that a natural renormal-

ization of the inhomogeneous Markov chain converges in law into an inhomo-

geneous diffusion process. We give an explicit expression of this process, as
well as its local characteristic.

1. Introduction

Consider a set of points {x1, . . . , xn} in an Euclidean space E with metric d.
The geometric barycenter e2 of this set of points is the unique point minimizing
the mean square distance to these points, i.e.

e2 = arg min
x∈E

1
n

n∑
i=1

d2(x, xi).

It is equal to the standard mean e2 = 1
n

∑n
i=1 xi and is the most common estimator

in statistics. However it is sensitive to outliers, and it is natural to replace power 2
by p for some p ∈ [1, 2). This leads to the definition of p-means: for p ≥ 1, a
minimizer of the functional

Hp :
E → R+

x 7→ 1
n

∑n
i=1 d

p(x, xi)

is called a p-mean of the set of points {x1, . . . , xn}. When p = 1, e1 is the median
of the set of points and is very often used in robust statistics. In many applications,
p-means with some p ∈ (1, 2) give the best compromise. It is well known that in
dimension 1, the median of a set of real numbers may not be uniquely defined. This
is however an exceptional case: the p-mean of a set of points is uniquely defined as
soon as p = 1 and the points are not aligned or as p > 1. In these cases, uniqueness
is due to the strict convexity of the functional Hp.

The notion of p-mean is naturally extended to probability measures on Riemann-
ian manifolds. Let µ be a probability measure on a Riemannian manifold M with
distance ρ. For any p ≥ 1, a p-mean of µ is a minimizer of the functional

(1.1) Hp :
M → R+

x 7→
∫
M
ρp(x, y)µ(dy) .

It should be stressed that unlike the Euclidean case, the functional Hp may not be
convex (if p ≥ 2) and the p-mean may not be uniquely defined. In the case p = 2,
we obtain the so-called Riemannian barycenter or Karcher mean of the probability
measure µ. This has been extensively studied, see e.g. [8], [10], [11], [5], [18],
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[2], where questions of existence, uniqueness, stability, relation with martingales
in manifolds, behaviour when measures are pushed by stochastic flows have been
considered. In the general case p ≥ 1, Afsari [1] proved existence and uniqueness
of p-means on “small” geodesic balls. More precisely, let inj(M) be the injectivity
radius ofM and α2 > 0 an upper bound for the sectional curvatures inM . Existence
and uniqueness of the p-mean in ensured as soon as the support of the probability
measure µ is contained in a convex compact Kµ of a geodesic ball B(a, r) with
radius

(1.2) r < rα,p with rα,p =
{

1
2 min

{
inj(M), π2α

}
if p ∈ [1, 2)

1
2 min

{
inj(M), πα

}
if p ∈ [2,∞) .

The case p ≥ 2 gives rise to additional difficulties since the functional Hp to mini-
mize is not necessarily convex any more, due to the fact that we can have r > π

4α .
Provided existence and uniqueness of the p-mean, the question of its practical de-

termination and computation arises naturally. In the Euclidean setting and when
p = 1, the problem of finding the median e1 of a set of points is known as the
Fermat-Weber problem and numerous algorithms have been designed to solve it. A
first one was proposed by Weiszfeld in [21] and was then extended by Fletcher and
al in [7] to cover the case of sufficiently small domains in Riemannian manifolds
with nonnegative curvature. A complete generalization to manifolds with positive
or negative curvature, including existence and uniqueness results (under some con-
vexity conditions in positive curvature), has been given by one of the authors in [22].
In the case p = 2, computation of the Riemannian barycenter has been performed
by Le in [13] using a gradient descent algorithm.

In this paper, we consider the general case p ≥ 1 in a Riemannian setting. Under
the above mentioned condition of Asfari [1] ensuring existence and uniqueness of
the p-mean, we provide a stochastic gradient descent algorithm that converges
almost surely to ep. This algorithm is easier to implement than the deterministic
gradient descent algorithm since it does not require computing the gradient of the
functional Hp to minimize. More precisely, we construct a time inhomogeneous
Markov chain (Xk)k≥0 as follows: at each step k ≥ 0, we draw a random point
Pk+1 with distribution µ and we move the current point Xk to Xk+1 along the
geodesic from Xk to Xk+1 by a distance depending on p, Xk and on a deteministic
parameter tk+1. In Theorem 2.3 below, we state that under a suitable condition on
the sequence (tk)k≥1, the Markov chain (Xk)k≥0 converges almost surely and in L2

to the p-mean ep. Our proof relies on the martingale convergence theorem and the
main point consists in determining and estimating all the geometric quantities. For
related convergence results on recursive stochastic algorithms, see [14] Theorem 1
or [3].

We then study the speed of convergence to the p-mean and its fluctuations: in
Theorem 2.6 we prove that the suitably renormalized inhomogeneous Markov chain
(Xk)k≥0 converges in law to an inhomogeneous diffusion process in the Skohorod
space. This is an invariance principle type result, see e.g. [9], [15], [4], [6] for
related works. Interestingly, the limiting process depends in a crucial way on the
sequence (tk)k≥1 of the algorithm. The main point is to compute the generator of
the rescaled Markov chain and to obtain the characteristics of the limiting process
from the curvature conditions and estimates on Jacobi fields.

The paper is organized as follows. Section 2 is devoted to a detailed presentation
of the stochastic gradient descent algorithm (Xk)k≥0 and its properties: almost sure
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convergence is stated in Theorem 2.3 and the invariance principle in Theorem 2.6.
Proofs are gathered in Section 3.

2. Results

2.1. p-means in regular geodesic balls. Let M be a Riemannian manifold with
pinched sectional curvatures. Let α, β > 0 such that α2 is a positive upper bound
for sectional curvatures on M , and −β2 is a negative lower bound for sectional
curvatures on M . Denote by ρ the Riemannian distance on M .

In M consider a geodesic ball B(a, r) with a ∈M . Let µ be a probability measure
with support included in a compact convex subset Kµ of B(a, r). Fix p ∈ [1,∞).
We will always make the following assumptions on (r, p, µ):

Assumption 2.1. The support of µ is not reduced to one point. Either p > 1 or
the support of µ is not contained in a line, and the radius r satisfies equation (1.2).

Note that B(a, r) is convex if r < 1
2 min

{
inj(M), πα

}
. Under assumption 2.1, it

has been proved in [1] (Theorem 2.1) that the functional Hp defined by Equation
(1.1) has a unique minimizer ep in M , the p-mean of µ, and moreover ep ∈ B(a, r).
If p = 1, e1 is the median of µ. It is easily checked that if p ∈ [1, 2), then Hp is
strictly convex on B(a, r). On the other hand, if p ≥ 2 then Hp is of class C2 on
B(a, r) but not necessarily convex as mentioned in the introduction.

Proposition 2.2. Let K be a convex subset of B(a, r) containing the support of µ.
Then there exists Cp,µ,K > 0 such that for all x ∈ K,

(2.1) Hp(x)−Hp(ep) ≥
Cp,µ,K

2
ρ(x, ep)2.

Moreover if p ≥ 2 then we can choose Cp,µ,K so that for all x ∈ K,

(2.2) ‖ gradxHp‖2 ≥ Cp,µ,K (Hp(x)−Hp(ep)) .

In the sequel, we fix

(2.3) K = B̄(a, r − ε) with ε =
ρ(Kµ, B(a, r)c)

2
.

We now state our main result: we define a stochastic gradient algorithm (Xk)k≥0

to approximate the p-mean ep and prove its convergence.

Theorem 2.3. Let (Pk)k≥1 be a sequence of independent B(a, r)-valued random
variables, with law µ. Let (tk)k≥1 be a sequence of positive numbers satisfying

(2.4) ∀k ≥ 1, tk ≤ min
(

1
Cp,µ,K

,
ρ(Kµ, B(a, r)c)

2p(2r)p−1

)
,

(2.5)
∞∑
k=1

tk = +∞ and
∞∑
k=1

t2k <∞.

Letting x0 ∈ K, define inductively the random walk (Xk)k≥0 by

(2.6) X0 = x0 and for k ≥ 0 Xk+1 = expXk
(
−tk+1 gradXk Fp(·, Pk+1)

)
where Fp(x, y) = ρp(x, y), with the convention gradx Fp(·, x) = 0.

The random walk (Xk)k≥1 converges in L2 and almost surely to ep.

In the following example, we focus on the case M = Rd and p = 2 where drastic
simplifications occur.
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Example 2.4. In the case when M = Rd and µ is a compactly supported proba-
bility measure on Rd, the stochastic gradient algorithm (2.6) simplifies into

X0 = x0 and for k ≥ 0 Xk+1 = Xk − tk+1 gradXk Fp(·, Pk+1).

If furthermore p = 2, clearly e2 = E[P1] and gradx Fp(·, y) = 2(x − y), so that the
linear relation

Xk+1 = (1− 2tk+1)Xk + 2tk+1Pk+1, k ≥ 0

holds true and an easy induction proves that

(2.7) Xk = x0

k−1∏
j=0

(1− 2tk−j) + 2
k−1∑
j=0

Pk−jtk−j

j−1∏
`=0

(1− 2tk−`), k ≥ 1.

Now, taking tk =
1
2k

, we have

k−1∏
j=0

(1− 2tk−j) = 0 and
j−1∏
`=0

(1− 2tk−`) =
k − j
k

so that

Xk =
k−1∑
j=0

Pk−j
1
k

=
1
k

k∑
j=1

Pj .

The stochastic gradient algorithm estimating the mean e2 of µ is given by the em-
pirical mean of a growing sample of independent random variables with distribution
µ. In this simple case, the result of Theorem 2.3 is nothing but the strong law of
large numbers. Moreover, fluctuations around the mean are given by the central
limit theorem and Donsker’s theorem.

2.2. Fluctuations of the stochastic gradient algorithm. The notations are
the same as in the beginning of section 2.1. We still make assumption 2.1. Let us
define K and ε as in (2.3) and let

(2.8) δ1 = min
(

1
Cp,µ,K

,
ρ(Kµ, B(a, r)c)

2p(2r)p−1

)
.

We consider the time inhomogeneous M -valued Markov chain (2.6) in the par-
ticular case when

(2.9) tk = min
(
δ

k
, δ1

)
, k ≥ 1

for some δ > 0. The particular sequence (tk)k≥1 defined by (2.9) satisfies (2.4) and
(2.5), so Theorem 2.3 holds true and the stochastic gradient algorithm (Xk)k≥0

converges a.s. and in L2 to the p-mean ep.
In order to study the fluctuations around the p-mean ep, we define for n ≥ 1 the

rescaled TepM -valued Markov chain (Y nk )k≥0 by

(2.10) Y nk =
k√
n

exp−1
ep Xk.

We will prove convergence of the sequence of process (Y n[nt])t≥0 to a non-homogeneous
diffusion process. The limit process is defined in the following proposition:
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Proposition 2.5. Assume that Hp is C2 in a neighborhood of ep, and that δ >
C−1
p,µ,K . Define

Γ = E
[
gradep Fp(·, P1)⊗ gradep Fp(·, P1)

]
and Gδ(t) the generator

(2.11) Gδ(t)f(y) := 〈dyf, t−1(y − δ∇dHp(y, ·)])〉+
δ2

2
Hessyf (Γ)

where ∇dHp(y, ·)] denotes the dual vector of the linear form ∇dHp(y, ·).
There exists a unique inhomogeneous diffusion process (yδ(t))t>0 on TepM with

generator Gδ(t) and converging in probability to 0 as t→ 0+.
The process yδ is continuous, converges a.s. to 0 as t→ 0+ and has the following

integral representation:

(2.12) yδ(t) =
d∑
i=1

t1−δλi
∫ t

0

sδλi−1〈δσ dBs, ei〉ei, t ≥ 0,

where Bt is a standard Brownian motion on TepM , σ ∈ End(TepM) satisfies
σσ∗ = Γ, (ei)1≤i≤d is an orthonormal basis diagonalizing the symmetric bilin-
ear form ∇dHp(ep) and (λi)1≤i≤d are the associated eigenvalues.

Note that the integral representation (2.12) implies that yδ is the centered Gauss-
ian process with covariance

(2.13) E
[
yiδ(t1)yjδ(t2)

]
=

δ2Γ(e∗i ⊗ e∗j )
δ(λi + λj)− 1

t1−δλi1 t
1−δλj
2 (t1 ∧ t2)δ(λi+λj)−1,

where yiδ(t) = 〈yδ(t), ei〉, 1 ≤ i, j ≤ d and t1, t2 ≥ 0.
Our main result on the fluctuations of the stochastic gradient algorithm is the

following:

Theorem 2.6. Assume that either ep does not belong to the support of µ or p ≥ 2.

Assume furthermore that δ > C−1
p,µ,K . The sequence of processes

(
Y n[nt]

)
t≥0

weakly

converges in D((0,∞), TepM) to yδ.

Remark 2.7. The assumption on ep implies that Hp is of class C2 in a neighbour-
hood of ep. For most of the applications µ is equidistributed on a finite set of data
which can be considered as randomly distributed. In this situation, when p > 1
then almost surely ep does not belong to the support of µ. For p = 1 one has to be
more careful since with positive probability e1 belongs to the support of µ.

Remark 2.8. From section 2.1 we know that, when p ∈ (1, 2], the constant

Cp,µ,K = p(2r)p−2 (min (p− 1, 2αr cot (2αr)))

is explicit. The constraint δ > C−1
p,µ,K can easily be checked in this case.

Remark 2.9. In the case M = Rd, Y nk = k√
n

(Xk−ep) and the tangent space TepM
is identified to Rd. Theorem 2.6 holds and, in particular, when t = 1, we obtain a
central limit Theorem:

√
n(Xn − ep) converges as n → ∞ to a centered Gaussian

d-variate distribution (with covariance structure given by (2.13) with t1 = t2 = 1).
This is a central limit theorem: the fluctuations of the stochastic gradient algorithm
are of scale n−1/2 and asymptotically Gaussian.
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3. Proofs

For simplicity, let us write shortly e = ep in the proofs.

3.1. Proof of Proposition 2.2.
For p = 1 this is a direct consequence of [22] Theorem 3.7.

Next we consider the case p ∈ (1, 2).
Let K ⊂ B(a, r) be a compact convex set containing the support of µ. Let

x ∈ K\{e}, t = ρ(e, x), u ∈ TeM the unit vector such that expe(ρ(e, x)u) = x,
and γu the geodesic with initial speed u : γ̇u(0) = u. For y ∈ K, letting hy(s) =
ρ(γu(s), y)p, s ∈ [0, t], we have since p > 1

hy(t) = hy(0) + th′y(0) +
∫ t

0

(t− s)h′′y(s) ds

with the convention h′′y(s) = 0 when γu(s) = y. Indeed, if y 6∈ γ([0, t]) then hy is
smooth, and if y ∈ γ([0, t]), say y = γ(s0) then hy(s) = |s − s0|p and the formula
can easily be checked.

By standard calculation,

h′′y(s)

≥ pρ(γu(s), y)p−2

×
(

(p− 1)‖γ̇u(s)T (y)‖2 + ‖γ̇u(s)N(y)‖2αρ(γu(s), y) cot (αρ(γu(s), y))
)(3.1)

with γ̇u(s)T (y) (resp. γ̇u(s)N(y)) the tangential (resp. the normal) part of γ̇u(s)

with respect to n(γu(s), y) =
1

ρ(γu(s), y)
exp−1

γu(s)(y):

γ̇u(s)T (y) = 〈γ̇u(s), n(γu(s), y)〉n(γu(s), y), γ̇u(s)N(y) = γ̇u(s)− γ̇u(s)T (y).

From this we get

h′′y(s) ≥ pρ(γu(s), y)p−2 (min (p− 1, 2αr cot (2αr))).(3.2)

Now

Hp(γu(t′))

=
∫
B(a,r)

hy(γu(t′))µ(dy)

=
∫
B(a,r)

hy(0)µ(dy) + t′
∫
B(a,r)

h′y(0)µ(dy) +
∫ t′

0

(t′ − s)

(∫
B(a,r)

hy(s)′′ µ(dy)

)
ds

and Hp(γu(t′)) attains its minimum at t′ = 0, so
∫
B(a,r)

h′y(0)µ(dy) = 0 and we

have

Hp(x) = Hp(γu(t)) = Hp(e) +
∫ t

0

(t− s)

(∫
B(a,r)

hy(s)′′ µ(dy)

)
ds.
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Using Equation (3.2) we get

Hp(x) ≥ Hp(e)

+
∫ t

0

(
(t− s)

∫
B(a,r)

pρ(γu(s), y)p−2 (min (p− 1, 2αr cot (2αr))) µ(dy)

)
ds.

(3.3)

Since p ≤ 2 we have ρ(γu(s), y)p−2 ≥ (2r)p−2 and

Hp(x) ≥ Hp(e) +
t2

2
p(2r)p−2 (min (p− 1, 2αr cot (2αr))) .(3.4)

So letting
Cp,µ,K = p(2r)p−2 (min (p− 1, 2αr cot (2αr)))

we obtain

(3.5) Hp(x) ≥ Hp(e) +
Cp,µ,Kρ(e, x)2

2
.

To finish let us consider the case p ≥ 2.
In the proof of [1] Theorem 2.1, it is shown that e is the only zero of the maps

x 7→ gradxHp and x 7→ Hp(x) − Hp(e), and that ∇dHp(e) is strictly positive.
This implies that (2.1) and (2.2) hold on some neighbourhood B(e, ε) of e. By
compactness and the fact that Hp−Hp(e) and gradHp do not vanish on K\B(e, ε)
and Hp−Hp(e) is bounded, possibly modifying the constant Cp,µ,K , (2.1) and (2.2)
also holds on K\B(e, ε).

�

3.2. Proof of Theorem 2.3.
Note that, for x 6= y,

gradx F (·, y) = pρp−1(x, y)
− exp−1

x (y)
ρ(x, y)

= −pρp−1(x, y)n(x, y),

whith n(x, y) :=
exp−1

x (y)
ρ(x, y)

a unit vector. So, with the condition (2.4) on tk, the

random walk (Xk)k≥0 cannot exit K: if Xk ∈ K then there are two possibilities for
Xk+1:

• either Xk+1 is in the geodesic between Xk and Pk+1 and belongs to K by
convexity of K;
• or Xk+1 is after Pk+1, but since

‖tk+1 gradXk Fp(·, Pk+1)‖ = tk+1pρ
p−1(Xk, Pk+1)

≤ ρ(Kµ, B(a, r)c)
2p(2r)p−1

pρp−1(Xk, Pk+1)

≤ ρ(Kµ, B(a, r)c)
2

,

we have in this case

ρ(Pk+1, Xk+1) ≤ ρ(Kµ, B(a, r)c)
2

which implies that Xk+1 ∈ K.
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First consider the case p ∈ [1, 2).
For k ≥ 0 let

t 7→ E(t) :=
1
2
ρ2 (e, γ(t)) ,

γ(t)t∈[0,tk+1] the geodesic satisfying γ̇(0) = − gradXk Fp(·, Pk+1). We have for all
t ∈ [0, tk+1]

(3.6) E′′(t) ≤ C(β, r, p) := p2(2r)2p−1β cotanh(2βr)

(see e.g. [22]). By Taylor formula,

ρ(Xk+1, e)2

= 2E(tk+1)

= 2E(0) + 2tk+1E
′(0) + t2k+1E

′′(t) for some t ∈ [0, tk+1]

≤ ρ(Xk, e)2 + 2tk+1〈gradXk Fp(·, Pk+1), exp−1
Xk

(e)〉+ t2k+1C(β, r, p).

Now from the convexity of x 7→ Fp(x, y) we have for all x, y ∈ B(a, r)

(3.7) Fp(e, y)− Fp(x, y) ≥
〈
gradx Fp(·, y), exp−1

x (e)
〉
.

This applied with x = Xk, y = Pk+1 yields
(3.8)
ρ(Xk+1, e)2 ≤ ρ(Xk, e)2 − 2tk+1 (Fp(Xk, Pk+1)− Fp(e, Pk+1)) + C(β, r, p)t2k+1.

Letting for k ≥ 0 Fk = σ(X`, 0 ≤ ` ≤ k), we get

E
[
ρ(Xk+1, e)2|Fk

]
≤ ρ(Xk, e)2 − 2tk+1

∫
B(a,r)

(Fp(Xk, y)− Fp(e, y))µ(dy) + C(β, r, p)t2k+1

= ρ(Xk, e)2 − 2tk+1 (Hp(Xk)−Hp(e)) + C(β, r, p)t2k+1

≤ ρ(Xk, e)2 + C(β, r, p)t2k+1

so that the process (Yk)k≥0 defined by

(3.9) Y0 = ρ(X0, e)2 and for k ≥ 1 Yk = ρ(Xk, e)2 − C(β, r, p)
k∑
j=1

t2j

is a bounded supermartingale. So it converges in L1 and almost surely. Conse-
quently ρ(Xk, e)2 also converges in L1 and almost surely.

Let

(3.10) a = lim
k→∞

E
[
ρ(Xk, e)2

]
.

We want to prove that a = 0. We already proved that

(3.11) E
[
ρ(Xk+1, e)2|Fk

]
≤ ρ(Xk, e)2− 2tk+1 (Hp(Xk)−Hp(e)) +C(β, r, p)t2k+1.

Taking the expectation and using Proposition 2.2, we obtain

(3.12) E
[
ρ(Xk+1, e)2

]
≤ E

[
ρ(Xk, e)2

]
− tk+1Cp,µ,KE

[
ρ(Xk, e)2

]
+C(β, r, p)t2k+1.

An easy induction proves that for ` ≥ 1,

(3.13) E
[
ρ(Xk+`, e)2

]
≤
∏̀
j=1

(1− Cp,µ,Ktk+j)E
[
ρ(Xk, e)2

]
+ C(β, r, p)

∑̀
j=1

t2k+j .
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Letting `→∞ and using the fact that
∑∞
j=1 tk+j =∞ which implies

∞∏
j=1

(1− Cp,µ,Ktk+j) = 0,

we get

(3.14) a ≤ C(β, r, p)
∞∑
j=1

t2k+j .

Finally using
∑∞
j=1 t

2
j <∞ we obtain that limk→∞

∑∞
j=1 t

2
k+j = 0, so a = 0. This

proves L2 and almost sure convergence.
Next assume that p ≥ 2.
For k ≥ 0 let

t 7→ Ep(t) := Hp(γ(t)),

γ(t)t∈[0,tk+1] the geodesic satisfying γ̇(0) = − gradXk Fp(·, Pk+1). With a calcula-
tion similar to (3.6) we get for all t ∈ [0, tk+1]

(3.15) E′′p (t) ≤ 2C(β, r, p) := p3(2r)3p−4 (2rβ cotanh(2βr) + p− 2) .

(see e.g. [22]). By Taylor formula,

Hp(Xk+1) = Ep(tk+1)

= Ep(0) + tk+1E
′
p(0) +

t2k+1

2
E′′p (t) for some t ∈ [0, tk+1]

≤ Hp(Xk) + tk+1〈dXkHp, gradXk Fp(·, Pk+1)〉+ t2k+1C(β, r, p).

We get

E [Hp(Xk+1)|Fk]

≤ Hp(Xk)− tk+1

〈
dXkHp,

∫
B(a,r)

gradXk Fp(·, y)µ(dy)

〉
+ C(β, r, p)t2k+1

= Hp(Xk)− tk+1

〈
dXkHp, gradXk Hp(·)

〉
+ C(β, r, p)t2k+1

= Hp(Xk)− tk+1

∥∥gradXk Hp(·)
∥∥2 + C(β, r, p)t2k+1

≤ Hp(Xk)− Cp,µ,Ktk+1 (Hp(Xk)−Hp(e)) + C(β, r, p)t2k+1

(by Proposition 1.1) so that the process (Yk)k≥0 defined by
(3.16)

Y0 = Hp(X0)−Hp(e) and for k ≥ 1 Yk = Hp(Xk)−Hp(e)− C(β, r, p)
k∑
j=1

t2j

is a bounded supermartingale. Now the argument is exactly the same as in the first
part to prove that Hp(Xk)−Hp(e) also converges in L1 and almost surely to 0.

Finally (2.1) proves that ρ(Xk, e)2 converges in L1 and almost surely to 0. �
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3.3. Proof of Proposition 2.5. Fix ε > 0. Any diffusion process on [ε,∞) with
generator Gδ(t) is solution of a sde of the type

(3.17) dyt =
1
t
Lδ(yt) dt+ δσ dBt

where Lδ(y) = y − δ∇dHp(y, ·)] and Bt and σ are as in Proposition 2.5. This sde
can be solved explicitely on [ε,∞). The symmetric endomorphism y 7→ ∇dHp(y, ·)]
is diagonalisable in the orthonormal basis (ei)1≤i≤d with eigenvalues (λi)1≤i≤d.
The endomorphism Lδ = id−δ∇dHp(e)(id, ·)] is also diagonalisable in this basis

with eigenvalues (1 − δλi)1≤i≤d. The solution yt =
d∑
i=1

yitei of (3.17) started at

yε =
d∑
i=1

yiεei is given by

(3.18) yt =
d∑
i=1

(
yiεε

δλi−1 +
∫ t

ε

sδλi−1〈δσ dBs, ei〉
)
t1−δλiei, t ≥ ε.

Now by definition of Cp,µ,K we clearly have

(3.19) Cp,µ,K ≤ min
1≤i≤d

λi.

So the condition δCp,µ,K > 1 implies that for all i, δλi − 1 > 0, and as ε→ 0,

(3.20)
∫ t

ε

sδλi−1〈δσ dBs, ei〉 →
∫ t

0

sδλi−1〈δσ dBs, ei〉 in probability.

Assume that a continuous solution yt converging in probability to 0 as t → 0+

exists. Since yiεε
δλi−1 → 0 in probability as ε→ 0, we necessarily have using (3.20)

(3.21) yt =
d∑
i=1

t1−δλi
∫ t

0

sδλi−1〈δσ dBs, ei〉ei, t ≥ 0.

Note yiδ is Gaussian with variance
tδ2Γ(e∗i ⊗ e∗i )

2δλi − 1
, so it converges in L2 to 0 as t→ 0.

Conversely, it is easy to check that equation (3.21) defines a solution to (3.17).
To prove the a.s. convergence to 0 we use the representation∫ t

0

sδλi−1〈δσ dBs, ei〉 = Biϕi(t)

where Bis is a Brownian motion and ϕi(t) =
δ2Γ(e∗i ⊗ e∗i )

2δλi − 1
t2δλi−1. Then by the law

of iterated logarithm

lim sup
t↓0

t1−δλiBiϕi(t) ≤ lim sup
t↓0

t1−δλi
√

2ϕi(t) ln ln
(
ϕ−1
i (t)

)
But for t small we have √

2ϕi(t) ln ln
(
ϕ−1
i (t)

)
≤ tδλi−3/4

so
lim sup
t↓0

t1−δλiBiϕi(t) ≤ lim
t↓0

t1/4 = 0.
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This proves a.s. convergence to 0. Continuity is easily checked using the integral
representation (3.21). �

3.4. Proof of Theorem 2.6. Consider the time homogeneous Markov chain (Znk )k≥0

with state space [0,∞)× TeM defined by

(3.22) Znk =
(
k

n
, Y nk

)
.

The first component has a deterministic evolution and will be denoted by tnk ; it
satisfies

(3.23) tnk+1 = tnk +
1
n
, k ≥ 0.

Let k0 be such that

(3.24)
δ

k0
< δ1.

Using equations (2.6), (2.10) and (2.9), we have for k ≥ k0,
(3.25)

Y nk+1 =
ntnk + 1√

n
exp−1

e

(
expexpe

1√
ntn
k
Y nk

(
− δ

ntnk + 1
grad 1√

ntn
k
Y nk

Fp(·, Pk+1)
))

.

Consider the transition kernel Pn(z, dz′) on (0,∞)× TeM defined for z = (t, y)
by

Pn(z,A) =

P
[(
t+

1
n
,
nt+ 1√

n
exp−1

e

(
expexpe

1√
nt
y

(
− δ

nt+ 1
gradexpe

1√
nt
y Fp(·, P1)

)))
∈ A

]
(3.26)

where A ∈ B((0,∞)× TeM). Clearly this transition kernel drives the evolution of
the Markov chain (Znk )k≥k0 .

For the sake of clarity, we divide the proof of Theorem 2.6 into four lemmas.

Lemma 3.1. Assume that either p ≥ 2 or e does not belong to the support supp(µ)
of µ (note this implies that for all x ∈ supp(µ) the function Fp(·, x) is of class
C2 in a neighbourhood of e). Fix δ > 0. Let B be a bounded set in TeM and let
0 < ε < T . We have for all C2 function f on TeM

n

(
f

(
nt+ 1√

n
exp−1

e

(
expexpe

1√
nt
y

(
− δ

nt+ 1
gradexpe

1√
nt
y Fp(·, x)

)))
− f(y)

)
=
〈
dyf,

y

t

〉
−
√
n〈dyf, δ grade Fp(·, x)〉 − δ∇dFp(·, x)

(
grady f,

y

t

)
+
δ2

2
Hessyf (grade Fp(·, x)⊗ grade Fp(·, x)) +O

(
1√
n

)

(3.27)

uniformly in y ∈ B, x ∈ supp(µ), t ∈ [ε, T ].

Proof. Let x ∈ supp(µ), y ∈ TeM , u, v ∈ R sufficiently close to 0, and q =
expe

(uy
t

)
. For s ∈ [0, 1] denote by a 7→ c(a, s, u, v) the geodesic with endpoints

c(0, s, u, v) = e and

c(1, s, u, v) = expexpe(uyt )
(
−vs gradexpe(uyt ) Fp(·, x)

)
:
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c(a, s, u, v) = expe
{
a exp−1

e

[
expexpe(uyt )

(
−sv gradexpe(uyt ) Fp(·, x)

)]}
.

This is a C2 function of (a, s, u, v) ∈ [0, 1]2 × (−η, η)2, η sufficiently small. It also

depends in a C2 way of x and y. Letting c(a, s) = c

(
a, s,

1√
n
,

δ

nt+ 1

)
, we have

exp−1
e

(
expexpe

1√
nt
y

(
− δ

nt+ 1
gradexpe

1√
nt
y Fp(·, x)

))
= ∂ac(0, 1).

So we need a Taylor expansion up to order n−1 of
nt+ 1√

n
∂ac(0, 1).

We have c(a, s, 0, 1) = expe (−as grade Fp(·, x)) and this implies

∂2
s∂ac(0, s, 0, 1) = 0, so ∂2

s∂ac(0, s, u, 1) = O(u).

On the other hand the identities c(a, s, u, v) = c(a, sv, u, 1) yields ∂2
s∂ac(a, s, u, v) =

v2∂2
s∂ac(a, s, u, 1), so we obtain

∂2
s∂ac(0, s, u, v) = O(uv2)

and this yields
∂2
s∂ac(0, s) = O(n−5/2),

uniformly in s, x, y, t. But since

‖∂ac(0, 1)− ∂ac(0, 0)− ∂s∂ac(0, 0)‖ ≤ 1
2

sup
s∈[0,1]

‖∂2
s∂ac(0, s)‖

we only need to estimate ∂ac(0, 0) and ∂s∂ac(0, 0).
Denoting by J(a) the Jacobi field ∂sc(a, 0) we have

nt+ 1√
n

∂ac(0, 1) =
nt+ 1√

n
∂ac(0, 0) +

nt+ 1√
n

J̇(0) +O

(
1
n2

)
.

On the other hand
nt+ 1√

n
∂ac(0, 0) =

nt+ 1√
n

y√
nt

= y +
y

nt

so it remains to estimate J̇(0).
The Jacobi field a 7→ J(a, u, v) with endpoints J(0, u, v) = 0e and

J(1, u, v) = −v gradexpe(uyt ) Fp(·, x)

satisfies

∇2
aJ(a, u, v) = −R(J(a, u, v), ∂ac(a, 0, u, v))∂ac(a, 0, u, v) = O(u2v).

This implies that
∇2
aJ(a) = O(n−2).

Consequently, denoting by Px1,x2 : Tx1M → Tx2M the parallel transport along the
minimal geodesic from x1 to x2 (whenever it is unique) we have

(3.28) Pc(1,0),eJ(1) = J(0) + J̇(0) +O(n−2) = J̇(0) +O(n−2).

But we also have

Pc(1,0,u,v),eJ(1, u, v) = Pc(1,0,u,v),e

(
−v gradc(1,0,u,v) Fp(·, x)

)
= −v grade Fp(·, x)− v∇∂ac(0,0,u,v) grad· Fp(·, x) +O(vu2)

= −v grade Fp(·, x)− v∇dFp(·, x)
(uy
t
, ·
)]

+O(vu2)
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where we used ∂ac(0, 0, u, v) = uy
t and for vector fields A,B on TM and a C2

function f1 on M

〈∇Ae grad f1, Be〉 = Ae〈grad f1, Be〉 − 〈grad f1,∇AeB〉
= Ae〈df1, Be〉 − 〈df1,∇AeB〉
= ∇df1(Ae, Be)

which implies
∇Ae grad f1 = ∇df1(Ae, ·)].

We obtain

Pc(1,0),eJ(1) = − δ

nt+ 1
grade Fp(·, x)− δ√

n(nt+ 1)
∇dFp(·, x)

(y
t
, ·
)]

+O(n−2).

Combining with (3.28) this gives

J̇(0) = − δ

nt+ 1
grade Fp(·, x)− δ

nt+ 1
∇dFp(·, x)

(
y√
nt
, ·
)]

+O

(
1
n2

)
.

So finally
(3.29)
nt+ 1√

n
∂ac(0, 1) = y +

y

nt
− δ√

n
grade Fp(·, x)− δ∇dFp(·, x)

( y
nt
, ·
)]

+O
(
n−3/2

)
.

To get the final result we are left to make a Taylor expansion of f up to order 2. �

Define the following quantities:

(3.30) bn(z) = n

∫
{|z′−z|≤1}

(z′ − z)Pn(z, dz′)

and

(3.31) an(z) = n

∫
{|z′−z|≤1}

(z′ − z)⊗ (z′ − z)Pn(z, dz′).

The following property holds:

Lemma 3.2. Assume that either p ≥ 2 or e does not belong to the support supp(µ).

(1) For all R > 0 and ε > 0, there exists n0 such that for all n ≥ n0 and
z ∈ [ε, T ] × B(0e, R), where B(0e, R) is the open ball in TeM centered at
the origin with radius R,

(3.32)
∫

1{|z′−z|>1} P
n(z, dz′) = 0.

(2) For all R > 0 and ε > 0,

(3.33) lim
n→∞

sup
z∈[ε,T ]×B(0e,R)

|bn(z)− b(z)| = 0

with

(3.34) b(z) =
(

1,
1
t
Lδ(y)

)
and Lδ(y) = y − δ∇dH(y, ·)].
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(3) For all R > 0 and ε > 0,

(3.35) lim
n→∞

sup
z∈[ε,T ]×B(0e,R)

|an(z)− a(z)| = 0

with

(3.36) a(z) = δ2diag(0,Γ) and Γ = E [grade Fp(·, P1)⊗ grade Fp(·, P1)] .

Proof. (1) We use the notation z = (t, y) and z′ = (t′, y′). We have∫
1{|z′−z|>1} P

n(z, dz′)

=
∫

1{max(|t′−t|,|y′−y|)>1}P
n(z, dz′)

=
∫

1{max( 1
n ,|y′−y|)>1}P

n(z, dz′)

= P
[∣∣∣∣nt+ 1√

n
exp−1

e

(
expexpe

1√
nt
y

(
− δ

nt+ 1
gradexpe

1√
nt
y Fp(·, P1)

))
− y
∣∣∣∣ > 1

]
.

On the other hand, since Fp(·, x) is of class C2 in a neighbourhood of e, we
have by (3.29)

(3.37)∣∣∣∣nt+ 1√
n

exp−1
e

(
expexpe

1√
nt
y

(
− δ

nt+ 1
gradexpe

1√
nt
y Fp(·, P1)

))
− y
∣∣∣∣ ≤ Cδ√

nε

for some constant C > 0.
(2) Equation (3.32) implies that for n ≥ n0

bn(z)

= n

∫
(z′ − z)Pn(z, dz′)

= n

(
1
n
,E
[
nt+ 1√

n
exp−1

e

(
expexpe

y√
nt

(
− δ

nt+ 1
gradexpe

y√
nt
Fp(·, P1)

))]
− y
)
.

We have by lemma 3.1

n

(
nt+ 1√

n
exp−1

e

(
expexpe

1√
nt
y

(
− δ

nt+ 1
gradexpe

1√
nt
y Fp(·, P1)

))
− y
)

=
1
t
y − δ

√
n grade Fp(·, P1)− δ∇dFp(·, P1)

(
1
t
y, ·
)]

+O

(
1

n1/2

)
a.s. uniformly in n, and since

E
[
δ
√
n grade Fp(·, P1)

]
= 0,

this implies that

n

(
E
[
nt+ 1√

n
exp−1

e

(
expexpe

1√
nt
y

(
− δ

nt+ 1
gradexpe

1√
nt
y Fp(·, P1)

))]
− y
)

converges to

(3.38)
1
t
y − E

[
δ∇dFp(·, P1)

(
1
t
y, ·
)]]

=
1
t
y − δ∇dHp

(
1
t
y, ·
)]
.

Moreover the convergence is uniform in z ∈ [ε, T ] × B(0e, R), so this
yields (3.33).
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(3) In the same way, using lemma 3.1,

n

∫
(y′ − y)⊗ (y′ − y)Pn(z, dz′)

=
1
n

E
[(
−
√
nδ grade Fp(·, P1)

)
⊗
(
−
√
nδ grade Fp(·, P1)

)]
+ o(1)

= δ2E [grade Fp(·, P1)⊗ grade Fp(·, P1)] + o(1)

uniformly in z ∈ [ε, T ]×B(0e, R), so this yields (3.35).
�

Lemma 3.3. Suppose that tn =
δ

n
for some δ > 0. For all δ > C−1

p,µ,K ,

(3.39) sup
n≥1

nE
[
ρ2(e,Xn)

]
<∞.

Proof. First consider the case p ∈ [1, 2).
We know by (3.12) that there exists some constant C(β, r, p) such that

(3.40) E
[
ρ2(e,Xk+1)

]
≤ E

[
ρ2(e,Xk)

]
exp (−Cp,µ,Ktk+1) + C(β, r, p)t2k+1.

From this (3.39) is a consequence of Lemma 0.0.1 (case α > 1) in [16]. We give the
proof for completeness. We deduce easily by induction that for all k ≥ k0,

E
[
ρ2(e,Xk)

]
≤ E

[
ρ2(e,Xk0)

]
exp

−Cp,µ,K k∑
j=k0+1

tj

+ C(β, r, p)
k∑

i=k0+1

t2i exp

−Cp,µ,K k∑
j=i+1

tj

 ,

(3.41)

where the convention
∑k
j=k+1 tj = 0 is used. With tn = δ

n , the following inequality
holds for all i ≥ k0 and k ≥ i:

(3.42)
k∑

j=i+1

tj = δ

k∑
j=i+1

1
j
≥ δ

∫ k+1

i+1

dt

t
≥ δ ln

k + 1
i+ 1

.

Hence,

E
[
ρ2(e,Xk)

]
≤ E

[
ρ2(e,Xk0)

](k0 + 1
k + 1

)δCp,µ,K
+

δ2C(β, r, p)
(k + 1)δCp,µ,K

k∑
i=k0+1

(i+ 1)δCp,µ,K

i2
.

(3.43)

For δCp,µ,K > 1 we have as k →∞
(3.44)
δ2C(β, r, p)

(k + 1)δCp,µ,K

k∑
i=k0+1

(i+ 1)δCp,µ,K

i2
∼ δ2C(β, r, p)

(k + 1)δCp,µ,K
kδCp,µ,K−1

δCp,µ,K − 1
∼ δ2C(β, r, p)
δCp,µ,K − 1

k−1

and

E
[
ρ2(e,Xk0)

](k0 + 1
k + 1

)δCp,µ,K
= o(k−1).

This implies that the sequence kE
[
ρ2(e,Xk)

]
is bounded.

Next consider the case p ≥ 2.
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From the proof of Theorem 2.3 we have
(3.45)

E [Hp(Xk+1)−Hp(e)] ≤ (1− tk+1Cp,µ,K)E [Hp(Xk)−Hp(e)] + C(β, r, p)t2k+1

which implies
(3.46)
E [Hp(Xk+1)−Hp(e)] ≤ E [Hp(Xk)−Hp(e)] exp (−Cp,µ,Ktk+1) + C(β, r, p)t2k+1.

From this, arguing similarly, we obtain that the sequence kE [Hp(Xk)−Hp(e)] is
bounded. We conclude with (2.1). �

Lemma 3.4. Assume δ > C−1
p,µ,K and that Hp is C2 in a neighbourhood of e. For

all 0 < ε < T , the sequence of processes
(
Y n[nt]

)
ε≤t≤T

is tight in D([ε, T ],Rd).

Proof. Denote by
(
Ỹ nε =

(
Y n[nt]

)
ε≤t≤T

)
n≥1

, the sequence of processes. We prove

that from any subsequence
(
Ỹ φ(n)
ε

)
n≥1

, we can extract a further subsequence(
Ỹ ψ(n)
ε

)
n≥1

that weakly converges in D([ε, 1],Rd).

Let us first prove that
(
Ỹ φ(n)
ε (ε)

)
n≥1

is bounded in L2.

∥∥∥Ỹ φ(n)
ε (ε)

∥∥∥2

2
=

[φ(n)ε]2

φ(n)
E
[
ρ2(e,X[φ(n)ε])

]
≤ ε sup

n≥1

(
nE
[
ρ2(e,Xn)

])
and the last term is bounded by lemma 3.3.

Consequently
(
Ỹ φ(n)
ε (ε)

)
n≥1

is tight. So there is a subsequence
(
Ỹ ψ(n)
ε (ε)

)
n≥1

that weakly converges in TeM to the distribution νε. Thanks to Skorohod theorem
which allows to realize it as an a.s. convergence and to lemma 3.2 we can apply
Theorem 11.2.3 of [20], and we obtain that the sequence of processes

(
Ỹ ψ(n)
ε

)
n≥1

weakly converges to a diffusion (yt)ε≤t≤T with generator Gδ(t) given by (2.11) and
such that yε has law νε. This achieves the proof of lemma 3.4. �

Proof of Theorem 2.6. Let Ỹ n =
(
Y n[nt]

)
0≤t≤T

. It is sufficient to prove that

any subsequence of
(
Ỹ n
)
n≥1

has a further subsequence which converges in law

to (yδ(t))0≤t≤T . So let
(
Ỹ φ(n)

)
n≥1

a subsequence. By lemma 3.4 with ε = 1/m

there exists a subsequence which converges in law on [1/m, T ]. Then we extract a
sequence indexed by m of subsequence and take the diagonal subsequence Ỹ η(n).
This subsequence converges in D((0, T ],Rd) to (y′(t))t∈(0,T ]. On the other hand, as
in the proof of lemma 3.4, we have

‖Ỹ η(n)(t)‖22 ≤ Ct

for some C > 0. So ‖Ỹ η(n)(t)‖22 → 0 as t → 0, which in turn implies ‖y′(t)‖22 → 0
as t → 0. The unicity statement in Proposition 2.5 implies that (y′(t))t∈(0,T ] and
(yδ(t))t∈(0,T ] are equal in law. This achieves the proof. �
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l’université de Rouen (1998)
[20] D.W. Stroock and S.R.S. Varadhan, Multidimensional diffusion processes, Grundlehren der

mathematischen Wissenschaften 233, Springer, 1979.

[21] E. Weiszfeld, Sur le point pour lequel la somme des distances de n points donnés est mini-
mum, Tohoku Math. J. 43 (1937), pp. 355–386

[22] L.Yang, Riemannian median and its estimation, LMS Journal of Computation and Mathe-
matics 13 (2010) pp. 461–479



18 M. ARNAUDON, C. DOMBRY, A. PHAN, AND L. YANG
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