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Abstract. We associate stochastic Lagrangian flows to Navier-Stokes (deter-

ministic) velocities and show their unstable behaviour.
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1. Introduction

The Navier-Stokes system

(1.1)
∂

∂t
u = −(u.∇)u+ ν∆u−∇p, div u = 0

models the time evolution of the velocity field of incompressible fluids with viscosity
ν ≥ 0.

The Lagrangian approach to hydrodynamics studies the configuration of the
underlying particles, namely the solutions of the equations

d

dt
g(t) = u(t, g(t))

whereas the Eulerian approach deals with the time evolution of the velocities. We
stress the fact that there is no simple relation between the Eulerian and Lagrangian
description of the fluid motion (c.f., for instance, [1] or [6]).

Turbulent regimes are often studied in the perspective of the theory of dynam-
ical systems as chaotic systems, which are characterized by a strong sensitivity to
initial conditions. For example reference [6] follows this point of view, mainly using
Lyapounov exponents to describe the stability properties of the dynamical system
trajectories. The fact that a simple regular Euler flow can give rise to chaotic parti-
cle trajectories, a phenomenon which has been intensively studied by the Dynamical
Systems community, is also present in Fluid Dynamics. For example two dimen-
sional chaotic behaviour in Stokes flows was considered in various works, starting
with [1].

In the case of vanishing viscosity V. I. Arnold ([3]) described the Lagrangian
configuration as a geodesic flow on a space of diffeomorphisms (regular bijections of
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the underlying space where the particles move) preserving the volume measure. As
a geodesic the corresponding flow g(t) satisfies a variational principle: it minimizes,
in a time interval [0, T ], the action functional

(1.2) S[g] =
1

2

∫ T

0

∫
| d
dt
g(t)(x)|2dx

Based on the Lagrangian approach to hydrodynamics initiated by Arnold the
instability of trajectories of the corresponding flows, that is, the exponential diver-
gence of their distance, was derived (c.f. [4] and references therein).

In the dissipative case (non zero viscosity) one should expect Lagrangian tra-
jectories to become closer and closer after some possible initial stretching. On the
other hand a non-conservative system cannot admit a standard geodesic formula-
tion. So the problem of establishing a variational principle for viscosity lagrangian
flows and the study of their stability properties is a non trivial one.

Here we describe an alternative perspective on Lagrangian flows. To a (deter-
ministic) velocity solving Navier-Stokes equations we associate random Lagrangian
flows. These are stochastic processes whose mean velocity is precisely the deter-
ministic Navier-Stokes field. The model is justified by the fact that these flows are
solutions of a (now stochastic) variational principle that extends Arnold’s one to
the viscous case and reduces to it when ν = 0. This approach was initiated in works
such as [14], and more recently developed rigorously in [10] for flows living on the
flat torus and in [2] for flows in a general compact Riemannian manifold.

We stress that this is, by no means, a stochastic perturbative approach. We
do not add stochastic forces to the Navier-Stokes dynamics, we do not consider
additional phenomena such as diffusivity. Also the randomness is not chosen ad hoc.
It is hidden in Navier-Stokes equation itself, as quantum randomness is hidden in
Schroedinger equation. The stochastic process we study is the one that minimizes
the (mean) energy and its diffusive part is responsible for the second order term
in the Navier-Stokes vector field which corresponds to the mean velocity field of
this stochastic Lagrangian flow. In other words the Laplacian term in the Navier-
Stokes equation for the velocity expresses already the whole randomness of the
system. Furthermore, as the Laplacian is defined according to the geometry of
the configuration space, the Brownian part of the Lagrangian stochastic flows is
determined by this geometry. This approach is therefore an alternative description
of the motion of particles.

The stability properties of the Lagrangian stochastic flows that we consider here
as well as the evolution in time of the rotation between particles were studied in [2],
with a particular emphasis for the torus case. There it was shown that instability
was to be expected, depending on the geometry of the underlying configuration
space. The behaviour of some particular flows is considered in this work. We
show that the distance between random Lagrangian particles increases with time
significantly more than the distance of their deterministic counterpart.

Even when the corresponding deterministic description is not chaotic, the sto-
chastic picture may, as shown in our examples, have initially nearby trajectories
diverging faster than exponentially.

The nondeterministic and chaotic behaviour of Lagrangian trajectories, at least
at high Reynolds numbers but also in the case of some laminar flows has been
pointed out for a long time (c.f. for example [7] and references therein). Partly
the phenomena has been connected to the nonregularity of velocity fiels, lack of
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uniqueness of the solution, etc, and this leads to the study of ”generalized flows”,
where various types of regularization of the velocity fields are considered (c.f. [8]).
In the paper [5] the authors studied a model where the velocity is a Gaussian random
field and they connected the stochasticity of the motion with sensitive dependence
on initial conditions.

In our model the (mean) velocities are deterministic functions, coinciding pre-
cisely with smooth solutions of the Navier-Stokes equation. The model is, in this
sense, similar to the one in [9]. It provides stochastic Lagrangian trajectories for all
values of the viscosity. It involves, in contrast with other approaches, a choice of
randomness which is not canonical and may depend on various parameters. In par-
ticular this randomness may have its origin in excited small or large modes (large
or small lenght scales). It is also much linked to the geometry of the underlying
configuration space. The possible mathematical versions of the model may not all
correspond to physical relevant ones.

Diffusions driven by various (even infinitely many) independent Brownian mo-
tions were also considered in [13]. They were studied in depth concerning separation
of particle flows, their coalescence and hitting properties, along the evolution. Nev-
ertheless in this work special attention is given to the case where the covariance of
the motion is non smooth, which is not the case treated here.

The exponential type separation of particles is, in a counter-intuitive way, en-
hanced by the viscosity parameter in cases where the stochastic component of the
motion is very strong when compared with the deterministic one. This may indicate
that the choice of noise and its parameters should be carefully made on a physical
basis, since the behaviour is model dependent.

Stochastic Lagrangian paths also appear in representation formulae for the Navier-
Stokes solutions, as in [11]. Those perspectives are quite distinct from ours.

We mention a different view on Lagrangian trajectories for the Navier-Stokes
equation as geodesics for some geometry which is constructed in [15]. There the
approach is deterministic: what is deformed to pass from Euler to Navier-Stokes is
the geometry. In contrast, in our case, the deformation is stochastic.

2. The stochastic Lagrangian picture

On the two-dimensional torus T = R/2πZ × R/2πZ we consider the following
vector fields, for k = (k1, k2) ∈ Z2,

Ak(θ) = k⊥ cos k.θ, Bk(θ) = k⊥ sin k.θ

where k⊥ = (k2,−k1). A divergence free square integrable vector field v with real
components on the torus can be represented by its Fourier expansion as u(θ) =∑

k(u
1
kAk(θ) + u2kBk(θ)).

Consider the stochastic process W (t) defined by

(2.3) dW ν̃(t)(θ) =
∑
k∈Z

λk
√
ν̃
(
Ak(θ)dWk(t) +Bk(θ)dW̃k(t)

)
with fixed initial condition W (0), where Wk, W̃k are independent copies of real
Brownian motions and the derivative d means Itô derivative in time, ν̃ ≥ 0. We
assume that

∑
k |k|2λ2k <∞, where |k|2 = k21+k

2
2, which is a necessary and sufficient

condition for the stochastic process to be well defined and square integrable as a
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function of the space variable θ. In fact, in the examples presented in the next
section we consider only a finite number of such λk (only a finite number of Fourier
modes will be considered random). Furthermore we assume λk = λ(|k|) to be
nonzero for an equal number of k1 and k2 components. For a time-dependent
vector field u(t, θ), let gu denote the solution of the following stochastic differential
equation

(2.4) dgu(t) = dW ν̃(t) + u(t, gu(t))dt

with initial condition gu(0)(θ) = θ. Then the generator of the process for functions
on the torus is equal to

Lu = cν̃∆+
∂

∂t
+ ∂u

with 2c =
∑

k λ
2
k (c.f. [10]). Namely, for a smooth function f defined on the torus,

if ηt(θ) = Ef(gu(t)(θ)), we have

∂

∂t
ηt = Luηt

Notice that when ν̃ = 0 the last relation is just the total derivative of f along
the corresponding (deterministic) flow gu(t). It is the presence of the Laplacian
term, the generator of the Brownian part of the process, which will be responsible
for the Laplacian term in Navier-Stokes equation.

We remark that other Brownian processes can give rise to the same generator.
In other words, the choice of randomness in the model is not unique.

We define the mean derivative of gu(t) as its drift or, more precisely, if Et denotes
the conditional expectation with respect to the past of t filtration,

Dtgu(t) = limϵ→0
1

ϵ
(Et(gu(t+ ϵ)− gu(t))

then

Dtgu(t) = u(t, gu(t))

This notion generalizes for non differentiable trajectories the usual time derivative:
when the viscosity is zero the process gu(t) is the Lagrangian (deterministic) flow
for the Euler equation.

We claim that, when the vector field u satisfies Navier-Stokes equations, the
process gu gives a Lagrangian description of the motion. In fact one can define a
stochastic action functional as

(2.5) S[g] =
1

2

∫ T

0

(∫
T
|Dtgu(t)(θ)|2 dθ

)
dt

where dθ stands for the normalized volume measure on the torus.
Then (c.f.[10] and [2] for more details and proofs), a process gu of the form

(2.4) is critical for the action functional (2.3) if and only if the drift u satisfies
Navier-Stokes equations (1.1) with viscosity coefficient ν = ν̃

2

∑
k λ

2
k.

Again we notice that when the viscosity is zero the action reduces to (1.1) and
we obtain the variational principle for the Euler equation.

In this work we shall only consider the case where the configuration space is the
two-dimensional torus or the whole plane. Following the construction in [6], one
can work in a general compact Riemannian manifold the Laplacian and therefore
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the associated Brownian motion will be defined by the corresponding Riemannian
metric.

3. Stability of motion and rotation of particles; examples

Take two different solutions of the stochastic differential equation (2.4), gu(t)
and g̃u(t), starting respectively from gu(0)(θ) = ϕ(θ) and g̃u(0)(θ) = ψ(θ), with
ϕ ̸= ψ Then we can use Itô formula to explicitely compute the evolution in time
distance between the two solutions. By considering the L2 distance, namely

d2L2(gu(t), g̃u(t)) =

∫
|gu(t)(θ)− g̃u(t)(θ))|2dθ

we have shown in [2] that, at least until some time which depends on ∥ϕ−ψ∥∞ and
also on the initial velocity u(0, .), the L2 distance between the Lagrangian flows
increases more than exponentially.

Here we numerically analyse the behaviour of the distance between Lagrangian
stochastic particles in two examples, one in the torus and the other in the plane. The
distance we refer to here is the standard ponctual distance between trajectories. We
observe that they are, indeed, more unstable then the classical deterministic ones,
and this is specially the case after some initial short time when the deterministic
trajectories get apart.

Also in [2] we have studied the behaviour of the unit tangent vector to the curve
linking gt(θ) and g̃t(θ) and its evolution in time. In the case of the two dimensional
torus it was deduced that the rotation between particles for short distances between
particles becomes more and more irregular the shorter the distance. The effect is
stronger for bigger values of the quantity ν

∑
k λ

2
k|k|4. We observe this phenomenon

in our example of the torus.

Example 1. A stochastic flow on the two-dimensional torus.

We consider the following time-dependent vector field on the torus T

u(t, θ) = c1
∑
k∈K

k⊥e−ν|k|2t cos(k.θ) + c2
∑
k∈K

k⊥eν|k|
2t sin(k.θ)

The sums are over some set of indexes K ⊂ Z2 and k.θ = k1θ1 + k2θ2. For every
c1, c2 the vector field u is a solution of Navier-Stokes equation with zero gradient
of pressure. Let gu be the corresponding Lagrangian flow solving the stochastic
differential equation,

dgu(t) =
∑
k

λk
√
ν̃(k2,−k1) cos(k.gu(t))dWk(t)

(3.6) +
∑
k

λk
√
ν̃(k2,−k1) sin(k.gu(t))dW̃k(t) + u(t, gu(t))dt

with ν and ν̃, as before, related as ν̃ = ν
2

∑
k λ

2
k.

The differential equations were numerically solved, through the Monte Carlo
method, with the Euler-Maruyama algorithm (c.f., for example, [12]) with a time-
step δt = 2−10. Emphasis was placed on the behavior of the trajectories at short
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times and different sets of parameters were considered to probe the differences
between the deterministic and stochastic trajectories. Unless stated otherwise, in
the respective plots, the following parameters were used in the calculations: the
sums over k in (3.6) were carried out for 6 vectors, k1 = (0, 1), k2 = (1, 0), k3 = (1, 1)
and k⊥i , i = 1, 2, 3. This set of indexes is denoted hereafter by Ka and it was used
in the sums over k for the stochastic and deterministic components, although other
values were also considered for the latter. We have considered c1 = c2 = 1.5, the
kinematic viscosity ν = 1.0 and λk = 0.7 for k = 1,2,3, λk⊥ = λk. The cj , with
j = 1, 2 and the λk with k = 1, 2, 3, were kept equal for every j and k, respectively,
for simplicity’s sake. We shall refer to the solutions of the stochastic differential
equation (3.6), simply as stochastic trajectories, in opposition to the deterministic
trajectories (i.e., the Navier-Stokes solution trajectories).

Figure 1 displays the effect of different parameters on a single deterministic
trajectory starting at the point (0.0, 0.0). The differential equation was solved over
[0, T ], with T = 50. This value is large enough to plot the complete deterministic
trajectories for the different parameters considered. As it may be seen the trajectory
length increases with the value of c1(= c2), whereas it decreases with the increase
of both, the kinematic viscosity, ν, and the magnitude of the components of the k
vectors.

A comparison between some of the deterministic trajectories depicted in Fig. 1
and the corresponding stochastic trajectories is shown in Fig. 2. The latter are
averages over 50 Brownians. The equations were solved within the interval [0, T ],
with T = 4, plot (a), T = 5, plot (b), and T = 1, plot (c). Notice that the
deterministic trajectories in Fig. 2, plots (a), (b) and (c), are the dashed (red) lines
plotted respectively in Fig. 1, (a), (b) and (c). The plots (a) and (b) of Fig. 2
allow comparing the effect of ν, whereas the plots (a) and (c) allow comparing the
effect of the k vectors on the trajectories.

Concerning the rotations between particles, the stochatic component of the mo-
tion induces an opposite behaviour regarding the effect of ν and the magnitude
of the components of the k vectors. Thus, the space spanned by the stochastic
trajectory increases with ν as well as with the magnitude of the components of the
k vectors.

Figure 3 depicts two deterministic trajectories and their stochastic counterparts.
Their ponctual distance (the expected values of the distance for the later) are
also plotted. The trajectories start at the points (0.0, 0.0) and (0.01, 0.01), and
were computed using the same parameters of Fig. 2, plots (a) and (b). The
equations were solved within [0, T ], with T = 1. The stochastic trajectories and
the respective expected values of the distance are averages over 25000 Brownians.
Examination of the plots (a2) and (b2) of Fig. 3 shows that the expected values
of the distance between the stochastic trajectories increase significantly faster than
their deterministic equivalent. Specifically, the expected values of the distance
between the stochastic trajectories depict an approximately exponential growth
at short times (t < 1). Moreover it can be seen that the distance between the
random trajectories increases faster for larger kinematic viscosities (compare the
red dashed lines in (a2) and (b2)). This trend is opposite to that depicted by
the deterministic trajectories and it reflects a larger microscopic uncertainty on
the particles’ positions, resulting from the stochastic term being multiplied by the
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square root of ν̃, proportional to ν. This behavior, however, as we shall see, is also
parameter dependent, and more importantly, it depends on u(t, θ), through θ.

A comparison between the deterministic and respective stochastic trajectories
within [0, T ], with T = 5 is shown in Figs. 4 and 5 for two distinct sets of deter-
ministic k vectors, Ka and Kb, and different values of ν. The choice Kb correspond
to bigger Fourier modes (or smaller lenght scales). The stochastic component was
kept unchanged, i.e., both sets of solutions were obtained for Ka. The distance
between the deterministic trajectories and the expected distance for the stochastic
trajectories is also displayed. The stochastic solutions for both, Ka and Kb, depict
an inward trajectory in opposition with the outward rotations of the deterministic
trajectories. Further it is possible to observe an inversion, for Ka, (Fig. 4 (a2)
and (b2)), of the dependence on the viscosity in passing from the deterministic to
the stochastic trajectories. This is the situation described previously regarding the
results plotted in Fig. 3. However, for Kb the observed trend is similar for both,
the deterministic and stochastic trajectories. This behavior, depicted in Fig. 5
(b2), for the expected values of the distance between the stochastic trajectories is
observed only at short times. Thus, at larger times the trend observed in Fig. 4
(b2) will be recovered as the drift approaches zero. Further, we can see, that the
stochastic Lagrangian flow leads to more unstable trajectories when compared with
the deterministic case, for both Ka and Kb.

We now turn attention to the influence of the velocity field, through its explicit
dependence on θ, on the stochastic trajectories. For this purpose we considered
trajectories starting at different points in the torus. Here we present results for the
viscosity dependence on the expected distance between two trajectories starting
at points (1.0,1.0) and (1.01,1.01). The velocity field driving these trajectories is
significantly different from that for the points (0.0,0.0) and (0.01,0.01) previously
described. These results have been obtained using the same parameters as in Fig.
4 and are displayed in Figure 6. As it may be seen, the behavior with viscosity
is similar for both the stochastic and deterministic trajectories, in opposition with
the results found for the trajectories starting at (0.0,0.0) and (0.01,0.01). The
reason is that the drift is significantly stronger than that in Fig. 4. Notice that
the deterministic trajectories (see Fig. 6 (a2)) also diverge much faster than those
depicted in Fig. 4 (a2). This is similar to the situation in Fig. 5 where the
deterministic trajectories also diverge faster for Kb than for Ka.

The examples presented here for the torus show, therefore, that the stochastic
trajectories diverge significantly faster than their deterministic equivalent, following
our expectations. In the following section we provide a different example for a
distinct solution of the Navier-Stokes equation in 2-dimensions.

Example 2. The Taylor-Green vortex solution.

Let us now consider the Taylor-Green vortex solution of the Navier-Stokes equa-
tion on the plane with viscosity ν,

v(t, x, y) = (sinx cos y,− cosxsiny)e−2νt

Here the pressure is equal to p(t, x, y) = 1
4 (cos

2 x+ cos2 y)e−4νt.
Consider the corresponding stochastic Lagrangian trajectories,
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dgv(t) =
∑
k

λk
√
ν̃k⊥ cos(k.gv(t))dWk(t)

(3.7) +
∑
k

λk
√
ν̃k⊥ sin(k.gv(t))dW̃k(t) + v(t, gv(t))dt

The trajectories were computed using a similar approach to the one described
previously for Example 1. Parameters λk are kept equal, λk = 0.5 and λ⊥k = λk,
for k = 1, 2, 3 and we use the set of k vectors of Example 1, denoted by Ka, for
the stochastic component. A similar time-step to that of Example 1 was used (i.e.,
δt = 2−10).

Figure 7 shows the expected value of the distance between trajectories starting
at (1.0, 1.0) and (1.01, 1.01) for two distinct viscosities. The equations were solved
within [0, T ], with T = 5. As in Fig. 3 the stochastic trajectories and the respective
expected values of the distance are averages over 25000 Brownians. A similar
behavior to that depicted in Fig. 3 of Example 1 can be observed. Thus, [E]
increases significantly faster for the random trajectories than the distance between
the deterministic trajectories.

4. Conclusions

We propose a description of the Lagrangian evolution associated to Navier-Stokes
equations in terms of stochastic processes. These processes are solutions of stochas-
tic differential equations whose diffusion coefficients generate the Laplacian term
in the Navier-Stokes equations and whose drifts (or mean velocities) coincide with
their smooth solutions. They satisfy a least action stochastic principle. So we pro-
pose to study non-smooth particle trajectories associated with smooth velocities.

We study the model behaviour concerning the separation of trajectories along
the time, specially in the case of the torus. Since there are many Browninan
motions giving rise to the same Laplacian, our stochastic processes do not follow a
canonical choice and the corresponding behaviour depends on the geometry, on the
lenght scales that are ”excited” by noise and on the initial values of the position
and velocity. Nevertheless we always obtain a larger separation for the stochastic
trajectories as compared to the classical trajectories counterpart.

Figures
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Figure 2. Comparison between deterministic and stochastic tra-
jectories for different parameters; Ka and Kb are as in Fig. 1 for
the deterministic sums over k. The sums over k for the stochastic
part are for Ka in the three plots.
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spectively, at (0.0, 0.0) and (0.01, 0.01).
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Figure 5. Deterministic (a1) and stochastic (b1) trajectories cal-
culated over the interval [0, 5], along with the distance (a2) and,
respectively, the expected values of the distance of the stochastic
trajectories (b2), for different values of ν. The sums over k for the
deterministic term are for Kb and those for the stochastic term
are for Ka. The trajectories, lines and dots, start, respectively, at
(0.0, 0.0) and (0.01, 0.01).
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deterministic and stochastic terms are for Ka. The trajectories,
lines and dots, start, respectively, at (1.0, 1.0) and (1.01, 1.01).
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Figure 7. Deterministic and stochastic trajectories (a1) and (b1)
calculated over the interval [0, 5], along with the distance, and,
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tic trajectories (a2) and (b2). The trajectories tr1 and tr2 start
respectively, at (1.0, 1.0) and (1.01, 1.01).

References

[1] H. Aref Stirring by chaotic advection, J. Fluid Mech., 143, 1984.
[2] M. Arnaudon and A. B. Cruzeiro, Lagrangian Navier-Stokes diffusions on manifolds: varia-

tional principle and stability, preprint, arXiv:1004.2176.
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