THE SYMMETRIC INVARIANTS OF CENTRALIZERS AND SLODOWY GRADING

JEAN-YVES CHARBONNEL AND ANNE MOREAU

ABsTrACT. Let g be a finite-dimensional simple Lie algebra of rank ¢ over an algebraically closed field k of
characteristic zero, and let e be a nilpotent element of g. Denote by g¢ the centralizer of e in g and by S(g°)" the
algebra of symmetric invariants of g°. We say that e is good if the nullvariety of some £ homogenous elements
of S(g°)% in (g°)* has codimension £. If e is good then S(g¢)* is a polynomial algebra. The main result of
this paper stipulates that if for some homogenous generators of S(g)®, the initial homogenous components of
their restrictions to e + g/ are algebraically independent, with (e, i, f) an sh-triple of g, then e is good. As
applications, we pursue the investigations of [PPY07] and we produce (new) examples of nilpotent elements
that satisfy the above polynomiality condition, in simple Lie algebras of both classical and exceptional types.
We also give a counter-example in type D;.
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1. INTRODUCTION

1.1. Let g be a finite-dimensional simple Lie algebra of rank ¢ over an algebraically closed field k of
characteristic zero, let ., .) be the Killing form of g and let G be the adjoint group of g. If a is a subalgebra
of g, we denote by S(a) the symmetric algebra of a. For x € g, we denote by g* the centralizer of x in g and
by G* the stabilizer of x in G. Then Lie(G") = Lie(G,;)) = ¢* where G is the identity component of G*.
Moreover, S(¢%) is a g*-module and S(g*)8" = S(gx)G?i. An interesting question, first raised by A. Premet, is
the following:

Question 1. Is S(¢%)%" a polynomial algebra in € variables?

In order to answer this question, thanks to the Jordan decomposition, we can assume that x is nilpotent.
Besides, if S(g*)*" is polynomial for some x € g, then it is so for any element in the adjoint orbit G.x of
x. If x = 0, it is well-known since Chevalley that S(g%)" = S(g)? is polynomial in ¢ variables. At the
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opposite extreme, if x is a regular nilpotent element of g, then g* is abelian of dimension £, [DV69], and
S(g)%" = S(¢¥) is polynomial in £ variables too.

For the introduction, let us say most simply that x € g satisfies the polynomiality condition if S(g*)% is a
polynomial algebra in £ variables.

A positive answer to Question 1 was suggested in [PPY07, Conjecture 0.1] for any simple g and any x € g.
O. Yakimova has since discovered a counter-example in type Eg, [Y07], disconfirming the conjecture. More
precisely, the elements of the minimal nilpotent orbit in Eg do not satisfy the polynomiality condition. The
present paper contains another counter-example in type D7 (cf. Example 7.8). In particular, we cannot expect
a positive answer to [PPY07, Conjecture 0.1] for the simple Lie algebras of classical type. Question 1 still
remains interesting and has a positive answer for a large number of nilpotent elements e € g as it is explained
below.

1.2. Review of known results. We briefly review in this paragraph what has been achieved so far about
Question 1. Recall that the index of a finite-dimensional Lie algebra q, denoted by ind q, is the minimal
dimension of the stabilizers of linear forms on g for the coadjoint representation, (cf. [Di74]):

ind q := min{dim ¢° ; &€ € q*} where ¢ := {x € q; &(x,q]) = 0}.

By [R63], if q is algebraic, i.e., q is the Lie algebra of some algebraic linear group Q, then the index of g
is the transcendence degree of the field of Q-invariant rational functions on q*. The following result will be
important for our purpose.

Theorem 1.1 ([(CMo10, Theorem 1.2]). The index of §* is equal to € for any x € g.

Theorem 1.1 was first conjectured by Elashvili in the 90’s motivated by a result of Bolsinov, [Bol91,
Theorem 2.1]. It was proven by O. Yakimova when g is a simple Lie algebra of classical type, [Y06], and
checked by a program by W. de Graaf when g is a simple Lie algebra of exceptional type, [DeG08]. Before
that, the result was established for some particular classes of nilpotent elements by D. Panyushev, [Pa03].

Theorem 1.1 is deeply related to Question 1. First of all, it implies that if S (q¢)%" is polynomial, it is so in
¢ variables. Further, according to Theorem 1.1, the main results of [PPY07] that we summarize below apply
(see Theorem 1.2).

Let e be a nilpotent element of g. By the Jacobson-Morosov Theorem, e is embedded into a sl,-triple
(e,h, f) of g. Denote by 8§, := e + g/ the Slodowy slice associated with e. Identify g* with g, and (g°)*
with o, through the Killing form (., .). For p in S(g) =~ k[g*] =~ k[g], denote by ¢p the initial homogenous
component of its restriction to 8,. According to [PPY07, Proposition 0.1], if p is in S(g)%, then °p is in

S(g9)¥. Let (ge);’fmg be the set of nonregular linear forms x € (g°)*, i.e.,

(9)sing = {x € (8" | dim(g)* > ind ¢° = £}.
If (ge):ing has codimension at least 2 in (g°)*, we say that g° is nonsingular.

Theorem 1.2 ([PPY07, Theorem 0.3]). Suppose that the following two conditions are satisfied:

(1) for some homogenous generators qy, . .. ,q¢ of S(8)°, the polynomial functions °q, ..., °q, are alge-
braically independent,
(2) o° is nonsingular.

Then S (a°)% is a polynomial algebra with generators qy, . . ., qe.

As a consequence of Theorem 1.2, if g is simple of type A or C, then all nilpotent elements of g satisfy the

polynomiality condition, cf. [PPY07, Theorems 4.2 and 4.4]. The result for the type A was independently
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obtained by Brown and Brundan, [BB09]. In [PPY (7], the authors also provide some examples of nilpotent
elements satisfying the polynomiality condition in the simple Lie algebras of types B and D, and a few ones
in the simple exceptional Lie algebras.

At last, note that the analogue question to Question 1 for the positive characteristic was dealt with by
L. Topley for the simple Lie algebras of types A and C, [T12].

1.3. Main results. The main goal of this paper is to continue the investigations of [PPY(07]. Let us describe
our main results. The following definition is central in our work (cf. Definition 3.2):

Definition 1.3. An element x € gis called a good element of g if for some homogenous sequence (p1, ..., pr)
in S(g*)¥', the nullvariety of py,..., p¢ in (¢*)* has codimension ¢ in (g¥)*.

For example, regular nilpotent elements are good. Indeed, for e in the regular nilpotent orbit of g and
(41, -..9¢) a homogenous generating family of S(g)?, it is well-known that ¢q; = d.q; fori = 1,...,¢ and
that (d.q1, . .., d.qe) forms a basis of g°, [Ko63]. Hence e is good.

Also, by [PPY07, Theorem 5.4], all nilpotent elements of a simple Lie algebra of type A are good. More-
over, according to [Y09, Corollary 8.2], even' nilpotent elements without odd (respectively even) Jordan
blocks of g are good if g is of type C (respectively B or D). We generalize these results (cf. Theorem 5.1,
Corollary 5.8 and Remark 5.9).

The good elements satisfy the polynomiality condition (cf. Theorem 3.3):

Theorem 1.4. Let x be a good element of . Then S(6%)% is a polynomial algebra and S(g%) is a free
extension of S(g%)%".

Furthermore, x is good if and only if so is its nilpotent component in the Jordan decomposition (cf. Propo-
sition 3.5). As a consequence, we can restrict the study to the case of nilpotent elements.
The main result of the paper is the following (cf. Theorem 3.6) whose proof is outlined in Subsection 1.4:

Theorem 1.5. Suppose that for some homogenous generators qy, . . .,q¢ of S(8)%, the polynomial functions
qy,- -, °qp are algebraically independent. Then e is a good element of g. In particular, S(g%)%" is a poly-
nomial algebra and S(a) is a free extension of S(a°)%". Moreover, (“qy,---,%qp) is a regular sequence in

S(g%).

In other words, Theorem 1.5 says that Condition (1) of Theorem 1.2 is sufficient to ensure the polynomi-
ality of S (09)%°. However, if only Condition (1) of Theorem 1.2 is satisfied, the (polynomial) algebra S (99)%°

is not necessarily generated by the polynomial functions gy, ..., ‘G,. As a matter of fact, there are nilpotent
elements e satisfying Condition (1) and for which S (g¢)* is not generated by some g, ..., %, for any
choice of homogenous generators ¢y, . . ., g¢ of S(g)? (cf. Remark 5.25).

Theorem 1.5 can be applied to a great number of nilpotent orbits in the simple classical Lie algebras
(cf. Section 5), and for some nilpotent orbits in the exceptional Lie algebras (cf. Section 6). For example,
according to [PY 13, Proposition 6.3] and Theorem 1.5, the elements of the subregular nilpotent orbit of g
are good.

To state our results for the simple Lie algebras of types B and D, let us introduce some more notations.
Assume that g = so(V) C gl(V) for some vector space V of dimension 2£ + 1 or 2¢. For an endomorphism
x of Vand fori € {1,...,dimV}, denote by Q;(x) the coefficient of degree dimV — i of the characteristic
polynomial of x. Then for any x in g, Q;(x) = 0 whenever i is odd. Define a generating family ¢, ..., g,
of the algebra S(g)® as follows. Fori = 1,...,f — 1, set ¢; := Qy;. If dimV = 2£ + 1, set g, := Qy¢, and

lie., this means that the Dynkin grading of g associated with the nilpotent element has no odd term.
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if dimV = 2¢, let g, be the Pfaffian that is a homogenous element of degree £ of S(g)?® such that Q,, = q?.
Denote by 471, ..., 0, the degrees of “g, ..., °q, respectively. By [PPY07, Theorem 2.1], if

dimg® + € —2(61+---+6¢7) =0,

then the polynomials ‘g, ..., ‘g, are algebraically independent. In that event, by Theorem 1.5, e is good
and we will say that e is very good (cf. Corollary 5.8 and Definition 5.10). The notion of very good element
is specific to this setting where there are natural generators of S(g)S.

The very good nilpotent elements of g can be characterized in term of their associated partitions of dimV
(cf. Lemma 5.11). Theorem 1.5 also allows to obtain examples of good, but not very good, nilpotent ele-
ments of g; for them, there are a few more work to do (cf. Subsection 5.3).

In this way, we obtain a large number of good nilpotent elements, including all even nilpotent elements
in type B, or in type D with odd rank (cf. Corollary 5.8). For the type D with even rank, we obtain the
statement for some particular cases (cf. Theorem 5.23). On the other hand, there are examples of elements
that satisfy the polynomiality condition but that are not good; see Examples 7.5 and 7.6. To deal with them,
we use different techniques, more similar to those used in [PPY07]. These alternative methods are presented
in Section 7.

As a result of all this, we observe for example that all nilpotent elements of so(k’) are good, and that all
nilpotent elements of so(k”), with n < 13, satisfy the polynomiality condition (cf. Table 5). In particular,
by [PPY07, §3.9], this provides examples of good nilpotent elements for which ¢¢ is singular. For such
nilpotent elements, note that [PPY07, Theorem 0.3] (cf. Theorem 1.2) cannot be applied.

Our results do not cover all nilpotent orbits in type B and D. As a matter of fact, we obtain a counter-
example in type D7 to Premet’s conjecture (cf. Example 7.8).

Proposition 1.6. The nilpotent elements of so(k'*) associated with the partition (3,3,2,2,2,2) of 14 do not
satisfy the polynomiality condition.

1.4. Outline of the proof of Theorem 1.5. Let ¢y, ...,q, be homogenous generators of S(g)® of degrees
di,...,dy respectively. The sequence (qy,...,q¢) is ordered so that d1< --- <d,. Assume that the polyno-
mial functions %y, ..., %q, are algebraically independent.

According to Theorem 1.4, it suffices to show that e is good, and more accurately that the nullvariety
of %qy,..., %, in g/ has codimension ¢, since ..., °q, are invariant homogenous polynomials. To this
end, it suffices to prove that S(g°) is a free extension of the k-algebra generated by ‘%, ..., %, (see Propo-
sition 2.5,(ii)). We are led to find a subspace Vj of S such that the linear map

Voo kl‘qy,..., gl — S, v®a — va

is a linear isomorphism. We explain below the construction of the subspace Vj.
Let x1,...,x, be abasis of g° such that fori = 1,...,r, [k, x;] = n;x; for some nonnegative integer n;. For
i=U1,...,j)in N set:

il := ji+- -+, lile == jing +---+ jn, +2ljl, o=t x)

The algebra S(g¢) has two gradings: the standard one and the Slodowy grading. For all j in N”, ¥ is
homogenous with respect to these two gradings. It has standard degree |j| and, by definition, it has Slodowy
degree |j|.. For m nonnegative integer, denote by S(g¢)”! the subspace of S(g®) of Slodowy degree 1.

Let us simply denote by S the algebra S(g°) and let ¢ be an indeterminate. For any subspace V of S, set:

Vit i=klfeV, Vi 'l:=kit,r eV,  VIdl:=k[dleV, V() :=k(@®) eV,
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with k((7)) the fraction field of k[[¢]]. For V a subspace of S[[¢]], denote by V(0) the image of V by the
quotient morphism
S]] — S, a(t) — a(0).

The Slodowy grading of S induces a grading of the algebra S ((r)) with ¢ having degree 0. Let 7 be the
morphism of algebras
S — Sr], x> tx;, i=1,...,r

The morphism 7 is a morphism of graded algebras. Denote by d1, . .., d, the standard degrees of “g,, ..., %,
respectively, and set fori = 1,...,¢:

Q; == 17%(k(g;)) with «(g)(x):=gie+x), VYxegl

Let A be the subalgebra of S[¢] generated by Qi,...,Qr. Then A(0) is the subalgebra of S generated by
Gy --»qp. For (ji,...,j¢) in NE, K(q{’)- . -K(qf) and eq{I-w "’qif are Slodowy homogenous of Slodowy
degree 2d; j; + - -+ + 2dyj¢ (cf. [PrO2, PPY07] or Proposition 4.1,(i)). Hence, A and A(0Q) are graded subal-
gebras of S[f] and S respectively. Denote by A(0),; the augmentation ideal of A(0), and let V be a graded

complement to S A(0), in §. The main properties of our data A and A(0) are the following ones:

(1) Ais a graded polynomial algebra,

(2) the canonical morphism A — A(0) is a homogenous isomorphism,

(3) the algebra S|z, '] is a free extension of A,

(4) the ideal S[t,t7']A, of S[t,£!] is radical.
With these properties we first obtain that S [[#]] is a free extension of A (cf. Corollary 4.17) and that S [[#]] is
a free extension of the subalgebra A of S[[f]] generated by k[[f]] and A (cf. Theorem 4.21,(i)). From these
results, we deduce that the linear map

Vo®r A(0) — S, v®a —> va

is a linear isomorphism, as expected; see Theorem 4.21,(iii). The key points of the proof are Lemma 4.2,
Lemma 4.5, Proposition 4.9 and Corollary 4.17.

1.5. A related problem. Let us now mention a recent result of T. Arakawa and A. Premet which resembles
our results, [AP].

Let Vi(g¢) be the universal affine Vertex algebra associated with g° at critical level, and let Z(Veri(g®))
be the center of Vi(g¢). Assume that Conditions (1) et (2) of Theorem 1.2 are satisfied. Then S (§¢)% is
a polynomial algebra, with §¢ := q°[r"']#"!. Moreover, Z(V"(g¢)) is a polynomial algebra, and explicit
generators can be described.

The particular case where e = 0 is an old result of B. Feigin and E. Frenkel, [FF92]. Arakawa and Premet
have used affine W-algebras to prove the general case.

It would be interesting to extend the results of Arakawa and Premet to the setting of Theorem 1.5, that
is to the cases where only the Conditon (1) of Theorem 1.2 is satisfied, at least to the cases where we have
explicit generators of S (9)¥, not necessarily of the form 4%y, ..., %, for some generators ¢y, ..., g; of S (g)%;
cf. e.g. Remark 5.25.

1.6. The remainder of the paper will be organized as follows.

Section 2 is about general facts on commutative algebra, useful for the Sections 3 and 4. In Section 3,
the notions of good elements and good orbits are introduced, and some properties of good elements are
described. Theorem 3.3 asserts that the good elements satisfy the polynomiality condition. The main result

(Theorem 3.6) is also stated in this section. Section 4 is devoted to the proof of Theorem 3.6. In Section 5,
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we give applications of Theorem 3.6 to the simple classical Lie algebras. In Section 6, we give applications
to the exceptional Lie algebras of types Eg, F4 and G;. This allows us to exhibit a great number of good
nilpotent orbits. Other examples, counter-examples, remarks and a conjecture are discussed in Section 7. In
this last section, other techniques are developed.

Acknowledgments. We thank Alexander Premet for his important comments on the previous version of
this paper. We also thank the referee for careful reading and thoughtful suggestions.
This work was partially supported by the ANR-project 10-BLAN-0110.

2. GENERAL FACTS ON COMMUTATIVE ALGEBRA

We state in this section preliminary results on commutative algebra. Theorem 2.20 will be particularly
important in Sections 3 for the proof of Theorem 3.3. As for Proposition 2.5, it will be used in the proof of
Theorem 3.6.

2.1. Asarule, for A a graded algebra over N, we denote by A the ideal of A generated by its homogenous
elements of positive degree. For M a graded A-module, we set M, := A M.

Let S be a finitely generated regular graded k-algebra over N. If E is a finite dimensional vector space
over k, we denote by S(E) the polynomial algebra generated by E. It is a finitely generated regular k-algebra,
graded over N by the standard grading. Let A be a graded subalgebra of S, different from S and such that
A =k + A;. Let X4 and Xg be the affine varieties Specm(A) and Specm($') respectively, and let 4 s be
the morphism from Xg to X4 whose comorphism is the canonical injection from A into S. Let Ny be the
nullvariety of A, in Xg and set

N :=dimS —dimA.

The following lemma is well-known. It is an easy consequence of a Chevalley’s theorem [H77, Ch. II,
Exercise 3.22] for Assertions (i) and (ii), and of [Ma86, Ch. 5, Theorem 13.5] for Assertion (iii).

Lemma 2.1. (i) The irreducible components of the fibers of ma s have dimension at least N.

(i) If No has dimension N, then the fibers of ma s are equidimensional of dimension N.

(iii) Suppose that S = S(E) for some finite dimensional k-vector space E. If Ny has dimension N, then
for some x1,...,xy in E, the nullvariety of x1, ..., xy in Ny is equal to {0}.

Let A be the algebraic closure of A in S.

Lemma 2.2. Let M be a graded A-module and let V be a graded subspace of M such that M =V & M,.
Denote by 1 the canonical map A ® V — M. Then T is surjective. Moreover, T is bijective if and only if M
is a flat A-module.

Proof. Let M’ be the image of 7. Since M = Ve M, =V +A,M c M’ + A, M, we get by induction on k,
Mc M +A M.

Since M is graded and since A, is generated by elements of positive degree, M = M.

If 7 is bijective, then all basis of V is a basis of the A-module M. In particular, it is a flat A-module.
Conversely, let us suppose that M is a flat A-module. For v in M, denote by v the element of V such that v —v
isin A M.

Claim 2.3. Let (v1,...,0,) be a homogenous sequence in M such that vy, ...,v, are linearly independent
over k. Then vy, ..., v, are linearly independent over A.
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Proof of Claim 2.3. Since the sequence (vy,...,v,) is homogenous, it suffices to prove that for a homoge-
nous sequence (dy,...,a,)in A,

aivi+--+ap,=0=a=---=qa, =0.
Prove the statement by induction on n. First of all, by flatness, for some homogenous sequence (yi, ..., yx)
in M and for some homogenous sequence (b; j,i = 1,...,n,j=1,...,k),
k n
v = Z b,-,jyj and Z albl’m =0
j=1 =1
fori=1,...,nandm = 1,...,k. Forn = 1, since v; # 0, for some j, by ;is in k* since A = k + A;. So

a; = 0. Suppose the statement true for n — 1. Since v, # 0, for some j, b, ; is in k*, whence

n—1
L=
= bnj

n—1 bl’]
a; and Z a;(v; — —p,,) =0.
i=1

by,
Since vy, . .., U, are linearly independent over k, so are the elements
(0r = Bilbupom i=1,....n~1).
By induction hypothesis, a;= - - - =a,-1 = 0, whence a, = 0. o

According to Claim 2.3, any homogenous basis of V consists of linearly independent elements over A.
Hence any homogenous basis of V is a basis of the A-module M since M = AV. O

Corollary 2.4. Suppose that S = S(E) for some finite dimensional k-vector space E, and suppose that
dimNo = N. Then A is the integral closure of A in S(E). In particular, A is finitely generated.

Proof. Since A is finitely generated, so is its integral closure in S(E) by [Ma86, §33, Lemma 1]. According
to the hypothesis on Ny and Lemma 2.1,(iii), for some xi, ..., xy in E, the nullvariety of x,...,xy in Ny is
equal to {0}. In particular, x1, ..., xy are algebraically independent over A since E has dimension N + dimA.
Let J be the ideal of S(F) generated by A, and xi,...,xy. Then the radical of J is the augmentation ideal
of S(E) so that J has finite codimension in S(E). For V a homogenous complement to J in S(E), S(E) is the

Alxy,...,xy]-submodule generated by V by Lemma 2.2. Hence S(E) is a finite extension of A[xy, ..., xy].
Let pbein A. Since A[xy, ..., xy]is finitely generated, A[x1, ..., xy][p] is a finite extension of A[x, ..., xn].
Let
P P e ag =0
an integral dependence equation of p over A[xi,...,xy]. Fori =0,...,m, a; is a polynomial in xy, ..., xy
with coefficients in A since xi,...,xy are algebraically independent over A. Denote by a;(0) its constant
coeflicient. Since p is in A, xi,..., xy are algebraically independent over A[p], whence

P+ a1 (0P + -+ ap(0) = 0.
As a result, A is the integral closure of A in S(E). O

Most of the following proposition is contained in [Ben93, Corollary 6.2.3]. Since Proposition 2.5 is more
extensive, we give a proof.

Proposition 2.5. Let us consider the following conditions on A:
1) A is a polynomial algebra,
2) A is a regular algebra,

3) A is a polynomial algebra generated by dim A homogenous elements,
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4) the A-module S is faithfully flat,
5) the A-module S is flat,
6) the A-module S is free.
(1) The conditions (1), (2), (3) are equivalent.
(i1) The conditions (4), (5), (6) are equivalent. Moreover, Condition (4) implies Condition (2) and, in that
event, Ny is equidimensional of dimension N.
(iii) If Ny is equidimensional of dimension N, then the conditions (1), (2), (3), (4), (5), (6) are all equiva-
lent.

Proof. Let n be the dimension of A.
(i) The implications (3) = (1), (1) = (2) are straightforward. Let us suppose that A is a regular algebra.

Since A is graded and finitely generated, there exists a homogenous sequence (x1, ..., X,) in A, representing
a basis of A, /AZ. Let A’ be the subalgebra of A generated by xi, ..., x,. Then

A, CA + A2
So by induction on m,

Ay c A+ AT
for all positive integer m. Then A = A’ since A is graded and A is generated by elements of positive degree.
Moreover, x1, ..., x, are algebraically independent over k since A has dimension n. Hence A is a polynomial

algebra generated by n homogenous elements.

(i1) The implications (4) = (5), (6) = (5) are straightforward and (5) = (6) is a consequence of Lemma 2.2.

(5) = (4): Recall that xo = A,. Let us suppose that S is a flat A-module. Then 74 ¢ is an open morphism
whose image contains xp. Moreover, n(Xs) is stable under the action of G,. So m4 g is surjective. Hence,
by [Ma86, Ch. 3, Theorem 7.2], S is a faithfully flat extension of A.

(4)=(2): Since S is regular and since S is a faithfully flat extension of A, all finitely generated A-module
has finite projective dimension. So by [Ma86, Ch.7, §19, Lemma 2], the global dimension of A is finite.
Hence by [Ma86, Ch. 7, Theorem 19.2], A is regular.

If Condition (4) holds, by [Ma86, Ch. 5, Theorem 15.1], the fibers of 74 5 are equidimensional of dimen-
sion N. So Nj is equidimensional of dimension N.

(iii) Suppose that Ny is equidimensional of dimension N. By (i) and (i), it suffices to prove that (2) = (5).
By Lemma 2.1,(ii), the fibers of w4 s are equidimensional of dimension N. Hence by [Ma86, Ch. 8, Theorem
23.1], S is a flat extension of A since S and A are regular. O

2.2.  We present in this paragraph some results about algebraic extensions, that are independent of Subsec-
tion 2.1. These results are used only in the proof of Proposition 2.15. Our main reference is [Ma86]. For A
an algebra and p a prime ideal of A, A, denotes the localization of A at p.

Let ¢ be an indeterminate, and let L be a field containing k. Let B, L;, B; satisfying the following
conditions:
(I) L is an algebraic extension of L(¢) of finite degree,
(II) L 1is algebraically closed in L,
(IIT) B is a finitely generated subalgebra of L, L is the fraction field of B and B is integrally closed in L,
(IV) B is the integral closure of B[f] in Ly,
(V) B is a prime ideal of B.

For C a subalgebra of L, containing B, we set:

R(C) := C®p By,
8



and we denote by uc the canonical morphism R(C) — CBj. Since C and B, are integral algebras, the
morphisms ¢ — c¢®1 and b — 1&b from C and B to R(C) respectively are embeddings. So, C and B; are
identified to subalgebras of R(C) by these embeddings. We now investigate some properties of the algebras
R(O).

Lemma 2.6. Let u; be the canonical morphism R(L) — LB;.
(i) The algebra R(L) is reduced and uy is an isomorphism.
(i1) The ideal tLB of LB, is maximal. Furthermore By is a finite extension of B[t].
(iii) The algebra LB is the direct sum of L and tLB.
(iv) The ring LB is integrally closed in L.

Proof. (i) Let a be in the kernel of u;. Since L is the fraction field of B, for some b in B, ba = 1eu(ba) so
that ba = 0 and a = 0. As a result, gy is an isomorphism and R(L) is reduced since LB is integral.

(i) Since ¢ is not algebraic over L and since LB is integral over L[¢] by Condition (IV), tLB is strictly
contained in LB;. Let @ and b be in LBy such that ab is in tLB;. By Condition (III), for some c in B \ {0},
ca and cb are in By. So, by Condition (V), ca or cb is in tB|. Hence a or b is in tLB;. As a result, tLB is
a prime ideal and the quotient Q of LB by LB is an integral domain. Denote by ¢ the quotient morphism.
Since L is a field, the restriction of ¢ to L is an embedding of L into Q. According to Conditions (I) and (IV)
and [Ma86, §33, Lemma 1], B; is a finite extension of B[t]. Then Q is a finite extension of L and tLB is a
maximal ideal of LB;.

(iii) Since L is algebraically closed in L, Q and L; are linearly disjoint over L. So, Q®;, L, is isomorphic
to the extension of L; generated by Q. Denoting this extension by QL;, OB is a subalgbera of QL; and we
have the exact sequences

0 —— tLB; LB, Q 0

0——1t0B—— Q0B ——0®,0——=0

0 —> tQB; — tOB) + LB, 01 0

As aresult,
QO c LBy +tQB;.
By (ii), OB is a finite L[f]-module. So, by Nakayama’s Lemma, for some a in L[¢], (1 +ta)QB; is contained
in LB. As aresult, Q is contained in L;, whence Q = L since L is algebraically closed in L;. The assertion
follows since Q is the quotient of LB by ¢LB;.
(iv) Let a be in the integral closure of LB; in L; and let

d"+ apm1d" N+ +ay=0

an integral dependence equation of a over LB;. For some b in L\ {0}, ba; is in B; fori = 0,...,m — 1. Then,
by Condition (IV), ba is in B; since it satisfies an integral dependence equation over B;. As a result, LB is
integrally closed in L;. O

Let L, be the Galois extension of L(f) generated by L;, and let I be the Galois group of the extension L,
of L(#). Denote by B, the integral closure of B[¢] in L. For C subalgebra of L, containing B, set

Ry(C) := C®p By,
9



and denote by uc the canonical morphism R>(C) — CB,. The action of I in B; induces an action of I in
R>(C) given by g.(c®b) = ceg(b).

Lemma 2.7. Let x be a primitive element of L, and let I, be the stabilizer of x inT.

(1) The subfield Ly of L, is the set of fixed points under the action of I'y in Ly, and By is the set of fixed
points under the action of T'y in Bs.

(i) For C subalgebra of L containing B, the canonical morphism R(C) — R,(C) is an embedding and its
image is the set of fixed points under the action of T'y in Ry(C).

(iii) For C subalgebra of L, containing B, C[t] is embedded in R(C) and R>(C). Moreover, C[t] is the set
of fixed points under the action of T in Ry(C).

Proof. (i) Let L be the set of fixed points under the action of I, in L5,
Li={ye Ly | Ty =y}
Then L, is contained in L], and L; is an extension of degree I’ of L]. Since x is a primitive element of L,
the degree of this extension is equal to |I'.x| so that L, is an extension of degree |I'y|. Hence L’1 =1L.
Since Bj is the integral closure of B[] in Ly, B» is invariant under I". Moreover, the intersection of B, and

L, is equal to B; by Condition (IV). Hence B is the set of fixed points under the action of I'y in Bj.
(i1) For a in By and b in R,(C), set:

1 - 1

#

a’ = — E (@), b:=— E .b.
I 249 T 249

gel'y gely

Then a — d is a projection of B, onto B. Moreover, it is a morphism of Bj-module. Denote by ¢ the

canonical morphism R(C) — R»(C), and by ¢ the morphism
Ry(C) — R(C), csa+— caa".

For b in Ry(C),
¢(b) = ¢(b) and top(b) = b
Then ¢ is a surjective morphism and the image of oy is the set of fixed points under the action of Iy in
R>(C). Moreover ¢ is injective, whence the assertion.
(iii) From the equalities

R(C) = (C ®3 B[t]) ®ppy B1 and C[f] = C ® B[f]

we deduce that R(C) = C[t] ®p[s B1. In the same way, R»(C) = C[t] ®p(;) B2. Then, since C[z] is an integral
algebra, the morphism ¢ +— ce1 is an embedding of C[¢] in R(C) and R,(C). Moreover, C[f] is invariant
under the action of I' in R»(C).

Let a be in R»(C) invariant under I'. Then a has an expansion

k
a = Z C,'®b,'
i=1

with ¢y, ...,c, in C[¢t] and by, ..., by in B;. Since a is invariant under I',
1 NN s
a = ﬁZga = ﬁzzcl®g. g
gell gel i=1

Fori=1,...,k, set:

;1
b= > g

gel
10



The elements b1, ... ,b/’{ are in BJ¢], and

k
a= (Z ceib))el € Clil,
i=1

whence the assertion. O

From now on, we fix a finitely generated subalgebra C of L containing B. Denote by 1 the nilradical of
R(C).

Lemma 2.8. Let t be the kernel of jico and let ny be the nilradical of Ry(C).
(1) The algebras R(C) and R,(C) are finitely generated. Furthermore, they are finite extensions of C|t].
(i) For a in t, ba = 0 for some b in B\ {0}.
(ii1) The ideal t is the minimal prime ideal of Ro(C) such that t N B = {0}. Moreover, t N B[t] = {0}.
(iv) The ideal n is the kernel of uc. Moreover, np, =  and nis a prime ideal.
(v) The local algebra R(C), is isomorphic to L.

Proof. (1) According to Lemma 2.7,(iii), R(C) is an extension of C[¢] and R(C) = C[t] ®p[q B1. Then, by
Lemma 2.6,(ii), R(C) is a finite extension of C[¢]. In particular, R(C) is a finitely generated algebra since so
is C. In the same way, R>(C) is a finite extension of C[¢] and it is finitely generated.

(i1) Let a be in f. Then a has an expansion

k
a= Z c;®b;
i=1

with ¢1,...,cin C and by, ..., by in B,. Since C and B have the same fraction field, for some b in B \ {0},
bc; is in B, whence

k
ba = 1®(Z be;by).
i=1

So ba = 0 since { is the kernel of pc5.

(iii) By (i) there are finitely many minimal prime ideals of R,(C). Denote them by py, ..., pg. Since C[¢]
is an integral algebra, 1, N C[¢] = {0} so that p; N C = {0} for some i. Let i be such that p; N B = {0} and
let a be in t. By (ii), for some b in B \ {0}, ba is in p;. Hence { is contained in p;. Since CB; is an integral
algebra, f is a prime ideal. Then p; = f since p; is a minimal prime ideal, whence the assertion since for some
J» 10 Clel = {0).

(iv) By (iii), there is only one minimal prime ideal of R,(C) whose intersection with B is equal to {0}. So,
it is invariant under I'. Hence T is invariant under I'. As a result, for a in {,

0= l_l(a —ga)=d" +ap_1d"" + -+ ag
gel’

with m = |I'| and ay, . ..,a,—; in f. Moreover, by Lemma 2.7,(iii), ao, . . . , a1 are in C[¢t]. So, by (iii), they
are all equal to zero so that a is a nilpotent element. Hence f is contained in 1,. Then n, = f by (iii).

By Lemma 2.7,(ii), R(C) identifies with a subalgebra of R,(C) so that n = 1, N R(C), and yc is the
restriction of uc 2 to R(C). Hence 1 is the kernel of p¢ and n is a prime ideal of R(C).

(v) By @iii), nn C = {0}. So, by (ii), nR(C),, = {0}. As a result, R(C), is a field since nR(C), is a
maximal ideal of R(C),,. Moreover, by (iii), it is isomorphic to a subfield of L;, containing B;. So, R(C),, is
isomorphic to L. O

For c in L[¢], denote by ¢(0) the constant term of ¢ as a polynomial in # with coefficients in L.
11



Lemma 2.9. Assume that C is integrally closed in L. Denote by CB) the integral closure of CB in L.
(i) Let i € {1,2}. For all positive integer j, the intersection of C[t] and t/ LB; equals t'C[t).
(1) The intersection of tLB and CB, equals tCB,.
(iii) The algebra CB, is contained in C + tCB,.
(iv) The algebra B is the direct sum of B and tB.

Proof. First of all, CB; and CB, are finite extensions of C [t] by Lemma 2.7,(i), and [Ma86, §33, Lemma
1]. So CBj is the integral closure of C[¢] in L; by Condition (IV). Denote by CB; the integral closure of
C[t] in L. Since C is integrally closed in L, C[¢] is integally closed in L[¢]. Hence C[t] is the set of fixed
points under the action of I" in CB,. Let a be in CB,. Then

0= l_[(a —g@) =d" +ap1d" "+ +a
gel
with ag, ..., a,—1 In C[t].

(i) Since #/LB; is contained in #/LB, and contains #/C[t], it suffices to prove the assertion for i = 2. Let
us prove it by induction on j. Let ¢ be in C[¢]. Then ¢ — ¢(0) is in t£LB,. By Lemma 2.6,(ii), L N tLB; = {0}
since L is a field, whence C N tLB, = {0} since C is contained in L. As a result, if ¢ is in zLB;, ¢(0) = 0 and
c is in tC[t], whence the assertion for j = 1. Suppose the assertion true for j — 1. Let ¢ be in C[f] N #/LBs.
By induction hypothesis, ¢ = t~1¢” with ¢’ in C[f]. Then ¢’ is in C[f] N tLB,, whence c is in #C[t] by the
assertion for j = 1.

(ii) Suppose that a is in tLB;. Since tLB; is invariant under I', fori = 0,...,m — 1, g; is in ™ LB,. Set
fori=0,....m—1,

Then by (i), aé, ...,a, _, arein C[t]. Moreover,

a , a p
(?)m-’-am—l(ﬂn_—l "ty =0,
so that a/t is in CBj, whence the assertion.

(iii) Suppose that a is in CBj. By Lemma 2.6,(iii), L is the quotient of LB; by tLB;. So, denoting by a

the image of a by the quotient morphism,
" + a1 (0)@" ' + -+ + ag(0) = 0.

Then a is in C since C is integrally closed. Hence a is in C + tLB;. As a result, by (ii), CB is contained in
C +tCB;.

(iv) By Condition (III), B is integrally closed in L. So the assertion results from (iii) and Condition (IV)
for C = B. O

Corollary 2.10. The ideal R(C)t of R(C) is prime and t is not a zero divisor in R(C).

Proof. According to Lemma 2.9,(iv), R(C) = C+R(C)t. Furthermore, this sum is direct since CNtCB; = {0}
by Lemma 2.6,(ii) and since the restriction of uc to C is injective. Then R(C)t is a prime ideal of R(C) since
C is an integral algebra.

Since R(C)t is a prime ideal, n is contained in R(C)t. According to Lemma 2.8,(iv), 1 is the kernel of uc.
Let a be in n. Then a = a’t for some &’ in R(C). Since 0 = uc(a’t) = uc(a’)t, a’ is in n. As a result, by
induction on m, for all positive integer m, a = a,,™ for some a,, in n.

For k positive integer, denote by J; the subset of elements a of R(C) such that at* = 0. Then (J1,J2,...)

is an increasing sequence of ideals of R(C). For a in Ji, 0 = /Jc(atk) = ,uc(a)tk. Hence J; is contained in
12



n. According to Lemma 2.8,(i), the k-algebra R(C) is finitely generated. So for some positive integer ko,
Jix = Jy, for all k bigger than ky. Let a be in J;. Thena = akotk‘) for some ay, in . Since akotkOJrl =0, a, is
in Ji, so that a = 0. Hence ¢ is not a zero divisor in R(C). O

Proposition 2.11. Suppose that C is integrally closed and Cohen-Macaulay. Let p be a prime ideal of CBj,
containing t and let § be its inverse image by yc.

(1) The local algebra (CBy), is normal.

(i1) The local algebra R(C); is Cohen-Macaulay and reduced. In particular, the canonical morphism
R(C)y — (CBy)y is an isomorphism.

(iii) The local algebra (CBy), is Cohen-Macaulay.

Proof. (1) Let CB; be the integral closure of CB; in L;. Setting S := CB; \ p, (CBy), is the localization of
CB; with respect to S. Denote by (CBy), the localization of CB; with respect to S. Then (CBj), is a finite
(CB)p-module since CB; is a finite extension of CB;. According to Lemma 2.8,(iii),

CBy c CB; +tCB;.

Then since ¢ is in p,
(CB1)p/(CB1)p = p(CBy)p/(CBy)y.

So, by Nakayama’s Lemma, (C_Bl)p = (CB)y, whence the assertion.

(ii) According to Corollary 2.10, R(C)t is a prime ideal containing n. Denote by p the intersection of
p and C. Since P is the inverse image of p by uc, Cy is the quotient of R(C); by R(C)st. Since C is
Cohen-Macaulay, so is C5. As a result, R(C); is Cohen-Macaulay since ¢ is not a zero divisor in R(C) by
Corollary 2.10 and since R(C)st is a prime ideal of height 1.

Denote by pc 5 the canonical extension of uc to R(C)s. Then (CBy), is the image of uc . According to
Lemma 2.8,(iv), the nilradical nR(C); of R(C); is the minimal prime ideal of R(C); and it is the kernel of
Htcs- By Lemma 2.8,(v), the localization of R(C)p at nR(C); is a field. In particular, it is regular. Then, by
[Bou98, §1, Proposition 15], R(C); is a reduced algebra since it is Cohen-Macaulay. As a result, uc; is an
isomorphism onto (CBj),.

(iii) results from (ii). O

2.3. Return to the situation of Subsection 2.1, and keep its notations. From now on, and until the end of
the section, we assume that S = S(E) for some finite dimensional k-vector space E. As a rule, if Bis a
subalgebra of S(E), we denote by K(B) its fraction field, and we set for simplicity

K = K(S(E)).

Furthermore we assume until the end of the section that the following conditions hold:

(a) dimNy = N,

(b) A is a polynomial algebra,

(c) K(A) is algebraically closed in K.
We aim to prove Theorem 2.20 (see Subsection 2.4). Let (v1,...,vy) be a sequence of elements of E such
that its nullvariety in Ny equals {0}. Such a sequence does exist by Lemma 2.1,(iii). Set

C :=Alvy,...,ox)

By Proposition 2.5,(ii), C is a polynomial algebra if and only if so is A since C is a faithfully flat extension
of A. Therefore, in order to prove Theorem 2.20, it suffices to prove that S(E) is a free extension of C, again
by Proposition 2.5,(ii). This is now our goal.

Condition (c) is actually not useful for the following lemma:
13



Lemma 2.12. The algebra C is integrally closed and S(E) is the integral closure of C in K.

Proof. Since A has dimension dim E — N and since the nullvariety of vy, ...,vy in Ny is {0}, vy, ...,vy are
algebraically independent over A and A. By Serre’s normality criterion [Bou98, §1, n°10, Théoréme 4],
any polynomial algebra over a normal ring is normal. So C is integrally closed since so is A by definition.
Moreover, C is a homogenous finitely generated subalgebra of S(E) since so is A by Corollary 2.4. Since C
has dimension dim E, S(E) is algebraic over C. Then, by Corollary 2.4, S(E) is the integral closure of C in
K. Indeed, S(E) is integrally closed as a polynomial algebra and {0} is the nullvariety of C in E*. O

Set Zy := Specm(Z) and Z := Zy x k. Then Z is equal to Specm(C). Let X, be a desingularization of
Zy and let my be the morphism of desingularization. Such a desingularization does exist by [Hir64]. Set
X := Xy x k" and denote by 7 the morphism

X —Z, (x,v) — (mp(x),v).

Then (X, mr) is a desingularization of Z.
Fix x in ﬂal(C+). Fori =0,...,N, set X; := Xo x k’ and let x; := (x0, 0y:). Define K;, le, C; by the
induction relations:
(1) C} := Cp := A and Ky is the fraction field of A,
@) C} = C_[vi)
(3) K is the algebraic closure of K;_(v;) in K and C; is the integral closure of C;_;[v;] in Kj.

Lemma 2.13. Leti=1,...,N.
(i) The field K; is a finite extension of K;_1(v;) and K;_ is algebraically closed in K;.
(ii) The algebra C; is finitely generated and integrally closed in K. Moreover, K; is the fraction field of C;.
(iii) The algebra C; is contained in S(E) and Cn = S(E). Moreover, Ky = K.
(iv) The algebra C; is a finite extension of C;.
(v) The algebra C; is the intersection of S(E) and K;. Moreover, v;C; is a prime ideal of C;.

Proof. (i) By Condition (c), Ky is algebraically closed in K. So Kj is algebraically closed in K;. By
definition, for i > 1, K;_ is algebraically closed in K. So it is in K;. Since the nullvariety of vy, ...,oy in
No equals {0}, vy, ..., vy are algebraically independent over Ky. Hence K;_1(v;,...,vy) is a field of rational
fractions over K;_;. Moreover, K is an algebraic extension of K;_1(v;,...,vy) by Lemma 2.12. Since S(E)
is a finitely generated k-algebra, K is a finite extension of K;_;(v;, ..., vy). By definition, K; is the algebraic
closure of K;_1(v;) in K. Hence K; is a finite extension of K;_;(v;).

(i1) Prove the assertion by induction on i. By definition, it is true for i = 0 and C; is the integral closure of
Ci—1lvi]in K; fori = 1,..., N, whence the assertion by (i) and [Ma86, §33, Lemma 1].

(iii) Since S(E) is integrally closed in K, C; is contained in S(F) by induction on i. By definition, the field
Ky is algebraically closed in K and it contains C. So Ky = K by Lemma 2.12. Since Cy is integrally closed
in Ky and it contains C, Cy = S(E) by Lemma 2.12.

(iv) Prove the assertion by induction on i. By definition, it is true for i = 0. Suppose that it is true for
i — 1. Then C; is a finite extension of C7_, [v;] = C7.

(v) Prove by induction on i that Cy_; is the intersection of S(E) and Ky_; fori = 0,...,N. By (iii), it
is true for i = 0. Suppose that it is true for i — 1. By induction hypothesis, it suffices to prove that Cy_; is
the intersection of Cy_;;+; and Ky_;. Let a be in this intersection. Then a satisfies an integral dependence
equation over Cy—_;[uy—i+1]:

ad" + apo1d™ N+ ag = 0.
14



Denoting by a;(0) the constant term of a; as a polynomial in vy_;41 with coefficients in Cy_;,

m—1

a" + ap-1(0)a" ™+ +ap(0)=0

since a is in Ky_; and vy_;+1 is algebraically independent over Ky_;. Hence a is in Cy_; since Cy_; is
integrally closed in Ky_; by (ii).

Let a and b be in C; such that ab is in v;C;. Since v; is in E, v;S(E) is a prime ideal of S(E). So a or b is
in v;S(E) since C; is contained in S(E). Hence a/v; or b/v; are in the intersection of S(E) and K;. So a or b
isin v;C;. O

Remark 2.14. According to Lemma 2.13,(1),(i1),(iv), fori = 1,..., N, K;_1, v;, Ci_1, K;, C; satisfy Conditions

D, (@), (1I0), (V) satisfed by L, ¢, B, L;, By in Subsection 2.2. Moreover, Condition (IV) is satisfied by
construction (cf. Lemma 2.13,(v)).

Proposition 2.15. Leti=1,...,N.
(1) The semi-local algebra Oy, .. C; is normal and Cohen-Macaulay.
(ii) The canonical morphism Oy, ®c; Ci — Oy, x,C; is an isomorphism.

Proof. (i) The local ring Oy, ,, is an extension of C; and C; is a finite extension of C; by Lemma 2.13,(iv).
So Oy, x,C; is a semi-local ring as a finite extension of the local ring Oy, ,,. Prove the assertion by induction
oni. Fori =0, Ox,,Co = Ox,x, and Oy, x, is a regular local algebra. Suppose that it is true for i — 1
and set A;_1 := Ox,_, x,_,Ci—1. Then A;_; is a subalgebra of K;_| since Oy, , x, , is contained in the fraction
field of C lf_ ;- Let m be a maximal ideal of Oy, ,,C;. The local ring Oy, ;; is the localization of Oy,_, »,_, [v;] at
m N Ox, , x_,[vi]. Hence v; is in m, and m N A;_; C; is a prime ideal of A;_;C; such that the localization of
A;_1 C; at this prime ideal is the localization of Oy, ,,C; at m. By the induction hypothesis, 2;_; is normal and
Cohen-Macaulay. According to Remark 2.14 and Proposition 2.11,(1) and (iii), the localization of ;_;C; at
m N W;_;C; is normal and Cohen-Macaulay, whence the assertion.

(ii) Prove the assertion by induction on i. For i = 0, Cy is contained in Oy, ,. Suppose that it is true for
i — 1. For j € {i — 1,1}, denote by v; the canonical morphism

OXj,Xj ®C} Ci— OXj,ijj-

Recall that U;_; := Oy, , », ,Ci—1. By induction hypothesis, the morphism v;_®idc;,
(Ox,_1x0 ®cr, Cim1) &, Ci — Uin1 &¢,, Ci
is an isomorphism. Since C/_, is contained in Ox,_, v,
Ox;_ 100 ®c, Ciylvil = Oxy i [0il-
Furthermore,
(OX,',I,X,',I ®C[{*1 Cl—l) ®C,',1 Cl = OX,;],X,;] ®C[{71 Cl = (OXifl,xifl ®C;—l Cl,_l[vl]) ®C;ﬁl[vi] Ci7
whence an isomorphism
Oxi_ i Wil ®c ) Ci — Wiy B¢, Ci
Let m be as in (i). Set
pi=mnU_;C;, fit == v ' (m),

and denote by p the inverse image of p by the canonical morphism

A1 ®c,, Ci — W1 Ci.
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According to Proposition 2.11,(ii), the canonical morphism
(Ox:_y.x1Ci-1 ®ciy Ci)p — (Ox,_y 1, Cidy

is an isomorphism since Oy, |, ,Ci—1 is a finitely generated subalgebra of K;_;, containing C;_;, which is
Cohen-Macaulay and integrally closed. Let p* be the inverse image of # by the isomorphism

Oxi iz [0il ®cr_ 1wy Ci — Oxi v Cic1 ©cy Cie
Then the canonical morphism
(Oxiy i [0i] ®c; Cidgr — (O 0 Cidy
is an isomorphism. From the equalities
(Oxiy i [0i] ®c; Ci)pr = (Ox,.x, ®c; Cdms (Ox;1,2 Cidp = (Ox,5,Cidm

we deduce that the support of the kernel of v; in Spec(Oy, ®c C;) does not contain 1. As a result, denoting
by 8; this support, §; does not contain the inverse images by v; of the maximal ideals of Oy, ,,C;.
According to Lemma 2.8,(iv), the kernel of the canonical morphism

Wi—1 &,y Ci — Ox,_ 5, Ci
is the nilradical of A;_; ®c,_, C;. Hence, the kernel of the canonical morphism
Ox i Wil ®c; Ci = Ox_y i, [01Ci
is the nilradical of Oy, | ,, , [vi] ®c; C; since the canonical map
Oxi i1 [0l ®c_ 1) Ci — Wim1 B¢, Ci

is an isomorphism by induction hypothesis. As a result, all element of §; is the inverse image of a prime
ideal in Oy, ,,C;. Hence 8; is empty, and v; is an isomorphism. O

The following Corollary results from Proposition 2.15 and Lemma 2.13,(iii) since 77 '(C,) = m, ) x

{0}.

Corollary 2.16. Let x be in n~'(Cy).
(1) The semi-local algebra Ox ,S(E) is normal and Cohen-Macaulay.
(ii) The canonical morphism Ox , ®c S(E) — Ox S(E) is an isomorphism.

Let d be the degree of the extension K of K(C). Let x be in 77 1(C.), and denote by O, the quotient of
Ox.xS(E) by m,S(E), with m, the maximal ideal of Oy .

Lemma 2.17. Let V be a homogenous complement to S(E)C-. in S(E).

(1) The k-space V has finite dimension, S(E) = CV and K = K(C)V.

(ii) The k-space Qy has dimension d. Furthermore, for all subspace V' of dimension d of V such that Q,
is the image of V' by the quotient map, the canonical map

OX,x Bk V, — OXxS(E)

is bijective.
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Proof. (i) According to Lemma 2.12, S(E) is a finite extension of C. Hence, the k-space V is finite dimen-
sional. On the other hand, we have S(E) = V +S(E)C.. Hence, by induction on m, S(E) = CV + S(E)C" for
any m, whence S(E) = CV since C. is generated by elements of positive degree. As a result, K = K(C)V
since the k-space V is finite dimensional.

(ii) Let d’ be the dimension of Q. By (i), since C is contained in mm,,

OxxS(E) =V + m,S(E).
As a result, for some subspace V’ of dimension d’ of V, Q, is the image of V’ by the quotient map. Then,
OX,xS(E) = OX,xV/ + mxS(E)a

and by Nakayama’s Lemma, Ox S(E) = OxV’. Let (v1, ..., 04 ) be abasis of V’. Suppose that the elements
v1,...,0p are not linearly independent over Ox . A contradiction is expected. Let / be the smallest integer
such that

aivy + - +agvy =0
for some sequence (ay,...,ay) in mi, not contained in mi“. According to Corollary 2.16,(i) and [Ma86,
Ch. 8, Theorem 23.1], Ox ,S(E) is a flat extension of Oy, since Ox S(E) is a finite extension of Ox . So,
for some wy, ..., w, in S(E) and for some sequences (b;1,...,bim, i =1,...,d")in Oxy,

m d’
Ui:zbi’jwj and Zajbj,k=0
J=1 J=1

foralli=1,...,d"and fork = 1,...,m. Since Ox,S(E) = Ox,V’,
d/

wj = Z € jkVk
k=1
for some sequence (cjx, j=1,...,m,i=1,...,d") in Ox,. Setting

m
Ui = Z bijcjk
=1

v = Z U; k Uk and Z ajuj; = 0

kel Jel
foralli=1,...,d". Since vy, ...,vs are linearly independent modulo m,S(E),

fori,k=1,...,d", we have

Ui — Oix € My

for all (i, k), with 6; the Kronecker symbol. As a result, a; is in mi” for all i, whence a contradiction. Then
the canonical map

OX,x (2993 V/ — OX,xS(E)
is bijective. Since K = K(C)S(E) and since K(C) is the fraction field of Oy, v1,...,04 is a basis of K over
K(C). Hence, d’ = d and the assertion follows. O

Recall that K is the fraction field of A. Let vn.1,...,vy+, be elements of E such that vy, ..., 0N, iS @
basis of E. Denoting by 71, ..., f, some indeterminates, let ¢ be the morphism of C-algebras

C[tlv"'etr] — S(E)7 ti > UN+i»
and let 9 be the morphism of Ky[vy,...,vy]-algebras

Kolvy,...,on, 11, .., 1] — Ko ®5 S(E), li ¥ UN+i-
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Fori = (i1,...,iy) in NV and for j = (ji,..., j) in N, set:

i._ il_..iN jo._ Jl]r
v =0y, Ho=l

For a in A, denote by a the polynomial in k[vy,...,vN, t1,. .., ] such that ¥#(a) = a.

Lemma 2.18. Let I be the ideal of C[t1,...,t,] generated by the elements a — a with a in A.

(i) For all homogenous generating family (ay, . ..,ay) of As, I is the ideal generated by the sequence
(ai—ai,i=1,...,m).

(i) The ideal I is the kernel of .

Proof. (i) Let I be the ideal of C[ty,...,t] generated by the sequence (a; — a;,i = 1,...,m). Since the
map a — @ is linear, it suffices to prove that @ — @ is in I’ for all homogenous element a of A,. Prove it by
induction on the degree of a. For some homogenous sequence (by,...,b,) in A,

a=biay+---+ bpay

so that
m m .
a-a= ) bilaj-a)+ ) @b~ b,
i=1 i=1
If a has minimal degree, by,...,b,, are ink and b; = b_, fori=1,...,m. Otherwise, fori =1,...,m,if b; is
not in k, b; has degree smaller than a, whence the assertion by induction hypothesis.
(ii) By definition, / is contained in the kernel of 9. Let a be in C[¢y, .. .,t,]. Then a has an expansion

a= Z aj ju'?

(i,j)eNN xN"

with the g;j’s in A, whence

a= Z (aiJ - ai’j)vitj + Z %Ull‘]

(i.j)eNNxN" (i.j)eNNxN"
If 9(a) = 0, then
Z K,jvitj =0
(1,j)eNN xN*
since the restriction of ¥ to k[vy,...,vn, 1, ..., ;] is injective, whence the assertion. |

For x in 7~ 1(C,), denote by 9, the morphism

J1 Jr

J
Ox.lt1y....ty] — K, ar v avy, Uy,

Proposition 2.19. Let x be in 171 (C.).
(1) The kernel of 9, is the ideal of Ox,lt1,...,t] generated by 1. Furthermore, the image of ¥y is the
subalgebra Ox S(E) of K.
(i1) The intersection of m,S(E) and S(E) is equal to C.S(E).
Proof. (i) From the short exact sequence
0—I1—Clt,...,ty] = S(E) — 0

we deduce the exact sequence

Oxx®c I — Ox . ®c Clty,...,t;] — Ox.x®c S(E) — 0.
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Moreover, we have a commutative diagram

0
Ox2®c I ——2 = Oy, ®c Clt1, ... 1] — = Oy ® S(E) —= 0
lﬁ L(S )
d d
OX,xl OX,x[tla oo tr] OX,xS(E) —0
0 0 0

with exact columns by Corollary 2.16,(ii). For a in Ox «[t1, ..., ] such that da = 0,
a=06b, b=dc with beOx,®cClt,....t;], c€0x,®cl,

so that a = dedc. Hence Oy, is the kernel of ,.

(ii) Let ai, . . ., a,, be a homogenous generating family of A,. Fori=1,...,m,
a; = Z aijx0tt,
(3 k) NN xN”

with the ;s in k. Set:

’ . k
a; ;= Z aioxl .
keNN
Fori=1,...,m,
a,ea; —a;+Ciln,.... 4]

since a; is in A, so that (a)) is in C,S(E).
Since C, is contained in m,, C,.S(E) is contained in m,S(E) N S(E). Let a be in m,[?q,...,t,] such that
?y(a) is in S(E). According to (i),
aeClty,....tr] + Ox.,l.
So, by Lemma 2.17,(1),
a=b+bi(ar—ay)+--+byplan — am),
with bin C[ty,...,t,] and by, ..., b, in Ox . Then,
b=by+b,, with bgekl[t,...,t,] and b, € Ci[t,...,1,]

b; = bi,O + bi,+, with bi,O ek and bi’_'_ € My
fori=1,...,m. Since aisin m[t,...,t,]and ay,...,a, are in C,
bo — brpay — -+ = bmoam € mylt1,. .., 1]
Moreover, fori=1,...,m,
a;—a; € Cylty, ..., 1]
Hence
by — bl,oall — = bm,oa,’n =0 since my[t,....t]Nk[tH,...,t]=0.

As aresult, ¥,(a) is in C,S(E) since #,(a) = G(bg) + I(by). O
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2.4. We are now in a position to prove the main result of the section. Recall the main notations: E is a
finite dimensional vector space over k, A is a homogenous subalgebra of S(E), different from S(E) and such
that A = k + A, Ny is the nullvariety of A, in E*, K is the fraction field of S(E) and K(A) that one of A, the
algebraic closure of A in S(E).

Theorem 2.20. Suppose that the following conditions are satisfied:
(a) Ng has dimension N,
(b) A is a polynomial algebra,
(c) K(A) is algebraically closed in K.

Then A is a polynomial algebra. Moreover, S(E) is a free extension of A.

Proof. Use the notations of Subsection 2.3. In particular, set
C= Z[Ul’ ce ’UN]’

with (vy, . . ., vy) a sequence of elements of E such that its nullvariety in Ny is equal to {0} (cf. Lemma 2.1,(iii)),
and let K(C) be the fraction field of C. As already explained, according to Proposition 2.5,(ii), it suffices to
prove that S(E) is a free extension of C. Let V be as in Lemma 2.18, a homogenous complement to S(E)C..
in S(E). Recall that X is a desingularization of Z = Specm(C) and that 7 is the morphism of desingulariza-
tion. Let x be in 771(C,,). According to Proposition 2.19,(ii), for some subspace V' of V, V’ is a complement
to m,S(E) in Ox,S(E). Then, by Lemma 2.17,(ii), V' has dimension the degree of the extension K of K(C)
and the canonical map
OX,x (2993 V/ — OX,xS(E)

is bijective. Moreover,

V' &@S(E)YCy, =S(E) and V' =V.
Indeed, for a € S(E), write a = b + ¢ with b € V’ and ¢ € m,S(E). Since V’ is contained in S(E), c¢ is in
S(E), whence ¢ in S(E)C by Proposition 2.19,(ii). In addition, S(E) = CV as it has been observed in the
proof of Lemma 2.17,(i). As a result, the canonical map

CeV — S(E)

is bijective. This concludes the proof of the theorem. O

3. GOOD ELEMENTS AND GOOD ORBITS

Recall that k is an algebraically closed field of characteristic zero. As in the introduction, g is a simple
Lie algebra over k of rank ¢, (., .) denotes the Killing form of g, and G denotes the adjoint group of g.

3.1. The notions of good element and good orbit in g are introduced in this paragraph.

For x in g, denote by g* its centralizer in g, by G* its stabilizer in G, by G;; the identity component of
G* and by K, the fraction field of the symmetric algebra S(g*). Then S(g*)®" and KEX denote the sets of
G-invariant elements of S(g*) and K respectively.

Lemma 3.1. Let x be in g. Then K)%X is the fraction field of S(¢*)%" and Kfc‘x is algebraically closed in K, of
transcendental degree € over k.

Proof. Let a be in K,, algebraic over Kﬁx. For all g in G}, g.a satisfies the same equation of algebraic
dependence over K;?‘\ as a. Since a polynomial in one indeterminate has a finite number of roots, the Gg-
orbit of a is finite. But this orbit is then reduced to {a}, G being connected. Hence a is in K}}X. This shows

that K;‘X is algebraically closed in K. According to [CMol10, Theorem 1.2] (see also Theorem 1.1), the
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index of g* is equal to £. So, by [R63], the transcendental degree of K;?x over k is equal to £. It remains to
prove that K,‘?x is the fraction field of S(g*)?".

Since g* is the centralizer of x; in the reductive Lie algebra g*, we can suppose x nilpotent. Any rational
invariant is a quotient of two semi-invariant polynomials, because of the prime factor decomposition. Each
semi-invariant has a central character A, a character of the center of a Levi subalgebra in g*. By [JS10,
Lemma 4.6,(i)], there is also a semi-invariant with the character —A. Multiplying both numerator and de-
nominator by this invariant, we get the same invariant as a quotient of invariants, whence the lemma. O

Definition 3.2. An element x € g is called a good element of g if for some homogenous elements py, ..., py
of S(gx)gx, the nullvariety of py, ..., p¢ in (¢%)* has codimension € in (¢%)*. A G-orbit in g is called good if
it is the orbit of a good element.

Since the nullvariety of S(g)ﬁ‘r in g is the nilpotent cone of g, 0 is a good element of g. For (g, x) in G X g
and for a in S(g*)", g(a)is in S(gg(x))ggm. So, an orbit is good if and only if all its elements are good.

Theorem 3.3. Let x be a good element of . Then S(g%)% is a polynomial algebra and S(g*) is a free
extension of S(g%)%".

Proof. Let py,..., pr be homogenous elements of S(g*)8" such that the nullvariety of py,..., p¢in (g%)" has
codimension . Denote by A the subalgebra of S(g*)%" generated by py,..., p,. Then A is a homogenous
subalgebra of S(g*) and the nullvariety of A, in (g*)* has codimension . So, by Lemma 2.1,(ii), A has
dimension €. Hence, py, ..., p¢ are algebraically independent and A is a polynomial algebra. Denote by A
the algebraic closure of A in S(g*). By Lemma 3.1, A is contained in S(g*)?" and the fraction field of S(g*)%"
is algebraically closed in K. As a matter of fact, A = S(¢")¥ since the fraction fields of A and S(g*)®" have
the same transcendental degree. Hence, by Theorem 2.20, S(g") is a polynomial algebra and S(g") is free
extension of S(g*)%". O

Remark 3.4. The algebra S(g*)* may be polynomial even though x is not good. Indeed, let us consider
a nilpotent element e of g = s0(k'%) in the nilpotent orbit associated with the partition (3, 3,2,2). Then
the algebra S(q¢)% is polynomial, generated by elements of degrees 1, 1,2,2,5. But the nullcone has an
irreducible component of codimension at most 4. So, e is not good. We refer the reader to Example 7.5 for
more details.

For x € g, denote by x; and x,, the semisimple and the nilpotent components of x respectively.

Proposition 3.5. Let x be in g. Then x is good if and only if x, is a good element of the derived algebra of
g*.

Proof. Let 3 be the center of g™ and let a be the derived algebra of g*s. Then
gF=3@a",  S(g)* =SG) & S(a™)"".

By the first equality, (a*)* identifies with the orthogonal complement to 3 in (g*)*. Set d := dim3. Suppose

that x, is a good element of a and let py, ..., p;_q be homogenous elements of S(a**)™" whose nullvariety
in (a™)* has codimension ¢ — d. Denoting by vy, ..., v, a basis of 3, the nullvariety of vy, ...,04, P1,. .- Pt-d
in (g%)* is the nullvariety of py,..., pi—q in (a™)*. Hence, x is a good element of g.

Conversely, let us suppose that x is a good element of g. By Theorem 3.3, S(g*)% is a polynomial algebra
generated by homogenous polynomials py, ..., pe. Since 3 is contained in S(gx)"x, P1,--.,Pe can be chosen
so that py,...,pgarein 3 and pg4q,..., pe are in S(ax")ax". Then the nullvariety of pgi1,..., p¢ in (a™)* has

codimension ¢ — d. Hence, x, is a good element of a. O
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3.2. In view of Theorem 3.3, we wish to find a sufficient condition for that an element x € g is good.
According to Proposition 3.5, it is enough to consider the case where x is nilpotent.

Let e be a nilpotent element of g, embedded into an sly-triple (e, i, f) of g. Identify the dual of g with
g, and the dual of ¢¢ with ¢/ through the Killing form (.,.) of g. For p in S(g) =~ k[g], denote by «(p) the
restriction to g/ of the polynomial function x > p(e+x) and denote by p its initial homogenous component.
According to [PPY07, Proposition 0.1], for p in S(g)%, ¢p is in S(a¢)%".

The proof of the following theorem will be achieved in Subsection 4.4.

Theorem 3.6. Suppose that for some homogenous generators qi, . . .,q¢ of S(8)%, the polynomial functions
°qys. .., °qy are algebraically independent. Then e is a good element of a. In particular, S(¢¢)* is a poly-
nomial algebra and S(g°) is a free extension of S(g9)¥. Moreover; (“qq,-- -, qp) is a regular sequence in

S(g%).
The overall idea of the proof is the following.

According to Theorem 3.3, it suffices to prove that e is good, and more accurately that the nullvariety of
°qys. .., °qp in ¢/ has codimension ¢ since g, ..., %G, are invariant homogenous polynomials. As explained
in the introduction, we will use the Slodowy grading on S(g°)[[#]] and S(g°)((#)), induced from that on S(g°),
to deal with this problem. This is the main purpose of Section 4.

4. SLODOWY GRADING AND PROOF OF THEOREM 1.5

This section is devoted to the proof of Theorem 3.6 (or Theorem 1.5). The proof is achieved in Subsec-
tion 4.5. As in the previous section, g is a simple Lie algebra over k and (e, A, f) is an sl,-triple of g. Let us
simply denote by S the algebra S(g°).

Let g1,...,q¢ be homogenous generators of S(g)® of degrees dj,...,d; respectively. The sequence
(q1,---,qr) is ordered so that d;< - -- <dy,. We assume in the whole section that the polynomial functions
4y, - - -, °q, are algebraically independent. The aim is to show that e is good (cf. Definition 3.2).

4.1. Letxp,...,x, beabasis of g° such that fori = 1,...,r, [h, x;] = n;x; for some nonnegative integer n;.

For j = (ji1,...,jr) in N, set:

il := ji+- -+, lile == jing +---+ jn, +2|jl, o =t x)

The algebra S has two gradings: the standard one and the Slodowy grading. For all j in N, xJ is homogenous
with respect to these two gradings. It has standard degree |j| and Slodowy degree |j|.. In this section, we only
consider the Slodowy grading. So, by grading we will always mean Slodowy grading. For m nonnegative
integer, denote by S "I the subspace of S of degree m.

Let ¢ be an indeterminate. For all subspace V of S, set:

Vit =kl eV, Vi 'l=kir' eV,  VIAl:=kldleV, V() :=k(@) eV,

with k((#)) the fraction field of k[[¢]]. For V a subspace of S[[¢]], denote by V(0) the image of V by the
quotient morphism
S[t] — S, a(t) — a(0).
The grading of S induces a grading of the algebra S ((#)) with ¢ having degree 0. For V a homogenous
subspace of S ((#)) and for m a nonnegative integer, let V" be its component of degree m. In particular, for
V a homogenous subspace of S, V((¢)) is a homogenous subspace of S ((¢)) and

V()™ = vIM((r)).
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Let 7 be the morphism of algebras,

7: 8 —S[f], x> tx; for i=1,...,r
The morphism 7 is a morphism of homogenous algebras. Denote by 61, ...,0, the standard degrees of
gy, - -, °qp respectively, and set fori = 1,...,¢

Qi = 11(k(gy))-
Let A be the subalgebra of S[f] generated by Qi,..., Q. Then observe that A(0) is the subalgebra of S
generated by gy, ..., %q;. Forj = (ji,...,je) in N, set

Pi=ql g, k@ = kgl kg, ¢ =l gl ol =0l 0.
Proposition 4.1. (i) For j in N¢, k() and @ are homogenous of degree 2d; ji + - - - + 2d; jy.
(1) The map Q — Q(0) is an isomorphism of homogenous algebras from A onto A(0).

Proof. (i) follows from [Pr02, Section 5] or [PPY07, Section 2].

(i1) The set (Qi, je NY%) is a basis of the k-space A and the image of QJ by the map Q — Q(0) is equal
to eqj. Moreover, by (i), O and eqj are homogenous of degree 2d;j; + -+ + 2d;je so that QO — Q(0)
is a morphism of graded algebras. By definition, its image is A(0). Since ‘%, ..., %, are algebraically
independent, it is injective. O

By Proposition 4.1,(ii), A and A(0) are isomorphic homogenous subalgberas of S[¢] and S respectively.
In particular, A is a polynomial algebra since A(0) is polynomial by our hypothesis.

Denote by A, and A(0); the ideals of A and A(0) generated by the homogenous elements of positive
degree respectively, and denote by A the subalgebra of S [[#]] generated by k[[#]] and A, i.e.,

A = K[[]]A.
Lemma 4.2. (i) The algebra Ais isomorphic to k[[t]] ® A. In particular, it is regular.

(ii) The element t of A is prime.
(iii) Each prime element of A is a prime element of A.

Ztmam =0.

meN
If a,, # O for some m, then a,(0) = 0 if p is the smallest one such that a, # 0. By Proposition 4.1,(ii), it is
not possible. Hence, the canonical map

Proof. (i) Leta,,,m € N, be in A such that

k[[f]lex A — A
is an isomorphism. As observed just above, A is a polynomial algebra. Then A is a regular algebra by [Ma86,
Ch. 7, Theorem 19.5].
(i) By (i), A is the quotient of A by ¢A so that ¢ is a prime element of A.
(iii) By (i), for a in A, the quotient A/Aa is isomorphic to k[[#]] ® A/Aa. Hence a is a prime element of
A if it is a prime element of A. O

As it has been explained in Subsection 3.2, in order to prove Theorem 3.6, we aim to prove that S is
a free extension that A(0). As a first step, we describe in Subsections 4.2, 4.3 and 4.4 some properties of
the algebra A. We show in Subsection 4.3 that S ((¢)) is a free extension of A (cf. Proposition 4.9,(iii)), and
we show in Subsection 4.4 that S[[#]] is a free extension of A (cf. Corollary 4.17). In Subsection 4.5, we
consider the algebra A and prove that S[[#]] is a free extension of A (cf. Theorem 4.21,(i)). The expected

result will follow from this (cf. Theorem 4.21,(iii)).
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4.2. Let 8, be the map

Gx(e+d)—g (9.0 gW),
and let . be the ideal of S(g¢) generated by the elements x(g1), . . ., k(g¢). The following lemma is known
by [Pr02, Theorem 5.4] and the proof of [PPY07, Theorem 2.1].

Lemma 4.3. (i) The map 6, is a smooth morphism onto a dense open subset of g, containing G.e.
(ii) The nullvariety of 3. in o' is equidimensional of dimension r — €.
(iii) The ideal J. of S(g°) is radical.

Denote by V the nullvariety of A, in g/ x k, and by Vy the nullvariety of A(0), in g/. Then denote by V.,
the union of the irreducible components of V which are not contained in g/ % {0}. Note that Vo x {0} is the
nullvariety of 7 in 'V, and that

V=V,.UV,x{0}.

Corollary 4.4. (i) The variety V., is equidimensional of dimension r + 1 — €. Moreover, for X an irreducible
component of V. and for 7 in k, the nullvariety of t — z in X has dimension r — ¢.

(i) The algebra S [t,t™'] is a free extension of A.

(iii) The ideal S[t,t 1A, of S[t,t™'] is radical.

Proof. (i) Let V', be the intersection of V, and g/ xk* and let X be an irreducible component of V.. Then V",
is the nullvariety of Qy,..., Q¢ in of xk* since A, is the ideal of A generated by Q1, ..., Q. In particular, X
has dimension at least 7+ 1 —£. For z in k*, denote by X. the subvariety of g/ such that X. x{z} = XNa/ x {z}.
By definition, fori = 1,...,¢, Q; = t %tox(g;). Hence V', is the nullvariety of Tok(q1), . .., Tok(ge) in ¢/ x k*
and X, is the image of X; by the homothety v - z~'v. By Lemma 4.3,(ii), X; has dimension r — £. Hence X,
has dimension r — € and X has dimension at most r + 1 — €. As a result, X has dimension r + 1 — £ and X is
strictly contained in X, whence the assertion since X is not contained in o/ x {0} by definition.

(ii) The algebra S[z,# '] is graded and A is a homogenous polynomial subalgebra of S[z,7!]. According
to (i), the fiber at A, of the extension S[z,77!] of A is equidimensional of dimension  + 1 — £. Hence, by
Proposition 2.5, S [¢, r11is a free extension of A.

(iii) Let J, be the ideal of S[t, '] generated by Tok(q1), . . ., Tok(q). Since 1% Q; = tox(q;) fori = 1,...,¢,
we get J, = S[t,#7']A,. Denote by T the endomorphism of the algebra S [z, '] defined by

() =t, 7T(x1)=1tx1,...,7(x;) = tx,.

Then 7 is an automorphism and J, = 7(S [¢, t™119.). So, it suffices to prove that the ideal S [#, 1119, is radical.
Let J/, be the radical of S|z, t119,.. Forain S[t,+ '], a has a unique expansion
a= Z a,,
meZ
with (a,,,m € Z) a sequence of finite support in S. Denote by v(a) the cardinality of this finite support.
Moreover, a is in S [t, 7117, if and only if a,, is in J, for all m. Suppose that S [¢, 119, is strictly contained
in J,. A contradiction is expected. Let a be in J,, \ S|z, 17119, such that v(a) is minimal. Denote by mq the
smallest integer such that a,,, # 0. For some positive integer, a* and ("™ a)* are in S[z,77']J, and we have
(t_moa)k = a],jm + Z b,
m>0
with the b,,’s in J,.. Then afno is in J, and by Lemma 4.3,(iii), a,,, is in .. As aresult a’ := a — "™ay, is an
element of J/ such that v(a’) < v(a). By the minimality of v(a), @’ is in S[¢,#7'1J, and so is a, whence the

contradiction. O
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Let J, be the ideal of definition of V, in S[¢]. Then J. is an ideal of S [#] containing the radical of S[¢]A,.
It will be shown that V,, = 'V and that S [¢]A is radical (cf. Theorem 4.21). Thus, J, will be at the end equal
to S[t]A,.

Let py, ..., p, be the minimal prime ideals containing S [t]A; and let qy, .. ., q,, be the primary decompo-
sition of S[f]A, such that p; is the radical of g; fori =1,...,m.

Lemma 4.5. (i) Forain S|t], a is in J, if and only if t"a is in S [t]A, for some positive integer m. Moreover,
for some nonnegative integer I, '3, is contained in S[t]A.,.

(i1) The ideal . is the intersection of the prime ideals p; which do not contain t. Furthermore, for such i,
Pi = q;, i.e. q; is radical.

Proof. (i) Leta be in S[t]. If fa is in S[r]A. for some positive integer /, then a is equal to 0 on 'V, so that
a is in J.. Conversely, if a is in J,, then ta is in the radical of S[f]A, since V is contained in the union of
V. and ¢/ x {0}. According to Corollary 4.4,(iii), for some positive integer m, t"*(ta) is in S [t]A,. Since J,
is finitely generated as an ideal of S[t], we deduce that for some nonnegative integer /, #/J, is contained in
S [t]A, whence the assertion.

(i) Let i € {1,...,m}. Then p; does not contain 7 if and only if the nullvariety of p; in ¢/ x k is an
irreducible component of V.., whence the first part of the statement.

By (i), for some nonnegative integer [, #'J, is contained in S[f]A.. Let I be the minimal nonnegative
integer satisfying this condition. If / = 0, J, = S[¢]A, whence the assertion. Suppose [ positive. Denote by
J!. the ideal of S [¢] generated by ¢ and S [f]A.. It suffices to prove that S [¢]A is the intersection of J, and J,.
As a matter of fact, if so, the primary decomposition of S [¢]A. is the union of the primary decompositions
of J, and J), since the minimal prime ideals containing J.. do not contain .

Let a be in the intersection of J, and J/,. Then

14
a= llb + ZaiQi
i=1

with b,ay,...,a; in S[t]. Since S[f]A, is contained in J,, #b is in 7, and b is in I, by (i). Hence ‘b
and a are in S[r]A.. As a result, S[f]A; is the intersection of J, and J, since S[f]A. is contained in this
intersection. O

4.3. Let Vy be a homogenous complement to S A(0).. in S. We will show that the linear map
Vo®r A(0) — S, vea — va

is a linear isomorphism (cf. Theorem 4.21).

Lemma 4.6. We have S[[t]] = Vollt]] + S[[t]1]1A+ and S ((t)) = Vo((®) + S (()A-.

Proof. The equality S((£)) = Vo((#)) + S ((1))A; will follow from the equality S[[f]] = Vol[£]] + S[[#]]A-.
Since S[[#]], Vol[#]] and S [[#]]A+ are homogenous, it suffices to show that for d a positive integer,

SN € Vollel'! + (S [[e11A ),

the inclusion Vy[[#]] + S[[#]]A+ € S[[#]] being obvious.

Let d be a positive integer and let a be in S [[F11). Let (¢1,...,¢m) be a basis of the k[[f]]-module
(S[11A). Such a basis does exist since k[[7]] is a principal ring and S [[£]]“! is a finite free k[[f]]-module.
Then ¢1(0), ..., 9n(0) generate (SA(0))9). Since S = V¥ @ (SA(0).,)9),

m
a—ap— Z ao.jpj = o,

=
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with ag in V([)d], aol,---,aom ink and Yo € S [[£1]4], Suppose that there are sequences (ayp,

@@iy,...,aim), fori=0,...,n,in V([)d] and k respectively such that
n n m
a= )it =) ) taig =11,
i=0 i=0 j=1

for some i, in S [[£]]']. Then for some a,; in V(gd] and an411,. - Ane1,m 0k,

m

Un = ner = ) ner o € 1S[1]]

j=1
so that
n+l n+l m
a-Y ai' =Y > ai gt € S]]
i=0 i=0 j=1
As aresult,

a € Vol + (S [[11A)
since S [[1]]'¥ is a finite k[[]]-module.

...,a,) and

O

Recall that py, ..., p,, are the minimal prime ideals of S [#] containing S [¢]A. Since A, is a homogenous
subspace of S[f], S[¢]A is a homogenous ideal of S[¢], and so are py, ..., ;. According to Lemma 4.5,(ii),
J. is the intersection of the p;’s which do not contain ¢. Hence, J,. is homogenous. Thereby, J. N Vy[f] has a

homogenous complement in Vy[#]. Set
W=7, N Vylz].

Then W(0) is a homogenous subspace of V. Denote by V{ a homogenous complement to W(0) in V. Then

set

Vi = W(0)
so that Vo = Vi@ V(.
Lemma 4.7. Let (v;,i € J) be a homogenous basis of V(').

(1) The elements v;,i € J, are linearly independent over k[t].
(ii) The sum of W and of V{[t] is direct.

Proof. We prove (i) and (ii) all together.
Let (c;,i € J) be a sequence in k[¢], with finite support J., such that

E CiVi =w

ieJ

for some w in W. Suppose that J. is not empty. A contradiction is expected. Since V[ is a complement to
Vi, ci(0) = 0 for all i in J. Then, for i in J., ¢; = t"c; with m; > 0 and ¢}(0) # 0. Denote by m the smallest

of the integers m;, for i € J.. Then w = "w’ for some w’ in Vy[t], and

E My = w'

iel,.

According to Lemma 4.5,(i), w’ is in J,. So, cl’. (0) = 0 for i such that m; = m, whence the contradiction. 0O

As arule, for M a k[¢]-submodule of S [], we denote by M the k[[#]]-module generated by M, i.e.,

M = k[[{]]M.
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Lemma 4.8. Let M be a k[t]-submodule of S [t].
(i) Let a be in the intersection of S [t] and M. For some q in k[t] such that q(0) # 0, ga is in M.
(ii) For N a k[t]-submodule of S [t], the intersection of M and N is the k[[t]]-module generated by M N N.

Proof. (i) Denote by a the image of a in S [t]/M by the quotient map and by J its annihilator in k[#]. Then
we have a commutative diagram with exact lines and columns:

0 M—2s 5[] 4 L SU/M —0
| |

0 J—2 k] d K[1]a 0
0 0

Since k[[#]] is a flat extension of k[¢], tensoring this diagram by k[[#]] gives the following diagram with exact
lines and columns:

0 M— s 4 KI[] &y STH/M —= 0
J |
d d _
0 —= K[[r])J K{[]] K[[1Ja —— 0
0 0

For b in k[[#]], (6od)b = (d°6)b = O since a is in 1\71, whence db = 0. As a result, k[[#]]J = k[[#]]. So ga is in
M for some ¢ in k[¢] such that ¢(0) # O.
(i1) Since k[[7]] is a flat extension of k[¢], the canonical morphism

K[[]] @i M — M.
is an isomorphism and from the short exact sequence
00— MNN-—>Me&N-—>M+N—Q0
we deduce the short exact sequence
0 — kl[#]] ®kq M NN — Kk[[t]] Qg (M & N) — k[[t]] @k (M + N) — O,
whence the short exact sequence
0—MNN—M&N— M+N — 0,
and whence the assertion. o

Proposition 4.9. (i) The space Vy[t]] is the direct sum of V(')[[t]] and W.
(i1) The space S [[t]] is the direct sum of V(’)[[t]] and of W + S[[t]]A+.
(iii) The linear map

Vi) & A — S((1)), vea — 1VRA

is a homogenous isomorphism onto S ((1)).
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(iv) For all nonnegative integer d,

d
dim§1 = 3" dim Vgl xdim AU,
i=0
Proof. (i) According to Lemma 4.8,(ii), the intersection of V(’)[[t]] and W is the k[[t]]-submodule generated
by the intersection of Vé[t] and W. So, by Lemma 4.7,(iii), the sum of V(’)[[t]] and W is direct.
Let (v;, i € J) be a homogenous basis of V. Let d be a positive integer and let v be in V([)d]. Denote by J,
the set of indices i such that v; has degree d. Since V) is the direct sum of V(’) and V(’)’, for some w in W4l and

for some ¢;,i € J4,ink,
v— Z civ; = w(0).
ieJ
Since w — w(0) is in tVo[£]“],
v— Z CciVi— W € tVo[t][d].
ieJy
As aresult,
VI € v e + Wi+ vl .
Then by induction on m,
VI € v iiar + Wi+ v,

So, since V(Ed][[t]] is a finitely generated k[[¢]]-module,
Vot = vl + wi,

whence the assertion.
(i1) According to Lemma 4.5,(i), for some nonnegative integer /, 1'J, is contained in S[f]JA;. Hence
W + S[l#]]1A; is equal to W + S[[¢]]A+. So, by (i) and Lemma 4.6,

SNl = Vpllel + W+ S[[#11A-.

According to Lemma 4.7,(ii), the intersection of V(’)[t] and S[f]A; is equal to {0} since S[f]A; is contained
in J,. As a result, by Lemma 4.8,(ii), the intersection of V(’)[[t]] and S[[f]]A+ is equal to {O}. If a is in the
intersection of V(')[[t]] and W + S[[t]]A4, f'a is in the intersection of V(’)[[t]] and S[[t]]As+. So the sum of
Villzl] and W + S[[t]]A+ is direct.

(iii) According to Lemma 4.5,(i), W is contained in S ((f))A+. So, by (ii),

S((1) = Vo) & S(1)A,.

Since k[[#]] is a flat extension of k[¢], and since

S((®) = kl[1]] @ S, 7],

we deduce that S ((¢)) is a flat extension of A by Corollary 4.4,(ii). So, by Lemma 2.2, all basis of V(')[[t]]
over k consists of linearly independent elements over A. The assertion follows.
(iv) First of all, the canonical map
k(1) & A — k((1)A

is an isomorphism by Lemma 4.2,(i). As a result, we have the canonical isomorphism

Vi (1) @y kK(1)A — V(1)) @x(ry) k(1)) &k A),

and for all nonnegative integer i,
dim A7 = dim k(1) A) 1.
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From the above isomorphism, it results that the canonical morphism

Vo (1)) @y k((1)A — V(1) @ A

is an isomorphism of graded spaces since V(’)((t)) (1) k(@) = V(’)((t)). As a result, by (iii), the canonical
morphism

Vo((®) @y k((1)A — S (1))
is a homogenous isomorphism. So, for all nonnegative integer d,

d
dimioS () = dimig V()" xdimig () A,
i=0

whence the assertion since dim S = dimy())S ((1))¥ and dim V(’)m = dimk((t))Vé((t))[i] for all i. O

4.4. Let (wg, k € K) be a homogenous sequence in W such that (wg(0), k € K) is a basis of Vé’ = W(0). For
k in K, denote by my the smallest integer such that ™ wy is in S[¢]A;. According to Lemma 4.5,(i), my is
finite for all k. Moreover, my, is positive since W(0) N S A(0), = {0}. Set

O:={k,i)|keK, ic{0,...,m—1}},
and set for all (k, i) in O,

Wi = l‘iwk.
Let Eg be the k-subspace of V[¢] generated by the elements wy ;, (k, i) € ©.
Set
J. = K[[11]9..
It is an ideal of S[[z]].

Lemma 4.10. (i) For some q in k[t] such that q(0) # 0, qJ. is contained in W + S [t]A..

(ii) The space W is contained in Eg + S [t]A+. Moreover, 5; is the sum of Eg and S[[t]]A.

(iii) The sequence (wy;, (k,1) € ®) is a homogenous basis of Eg.

(iv) For all nonnegative integer i, Eg] has finite dimension.

(v) For i a nonnegative integer, there exists a nonnegative integer l; such that tl"Eg] is contained in
Vill]1A,.

Proof. (i) Let a be in J,. According to Lemma 4.6 and Lemma 4.8,(i), for some ¢ in k[#] such that g(0) # 0O,
ga € J, and ga = a; + ap with a; in Vy[t] and a; in S[f]A;. Then a; is in J, since so are a; and ga. So
a; € J, N Vp[t] = W. The assertion follows because J, is finitely generated.

(i1) Let us prove the first assertion. It suffices to prove

W C Eeg+S[tlA; +"S[1]

for all m. Indeed, W, Eg, S[t]A; are contained in J.. So, if w = e +a + t"b, withw € W, e € Eg and
b € S[t], then b is in J, and so, for m big enough, it is in S [t]A; by Lemma 4.5,(i).

Prove now the inclusion by induction on m. The inclusion is tautological for m = 0, and it is true m = 1
because Eg(0) = V(. Suppose that it is true for m > 0. Let w be in W. By induction hypothesis,

w=a+b+1"c, with ae€Eg, beS[t]lA;, c € S[t].

Since Eg and S[f]A; are contained in J,, c is in J, by Lemma 4.5,(i1). According to (i), for some ¢ in k]
such that ¢(0) # 0, gc = @’ + b’ with @’ in W and " in S [t]A.. Since the inclusion is true for m = 1,

@ +b)emEg + S[HAL + "I S[[1],
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and by definition, 1" Eg is contained in Eg + S [f]A+. Moreover, g(0)c is in gc + S [¢]. Then
"ceEg+S[A, +"'S[1] and we Ep +S[r]A, +"'S[1],

whence the statement.

Turn to the second assertion. By (i), j: is the sum of W and S [[£]]A+. An element of W is the sum of
terms "w,,, with m € N and w,, € W. For m big enough, "w,, € S[t]A; by Lemma 4.5,(i). So 3: is the sum
of W and S [[#]]A+, whence the assertion by the previous inclusion.

(iii) By definition, the elements wy;, (k,i) € ©, are homogenous. So it suffices to prove that they are
linearly independent over k. Let (ck;, (k, i) € ®) be a sequence in k, with finite support, such that

my—1

Z Z ck,l-wk,,- = 0

keK i=0
Let us prove that cg; = 0 for all (k, 7). Suppose ci; # 0 for some (k, 7). A contradiction is expected. Let K’
be the set of k such that ¢;; # 0 for some i. Denote by iy the smallest integer such that ¢ ;, # O for some k
in K’ and set:

Ky :=1{k € K| cxj, # 0}.

Then

Z Crigwk(0) = 0,

keK(’)
whence the contradiction since the elements (wy(0), k € K) are linearly independent.

(iv) Let K; be the set of k such that wy, is in S [7]/. For such k, wi(0) is in S1. Hence K; is finite since S /!
has finite dimension and since the elements (w¢(0), k € K) are linearly independent. For &k in K, k[f]wy N Eg
has dimension my;, by (iii). Hence Eg] has finite dimension.

(v) Let k£ be in K;. Set

ol := e n (K; x N).
By Proposition 4.9,(iii), My is in V(’)[[t]]AJr since ™ wy, is in S [f]A. by definition, whence the assertion
since EL is generated by the finite sequence (wy, (k, j) € O1). O

Definition 4.11. We say that a subset T of @ is complete if
k,)eT = (k,j)eT, ¥Vjel0,...,i}.

For T subset of @, denote by K7 the image of T by the projection (k, i) — k, and by E7 the subspace of
Ee generated by the elements wy;, (k,i) € T. In particular, Kg = K.

Lemma 4.12. For some complete subset T of ® such that Kt = K, the subspace Er is a complement to
S[tlA+ in Eg + S[t]A+. In particular, the sum of E7 and S[t]A; is direct.

Proof. Since Vi’ NS A(0); = {0}, the sum of Egx(oy and S [7]A is direct. Let T be the set of complete subsets
T of O satisfying the following conditions:

(1) forall kin K, (k,0)isin T,
(2) the sum of E7 and S[f]A. is direct.

Since the sum of Ekxo, and S[f]A, is direct, T is not empty. If (T;, j € J) is an increasing sequence of
elements of J, with respect to the inclusion, its union is in T. Then, by Zorn’s Lemma, 7 has a maximal

element. Denote it by 7. It remains to prove that wy; is in E7, + S [¢]A for all (k,7) in ©.
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Let k be in K. Denote by i the biggest integer such that (k, i) is in T.. Prove by induction on i’ that for
my > i’ > i, wgy isin E7, + S[f]A+. By maximality of T and i, wy i is in E7, + S[f]A. Suppose that wy »
isin E7, + S[t]A,. Then, for some a in S[t]A; and ¢, j, (m, j) € T, ink,

Wi = Z cm,jwm,j + a,
(m, )T,
whence

Wiir+1 = Z Cm’jtj-'—]wm + ta.
(m,)ET

By maximality of T., t/*'w,, is in E7, + S[f]A, for all (m, j) such that t/w,, is in T,. Hence wy ;1 is in
Er, + S[t]A+. The lemma follows. O

Fix a complete subset T of ® such that
Kr =K and Eo +S[t]JAy = E7, ® S[t]A4,
and set
E:=Er,.
Such a set T, does exist by Lemma 4.12.

Corollary 4.13. (i) The space S[[1]] is the direct sum of V{[[t]], E and S[[t]]A+.
(1) The space S [[t]] is the sum of EA and V(’)[[t]]A.

Proof. (i) According to Proposition 4.9,(ii), S[[#]] is the direct sum of V(')[[t]] and W + S[[t]]JA+. By
Lemma 4.10,(ii) (and its proof), W + S[[f]]A; is equal to Eg + S[[f]]A;+. Since Eg + S[t]A; is the di-
rect sum of E and S[t]A,, we deduce that W + S[[f]]A+ is the direct sum of E and S [[¢]]A+. Hence, S[[¢]]
is the direct sum of Vé[[t]], E and S[[f]]A4.

(i1) By (i) and by induction on m,

S c ViI[NA + EA + S[[111AY.
Hence S[[#]] is the sum of V([[¢]]A and EA since S[[¢]] is graded and A, is generated by elements of positive

degree. O

Definition 4.14. For k in K, denote by v; the degree of w;. For T and T’ subsets of @, we say that T is
smaller than T’, and we denote T < T’, if the following conditions are satisfied:

(1) T is contained in 7"’
(2) if for k in K7 and £’ in K7/, we have v < v, then £ is in K.
Let u be the linear map
Eex A V|[[1ll&x A — S[I1], wea + veb — wa + vb.
For T a subset of T, denote by ur the restriction of u to the subspace

Er®rA® V(l)[[l‘]] ®x A.

Lemma 4.15. Let T, be the set of subsets T of T, such that ur is injective.
(1) The set T, is not empty.
(ii) The set T, has a maximal element with respect to the order <.
(iii) The set T, is in T.,.
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Proof. (i) For k in K, set Ty := {(k,0)}. Suppose that T} is not in T,. A contradiction is expected. Then for
some a in A \ {0}, wya is in V([[t]]A+, whence
wra = Z vib;

ieJ
with (b;,i € J) in k[[#]]A; with finite support. By Lemma 4.10,(v), for some positive integer, fwy is in
Villt]]A+. Then
lek = Z V;C;

ieJ
with (c;, i € J) in k[[¢]]A+ with finite support. Hence

Z U,‘llb,' = Z v;ic;a.

ieJ ieJ
According to Proposition 4.9,(iii), 'b; = cia for all i. Since a # 0, a(0) # 0 by Proposition 4.1,(ii). Then, by
Lemma 4.2,(ii), ¢; = tlc; for some ¢’ in A = Kk[[f]]A. As a result,

wy = Z vict,
ieJ
whence the contradiction by Corollary 4.13,(i).

(i1) Let (T},1 € L) be a net in 7, with respect to <. Let T be the union of the sets 7}, [ € L. Since E7 is
the space generated by the subspaces E7,,[ € L, the map ur is injective. Let [y be in L and k in Kr such that
Vi < Vi for some k’ in KTIO’ Since K7 is the union of the sets K7,, [ € L, we deduce that k is in K7, for some
l'in L. By properties of the nets, for some /" in L, T; < Ty and T}, < Ty so that k is in K7,. Hence, k is in
KTzO’ whence T, < T. As aresult, < is an inductive order in T, and by Zorn’s Theorem, it has a maximal
element.

(iii) Let T be a maximal element of T, with respect to <. Suppose T strictly contained in 7.. A contra-
diction is expected. Let k be in K such that (k, i) is not in T and (k, 7) is in T for some i. We can suppose
that v; is minimal under this condition. Let i, be the smallest integer such that (k, i,) is not in 7 and (k, i,.) is
inT.. Then T < T U {(k,i.)}. So, by the maximality of 7', for some a in A \ {0},

wi;,a € ErA + Vi[[1]]A.

Since E7, V(’)[[t]], A, wy;, are homogenous, we can suppose that a is homogenous. Then a has positive
degree. Otherwise, wy;, € ETA + V(’)[[t]]A CEr+ Vé[[t]] +S[[t]]1A+, and we deduce from Corollary 4.13,(i),
that wy;, € E7 since wg,;, € Er,. This is impossible by the choice of (k, i..). Thus, by Corollary 4.13,(ii),

wii.a € ETA, + V([[1]1A;.

Wk, A4 = Z Wh, j0n, + Z vib,-

(n,))eT il

Hence

with (ay,,j, (n, j) € T)in Ay and (b;,i € J) in A, with finite support.

By Corollary 4.13,(ii),
My = Z Wy,sl,s k + Z vibi k
(Ls)eT, ie]

with (aj sk, (l,s) € T.) in Ay and (bjx,i € J) in A, with finite support. Moreover these two sequences are
homogenous, so that a;sx = 0 if v; > v¢. By minimality of v, (I, s) isin T if a; s # 0. For (n, j) in T such
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that my — i, + j > m,,

M= —
[ Wp,j = Z Wi, sAl,s,n,j + Zvibi,n,j

(1, $)eT ieJ
with (a5, (I, s) € T.) in A, and (b, j,i € J) in A, with finite support. Moreover these two sequences are
homogenous, so that a; s, ; = 0if v; > v,,. So, by minimality of vk, (/, s)isin T if a; 5, ; # 0 and v, < v¢. As

a result,
Z Wy sap s 1@ + Z vibira = Z Wh it ay, j + Z vt b,
(l,)eT ieJ (n,j)eT ieJ
= Z Wnmy—i,+jOn,j + Z Wy, sAj,s.n,jn, j
(n,j)eT (n,j)eT
my—ix+j<mp my—ix+j>mp
4 Z Uitmk_l' b; + Z Z Uibi,n,jan,j
ieJ (n, j)eT ieJ
my—ix+j>mp
whence

Z Wy saj s xa + Z Uibi,ka Z Wnmy—i+jAn,j + Z Z Wi, sAl,s,n,jn,j

()T iel (. per @l (1,5)eT
My —is+j<mp my—is+j>mp
(M. P
+ E vi(" " b; + E bin,jan,;).
ieJ (n,j)€T
my—ix+j>mn

Since ur is injective, for all i in J,

(D) lmk_i*b,' + Z bi,n,jan,j - bi,ka =0,

(n,))eT
my—is+j>mn

and forall (/, s)in T,

(2) Al s+i,—my T Z An,jAlsn,j — Alskd = 0.

(n,))eT
my—ix+j>mp

witha;; =0if s < 0.
Claim 4.16. For all (/, s) in T, a divides a; 5 in A.

Proof of Claim 4.16. Prove the claim by induction on v;. Let [ be in K7 such that
ve>v, and (I',s)eT = apy =0.

Then by Equality (2), a; s+i,-m, = ai,sxa, whence the satement for /. Suppose that a divides ay ¢ in A for all
(', s") in T such that vy > v;. By Equality (2) and the induction hypothesis, a divides a; s+i,—m, in A since
ajsn,; = 0 for v, < v, whence the claim. O

By Claim 4.16 and Equality (1), for all i in J, a divides ™~p. in k[[f]]JA. Since a has positive de-
gree, all prime divisor of a in A has positive degree and does not divide ¢ since ¢ has degree 0. Then, by
Lemma 4.2,(iii), a divides b; in k[[#]]A. As a result,

wii, € ETA + Vi[[1]1A

whence
wii, € VI + Er + S[[t11A+.
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Since wy;, is in E, wy;, is in E7 by Corollary 4.13,(i). We get a contradiction because (k, i,) isnotin 7. O
Corollary 4.17. The canonical map

EgyAe Villrll @ A — S[l1]
is an isomorphism. In particular, S[[t]] is a free extension of A.

Proof. By Lemma 4.15, T, is the biggest element of T,. Hence u is injective. Then, by Corollary 4.13,(ii),
u is bijective. As a matter of fact, u is an isomorphism of A-modules, whence the corollary. O

4.5. Recall that A is the subalgebra of S[[]] generated by k[[#]] and A. Our next aim is to show that S [[¢]]
is a free extension of A (cf. Theorem 4.21). Theorem 3.6 will then follows.
For I an ideal of A, denote by o; and v; the canonical morphisms

S[I] @4 I — S[[1]] ®4 A [l ®; 1 —— S .

Consider on S [[#]]®4/ and S [[#]]® 4/ the linear topologies such that {#"(S [[]]®a])} ey and {£*(S [[£]]1®z]) nen
are systems of neighborhood of 0 in these S [[f]]-modules. Denote by ¢; the canonical morphism

SIA @ I — S[lrl®; 1
and by X its kernel. Then ¢y is continuous with respect to the above topologies.

Lemma 4.18. Let I be an ideal of A.

(1) The morphism oy is injective.

(ii) The module K is the S [[t]]-submodule of S [[t]] ®4 I generated by the elements rea — 1ora with r in
kl[[t]] and a in 1.

Proof. (i) According to Corollary 4.17, S[[f]] is a flat extension of A. The assertion follows since I is
contained in A.

(i1) Let fK} be the S [[#]]-submodule of S[[t]] ®4 I generated by the elements rea — 1era with r in k[[¢]]
and a in 1. Then X is contained in XK;. Let us prove the opposite inclusion.

Let (x,y) be in S[[f]] X I and let a be in A. According to (i), @ has an expansion

a = Z ria;
i=1

with rq,...,ry ink[[f]] and a4, ..., a, in A. Then, in S[[f]] ®4 1,

m m
xeay — axoy = Z X®F;aiy — rixea;y = Z x(leraiy — riea;y) € TK}.
i=1 i=1
As aresult, X; = K since K is the S[[t]]-submodule of S [[#]] ®4 I generated by the xasy — xeay’s. O

Corollary 4.19. Let I be an ideal of A. The module K; is the closure of the S[[t]]-submodule of S[[t]] ®a I
generated by the set {tea — 16ta} ;.

Proof. Let £ be the S[[t]]-submodule generated by the set {t®a — 1®ta},c;. Prove by induction on n that
t"®a — let"a is in L; for all a in I. The statement is straightforward for n = 0, 1. Suppose n > 2 and the
statement true for n — 1. Forain I,

'a— let"a = 1" \(tea — 1sta) + " 'ota — ler" '1a.

By induction hypothesis, " eta — 18" ta is in £, whence 'sa — 1et"a is in £;. As a result, for r in k[7],
rea— lera is in L;. So, for r in k[[t]], r®a — 1®ra is in the closure of £;in S[[f]]®4 I. Since ¢y is continuous,

X is a closed submodule of S[[#]] ®4 I, whence the corollary by Lemma 4.18,(iii). O
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Proposition 4.20. Let I be an ideal of A.
(1) The canonical morphism
ViA®z 1 — S[[1]1®41
is an embedding.
(ii) For the structure of S[[t]]-module on S[[t]] ®4 1, t is not a divisor of 0 in S[[t]] ®; 1.

Proof. (i) We have the commutative diagram

V’A®AI—>S[[t]® I
o,k
Vil — 4 .5 [[£111
with canonical arrows d and 6. According to Proposition 4.9,(iii), the left down arrow ¢ is an isomorphism.
Let a be in V{A ®; I such that da = 0. Then deéa = 0, whence da = 0 since the bottom horizontal arrow d

is an embedding so that a = 0.
(i1) Let a be in S [[#]] ®4 I such that tp;(a) = 0. According to Corollary 4.19, for / in N such that [/ > 2

m
ta - Z bi(tea; — 1eta;) € £'S[[1]] ® I
i=1
for some by, ...,b,, in S[[t]] and for some ay,...,a,inl. Fori=1,...,m,

b, = bi’() + l‘bl’-

with b; in S and b} in S[[#]], whence

ta— ) bi(tsa; — leta) = ) bio(tsa; — 1 — sta;) € 1S [[]] @4 1.
i=1 i=1

Set:

m m

ad:=a- Z bi(tea; — leta;) and d’ = Z bio(tea; — leta;).

i=1 =

Then ¢;(a) = ¢;(a’) and o;(a”) is in £S [[¢]] ® k[[#]]. Moreover, fori = 1, ..., m, a; has a unique expansion
a; = Z r"a,-’n
neN

with a; 5, n € N, in A. Then

0'1(61”) = Z b; O(Z ta;, n®t" — 4, n®tn+l)

neN

tzatOth®1 + Z thO(tatn Ain- pet”.

neN* j=

Since the right hand side is divisible by ¢ in S[[#]] ®x k[[#]], for all positive integer n,

bipain-1 =0

I

since b;o and a; 1 are in S for all i. Hence o;(a’”’) = 0 and ¢’ = 0 by Lemma 4.18,(i). Thus,

a et'S[[1]]®a 1.
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As a result, ¢;(a) is in S 111 ®; I for all positive integer /. Since the S[[¢]]-module S[[f]] ®; I is finitely
generated, by a Krull’s theorem [Ma86, Ch. 3, Theoreom 8.9], for some b in S[[¢]], (1 + tb)p;(a) = O,
whence ¢;(a) = 0 since t¢;(a) = 0. O

Remind that Vy is the nullvariety of A(0), in o/, and that A = k[[/]]A.

Theorem 4.21. (i) The algebra S[[t]] is a free extension of A.
(ii) The varieties V and V. are equal. Moreover, Vy is equidimensional of dimension r — £.
(iii) The A(0)-module S is free and Vy = Vé. In particular, the canonical morphism

Vo®r A(0) — S, wvea — va
is an isomorphism.

Proof. (i) First of all, prove that S [[#]] is a flat extension of A. Then the freeness of the extension will result
from the equality Vo = V|, Lemma 4.6 and Proposition 4.9,(iii).
By the criterion of flatness [Ma86, Ch. 3, Theorem 7.7], it is equivalent to say that for all ideal / of A, the
canonical morphism v;,
Sl ez I — STl

is injective. Let a be in the kernel of v;. Consider the commutative diagram

ViA®; I — S[[ ®;

11®;

o)
g d
Vol — Sl
of the proof of Proposition 4.20,(i). According to Lemma 4.10,(v), for [ sufficiently big, #'a = db for some b
in V(’)A ®z I. Then 6b = 0 since vi(ta) = 0. By Proposition 4.9,(iii), ¢ is an isomorphism. Hence b = 0 and
fa = 0. Then, by Proposition 4.20,(ii), @ = 0, whence the the flatness.

(i1) Denote by k[f]p the localization of k[f] at k[f]. Then k[[]] is a faithfully flat extension of k[f]g.
Hence, S[[7]] is a faithfully flat extension of

S[tlo :=kltlo ®xq S.-

Set
Ap = K[l ®x A.
Then
A = X[[1]] ®xr1, Ao

so that A is faithfully flat extension of Ay. For M a Ap-module, we have

K[[1]] ®xir1, (S [lo ®5, M) = (k[[1]] @iy S[tlo) ®4, M = S[[1]] ®5 (A ®5, M).

Hence, S[f] is a flat extension of A since so is the extension S[[¢]] of A.

The variety V is the union of 'V, and V x {0}. Moreover Vg x {0} is the nullvariety in ¢/ x k of the ideal of
k[f]A generated by ¢ and A.. Then, by [Ma86, Ch. 5, Theorem 15.1], Vy is equidimensional of dimension
r—{ since S[f]o is a flat extension of A by (i) and since Ao has dimension €+ 1. Since V is the nullvariety of
¢ functions, all irreducible component of V has dimension at least r+ 1 — £ by [Ma86, Ch. 5, Theorem 13.5].
Hence any irreducible component of Vg X {0} is not an irreducible component of V. As a result, Vo X {0} is

contained in V, and soV = V...
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(iii) Since A(0) is a polynomial algebra, S is a free extension of A(0) by (ii) and Proposition 2.5. Moreover,
by Lemma 2.2, the linear map

Vo®r A(0) — S, v®a —> va

is a homogenous isomorphism with respect to the grading of Vy ® A(0) induced by those of Vj and A(0).
As aresult, for all nonnegative integer i,

i
dim ' = 3" dim vV /' xdim A(0)/,
j=0
whence dim V([)i] = dim V(’)["J for all i by Proposition 4.9,(iv) since dim Al = dim A(0)!"! for all i by Proposi-
tion 4.1,(ii). Then Vy = V(/). O

As explained in Subsection 3.2, by Theorem 3.3 and Proposition 2.5,(ii), Theorem 3.6 results from The-
orem 4.21,(ii).

Remark 4.22. According to the part (ii) of Theorem 4.21, J, is the radical of S [t]A.. Hence S [¢]A. is radical
by Lemma 4.5,(ii), and then J, = S[f]A..

5. CONSEQUENCES OF THEOREM 1.5 FOR THE SIMPLE CLASSICAL LIE ALGEBRAS

This section concerns some applications of Theorem 1.5 to the simple classical Lie algebras.

5.1.  The first consequence of Theorem 3.6 is the following.
Theorem 5.1. Assume that g is simple of type A or C. Then all the elements of g are good.

Proof. This follows from [PPY07, Theorems 4.2 and 4.4], Theorem 3.6 and Proposition 3.5. Further, in
type A, the result is given by [PPY07, Theorem 5.4]. O

5.2. In this subsection and the next one, g is assumed to be simple of type B or D. More precisely, we
assume that g is the simple Lie algebra so(V) for some vector space V of dimension 2¢ + 1 or 2¢£. Then g
is embedded into § := gl(V) = End(V). For x an endomorphism of V and for i € {1,...,dimV}, denote
by Q;(x) the coefficient of degree dimV — i of the characteristic polynomial of x. Then, for any x in g,
Qi(x) = 0 whenever i is odd. Define a generating family (gi,. .., g¢) of the algebra S(g)® as follows. For
i=1,...,0—-1,setqg; := Qp;. f dimV =20+ 1, set g, = Oy and if dimV = 2¢, let g, be the Pfaffian that is
a homogenous element of degree ¢ of S(g)? such that Oy, = q?.

Let (e, h, f) be an sl,-triple of g. Following the notations of Subsection 3.2, for i € {1,..., ¢}, denote by
¢g; the initial homogenous component of the restriction to ¢/ of the polynomial function x — g;(e + x), and
by ¢; the degree of g;. According to [PPY07, Theorem 2.1], g, ..., %q, are algebraically independent if
and only if

dimg® + € —2(61+---+67) = 0.

Our first aim in this subsection is to describe the sum dimg® + £ — 2(d1+ - - - + d¢) in term of the partition of
dimV associated with e.

Remark 5.2. The sequence of the degrees (01, ...,d¢) is described by [PPY07, Remark 4.2].
For A = (44, ..., 4x) a sequence of positive integers, with 4;> - - - > A, set:

4] := k, r(d) == A1+ + A
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Assume that the partition A of r(A) is associated with a nilpotent orbit of so(k”Y). Then the even integers
of A have an even multiplicity, [CMc93, §5.1]. Thus k and r(1) have the same parity. Moreover, there is an

involution i — i’ of {1,...,k} such thati = i if A; is odd, and i’ € {i — 1,7 + 1} if A; is even. Set:
SWi= Y i- Y
i=i’,iodd i=i’,ieven

and denote by n, the number of even integers in the sequence A.
From now on, assume that A is the partition of dimV associated with the nilpotent orbit G.e.

Lemma 5.3. (i) IfdimV is odd, i.e., k is odd, then

dimg® + € — 2(814 - +6¢) = % +5().
(i) If dimV is even, i.e., k is even, then
dimg® + £— 261+ +6) = K s,
Proof. (i) If dimV is odd, then by [PPY07, §4.4, (14)],
261+ +6;) = dimge + dirgv + _2’” ~ S,
whence
dimge + £ — 2(51+---+6¢) = % + 5

since dimV = 2£ + 1.
(1) If dim'V is even, then 6, = k/2 by [PPY07, Remark 4.2] and by [PPYO07, §4.4, (14)],

dimV k-n,
+

2001+ +68;) + k=dimg® + > -S)
whence
dimg® + £~ 2614+ +60) = K 4 s
since dimV = 2¢. O
The sequence A = (4, ..., dx) satisfies one of the following five conditions:

1) A and A;_; are odd,

2) A and A;_ are even,

3) k>3, 4 and A; are odd and 4; is even for any i € {2,...,k — 1},

4) k > 4, A is odd and there is K’ € {2,...,k — 2} such that Ay is odd and 4; is even for any i €

{(K+1,...,k—1},

5) k=1 or A is odd and 4; is even for any i < k.
For example, (4,4, 3, 1) satisfies Condition (1); (6, 6,5,4,4) satisfies Condition (2); (7,6, 6,4,4,4,4,3) sat-
isfies Condition (3); (8,8,7,5,4,4,2,2,3) satisfies Condition (4) with ¥’ = 4; (9) and (6, 6,4, 4, 3) satisfy
Condition (5). If k = 2, then one of the conditions (1) or (2) is satisfied.

Definition 5.4. Define a sequence A* of positive integers, with |1*| < |4], as follows:
- if k = 2 or if Condition (3) or (5) is satisfied, then set 2* := A,
- if Condition (1) or (2) is satisfied, then set:

A= (A, k),
38



- if k > 3 and if Condition (4) is satisfied, then set
A= (/11, e ’/lk’—l)-

In any case, the partition of r(1*) corresponding to A* is associated with a nilpotent orbit of so(k"1)).
Recall that n, is the number of even integers in the sequence A.

Definition 5.5. Denote by d, the integer defined by:
- ifk=2,thend, :=n,,
- if k > 2 and if Condition (1) or (4) is satisfied, then d, := d-,
- if k > 2 and if Condition (2) is satisfied, then d; := d- + 2,
- if k > 2 and if Condition (3) is satisfied, then d,; := 0,
- if Condition (5) is satisfied, then d, := 0.

Lemma 5.6. (i) Assume that k is odd. If Condition (1), (2) or (5) is satisfied, then

ﬂiélhwuﬁ¥@l¥ti+ﬁfy
Otherwise,
@£§Zi+su)=Zil%111+suﬂ+k—uﬂ—z
(11) If k is even, then
m;k+soo:ﬁigﬁj+suw+@—¢%

Proof. (i) If Condition (3) or (5) is satisfied, there is nothing to prove. If Condition (1) is satisfied,
ny = ny-, S =S+ 1.

Then .
k-1 « = A =1
R L NP

whence the assertion. If Condition (2) is satisfied,
ny=ny +2, S =SA).
Then,
I’l/l—k—l I’l,l*—|/l*|—1 «
—t+ SV = —+ S
> () 7 (1)
whence the assertion. If Condition (4) is satisfied,
ny=ny +k—|A° =2, S =SA)+k—|17 - 1.
Then,
ny— k

sy =
S S =

= A =1
EL—%i———1+SuU+k—uﬂ—1
whence the assertion.

(ii) If k = 2 or if k > 2 and Condition (3) or (5) is satisfied, there is nothing to prove. Let us suppose that

k > 3. If Condition (1) is satisfied,
ny = ny-, S =8SA")-1.
Then

k e
T +S@0=@L%LJ+1+SQB—1
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whence the assertion since d, = d+. If Condition (2) is satisfied,
ny=ny +2, S =SA).
Then,

'”+k+su):ﬂigﬁl+2+suw

whence the assertion since d, — dy = 2. If Condition (4) is satisfied,
ny=ny +k—|A% =2, S =SUA)+|A*|+1 -k
Then,

+k s 4| A
i +Su)=ELELJ+k—Mﬂ—1+Suﬂ+Mﬂ—k+1

whence the assertion since dy = d-. O

Lemma 5.7. (i) If A1 is odd and if A; is even for i > 2, then dimg® + € — 2(6; + -+ - + d¢) = 0.
(1) If k is odd, then dimg® + € — 2(61+-- -+ 8¢) = ny — d,.
(iii) If k is even, then dimg® + € — 2(81+ - - -+ d¢) = d,.

Proof. (i) By the hypothesis, n; = k — 1 and S (1) = 1, whence the assertion by Lemma 5.3,(i).
(ii) Let us prove the assertion by induction on k. For k = 3, if 4; and A, are even, ny = 2, d; = 0 and
S (1) = 3, whence the equality by Lemma 5.3,(i). Assume that k > 3 and suppose that the equality holds for
the integers smaller than k. If Condition (1) or (2) is satisfied, then by Lemma 5.3,(i), Lemma 5.6,(i) and by
induction hypothesis,
dimg® + € —2(51+ -+ +0¢) = np —dy=.

But if Condition (1) or (2) is satisfied, then n, — d, = ny« — d,-. If Condition (5) is satisfied, then
ny=k—-1, S) =k, d, =0,

whence the equality by Lemma 5.3,(i). Let us suppose that Condition (4) is satisfied. By Lemma 5.3,(i),
Lemma 5.6,(i) and by induction hypothesis,

dimge+€—2(61+---+<5g)zn,l*—d,p«+k—|/l*|—2=n/1—d,1

whence the assertion since Condition (3) is never satisfied when k is odd.

(iii) The statement is clear for k = 2 by Lemma 5.3,(ii). Indeed, if Condition (1) is satisfied, then
dy = ny) = 0and S(1) = —1 and if Condition (2) is satisfied, then d; = ny = 2 and S (1) = 0. If Condition
(3) is satisfied, ny = k—2 and S (1) = 1 — k, whence the statement by Lemma 5.3,(ii). When Condition (4)
is satisfied, by induction on |4|, the statement results from Lemma 5.3,(ii) and Lemma 5.6,(ii), whence the
assertion since Condition (5) is never satisfied when k is even. O

Corollary 5.8. (i) If A1 is odd and if A; is even for all i > 2, then e is good.

(1) If k is odd and if ny = d,, then e is good. In particular, if g is of type B, then the even nilpotent
elements of g are good.

(i) If k is even and if dy = 0, then e is good. In particular, if g is of type D and of odd rank, then the even
nilpotent elements of g are good.

Proof. As it has been already noticed, by [PPY07, Theorem 2.1], the polynomials ¢y, ..., %, are alge-
braically independent if and only if

dimg® + € —2(61+---+6¢) = 0.
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So, by Theorem 3.6 and Lemma 5.7, if either A; is odd and A; is even for all i > 2, or if k is odd and n, = d,,
orif k is even and d; = 0, then e is good.

Suppose that e is even. Then the integers Ay, ..., A; have the same parity, cf. e.g. [Ca85, §1.3.1]. More-
over, ny = dy = 0 whenever Ay, ..., A are all odd (cf. Definition 5.5). This in particular occurs if either g is
of type B, or if g is of type D with odd rank. O

Remark 5.9. The fact that the even nilpotent elements of g without (only) even Jordan blocks are good if g
is of type B or D was already observed by O. Yakimova in [Y09, Corollary 8.2] in a different formulation.
Corollary 5.8 is more general.

Definition 5.10. A sequence A = (41,..., ) is said to be very good if ny = d, whenever k is odd and if
dy = 0 whenever k is even. A nilpotent element of g is said to be very good if it is associated with a very
good partition of dimV.

According to Corollary 5.8, if e is very good then e is good. The following lemma characterizes the very
good sequences.

Lemma 5.11. (i) Ifk is odd then A is very good if and only if Ay is odd and if (A3, ..., A}) is a concatenation
of sequences satisfying Conditions (1) or (2) with k = 2.

(ii) If k is even then A is very good if and only if A is a concatenation of sequences satisfying Condition (3)
or Condition (1) with k = 2.

For example, the partitions (5, 3, 3,2,2) and (7,5, 5,4,4,3,1,1) of 15 and 30 respectively are very good.

Proof. (i) Assume that 1, is odd and that (Ao,...,A;) is a concatenation of sequences satisfying Condi-
tions (1) or (2) with k = 2. So, if £ > 1, then ny — d; = nj- — dy-. Then, a quick induction proves that
ny—dy =nq,) —da,) = 0since Ay is odd. The statement is clear for k = 1.

Conversely, assume that ny, — d; = 0. If A satisfies Conditions (1) or (2), then ny — d, = nj — dy+ and
|4*] < |4]. So, we can assume that A does not satisfy Conditions (1) or (2). Since k is odd, A cannot satisfy
Condition (3). If A satisfies Condition (4), then ny —dy = ny — dy- > ny — dy- > 0. This is impossible since
ny —d, = 0. If A satisfies Condition (5), then ny — dy = n,. So, ny —d, = 0 if and only if k = 1. Thereby,
the direct implication is proven.

(i1) Assume that A is a concatenation of sequences satisfying Condition (3) or Condition (1) with k = 2.
In particular, A does not satisfy Condition (2). Moreover, Condition (5) is not satisfied since k is even. Then
d, = 0 by induction on |1|, whence e is very good.

Conversely, suppose that d; = 0. If k = 2, Condition (1) is satisfied and if k = 4, then either Condition
(3) is satisfied, or A1, ..., 44 are all odd. Suppose k > 4. Condition (2) is not satisfied since d; = d,, + 2 in
this case. If Condition (1) is satisfied then d;, = 0 and A is a concatenation of A* and (Ag-1, 4;). If Condition
(4) is satisfied, then d,, = 0 and A is a concatenation of A, and a sequence satisfying Condition (3), whence
the assertion by induction on |4]| since Condition (5) is not satisfied when k is even. O

5.3. Assume in this subsection that A = (41, ..., ;) satisfies the following condition:

(%) For some k' € {2,...,k}, A; is even for all i < k', and (Ag+1, ..., Ak)
is very good.

In particular, &’ is even and by Lemma 5.11, 4411 is odd and A is not very good. For example, the sequences
A1 =1(6,6,4,4,3,2,2) and (6,6,4,4,3,3,3,2,2,1) satisfy the condition (*) with k¥’ = 4. Define a sequence
v=(vy,...,v) of integers of {1, ..., ¢} by

A+t 4

Yie{l,...,k'}, Vi = >
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Ifk’ =k, then vy = (A1+ -+ Ax)/2 = r(1)/2 = €. Define elements py,..., pr of S(g°) as follows:
- ifk’ <k, setforie{l,....k'}, pi :== %y,
- if k" =k, setforie{l,....,k" — 1}, p; := %y, and set py := (eqvk)z. In this case, set also pi := “gy,.

Remind that ¢; is the degree of “g; fori = 1,..., {. The following lemma is a straightforward consequence
of [PPY07, Remark 4.2]:

Lemma 5.12. (i) Foralli € {1,...,k’}, deg p; = i.
(i) Set vo := 0. Then forie{1,....,kK'}andre{l,...,vp — 1},

0,=1 & vi_1<r<v,.
In particular, for r € {1,...,vp — 2}, 6, < 6,41 if and only if r is a value of the sequence v.

Example 5.13. Consider the partition 1 = (8,8,4,4,4,4,2,2,1,1) of 38. Then &k = 10, ¥ = 8 and
v = (4,8,10,12,14,16,17,18). We represent in Table 1 the degrees of the polynomials py,..., ps and
g1, - - -, “q13- Note that deg “q19 = 5. In the table, the common degree of the polynomials appearing on the
ith column is i.

‘@a=p1 ‘@s=p2

e

q7

e

q6 ‘qo=p3  ‘qu=ps ‘Qa=ps  ‘Q6=ps

‘q1 qs ‘qo ‘qui ‘qi3 ‘qis ‘qrr=p7  ‘Qis=ps
degrees 1 2 3 4 5 6 7 8
TaBLE 1.

Let s be the subalgebra of g generated by e, h, f and decompose V into simple s-modules V...,V of
dimension Ay, ..., A respectively. One can order them so that for i € {1,...,k"/2}, V(oi-1)+1y = Vo;. For
i €{l,...,k}, denote by e; the restriction to V; of e and set &; := e?"_l. Then ¢; is a regular nilpotent element
of gl(V;) and (adh)g; = 2(A; — 1)g;.

Forie{l,..., k' /2}, set

Vi == Vagon+1 + Vo
and set
V0] :=Vp & -V,
Then for i € {0, 1,...,k"/2}, denote by g; the simple Lie algebra so(V[i]). Fori € {1,...,k"/2}, exi-1)+1 + €2i
is an even nilpotent element of g; with Jordan blocks of size (Aa-1y+1, 42;). Leti € {1,...,k"/2} and set:

Zi *= &2(i-1)+1 T &2i-
Then z; lies in the center of g° and
(adh)z; = 2(A2i-1y+1 — Dzi = 2(A2; — Dz;.

Moreover, 2(42;— 1) is the highest weight of ad /2 acting on g7 := g;N¢°, and the intersection of the 2(4z; — 1)-
eigenspace of adh with g¢ is spanned by z;, see for instance [Y09, §1]. Set

T = 9@ d B = so(V[0]) @ so(V[1])&--- @ so(V[K'/2])
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and denote by g° (resp. rd ) the centralizer of e (resp. f) in g. For p € S(g°), denote by p its restriction to
§f ~ (g°)*; it is an element of S(g%). Our goal is to describe the elements py, ..., p;- (see Proposition 5.18).
The motivation comes from Lemma 5.14.

Let g{eg (resp. §{eg) be the set of elements x € g/ (resp. §f ) such that x is a regular linear form on g°
(resp. §°).

Lemma 5.14. (i) The intersection g{eg N §f is a dense open subset of §{eg.

(ii) The morphism
0: G ><§f — g/, (g, x) — g.x
is a dominant morphism from G X §f to g

Proof. (i) Since A satisfies the condition (x), it satisfies the condition (1) of the proof of [Y06, §4, Lemma 3]

and so, gﬁ;g N §f is a dense open subset of §f . Moreover, since g° and g° have the same index by [Y06,

/"is contained in §rfeg.
(i1) Let m be the orthogonal complement to g in g with respect to the Killing form (.,.). Since the
restriction to g X g of (.,.) is nondegenerate, g = g @ m and [g,m] C m. Set m® := m N g°. Since the

restriction to g/ x §° of (., .y is nondegenerate, we get the decomposition

Theorem 3], gﬁ;g ng

g=g"@m’
and m® is the orthogonal complement to §f in g°. Moreover, [g°, m¢] € m¢.

By (1), g{eg N §f +@. Letx e grfeg N §f. The tangent map at (1,4, x) of 6 is the linear map

f‘

xg — o, Uy r— ux+y,

where u. denotes the coadjoint action of u on g/ ~ (g°)*. The index of §° is equal to the index of g°
and [g°,m] c m®. So, the stabilizer of x in §° coincides with the stabilizer of x in g¢. In particular,
dimm®.x = dimm®. As aresult, 6 is a submersion at (1,4, x) since dim g/ = dimme + dimﬁf . In conclusion,
6 is a dominant morphism from G§ x 7 tog. o

Let (ug,...,u,) be the strictly decreasing sequence of the values of the sequence (4, ...,d) and let
ki, ..., ky be the multiplicity of u,...,u, respectively in this sequence. By our assumption, the integers
Uls-esmy k1, .., ky are all even. Notice that kj+---+k,, = k’. The set {1,...,k"} decomposes into parts
Ki,...,K,, of cardinality ki, ..., k,, respectively given by:

Vsell,...,m}, K, ={ko+---+ks_1 +1,... ko +---+ k).
Here, the convention is that ky := 0.
Remark 5.15. For s € {1,...,m}and i € Kj,
vii=ko(5)+ k(B + B,
where j=i— (ko + -+ ks1)and yy = 0.

Decompose also the set {1,...,k"/2} into parts Iy, ..., I, of cardinality k;/2, ..., k,,/2 respectively, with

ko + -+ kg ko+---+k

Vsell,...om), Ii={————=lyy 2T T

2 2

For p € S(g°) an eigenvector of ad 4, denote by wt(p) its ad h-weight.
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Lemma 5.16. Let s €{1,...,m}andi € K;.
(1) Set j=i—(ko+ -+ kg_1). Then,

s—1

WPy = 22v; = i) = ) 2kl = 1) + 2 (s = 1).
=1

Moreover, if p € (%q1, . .., “qe—1,(°qe)?} is of degree i, then wt(p) = wt(p) < 2(2v; — i) and the equality holds

if and only if p = p;.
(ii) The polynomial p; is ink[z;, € [ U ... U L].

Proof. (i) This is a consequence of [PPY07, Lemma 4.3] (or [Y09, Theorem 6.1]), Lemma 5.12 and Re-
mark 5.15.

(ii) Let §/ be the centralizer of f in § = gl(V), and let @zw be the initial homogenous component of the
restriction to

(@CVIOD @ gl(V[1]) @ - -~ @ gl(VIK'/2])) N &
of the polynomial function x — Q,,(e + x). Since p; # 0, p; is the restriction to o of e@zw and we have
wi(‘Qy,) = wi(p) =2Q2vi —i),  deg °Q,,, = degp; = i.

Then, by (i) and [PPY07, Lemma 4.3], @ZW is a sum of monomials whose restriction to §’ is zero and of

monomials of the form

(8§(|)1 e Sc(l)kl) s (Sg(.c—wl . Sc(x—l)kkl)(sgmjl R gs*(“)j,-)

where jj< --- < j; are integers of Ky, and ¢V, ..., ¢¢~D ¢ are permutations of K1, ..., K 1, {j1..., ji}
respectively. Hence, p; isink[z;, [ € I; U...UI]. More precisely, forl € I} U. ..U, the element z; appears
in p; with a multiplicity at most 2 since z; = €2(-1)+1 + €21 O

Let s € {1,...,m} and i € K. In view of Lemma 5.16,(ii), we aim to give an explicit formula for p; in
term of the elements zy, ..., zx/2. Besides, according to Lemma 5.16,(ii), we can assume that s = m. As a
first step, we state inductive formulae. If &’ > 2, set

g =so(V[I])®--- @ so(V[K' /2 - 1]),

and let P}, ..., P}, be the restrictions to (@) := 3" Ng’ of by, ..., Py respectively. Note that p,,_, = p}, = 0.
Set by convention kg := 0, pg := 1, p6 := 1 and p_; := 0. It will be also convenient to set

kK 2=k0+"'+km_1.
Lemma 5.17. (i) If k,, = 2, then
Dyl = —21_91;* . and  Preynp = 1_912* (Zk’/2)2-
(1) If ky, > 2, then
Pes1 = Dpegt — 2D 22
and for j=2,...,kp,

— = — — 2
Piosj = Piowj = 2Ppesjo1 Tk J2 F Progjn @Hrj2)”
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Proof. Fori=1,...,k"/2, let w; be the element of g{ :=g; N ¢/ such that
(adh)w; = =2(Ap; — Dw; and  det(e; + w;) = 1.

Remind that p;(y), for y € g/, is the initial homogenous component of the coefficient of the term 74im V-2
in the expression det (T — e — y). By Lemma 5.16,(ii), in order to describe p;, it suffices to compute det (T —
e— sy — - — Sk’/zwk’/z), with sq,..., Sk’ /2 in k.
1) To start with, consider the case k' = k,, = 2. By Lemma 5.16, p; = az; and p; = bz% for some a,b € k.
One has,

det(T — e — sywy) = T?M — 25, TH + s%.
As aresult,a = —2 and b = 1. This proves (i) in this case.

2) Assume from now that k" > 2. Setting e’ := e + - - - + ex/2—1, observe that

3) det(T — e — sywy — -+ — Sp2Wrr2)
=det(T — € — sjwy — -+ — sp 1w j2-1) det (T — ey /2 — i 2Wir2)
= det(T — &' — sywy — -+ — spp1wirja-1) (T = 250 pTH" + 57, )

where the latter equality results from Step (1).

(i) If k,, = 2, then k* = k’ — 2 and the constant term in det(7 — ¢’ — sjw; — - - — Sk j2—1Wk'/2-1) 1S P} By

Lemma 5.16,(1),
Wt(Dprs1) = WHPL) + Wiz 12)
and py. is the only element appearing in the coefficients of det(T — ¢’ — sywy — - -+ — Sgj2—1Wx'j2—1) Of this
weight. Similarly,
WD) = WH(BL) + Wi(zi2)°)

and ﬁ;(* is the only element appearing in the coefficients of det(T — ¢’ — sjwy — - -+ — Sp/2—1 Wk j2—1) of this
weight. As a consequence, the equalities follow.

(ii) Suppose k;, > 2. Then by Lemma 5.16,(i),
W (Ppe 1) = WPl ) = WHDL) + WH(zZre /2).
Moreover, p;.,; and p;. are the only elements appearing in the coefficients of det(7 — ¢’ — sjw; — -+ —
Sk j2—1wy 2—1) of this weight with degree k* + 1 and k* respectively. Similarly, by Lemma 5.16,(i), for
.]e {29""km}a
WPy ) = WPy ) = WP ) + Wik 12) = WEDhe s 1p) + WE(Zkj2)7).

MOreover, Dy, j» D-4,-1 and Pj., ;5 are the only elements appearing in the coefficients of det(7T — e’ -

Sjwy — - -+ = S 2—1Wi /2—1) of this weight with degree k* + j, k* + j — 1 and k* + j — 2 respectively.
In both cases, this forces the inductive formula (ii) through the factorization (3). O
For a subset I = {iy,...,i)} € {1,...,k"/2} of cardinality /, denote by o1, ...,0; the elementary sym-
metric functions of z;,, ..., z;:
Vel o= Y g, g

I<ai<az<-<aj<l

Set also 070 := 1 and oy ; := 0if j > [ so that o ; is well defined for any nonnegative integer j. Set at
last o7; := 1 forany jif I = @. If I = I, with s € {1,...,m}, denote by O'SS), for j > 0, the elementary

symmetric function o ;.
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Proposition 5.18. Let s € {1,...,m}and je€ {1,..., ks}. Then

— ORI R R © 5
Prgreoskyrsi = 1 Prgrost, Z‘TS 0r = D (0T ) Z T
r=0

Example 5.19. If m = 1, then k¥’ = k; and
() (1) 1 1) _ 20_(1)

P1=-0y0y =00, 20+ )
D (1 1 D (1 1 1
p2—0'(2 )O'E))+(0'(l ))2+0'8 )0'(2) 20'()+(0'(1 2,

pk’ - (O-k’/Z) (ZIZZ A Zk’/l)z-

Proof. By Lemma 5.16,(ii), we can assume that s = m. Retain the notations of Lemma 5.17. In particular,
set again
K =ko+- +kp1.

We prove the statement by induction on &’ /2. If k¥’ = 2, thenm = 1, k,, = kK’ = 2 and the statement follows

from by Lemma 5.17,(i). Assume now that X’ > 2 and the statement true for the polynomials p1, ..., D_;-
If k,,, = 2, the statement follows from Lemma 5.17,(i).
Assume k,, > 2. For any r > 0, we set 0. := o, where I’ = {% + 1"7 — 1} c I,,. In particular,

o, = 1 by convention. Observe that for any r > 1,

my _ s ’
Oy =0,1t0,_12K)2-

Setting 0’| := 0, the above equality remains true for » = 0. By the induction hypothesis and by Lemma 5.17,(ii),
for j e {2,...,kn},

— —
Pievj = Piesj™ 2Pk*+, 122+ Do j 2(Zk’/2)

= (=1)Y pp( Z 0,0+ 2 (Z 0T W+ (Z 020 Z%'/z)
r=0 r=0 r=0

since P;. = py-. On the other hand, we have

Z (T(m)(Tgm) = Z(Cf}_, + 0,220+ 0z )
r=0

J J J J
’ ’ ’ ’ ’ ’ ’ ’ 2
Z Tj 0yt (Z Tjr-19r 7+ Z OGO U2+ (Z Tir 1T ) 2o 2
r=0 r=0 r=0 r=0
J Jj—1 j=2
’ ’ ’ ’ ’ N 2
Z 00+ 2 (Z i 10) 22 + (Z T y200) Zo o
r=0 r=0 r=0

Thereby, for any j € {2,...,k,}, we get

Pesj= (1) P th(m) ",
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For j = 1, since py. = P+, by Lemma 5.17,(ii), and our induction hypothesis,

Dot = Proat = 2Dp /2 = Ppe(=20) = 2D w2 = ﬁk*(_20'(1m)).

This proves the first equality of the proposition.

For the second one, it suffices to prove by induction on s € {1, ..., m} that

- — (D oD
Prototky = (Tpopn - O 1/2)

For s = 1, then py ...k, = Pop = 1 and o5 = 1 by convention. Assume s > 2 and the statement true for
L,...,s— 1. By the first equality with j = kg, Pg 4k, = (=1)ks Dro+tky_y (o'/(:)/z)z, whence the statement by

induction hypothesis since k; is even. O

Remark 5.20. Remind that the polynomial p; was defined before Lemma 5.12. As a by product of the
previous formula, whenever k&’ = k, we obtain

= _ D (m)
pk—O'kO/Z... Ko/ 2"

Forse{l,...,m}and je{l,...,k}, set
. ﬁk0+~~-+k.§_1+j
Pko+-tks1+j = — -
pk()+---+ks,1

Proposition 5.18 says that p,+...+x,_,+; 1s an element of Frac(S(g°)%) N S(g°) = S(g9)%".
Lemma 5.21. Let s € {1,...,m}and j € {ks/2 + 1,...,ks}. There is a polynomial RE.S) of degree j such that

_ p(s)
Phototkij = R (Okgtoothog+15 -+ s Pkotoothoy +hs/2)-

In particular, for any j € {k1/2 +1,...,ki}, we have
_ 1) ,— _
p] = R§ )(p], cen ’pk|/2)'
Proof. 1) Prove by induction on j € {1, ..., k;/2} that for some polynomial T;S) of degree j,

O'(S) T( )(Pko+ kgl e e ,Pko+---+ks_1+j)-

j
By Proposition 5.18, pgy+ ik, ,+1 = —(0'(1‘)0'6‘) + 0'55)0'(15)) = 20'(18). Hence, the statement is true for j = 1.

Suppose j € {2,...,ks/2} and the statement true for O'(S) ...,0'5.5_)1. Since j < ky/2, 0'5.” # 0, and by

Proposition 5.18,

Proriks+j = (@ + a0 + (- 1)}2(#) P = 2=10! + (- 1>JZo-<” .

So, the statement for j follows from our induction hypothesis.

2) Let j € {ks/2 + 1,...,ks}. Proposition 5.18 shows that pj,s..tx, ,+; is @ polynomial in 0'(15), .. 0'5(5)/2

Hence, by Step 1), pxy+-+k,_,+; i @ polynomial in

pk0+~~~+kx,1+17 e apk0+~~~+k5,1+k5/2~

Furthermore, by Proposition 5.18 and Step (1), this polynomial has degree ;. O

Remark 5.22. By Remark 5.20 and the above proof, if k¥’ = k then for some polynomial R of degree k,,/2,

Pk =
ORIy = Ul(;:)/z = R(Okot k1 +15 - + > Phgt o1 +hm/2)-

Thor2* Thur /2
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Theorem 5.23. (i) Assume that A satisfies the condition (x) and that Ay = --- = Ag. Then e is good.
(i1) Assume that k = 4 and that A1, Ay, A3, A4 are even. Then e is good.

For example, (6, 6, 6, 6, 5, 3) satisfies the hypothesis of (i) and (6, 6, 4, 4) satisfies the hypothesis of (ii).
Remark 5.24. If A satisfies the condition (x) then by Lemma 5.7,
dimg® +€—-2(51 +---+ 6, =K.

Indeed, if kis odd, then ny—d, = ny —dy where A’ = (A4, ..., Ay, A1) sothatny—dy = ny—dy =ny =k
since Ay4 is odd. If k is even, then d; = ny = k' where " = (A4, ..., Ap).

Proof. (i) In the previous notations, the hypothesis means that m = 1 and k" = k,,,. According to Lemma 5.21
and Lemma 5.14, for j e {k’'/2 + 1,...,k' — 1},

pj= REI)(PI,---aPk’/Z),
where Rg.l) is a polynomial of degree j. Moreover, if X’ = k, then by Remark 5.22 and Lemma 5.14,
Pr=R(p1..... pi),
where R is a polynomial of degree k/2.
- Ifk <k,setforany je{k’/2+1,...,k'},
ri=ay = R @ )-

Then by Lemma 5.12,
Vjetk'/2+1,...,k'}, degrj>j+1.

- Ifk =k, setfor je{k/2+1,....,k -1},
rii= =R @y, qy,,) and rei= gy = Ry, ).
Then by Lemma 5.12,
Vjelk/2+1,...,k—=1}, degrj>j+1 and deg‘>k/2+1.

In both cases,

lgiljell,....0 N ppers oo ovedt U ety oo e}
is a homogenous generating system of S(g)®. Denote by & the sum of the degrees of the polynomials

‘qj, T ... O0N et el Teets . T
The above discussion shows that & > §; + - - - + 8¢ + k' /2. By Remarks 5.24, we obtain

dimg® + ¢ - 2§ < 0.

In conclusion, by [PPY07, Theorem 2.1] and Theorem 3.6, e is good.

(ii) In the previous notations, the hypothesis means that & = k = 4. If m = 1 the statement is a
consequence of (i). Assume that m = 2. Then by Proposition 5.18, p; = -2z, p, = Z%, Pz = —22%12 and
Ps = (z122)*. Moreover, 1:)4 = 7120. Hence, by Lemma 5.14, p, = }rp% and p3 = p1ps. Setrp := qy, — iq%]
and r3 := gy, — qy,qy,. Then deg “r» > 3 and deg ‘r; > 4. Moreover,

{QI’ LU 9q€} N {qVQ’ qV3} ) {r27 l"3}
is a homogenous generating system of S(g)®. Denoting by 4 the sum of the degrees of the polynomials

{eql""7 eq[} AN {equv qu3} U {erZ’ er3}’
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we obtain that

5>61+--+6,+2. Butdimgé + £ —2(6 +---+6) = k' = 4 by Remark 5.24. So,
dimg® + £ — 26 < 0.

In conclusion, by [PPY07, Theorem 2.1] and Theorem 3.6, e is good. ]

Remark 5.25. Assume that g = so(V), with dimV = 12, and that e belongs to the nilpotent orbit of g
associated with the partition (5, 5, 1, 1) of 12. Then the degrees of g1, °q2, °q3, “qa, g5, g6 are 1,1,2,2,2,2
respectively. Since 10 = 1+1+2+2+2+2 = (dim g°+¢)/2, the polynomial functions q1, °q2, “q3, °q4, 45, °qs
are algebraically independent, and by Theorem 3.6, S (g°)%" is polynomial. One can satisfy that °g5 = z> for
some z in the center 3(g°) of g°. Since 3(g®) has dimension 3, for any other choice of homogenous generators
qi,...,qcof S(g)%, S (99)%° cannot be generated by the elements “q1, “q2, g3, g4, °qs, ‘qe for degree reasons.

This shows that Condition (2) of Theorem 1.2 cannot be removed to ensure that S (g¢)% is a polynomial
algebra in the variables g1, °g2, °q3, °q4, °qs, ‘6. However, one can sometimes, as in this example, provide
explicit generators.

6. EXAMPLES IN SIMPLE EXCEPTIONAL LIE ALGEBRAS

We give in this section examples of good nilpotent elements in simple exceptional Lie algebras of type
Eg, F4 or G, which are not covered by [PPY07]. These examples are all obtained through Theorem 3.6.

According to [PPY07, Theorem 0.4] and Theorem 3.6, the elements of the minimal nilpotent orbit of g,
for g not of type Eg, are good. In addition, as it is explained in the Introduction, the elements of the regular,
or subregular, nilpotent orbit of g are good. So we do not consider here these cases.

Example 6.1. Suppose that g has type E¢. Let V be the module of highest weight the fundamental weight
w1 with the notation of Bourbaki. Then V has dimension 27 and g identifies with a subalgebra of sly7(k).
For x in sly;(k) and for i = 2,...,27, let p;j(x) be the coefficient of 72"~ in det(T — x) and denote by ¢;
the restriction of p; to g. Then (g2, gs, g6, g3, 99, ¢12) is a generating family of S(g)? since these polynomials
are algebraically independent, [Me88]. Let (e, ki, f) be an sly-triple of g. Then (e, h, f) is an slp-triple of
sly7(k). We denote by °p; the initial homogenous component of the restriction to e + §/ of p; where §/ is
the centralizer of f in sly7(k). As usual, °g; denotes the initial homogenous component of the restriction to
e+gof of g;. Fori =2,5,6,8,9,12,
deg “p; < deg “q;.

In some cases, from the knowledge of the maximal eigenvalue of the restriction of ad/ to g and the ad A-
weight of °p;, it is possible to deduce that deg °p; < deg %g;. On the other hand,

1
deg ‘g> + deg ‘g5 + deg ‘ge + deg ‘gs + deg ‘qo + deg ‘g1 < E(dim g¢ + 6),

with equality if and only if “gs, “gs, °qe, °q3, ‘9, °q1> are algebraically independent. From this, it is possible
to deduce in some cases that e is good. These cases are listed in Table 2 where the nine columns are indexed
in the following way:

—_

the label of the orbit G.e in the Bala-Carter classification,

the weighted Dynkin diagram of G.e,

the dimension of ¢°,

the partition of 27 corresponding to the nilpotent element e of sly7(k),
the degrees of “pa, ‘ps, “pe, P8, P9 P12

their ad h-weights,

the maximal eigenvalue v of the restriction of ad/ to g,

the sum X of the degrees of °ps, °ps, °ps, s, ‘P9, P12,

the sum X’ = %(dim g+ 0).

R e A i
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Label O_O_I_o_o dimg° partition deg “p; weights v z )

1. Ds 2 0 2 0 2 10 (11,9,5,1,1) LL11,1,1  2810,14,1622 14 6 8
2

2. Eg(az) 2 0 2 0 2 12 9,7,5%,1) L1,1,1,1,2  28,10,14,1620 10 7 9
0

3. Ds(ay) 1 1 0 1 1 14 (8,7,6,3,2,1) 1,1,1,122  28,10,14,1420 10 8 10
2

4. As 2 1 0 1 2 14 9,62,5,1) L1,1,1,1,2  28,10,14,1620 10 7 10
1

5. Ag+ A 1 1 0 1 1 16 (7,6,5,4,3,2) 11,1222 28,10,12,1420 8 9 11
1

6. Dy 00 2 0 0 18 (73,1%) 1,1,1,222  2810,12,1420 10 9 12
2

7. Dy(ay) 00 2 0 0 20 (5%,3%,1%) 1,12223 288121418 6 11 13
0

8. 2A; + A 1 0 1 0 1 24 (5.4%,33,22,1) 1,1,2223 288121418 5 11 15
0

TABLE 2. Data for E¢

In all cases, we observe that X < ¥/, i.e.,
1 ..
deg py + deg °ps + deg °pg + deg ps + deg °pg + deg ‘p12 < E(dlm g+ 6).

So, we need some arguments that we give below.

1. Since 14 < 16, deg °p; < deg g, for i =9, 12.

2. Since 10 < 14, deg “p; < deg %g; fori = 8, 9.

3. Since 10 < 14, deg °ps < deg %gs. Moreover, the multiplicity of the weight 10 equals 1. So, either
deg %gs > 1, or deg q12 > 2, or “q1s € k"’qg.

4. Since 10 < 14, deg °p; < deg °g; for i = 8,9. Moreover, the multiplicity of the weight 10 equals 1.
So, either deg g > 1, or deg °q1» > 2, or g2 € keqé.

5. Since 8 < 10 and 2x8 < 20, deg °p; < deg ¢, fori = 6, 12.

6. Since the center of g° has dimension 2 and the weights of / in the center are 2 and 10, deg °ps <
deg ‘qs. Moreover, since the weights of & in g¢ are 0,2, 6, 10, deg °p9 < deg %g9 and since the
multiplicity of the weight 10 equals 1, either deg °gs > 1, or deg g2 > 2, or °q12 € keqé.

7. Since 6 < 8 and 2x6 < 14, deg °p; < deg %q; fori =5, 9.

8. Since 5 < 8,2x5 < 12 and 3x5 < 18, deg °p; < deg %g; fori = 5,8,9, 12.

In cases 1,2, 5,7, 8, the discussion shows that
1
deg °q> + deg °gqs + deg °q¢ + deg ‘gs + deg ‘g9 + deg q1n = E(dim g+ 6).

Hence, ‘g, “gs, “qs, g3, °q9, °q12 are algebraically independent and by Theorem 3.6, e is good. In cases
3.4, 6, if the above equality does not hold, then for some a in k*,

1
deg ‘> + deg °gs + deg “ge + deg ‘s + deg °qo + deg (q12 — agg) = E(dim g° +06).
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Hence g2, “gs, “qe, °q3, “q9, (q12 — aqé) are algebraically independent and by Theorem 3.6, e is good.

In conclusion, it remains nine unsolved nilpotent orbits in type Eg.

Example 6.2. Suppose that g is simple of type F4. Let V be the module of highest weight the fundamental
weight w4 with the notation of Bourbaki. Then V has dimension 26 and g identifies with a subalgebra of
sl (k). For x in she(k) and fori = 2, ..., 26, let p;(x) be the coefficient of 726~ in det (T — x) and denote by
g; the restriction of p; to g. Then (¢2, g6, g3, ¢12) is a generating family of S(g)® since these polynomials are
algebraically independent, [Me88]. Let (e, A, f) be an slp-triple of g. Then (e, A, f) is an slp-triple of sly(k).
As in Example 6.1, in some cases, it is possible to deduce that e is good. These cases are listed in Table 3,
indexed as in Example 6.1.

Label O—C=0—>0 dimg° partition deg “p; weights v ¥ ¥
1. Fulaz) 0 2 0 2 8 9,7,5% 1,1,1,2 2101420 10 5 6
2. C; 10 1 2 10 9,6%,5) 11,12 2,10,1420 10 5 7
3. B; 2 2 0 0 10 (72, 1) 1,1,22 2101220 10 6 7
4. Fu(as) 0 2 0 0 12 (5°,3%,1%) 1223 281218 6 8 8
5. Ci(ar) 1 0 1 0 14 (52,42,3,22,1) 1223 281218 6 8 9
6. Ay + A 0 1 0 1 16 (5,4%,3%,2% 1223 281218 5 8 10

TaBLE 3. Data for F,

For the orbits 1, 2, 3, 5,6, we observe that ¥ < ¥’. So, we need some more arguments to conclude as in
Example 6.1.

1.
2.

6.

Since 10 < 14, deg °psg < deg “gs.
Since 10 < 14, deg °pg < deg °gs. Moreover, the multiplicity of the weight 10 equals 1 so that
deg ‘gqe > 1 ordeg °qi» > 2 or “q» € keqé.

. The multiplicity of the weight 10 equals 1. So, either deg °gs > 1, or deg °q1» > 2, or g2 € keqé.
. Suppose that ‘g2, gs, °qs, “q12 have degree 1,2,2,3. We expect a contradiction. Since the center

has dimension 2 and since the multiplicity of the weight 6 equals 1, for z of weight 6 in the center,
‘qe € kez, %qs € kz2, ‘q12 € kz3. So, for some a and b in k*,

G —a‘qe =0, i, —bgy =0
Hence, ¢, gs, q%qg - aqg, q%z - bqg are algebraically independent element of S(g)® such that
deg °g> + deg g + deg (q3qs — aq?) +deg (g}, —bgy) > 1 +2+5+7>2+3+9

whence a contradiction by [PPY07, Theorem 2.1] (see Lemma 7.1).
Since 2x5 < 12 and 3x5 < 18, deg ‘qs > deg °ps and deg °q12 > deg °pi2.

In conclusion, it remains six unsolved nilpotent orbits in type Fjy.

51



Example 6.3. Suppose that g is simple of type G,. Let V be the module of highest weight the fundamental
weight @ with the notation of Bourbaki. Then V has dimension 7 and g identifies with a subalgebra of
sl7(k). For x in sl;(k) and for i = 2,...,7, let p;(x) be the coefficient of 77~ in det (T — x) and denote by g;
the restriction of p; to g. Then gy, g6 is a generating family of S(g)* since these polynomials are algebraically
independent, [Me88]. Let (e, h, f) be an sl,-triple of g. Then (e, A, f) is an sl-triple of sl;(k). There is only
one nonzero nilpotent orbit which is neither regular, subregular or minimal. For e in it, we deduce that e is
good from Table 4, indexed as in Example 6.1, since £ = ¥’.

Label =0 dimg®  partition deg‘p; weights v X ¥

A 1 0 6 (3,2%) 1,3 2,6 3 4 4

TaBLE 4. Data for G,

In conclusion, all elements are good in type G.

7. OTHER EXAMPLES, REMARKS AND A CONJECTURE

This section provides examples of nilpotent elements which satisfy the polynomiality condition but that
are not good. We also obtain an example of nilpotent element in type D; which does not satisfy the polyno-
miality condition (cf. Example 7.8). Then we conclude with some remarks and a conjecture.

7.1. Some general results. In this subsection, g is a simple Lie algebra over k and (e, A, f) is an sl,-triple
of g. For p in S(g), ¢p is the initial homogenous component of the restriction of p to the Slodowy slice e +g/.
Recall that k[e + /] identifies with S(g°) by the Killing form (., .) of g.

Let g € g° ®x /\2 g/ be the bivector defining the Poisson bracket on S(g®) induced from the Lie bracket.
According to the main theorem of [Pr0O2], S(g°) is the graded algebra relative to the Kazhdan filtration of the
finite W-algebra associated with e so that S(g®) inherits another Poisson structure. The so-obtained graded
algebra structure is the Slodowy graded algebra structure (see Subsection 4.1). Let € S(a®) & A%/ be
the bivector defining this other Poisson structure. According to [Pr02, Proposition 6.3] (see also [PPY07,
§2.4]), no is the initial homogenous component of r. Denote by r the dimension of g¢ and set:

_ _ —0)/2 _
wi=n"02 eS@) & Aol wo =l e S e Ao

Then wy is the initial homogenous component of w.
Let vy, ...,v, be abasis of g/. For iz in S(g¢) ® A\’ ¢°, denote by j(u) the image of vj A - - - A v, by the right
interior product of u so that

r—i
e s er [\ of.
Lemma 7.1. Let qi,...,q; be some homogenous generators of S(a)® and let ry,...,r; be algebraically
independent homogenous elements of S(g)°.
(i) For some homogenous element p of S(g)%,
driA---Adrg = pdg;A--- Adg,.

(i1) The following inequality holds:
d 1
Z deg r; < deg ’p + E(dim g®+0).

i=1
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(iii) The polynomials °ry, ..., ‘r¢ are algebraically independent if and only if

¢
1
Z deg “r; = deg ’p + E(dim g®+0).
i=1

Proof. (i) Since qy,...,q¢ are generators of S(g)%, for i € {1,...,¢}, r; = Riq1,...,qr) where R; is a
polynomial in £ indeterminates, whence the assertion with

OR;
p=det(z—, 1<i,j<0).
(9q1'

(ii) Remind that for p in S(g), x(p) denotes the restriction to g/ of the polynomial function x - p(e + x).
According to [PPY07, Theorem 1.2],

J(dk(q1) A -+ A dk(ge)) = aw
for some a in k*. Hence by (i),
J(dk(r) A -+ A dk(re)) = ak(p)w.
The initial homogenous component of the right-hand side is a °pwg and the degree of the initial homogenous
component of the left-hand side is at least
deg ri+---+deg r,— (L.
The assertion follows since wg has degree
1
—(dimg® — 0).
5 (dimg" —£)
@iii) If °ry,..., ¢ are algebraically independent, then the degree of the initial homogenous component of
j(driA--- Adrp) equals
deg ri+---+degr,— ¢
whence |
deg r +---+deg r, = deg p + E(dimge + )
by the proof of (ii). Conversely, if the equality holds, then
4) JdriA---Adre) = a‘pwy

by the proof of (ii). In particular, 1, ..., %, are algebraically independent. O

Corollary 7.2. Fori=1,...,¢, letr; := Ri(q1,...,q;) be a homogenous element of S(g)® such that B_l # 0.
qi
Then ry, ..., ‘ry are algebraically independent if and only if

¢
1
deg ri+---+deg r, = Z deg “p; + E(dimge +£)
i=1

OR;
with pi = — fori=1,...,¢L
9q;

Proof. Since a—zl # Oforall i, ry,...,re are algebraically independent and
4
driA---Adrp = ﬁ%dq Ao Ad
2 0qi 1 qe
whence the corollary by Lemma 7.1,(iii). O
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Let gfing be the set of nonregular elements of the dual g/ of g¢. Recall that if g{ing has codimension at least

2 in g/, we will say that ¢ is nonsingular.

Corollary 7.3. Let ry,...,r¢cand p be as in Lemma 7.1 and such that °ry, ..., °r¢ are algebraically indepen-
dent.

() If °p is a greatest divisor of A1 A --- Ad%¢ in S(g°) @ N\ ¢, then o° is nonsingular.

(ii) Assume that there are homogenous polynomials py, ..., pe in S(a)* satisfying the following condi-
tions:

1) r,...,%careink[pi,...,pel,
2) if d is the degree of a greatest divisor of dp; A --- Adp, in S(g°), then
1
degp,+---+degp, =d + E(dimge +0).
Then o° is nonsingular.

Proof. (i) Suppose that °p is a greatest divisor of dr A --- Ad%, in S(g°) ® /\€ g°. Then for some w; in
S(g°) ®x /\€ g¢ whose nullvariety in ¢/ has codimension at least 2,

driA-- Ad%p = puwr.

Therefore j(wi) = awy by Equality (4). Since x is in g{ing if and only if wy(x) = 0, we get (i).
(i1) By Condition (1),
driA---ANdre = gdpA--- Adpy
for some ¢ in S(g°)%, and for some greatest divisor ¢’ of dp;A -+ Adp, in S(g°) ® /\[ a’,
dp;A--Adpy = q wy.
So, by Equality (4),

) qq j(w1) = a‘p wo,
so that “p divides gq’ in S(g°). By Condition (2) and Equality (5), wy and w; have the same degree. Then
qq’ is in k* p, and for some @’ in k¥,
J(wr) = d wy,
f

whence (ii), again since x is in Ssing if and only if wy(x) = 0. O

The following proposition is a particular case of [JS10, §5.7]. More precisely, part (i) follows from [JS10,
Remark 5.7] and part (ii) follows from [JS10, Theorem 5.7].

Proposition 7.4. Suppose that §¢ is nonsingular.
(i) If there exist algebraically independent homogenous polynomials py, ..., pe in S(6°)* such that

1
degp,+---+degp, = E(dimge +¢£)

then S(a°)%" is a polynomial algebra generated by py, . . ., pe.
(ii) Suppose that the semiinvariant elements of S(a°) are invariant. If S(a¢)* is a polynomial algebra then
it is generated by homogenous polynomials p1, ..., p¢ such that
1
degp,+---+degp, = E(dimge +0).
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7.2. New examples. To produce new examples, our general strategy is to apply Proposition 7.4,(i). To that
end, we first apply Corollary 7.3 in order to prove that g¢ is nonsingular. Then, we search for independent
homogenous polynomials py,..., p¢ in S(g°)% satisfying the conditions of Corollary 7.3,(ii) with d = 0.

Example 7.5. Let e be a nilpotent element of so0(k!9) associated with the partition (3, 3,2, 2). Then S(ge)ge is
a polynomial algebra but e is not good as explained below.

In this case, £ = 5 and let gy, ..., g5 be as in Subsection 5.2. The degrees of ‘%, ..., ‘g5 are 1,2,2,3,2
respectively. By a computation performed by Maple, g, ..., %5 satisfy the algebraic relation:

‘G- 4033 = 0.

Set:
o qi it i=1,2,3,5
e qﬁ —4q3q§ if i=4.
The polynomials 7, ..., rs are algebraically independent over k and
drin---Adrs =2g4dg A -+ Adgs
Moreover, “r4 has degree at least 7. Then, by Corollary 7.2, ry, ..., s are algebraically independent since

1
E(dimge+5)+3:14:1+2+2+2+7,

and by Lemma 7.1,(ii) and (iii), 4 has degree 7.

A precise computation performed by Maple shows that %3 = p% for some ps3 in the center of g°, and that
°r4 = p4°rs for some polynomial ps of degree 5 in S(ge)ge. Setting p; := ; for i = 1,2,5, the polyno-
mials py, ..., ps are algebraically independent homogenous polynomials of degree 1,2, 1,5, 2 respectively.
Furthermore, a computation performed by Maple proves that the greatest divisors of dp;A - - - Adps in S(g°)
have degree 0, and that p4 is in the ideal of S(g®) generated by p3 and ps. So, by Corollary 7.3,(ii), g° is
nonsingular, and by Proposition 7.4,(i), S(a)* is a polynomial algebra generated by py, ..., ps. Moreover,
e is not good since the nullvariety of py, ..., ps in (g°)* has codimension at most 4.

Example 7.6. In the same way, for the nilpotent element e of so(k'!) associated with the partition (3,3,2,2, 1),
we can prove that S(g¢)%" is a polynomial algebra generated by polynomials of degree 1,1,2,2,7, ¢° is non-
singular but e is not good.

We also obtain that for the nilpotent element e of so(k!?) (resp. so(k!3)) associated with the partition
(5,3,2,2) or (3,3,2,2,1,1) (resp. (5,3,2,2,1), (4,4,2,2,1), or (3,3,2,2,1,1,1)), S(ge)gg is a polynomial algebra, g°
is nonsingular but e is not good.

We can summarize our conclusions for the small ranks. Assume that g = so(V) for some vector space V of
dimension 2¢ + 1 or 2¢ and let e € g be a nilpotent element of g associated with the partition A = (41,..., Ax)
of dimV. If £ < 6, our previous results (Corollary 5.8, Lemma 5.11, Theorem 5.23, Examples 7.5 and
7.6) show that either e is good, or e is not good but S(g°)* is nevertheless a polynomial algebra and g° is
nonsingular. We describe in Table 5 the partitions A corresponding to good e, and those corresponding to
the case where e is not good. The third column of the table gives the degrees of the generators in the latter
case.

Remark 7.7. The above discussion shows that there are good nilpotent elements for which the codimension
of (ge):ing in (g°)* is 1. Indeed, by [PPY07, §3.9], for some nilpotent element ¢’ in B3, the codimension of

(ge/)’sking in (¢¢)* is 1 but, in B, all nilpotent elements are good (cf. Table 5).
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Type e is good S(g*)* is polynomial, ¢¢ is nonsingular degrees of the generators
but e is not good

B,,D,,n<4 any A (%]

Bs A+(3,3,2,2,1) 1=(3,3,2,2,1) 1,1,2,2,7

Ds A#(3,3,2,2) 1=(3,3,2,2) 1,1,2,2,5

Bg 1¢4(5,3,2,2,1),(4,4,2,2,1), 1€{(5,3,2,2,1),(4,4,2,2,1), {1,1,1,2,2,7;1,1,2,2,3,6;
(3,3,2,2,1,1, 1)} (3,3,2,2,1,1, 1)} 1,1,2,2,6,7}

D¢ 1¢14(5,3,2,2),(3,3,2,2,1, 1)} 1€{(5,3,2,2),(3,3,2,2,1, 1)} {1,1,1,2,2,5; 1,1,2,2,3,7}

TABLE 5. Conclusions for g of type B, or D, with £ < 6

7.3. A counter-example. From the rank 7, there are elements that do no satisfy the polynomiality condi-
tion. The following example provides a new counter-example to Premet’s conjecture.

Example '7.8. Let e be a nilpotent element of so(k!'%) associated with the partition (3,3,2,2,2,2). Then e
does not satisfy the polynomiality condition.

In this case, £ = 7andlet gy, ..., g7 be as in Subsection 5.2. The degrees of %, ..., ‘q;are 1,2,2,3,4,5,3
respectively. By a computation performed by Maple, we can prove that ‘g, ..., ‘g, satisfy the two following
algebraic relations:

16%43%qs° + g4 = 8°q3qs ‘qs — 646342 = 0. “g3°q¢ — ‘q3°q4> =0
Set:
qi if i=1,2,3,47
rii=14 1643q5> + ¢} — 843qsq; — 64 q3q7”  if i=5
B39 ~ 4745 if i=6
The polynomials 7, ..., r; are algebraically independent over k and

driA--- Adry = 2g396 (324595 — 8q3q3) dg A -+ Adg,

Moreover, rs and ‘g have degree at least 13 and e(2q3q6(32q§q5 - 8@6]3)) has degree 15. Then, by Corol-
lary 7.2, °ry, ..., ‘7 are algebraically independent since

1
E(dimg"+7)+15:37:1+2+2+3+3+26

and by Lemma 7.1,(i1) and (iii), “s and ‘¢ have degree 13.

A precise computation performed by Maple shows that 3 = p% for some pj in the center of g°, “r4 = p3p4
for some polynomial p,4 of degree 2 in S(g¢)%, %5 = pg ¢q7 ps for some polynomial ps of degree 7 in S(g¢)%,
and “r¢ = p4°r1pe for some polynomial pg of degree 8§ in S(g9)*. Setting p; := “r; fori = 1,2,7, the
polynomials py,..., p7 are algebraically independent homogenous polynomials of degree 1,2,1,2,7,8,3
respectively. Let [ be a reductive factor of g°. According to [Ca85, Ch. 13],

[ = s0y(k) X sps(k) = k X spy(k).

In particular, the center of | has dimension 1. Let {x, ..., x37} be a basis of g¢ such that x37 lies in the center
of I and such that xp, ..., x3¢ are in [[,[] + gf with g the nilpotent radical of g°. Then p; is a polynomial
in k[x1,...,x37] depending on x37. As a result, by [DDV74, Theorems 3.3 and 4.5], the semiinvariant
polynomials of S(g°) are invariant.

Claim 7.9. The algebra g is nonsingular.
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Proof. [Proof of Claim 7.9] The space k!4 is the orthogonal direct sum of two subspaces V| and V, of
dimension 6 and 8 respectively and such that e, &, f are in g := s0(V) ® s0(V3). Then g° = g N g°is a
subalgebra of dimension 21 containing the center of g°. For p in S(g°), denote by p its restriction to ¥
The partition (3, 3,2,2,2, 2) satisfies Condition (1) of the proof of [Y06, §4, Lemma 3]. So, the proof of
Lemma 5.14 remains valid, and the morphism

Gexy —of, (9.0 g

is dominant. As a result, for p in S(g)¥, the differential of P is the restriction to §f of the differential of p.
A computation performed by Maple proves that p_310 is a greatest divisor of dpy A --- A dp7 in S(g9). If ¢
is a greatest divisor of dp; A - -+ A dp7 in S(g°), then ¢ is in S(g¢)% since the semiinvariant polynomials are
invariant. So g = pgl for some nonnegative integer d. One can suppose that {xi,...,x16} is a basis of the

orthogonal complement to §f in g°. Then the Pfaffian of the matrix

(i1, 1< i, j < 16)

is in k*pg so that p% is a greatest divisor of dp A - - - Adp; in S(g°). Since

1
degpy +---+degp;=2+22=2+ E(dimge +0),
we conclude that g° is nonsingular by Corollary 7.3,(ii). O

Claim 7.10. Suppose that S(g¢)* is a polynomial algebra. Then for some homogenous polynomials Ps
and pg of degrees at least 5 and at most 8 respectively, S(g¢)¥ is generated by pi, pa, p3, pa Pss Pgs P1-
Furthermore, the possible values for (deg p;, deg p"s) are (5, 8) or (6,7).

Proof. [Proof of Claim 7.10] Since the semiinvariants are invariants, by Claim 7.9 and Proposition 7.4,(ii),
there are homogenous generators ¢, . . ., @¢ of S(a€)% such that

degy;<--- <degyy,

and
1
degy,+---+degy, = i(dimge +0) =22.

According to [Mo06¢c, Theorem 1.1.8] or [Y06b], the center of g° has dimension 2. Hence, ¢; and ¢, have
degree 1. Thereby, we can suppose that ¢; = p; and ¢, = p3 since p; and p3 are linearly independent
elements of the center of g°. Since p, and p4 are homogneous elements of degree 2 such that py, ..., ps are
algebraically indepent, ¢3 and ¢4 have degree 2 and we can suppose that ¢3 = p, and ¢4 = p4. Since p7 has
degree 3, o5 has degree at most 3 and at least 2 since the center of g° has dimension 2. Suppose that ¢5 has
degree 2. A contradiction is expected. Then

degps +degpr =22 - (1 +1+2+2+2) = 14.

Moreover, since py, ..., p7 are algebraically independent, @7 has degree at most 8 and ¢ has degree at least
6. Hence p7 is in the ideal of k[p1, p3, @3, ¢4, ¢s5] generated by p; and p3. But a computation shows that the
restriction of p7 to the nullvariety of p; and ps3 in g/ is different from 0, whence the expected contradiction.
As aresult, ps5 has degree 3 and

deg e + degy = 13.

One can suppose ¢s = p7 and the possible values for (deg ¢g, deg ¢7) are (5, 8) and (6, 7) since ¢7 has degree

at most 8. m|
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Suppose that S(g°)% is a polynomial algebra. A contradiction is expected. Let ps and pg be as in
Claim 7.10 and such that deg p; < degpg. Then (deg p5,deg py) equals (5,8) or (6,7). A computation
shows that we can choose a basis {xy, ..., x37} of g° with x37 = p3, with py, p2, p3, ps, p7 ink[xs, ..., x37]
and with ps, pg of degree 1 in x;. Moreover, the coeflicient of x; in ps is a prime element of k[x3, . . ., x37],
the coefficient of x; in pg is a prime element of k[x», ..., x37] having degree 1 in x,, and the coefficient of
X1Xx2 in pe equals ang with a a prime homogenous polynomial of degree 2 such that a, pi, p2, p3, ps are
algebraically independent. In particular, a is not invariant. If pg has degree 5, then

ps = psto + 11

with rg in k[p1, p2, p3, p4] and ry in k[p1, p2, p3, P4, p7] so that p’5 has degree 1 in x;, and the coefficient of
x1 in ps is the product of ry and the coefficient of x; in p’s. But this is impossible since this coefficient is
prime. So, p; has degree 6 and p; has degree 7. We can suppose that pg = ps. Then

Ps = psro t P'6F1 t+rn

with rg homogenous of degree 1 in k[p;, p3], 1 homogenous of degree 2 in k[py, p2, p3, p4], and r, ho-
mogenous of degree 8 in k[p1, p2, p3, pa, p7]. According to the above remarks on ps and the coefficient of
X1X2 in pg, 1 1S in k*p% since ri has degree 2.

For p in S(g°), denote by p its image in S(g°)/p3S(g®). A computation shows that for some u in
S(g%)/p3S(g°),

Ps =D, P =—Papii.

Furthermore, p4 and p7 are different prime elements of S(g°)/p3S(g°) and the coefficient u; of x; in u is the
product of two different polynomials of degree 1. The coeflicient of x| in pg is ulﬁzr_o since

D6 = Psro + 12.

On the other hand, the coefficient of x| in pe is —u1 p4p7, whence the contradiction since ry has degree 1.
7.4. A conjecture. All examples of good elements we achieved satisfy the hypothesis of Theorem 3.6.

Conjecture 7.11. Let g be a simple Lie algebra and let e be a nilpotent of g. If e is good then for some
homogenous generating sequence (q1, .. .,qe) in S(9)°%, gy, ..., °q, are algebraically independent over k. In
other words, the converse implication of Theorem 3.6 holds.

Notice that it may happen that for some ry,...,r, in S(g)%, the elements “ry,..., %, are algebraically
independent over k, and that however e is not good. This is the case for instance for the nilpotent elements
in so(k'?) associated with the partition (5, 3,2, 2), cf. Example 7.6.

In fact, according to [PPY07, Corollary 2.3], for any nilpotent e of g, there exist rq,...,r, in S(g)® such
that “r(, ..., “r are algebraically independent over k.
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