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Abstract. Let g be a finite-dimensional simple Lie algebra of rank ` over an algebraically closed field k of
characteristic zero, and let e be a nilpotent element of g. Denote by ge the centralizer of e in g and by S(ge)g

e
the

algebra of symmetric invariants of ge. We say that e is good if the nullvariety of some ` homogenous elements
of S(ge)g

e
in (ge)∗ has codimension `. If e is good then S(ge)g

e
is a polynomial algebra. The main result of

this paper stipulates that if for some homogenous generators of S(g)g, the initial homogenous components of
their restrictions to e + g f are algebraically independent, with (e, h, f ) an sl2-triple of g, then e is good. As
applications, we pursue the investigations of [PPY07] and we produce (new) examples of nilpotent elements
that satisfy the above polynomiality condition, in simple Lie algebras of both classical and exceptional types.
We also give a counter-example in type D7.
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1. Introduction

1.1. Let g be a finite-dimensional simple Lie algebra of rank ` over an algebraically closed field k of
characteristic zero, let 〈. , .〉 be the Killing form of g and let G be the adjoint group of g. If a is a subalgebra
of g, we denote by S(a) the symmetric algebra of a. For x ∈ g, we denote by gx the centralizer of x in g and
by Gx the stabilizer of x in G. Then Lie(Gx) = Lie(Gx

0) = gx where Gx
0 is the identity component of Gx.

Moreover, S(gx) is a gx-module and S(gx)g
x

= S(gx)Gx
0 . An interesting question, first raised by A. Premet, is

the following:

Question 1. Is S(gx)g
x

a polynomial algebra in ` variables?

In order to answer this question, thanks to the Jordan decomposition, we can assume that x is nilpotent.
Besides, if S(gx)g

x
is polynomial for some x ∈ g, then it is so for any element in the adjoint orbit G.x of

x. If x = 0, it is well-known since Chevalley that S(gx)g
x

= S(g)g is polynomial in ` variables. At the
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opposite extreme, if x is a regular nilpotent element of g, then gx is abelian of dimension `, [DV69], and
S(gx)g

x
= S(gx) is polynomial in ` variables too.

For the introduction, let us say most simply that x ∈ g satisfies the polynomiality condition if S(gx)g
x

is a
polynomial algebra in ` variables.

A positive answer to Question 1 was suggested in [PPY07, Conjecture 0.1] for any simple g and any x ∈ g.
O. Yakimova has since discovered a counter-example in type E8, [Y07], disconfirming the conjecture. More
precisely, the elements of the minimal nilpotent orbit in E8 do not satisfy the polynomiality condition. The
present paper contains another counter-example in type D7 (cf. Example 7.8). In particular, we cannot expect
a positive answer to [PPY07, Conjecture 0.1] for the simple Lie algebras of classical type. Question 1 still
remains interesting and has a positive answer for a large number of nilpotent elements e ∈ g as it is explained
below.

1.2. Review of known results. We briefly review in this paragraph what has been achieved so far about
Question 1. Recall that the index of a finite-dimensional Lie algebra q, denoted by ind q, is the minimal
dimension of the stabilizers of linear forms on q for the coadjoint representation, (cf. [Di74]):

ind q := min{dimqξ ; ξ ∈ q∗} where qξ := {x ∈ q ; ξ([x, q]) = 0}.

By [R63], if q is algebraic, i.e., q is the Lie algebra of some algebraic linear group Q, then the index of q
is the transcendence degree of the field of Q-invariant rational functions on q∗. The following result will be
important for our purpose.

Theorem 1.1 ([CMo10, Theorem 1.2]). The index of gx is equal to ` for any x ∈ g.

Theorem 1.1 was first conjectured by Elashvili in the 90’s motivated by a result of Bolsinov, [Bol91,
Theorem 2.1]. It was proven by O. Yakimova when g is a simple Lie algebra of classical type, [Y06], and
checked by a program by W. de Graaf when g is a simple Lie algebra of exceptional type, [DeG08]. Before
that, the result was established for some particular classes of nilpotent elements by D. Panyushev, [Pa03].

Theorem 1.1 is deeply related to Question 1. First of all, it implies that if S (ge)g
e

is polynomial, it is so in
` variables. Further, according to Theorem 1.1, the main results of [PPY07] that we summarize below apply
(see Theorem 1.2).

Let e be a nilpotent element of g. By the Jacobson-Morosov Theorem, e is embedded into a sl2-triple
(e, h, f ) of g. Denote by Se := e + g f the Slodowy slice associated with e. Identify g∗ with g, and (ge)∗

with g f , through the Killing form 〈. , .〉. For p in S(g) ' k[g∗] ' k[g], denote by ep the initial homogenous
component of its restriction to Se. According to [PPY07, Proposition 0.1], if p is in S(g)g, then ep is in
S(ge)g

e
. Let (ge)∗sing be the set of nonregular linear forms x ∈ (ge)∗, i.e.,

(ge)∗sing := {x ∈ (ge)∗ | dim(ge)x > ind ge = `}.

If (ge)∗sing has codimension at least 2 in (ge)∗, we say that ge is nonsingular.

Theorem 1.2 ([PPY07, Theorem 0.3]). Suppose that the following two conditions are satisfied:

(1) for some homogenous generators q1, . . . ,q` of S(g)g, the polynomial functions eq1, . . . ,
eq` are alge-

braically independent,
(2) ge is nonsingular.

Then S (ge)g
e

is a polynomial algebra with generators eq1, . . . ,
eq`.

As a consequence of Theorem 1.2, if g is simple of type A or C, then all nilpotent elements of g satisfy the
polynomiality condition, cf. [PPY07, Theorems 4.2 and 4.4]. The result for the type A was independently
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obtained by Brown and Brundan, [BB09]. In [PPY07], the authors also provide some examples of nilpotent
elements satisfying the polynomiality condition in the simple Lie algebras of types B and D, and a few ones
in the simple exceptional Lie algebras.

At last, note that the analogue question to Question 1 for the positive characteristic was dealt with by
L. Topley for the simple Lie algebras of types A and C, [T12].

1.3. Main results. The main goal of this paper is to continue the investigations of [PPY07]. Let us describe
our main results. The following definition is central in our work (cf. Definition 3.2):

Definition 1.3. An element x ∈ g is called a good element of g if for some homogenous sequence (p1, . . . , p`)
in S(gx)g

x
, the nullvariety of p1, . . . , p` in (gx)∗ has codimension ` in (gx)∗.

For example, regular nilpotent elements are good. Indeed, for e in the regular nilpotent orbit of g and
(q1, . . . q`) a homogenous generating family of S(g)g, it is well-known that eqi = deqi for i = 1, . . . , ` and
that (deq1, . . . , deq`) forms a basis of ge, [Ko63]. Hence e is good.

Also, by [PPY07, Theorem 5.4], all nilpotent elements of a simple Lie algebra of type A are good. More-
over, according to [Y09, Corollary 8.2], even1 nilpotent elements without odd (respectively even) Jordan
blocks of g are good if g is of type C (respectively B or D). We generalize these results (cf. Theorem 5.1,
Corollary 5.8 and Remark 5.9).

The good elements satisfy the polynomiality condition (cf. Theorem 3.3):

Theorem 1.4. Let x be a good element of g. Then S(gx)g
x

is a polynomial algebra and S(gx) is a free
extension of S(gx)g

x
.

Furthermore, x is good if and only if so is its nilpotent component in the Jordan decomposition (cf. Propo-
sition 3.5). As a consequence, we can restrict the study to the case of nilpotent elements.

The main result of the paper is the following (cf. Theorem 3.6) whose proof is outlined in Subsection 1.4:

Theorem 1.5. Suppose that for some homogenous generators q1, . . . ,q` of S(g)g, the polynomial functions
eq1, . . . ,

eq` are algebraically independent. Then e is a good element of g. In particular, S(ge)g
e

is a poly-
nomial algebra and S(ge) is a free extension of S(ge)g

e
. Moreover, ( eq1, . . . ,

eq`) is a regular sequence in
S(ge).

In other words, Theorem 1.5 says that Condition (1) of Theorem 1.2 is sufficient to ensure the polynomi-
ality of S (ge)g

e
. However, if only Condition (1) of Theorem 1.2 is satisfied, the (polynomial) algebra S (ge)g

e

is not necessarily generated by the polynomial functions eq1, . . . ,
eq`. As a matter of fact, there are nilpotent

elements e satisfying Condition (1) and for which S (ge)g
e

is not generated by some eq1, . . . ,
eq`, for any

choice of homogenous generators q1, . . . ,q` of S(g)g (cf. Remark 5.25).
Theorem 1.5 can be applied to a great number of nilpotent orbits in the simple classical Lie algebras

(cf. Section 5), and for some nilpotent orbits in the exceptional Lie algebras (cf. Section 6). For example,
according to [PY13, Proposition 6.3] and Theorem 1.5, the elements of the subregular nilpotent orbit of g
are good.

To state our results for the simple Lie algebras of types B and D, let us introduce some more notations.
Assume that g = so(V) ⊂ gl(V) for some vector space V of dimension 2` + 1 or 2`. For an endomorphism
x of V and for i ∈ {1, . . . , dimV}, denote by Qi(x) the coefficient of degree dimV − i of the characteristic
polynomial of x. Then for any x in g, Qi(x) = 0 whenever i is odd. Define a generating family q1, . . . ,q`
of the algebra S(g)g as follows. For i = 1, . . . , ` − 1, set qi := Q2i. If dimV = 2` + 1, set q` := Q2`, and

1i.e., this means that the Dynkin grading of g associated with the nilpotent element has no odd term.
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if dimV = 2`, let q` be the Pfaffian that is a homogenous element of degree ` of S(g)g such that Q2` = q2
` .

Denote by δ1, . . . , δ` the degrees of eq1, . . . ,
eq` respectively. By [PPY07, Theorem 2.1], if

dimge + ` − 2(δ1+ · · ·+ δ`) = 0,

then the polynomials eq1, . . . ,
eq` are algebraically independent. In that event, by Theorem 1.5, e is good

and we will say that e is very good (cf. Corollary 5.8 and Definition 5.10). The notion of very good element
is specific to this setting where there are natural generators of S(g)g.

The very good nilpotent elements of g can be characterized in term of their associated partitions of dimV
(cf. Lemma 5.11). Theorem 1.5 also allows to obtain examples of good, but not very good, nilpotent ele-
ments of g; for them, there are a few more work to do (cf. Subsection 5.3).

In this way, we obtain a large number of good nilpotent elements, including all even nilpotent elements
in type B, or in type D with odd rank (cf. Corollary 5.8). For the type D with even rank, we obtain the
statement for some particular cases (cf. Theorem 5.23). On the other hand, there are examples of elements
that satisfy the polynomiality condition but that are not good; see Examples 7.5 and 7.6. To deal with them,
we use different techniques, more similar to those used in [PPY07]. These alternative methods are presented
in Section 7.

As a result of all this, we observe for example that all nilpotent elements of so(k7) are good, and that all
nilpotent elements of so(kn), with n 6 13, satisfy the polynomiality condition (cf. Table 5). In particular,
by [PPY07, §3.9], this provides examples of good nilpotent elements for which ge is singular. For such
nilpotent elements, note that [PPY07, Theorem 0.3] (cf. Theorem 1.2) cannot be applied.

Our results do not cover all nilpotent orbits in type B and D. As a matter of fact, we obtain a counter-
example in type D7 to Premet’s conjecture (cf. Example 7.8).

Proposition 1.6. The nilpotent elements of so(k14) associated with the partition (3, 3, 2, 2, 2, 2) of 14 do not
satisfy the polynomiality condition.

1.4. Outline of the proof of Theorem 1.5. Let q1, . . . ,q` be homogenous generators of S(g)g of degrees
d1, . . . ,d` respectively. The sequence (q1, . . . ,q`) is ordered so that d16 · · · 6d`. Assume that the polyno-
mial functions eq1, . . . ,

eq` are algebraically independent.
According to Theorem 1.4, it suffices to show that e is good, and more accurately that the nullvariety

of eq1, . . . ,
eq` in g f has codimension `, since eq1, . . . ,

eq` are invariant homogenous polynomials. To this
end, it suffices to prove that S(ge) is a free extension of the k-algebra generated by eq1, . . . ,

eq` (see Propo-
sition 2.5,(ii)). We are led to find a subspace V0 of S such that the linear map

V0 ⊗k k[ eq1, . . . ,
eq`] −→ S , v⊗a 7−→ va

is a linear isomorphism. We explain below the construction of the subspace V0.
Let x1, . . . , xr be a basis of ge such that for i = 1, . . . , r, [h, xi] = nixi for some nonnegative integer ni. For

j = ( j1, . . . , jr) in Nr, set:

|j| := j1+ · · ·+ jr, |j|e := j1n1 + · · · + jrnr + 2|j|, xj = x j1
1 · · · x

jr
r .

The algebra S(ge) has two gradings: the standard one and the Slodowy grading. For all j in Nr, xj is
homogenous with respect to these two gradings. It has standard degree |j| and, by definition, it has Slodowy
degree |j|e. For m nonnegative integer, denote by S(ge)[m] the subspace of S(ge) of Slodowy degree m.

Let us simply denote by S the algebra S(ge) and let t be an indeterminate. For any subspace V of S , set:

V[t] := k[t] ⊗k V, V[t, t−1] := k[t, t−1] ⊗k V, V[[t]] := k[[t]] ⊗k V, V((t)) := k((t)) ⊗k V,
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with k((t)) the fraction field of k[[t]]. For V a subspace of S [[t]], denote by V(0) the image of V by the
quotient morphism

S [t] −→ S , a(t) 7−→ a(0).

The Slodowy grading of S induces a grading of the algebra S ((t)) with t having degree 0. Let τ be the
morphism of algebras

S −→ S [t], xi 7→ txi, i = 1, . . . , r.

The morphism τ is a morphism of graded algebras. Denote by δ1, . . . , δ` the standard degrees of eq1, . . . ,
eq`

respectively, and set for i = 1, . . . , `:

Qi := t−δiτ(κ(qi)) with κ(qi)(x) := qi(e + x), ∀ x ∈ g f .

Let A be the subalgebra of S [t] generated by Q1, . . . ,Q`. Then A(0) is the subalgebra of S generated by
eq1, . . . ,

eq`. For ( j1, . . . , j`) in N`, κ(q j1
1 )· · · κ(q j`

`
) and eq j1

1 · · ·
eq j`
`

are Slodowy homogenous of Slodowy
degree 2d1 j1 + · · · + 2d` j` (cf. [Pr02, PPY07] or Proposition 4.1,(i)). Hence, A and A(0) are graded subal-
gebras of S [t] and S respectively. Denote by A(0)+ the augmentation ideal of A(0), and let V0 be a graded
complement to S A(0)+ in S . The main properties of our data A and A(0) are the following ones:

(1) A is a graded polynomial algebra,
(2) the canonical morphism A→ A(0) is a homogenous isomorphism,
(3) the algebra S [t, t−1] is a free extension of A,
(4) the ideal S [t, t−1]A+ of S [t, t−1] is radical.

With these properties we first obtain that S [[t]] is a free extension of A (cf. Corollary 4.17) and that S [[t]] is
a free extension of the subalgebra Ã of S [[t]] generated by k[[t]] and A (cf. Theorem 4.21,(i)). From these
results, we deduce that the linear map

V0 ⊗k A(0) −→ S , v⊗a 7−→ va

is a linear isomorphism, as expected; see Theorem 4.21,(iii). The key points of the proof are Lemma 4.2,
Lemma 4.5, Proposition 4.9 and Corollary 4.17.

1.5. A related problem. Let us now mention a recent result of T. Arakawa and A. Premet which resembles
our results, [AP].

Let Vcri(ge) be the universal affine Vertex algebra associated with ge at critical level, and let Z(Vcri(ge))
be the center of Vcri(ge). Assume that Conditions (1) et (2) of Theorem 1.2 are satisfied. Then S (ĝe−)ĝ

e
+ is

a polynomial algebra, with ĝe− := ge[t−1]t−1. Moreover, Z(Vcri(ge)) is a polynomial algebra, and explicit
generators can be described.

The particular case where e = 0 is an old result of B. Feigin and E. Frenkel, [FF92]. Arakawa and Premet
have used affine W-algebras to prove the general case.

It would be interesting to extend the results of Arakawa and Premet to the setting of Theorem 1.5, that
is to the cases where only the Conditon (1) of Theorem 1.2 is satisfied, at least to the cases where we have
explicit generators of S (g)g

e
, not necessarily of the form eq1, . . . ,

eq` for some generators q1, . . . , q` of S (g)g;
cf. e.g. Remark 5.25.

1.6. The remainder of the paper will be organized as follows.

Section 2 is about general facts on commutative algebra, useful for the Sections 3 and 4. In Section 3,
the notions of good elements and good orbits are introduced, and some properties of good elements are
described. Theorem 3.3 asserts that the good elements satisfy the polynomiality condition. The main result
(Theorem 3.6) is also stated in this section. Section 4 is devoted to the proof of Theorem 3.6. In Section 5,
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we give applications of Theorem 3.6 to the simple classical Lie algebras. In Section 6, we give applications
to the exceptional Lie algebras of types E6, F4 and G2. This allows us to exhibit a great number of good
nilpotent orbits. Other examples, counter-examples, remarks and a conjecture are discussed in Section 7. In
this last section, other techniques are developed.

Acknowledgments. We thank Alexander Premet for his important comments on the previous version of
this paper. We also thank the referee for careful reading and thoughtful suggestions.

This work was partially supported by the ANR-project 10-BLAN-0110.

2. General facts on commutative algebra

We state in this section preliminary results on commutative algebra. Theorem 2.20 will be particularly
important in Sections 3 for the proof of Theorem 3.3. As for Proposition 2.5, it will be used in the proof of
Theorem 3.6.

2.1. As a rule, for A a graded algebra over N, we denote by A+ the ideal of A generated by its homogenous
elements of positive degree. For M a graded A-module, we set M+ := A+M.

Let S be a finitely generated regular graded k-algebra over N. If E is a finite dimensional vector space
over k, we denote by S(E) the polynomial algebra generated by E. It is a finitely generated regular k-algebra,
graded over N by the standard grading. Let A be a graded subalgebra of S , different from S and such that
A = k + A+. Let XA and XS be the affine varieties Specm(A) and Specm(S ) respectively, and let πA,S be
the morphism from XS to XA whose comorphism is the canonical injection from A into S . Let N0 be the
nullvariety of A+ in XS and set

N := dimS − dim A.

The following lemma is well-known. It is an easy consequence of a Chevalley’s theorem [H77, Ch. II,
Exercise 3.22] for Assertions (i) and (ii), and of [Ma86, Ch. 5, Theorem 13.5] for Assertion (iii).

Lemma 2.1. (i) The irreducible components of the fibers of πA,S have dimension at least N.
(ii) If N0 has dimension N, then the fibers of πA,S are equidimensional of dimension N.
(iii) Suppose that S = S(E) for some finite dimensional k-vector space E. If N0 has dimension N, then

for some x1, . . . , xN in E, the nullvariety of x1, . . . , xN in N0 is equal to {0}.

Let A be the algebraic closure of A in S .

Lemma 2.2. Let M be a graded A-module and let V be a graded subspace of M such that M = V ⊕ M+.
Denote by τ the canonical map A⊗k V −→ M. Then τ is surjective. Moreover, τ is bijective if and only if M
is a flat A-module.

Proof. Let M′ be the image of τ. Since M = V ⊕ M+ = V + A+M ⊂ M′ + A+M, we get by induction on k,

M ⊂ M′ + Ak
+M.

Since M is graded and since A+ is generated by elements of positive degree, M = M′.
If τ is bijective, then all basis of V is a basis of the A-module M. In particular, it is a flat A-module.

Conversely, let us suppose that M is a flat A-module. For v in M, denote by v the element of V such that v− v
is in A+M.

Claim 2.3. Let (v1, . . . , vn) be a homogenous sequence in M such that v1, . . . , vn are linearly independent
over k. Then v1, . . . , vn are linearly independent over A.
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Proof of Claim 2.3. Since the sequence (v1, . . . , vn) is homogenous, it suffices to prove that for a homoge-
nous sequence (a1, . . . ,an) in A,

a1v1 + · · · + anvn = 0 =⇒ a1= · · · = an = 0.

Prove the statement by induction on n. First of all, by flatness, for some homogenous sequence (y1, . . . , yk)
in M and for some homogenous sequence (bi, j, i = 1, . . . , n, j = 1, . . . , k),

vi =

k∑
j=1

bi, jy j and
n∑

l=1

albl,m = 0

for i = 1, . . . , n and m = 1, . . . , k. For n = 1, since v1 , 0, for some j, b1, j is in k∗ since A = k + A+. So
a1 = 0. Suppose the statement true for n − 1. Since vn , 0, for some j, bn, j is in k∗, whence

an = −

n−1∑
i=1

bi, j

bn, j
ai and

n−1∑
i=1

ai(vi −
bi, j

bn, j
vn) = 0.

Since v1, . . . , vn are linearly independent over k, so are the elements(
vi − (bi, j/bn, j)vn, i = 1, . . . , n − 1

)
.

By induction hypothesis, a1= · · · = an−1 = 0, whence an = 0. �

According to Claim 2.3, any homogenous basis of V consists of linearly independent elements over A.
Hence any homogenous basis of V is a basis of the A-module M since M = AV . �

Corollary 2.4. Suppose that S = S(E) for some finite dimensional k-vector space E, and suppose that
dimN0 = N. Then A is the integral closure of A in S(E). In particular, A is finitely generated.

Proof. Since A is finitely generated, so is its integral closure in S(E) by [Ma86, §33, Lemma 1]. According
to the hypothesis on N0 and Lemma 2.1,(iii), for some x1, . . . , xN in E, the nullvariety of x1, . . . , xN in N0 is
equal to {0}. In particular, x1, . . . , xN are algebraically independent over A since E has dimension N + dim A.
Let J be the ideal of S(E) generated by A+ and x1, . . . , xN . Then the radical of J is the augmentation ideal
of S(E) so that J has finite codimension in S(E). For V a homogenous complement to J in S(E), S(E) is the
A[x1, . . . , xN]-submodule generated by V by Lemma 2.2. Hence S(E) is a finite extension of A[x1, . . . , xN].

Let p be in A. Since A[x1, . . . , xN] is finitely generated, A[x1, . . . , xN][p] is a finite extension of A[x1, . . . , xN].
Let

pm + am−1 pm−1 + · · · + a0 = 0

an integral dependence equation of p over A[x1, . . . , xN]. For i = 0, . . . ,m, ai is a polynomial in x1, . . . , xN

with coefficients in A since x1, . . . , xN are algebraically independent over A. Denote by ai(0) its constant
coefficient. Since p is in A, x1, . . . , xN are algebraically independent over A[p], whence

pm + am−1(0)pm−1 + · · · + a0(0) = 0.

As a result, A is the integral closure of A in S(E). �

Most of the following proposition is contained in [Ben93, Corollary 6.2.3]. Since Proposition 2.5 is more
extensive, we give a proof.

Proposition 2.5. Let us consider the following conditions on A:

1) A is a polynomial algebra,
2) A is a regular algebra,
3) A is a polynomial algebra generated by dim A homogenous elements,
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4) the A-module S is faithfully flat,
5) the A-module S is flat,
6) the A-module S is free.

(i) The conditions (1), (2), (3) are equivalent.
(ii) The conditions (4), (5), (6) are equivalent. Moreover, Condition (4) implies Condition (2) and, in that

event, N0 is equidimensional of dimension N.
(iii) If N0 is equidimensional of dimension N, then the conditions (1), (2), (3), (4), (5), (6) are all equiva-

lent.

Proof. Let n be the dimension of A.
(i) The implications (3)⇒ (1), (1)⇒ (2) are straightforward. Let us suppose that A is a regular algebra.

Since A is graded and finitely generated, there exists a homogenous sequence (x1, . . . , xn) in A+ representing
a basis of A+/A2

+. Let A′ be the subalgebra of A generated by x1, . . . , xn. Then

A+ ⊂ A′ + A2
+.

So by induction on m,
A+ ⊂ A′ + Am

+

for all positive integer m. Then A = A′ since A is graded and A+ is generated by elements of positive degree.
Moreover, x1, . . . , xn are algebraically independent over k since A has dimension n. Hence A is a polynomial
algebra generated by n homogenous elements.

(ii) The implications (4)⇒ (5), (6)⇒ (5) are straightforward and (5)⇒ (6) is a consequence of Lemma 2.2.
(5)⇒ (4): Recall that x0 = A+. Let us suppose that S is a flat A-module. Then πA,S is an open morphism

whose image contains x0. Moreover, π(XS ) is stable under the action of Gm. So πA,S is surjective. Hence,
by [Ma86, Ch. 3, Theorem 7.2], S is a faithfully flat extension of A.

(4)⇒ (2): Since S is regular and since S is a faithfully flat extension of A, all finitely generated A-module
has finite projective dimension. So by [Ma86, Ch. 7, §19, Lemma 2], the global dimension of A is finite.
Hence by [Ma86, Ch. 7, Theorem 19.2], A is regular.

If Condition (4) holds, by [Ma86, Ch. 5, Theorem 15.1], the fibers of πA,S are equidimensional of dimen-
sion N. So N0 is equidimensional of dimension N.

(iii) Suppose that N0 is equidimensional of dimension N. By (i) and (ii), it suffices to prove that (2)⇒ (5).
By Lemma 2.1,(ii), the fibers of πA,S are equidimensional of dimension N. Hence by [Ma86, Ch. 8, Theorem
23.1], S is a flat extension of A since S and A are regular. �

2.2. We present in this paragraph some results about algebraic extensions, that are independent of Subsec-
tion 2.1. These results are used only in the proof of Proposition 2.15. Our main reference is [Ma86]. For A
an algebra and p a prime ideal of A, Ap denotes the localization of A at p.

Let t be an indeterminate, and let L be a field containing k. Let B, L1, B1 satisfying the following
conditions:

(I) L1 is an algebraic extension of L(t) of finite degree,
(II) L is algebraically closed in L1,
(III) B is a finitely generated subalgebra of L, L is the fraction field of B and B is integrally closed in L,
(IV) B1 is the integral closure of B[t] in L1,
(V) tB1 is a prime ideal of B1.

For C a subalgebra of L, containing B, we set:

R(C) := C ⊗B B1,
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and we denote by µC the canonical morphism R(C) → CB1. Since C and B1 are integral algebras, the
morphisms c 7→ c⊗1 and b 7→ 1⊗b from C and B1 to R(C) respectively are embeddings. So, C and B1 are
identified to subalgebras of R(C) by these embeddings. We now investigate some properties of the algebras
R(C).

Lemma 2.6. Let µL be the canonical morphism R(L)→ LB1.
(i) The algebra R(L) is reduced and µL is an isomorphism.
(ii) The ideal tLB1 of LB1 is maximal. Furthermore B1 is a finite extension of B[t].
(iii) The algebra LB1 is the direct sum of L and tLB1.
(iv) The ring LB1 is integrally closed in L1.

Proof. (i) Let a be in the kernel of µL. Since L is the fraction field of B, for some b in B, ba = 1⊗µL(ba) so
that ba = 0 and a = 0. As a result, µL is an isomorphism and R(L) is reduced since LB1 is integral.

(ii) Since t is not algebraic over L and since LB1 is integral over L[t] by Condition (IV), tLB1 is strictly
contained in LB1. Let a and b be in LB1 such that ab is in tLB1. By Condition (III), for some c in B \ {0},
ca and cb are in B1. So, by Condition (V), ca or cb is in tB1. Hence a or b is in tLB1. As a result, tLB1 is
a prime ideal and the quotient Q of LB1 by tLB1 is an integral domain. Denote by ι the quotient morphism.
Since L is a field, the restriction of ι to L is an embedding of L into Q. According to Conditions (I) and (IV)
and [Ma86, §33, Lemma 1], B1 is a finite extension of B[t]. Then Q is a finite extension of L and tLB1 is a
maximal ideal of LB1.

(iii) Since L is algebraically closed in L1, Q and L1 are linearly disjoint over L. So, Q⊗L L1 is isomorphic
to the extension of L1 generated by Q. Denoting this extension by QL1, QB1 is a subalgbera of QL1 and we
have the exact sequences

0 // tLB1 // LB1 // Q // 0

0 // tQB1 // QB1 // Q ⊗L Q // 0

0 // tQB1 // tQB1 + LB1 // Q⊗1 // 0

As a result,
Q ⊂ LB1 + tQB1.

By (ii), QB1 is a finite L[t]-module. So, by Nakayama’s Lemma, for some a in L[t], (1+ ta)QB1 is contained
in LB1. As a result, Q is contained in L1, whence Q = L since L is algebraically closed in L1. The assertion
follows since Q is the quotient of LB1 by tLB1.

(iv) Let a be in the integral closure of LB1 in L1 and let

am + am−1am−1 + · · · + a0 = 0

an integral dependence equation of a over LB1. For some b in L \ {0}, bai is in B1 for i = 0, . . . ,m− 1. Then,
by Condition (IV), ba is in B1 since it satisfies an integral dependence equation over B1. As a result, LB1 is
integrally closed in L1. �

Let L2 be the Galois extension of L(t) generated by L1, and let Γ be the Galois group of the extension L2

of L(t). Denote by B2 the integral closure of B[t] in L2. For C subalgebra of L, containing B, set

R2(C) := C ⊗B B2,
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and denote by µC,2 the canonical morphism R2(C) → CB2. The action of Γ in B2 induces an action of Γ in
R2(C) given by g.(c⊗b) = c⊗g(b).

Lemma 2.7. Let x be a primitive element of L1, and let Γx be the stabilizer of x in Γ.
(i) The subfield L1 of L2 is the set of fixed points under the action of Γx in L2, and B1 is the set of fixed

points under the action of Γx in B2.
(ii) For C subalgebra of L containing B, the canonical morphism R(C)→ R2(C) is an embedding and its

image is the set of fixed points under the action of Γx in R2(C).
(iii) For C subalgebra of L, containing B, C[t] is embedded in R(C) and R2(C). Moreover, C[t] is the set

of fixed points under the action of Γ in R2(C).

Proof. (i) Let L′1 be the set of fixed points under the action of Γx in L2,

L′1 = {y ∈ L2 | Γx.y = y}.

Then L1 is contained in L′1, and L2 is an extension of degree |Γx| of L′1. Since x is a primitive element of L1,
the degree of this extension is equal to |Γ.x| so that L2 is an extension of degree |Γx|. Hence L′1 = L1.

Since B2 is the integral closure of B[t] in L2, B2 is invariant under Γ. Moreover, the intersection of B2 and
L1 is equal to B1 by Condition (IV). Hence B1 is the set of fixed points under the action of Γx in B2.

(ii) For a in B2 and b in R2(C), set:

a# :=
1
|Γx|

∑
g∈Γx

g(a), b :=
1
|Γx|

∑
g∈Γx

g.b.

Then a 7→ a# is a projection of B2 onto B1. Moreover, it is a morphism of B1-module. Denote by ι the
canonical morphism R(C)→ R2(C), and by ϕ the morphism

R2(C) −→ R(C), c⊗a 7−→ c⊗a#.

For b in R2(C),
ϕ(b) = ϕ(b) and ι◦ϕ(b) = b

Then ϕ is a surjective morphism and the image of ι◦ϕ is the set of fixed points under the action of Γx in
R2(C). Moreover ι is injective, whence the assertion.

(iii) From the equalities

R(C) = (C ⊗B B[t]) ⊗B[t] B1 and C[t] = C ⊗B B[t]

we deduce that R(C) = C[t] ⊗B[t] B1. In the same way, R2(C) = C[t] ⊗B[t] B2. Then, since C[t] is an integral
algebra, the morphism c 7→ c⊗1 is an embedding of C[t] in R(C) and R2(C). Moreover, C[t] is invariant
under the action of Γ in R2(C).

Let a be in R2(C) invariant under Γ. Then a has an expansion

a =

k∑
i=1

ci⊗bi

with c1, . . . , ck in C[t] and b1, . . . ,bk in B2. Since a is invariant under Γ,

a =
1
|Γ|

∑
g∈Γ

g.a =
1
|Γ|

∑
g∈Γ

k∑
i=1

ci⊗g.bi.

For i = 1, . . . , k, set:

b′i :=
1
|Γ|

∑
g∈Γ

g.bi
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The elements b′1, . . . ,b
′
k are in B[t], and

a = (
k∑

i=1

cib′i)⊗1 ∈ C[t],

whence the assertion. �

From now on, we fix a finitely generated subalgebra C of L containing B. Denote by n the nilradical of
R(C).

Lemma 2.8. Let k be the kernel of µC,2 and let n2 be the nilradical of R2(C).
(i) The algebras R(C) and R2(C) are finitely generated. Furthermore, they are finite extensions of C[t].
(ii) For a in k, ba = 0 for some b in B \ {0}.
(iii) The ideal k is the minimal prime ideal of R2(C) such that k ∩ B = {0}. Moreover, k ∩ B[t] = {0}.
(iv) The ideal n is the kernel of µC . Moreover, n2 = k and n is a prime ideal.
(v) The local algebra R(C)n is isomorphic to L1.

Proof. (i) According to Lemma 2.7,(iii), R(C) is an extension of C[t] and R(C) = C[t] ⊗B[t] B1. Then, by
Lemma 2.6,(ii), R(C) is a finite extension of C[t]. In particular, R(C) is a finitely generated algebra since so
is C. In the same way, R2(C) is a finite extension of C[t] and it is finitely generated.

(ii) Let a be in k. Then a has an expansion

a =

k∑
i=1

ci⊗bi

with c1, . . . , ck in C and b1, . . . ,bk in B2. Since C and B have the same fraction field, for some b in B \ {0},
bci is in B, whence

ba = 1⊗(
k∑

i=1

bcibi).

So ba = 0 since k is the kernel of µC,2.
(iii) By (i) there are finitely many minimal prime ideals of R2(C). Denote them by p1, . . . ,pk. Since C[t]

is an integral algebra, n2 ∩ C[t] = {0} so that pi ∩ C = {0} for some i. Let i be such that pi ∩ B = {0} and
let a be in k. By (ii), for some b in B \ {0}, ba is in pi. Hence k is contained in pi. Since CB2 is an integral
algebra, k is a prime ideal. Then pi = k since pi is a minimal prime ideal, whence the assertion since for some
j, p j ∩C[t] = {0}.

(iv) By (iii), there is only one minimal prime ideal of R2(C) whose intersection with B is equal to {0}. So,
it is invariant under Γ. Hence k is invariant under Γ. As a result, for a in k,

0 =
∏
g∈Γ

(a − g.a) = am + am−1am−1 + · · · + a0

with m = |Γ| and a0, . . . ,am−1 in k. Moreover, by Lemma 2.7,(iii), a0, . . . ,am−1 are in C[t]. So, by (iii), they
are all equal to zero so that a is a nilpotent element. Hence k is contained in n2. Then n2 = k by (iii).

By Lemma 2.7,(ii), R(C) identifies with a subalgebra of R2(C) so that n = n2 ∩ R(C), and µC is the
restriction of µC,2 to R(C). Hence n is the kernel of µC and n is a prime ideal of R(C).

(v) By (iii), n ∩ C = {0}. So, by (ii), nR(C)n = {0}. As a result, R(C)n is a field since nR(C)n is a
maximal ideal of R(C)n. Moreover, by (iii), it is isomorphic to a subfield of L1, containing B1. So, R(C)n is
isomorphic to L1. �

For c in L[t], denote by c(0) the constant term of c as a polynomial in t with coefficients in L.
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Lemma 2.9. Assume that C is integrally closed in L. Denote by CB1 the integral closure of CB1 in L1.
(i) Let i ∈ {1, 2}. For all positive integer j, the intersection of C[t] and t jLBi equals t jC[t].
(ii) The intersection of tLB1 and CB1 equals tCB1.
(iii) The algebra CB1 is contained in C + tCB1.
(iv) The algebra B1 is the direct sum of B and tB1.

Proof. First of all, CB1 and CB1 are finite extensions of C[t] by Lemma 2.7,(i), and [Ma86, §33, Lemma
1]. So CB1 is the integral closure of C[t] in L1 by Condition (IV). Denote by CB2 the integral closure of
C[t] in L2. Since C is integrally closed in L, C[t] is integally closed in L[t]. Hence C[t] is the set of fixed
points under the action of Γ in CB2. Let a be in CB2. Then

0 =
∏
g∈Γ

(a − g(a)) = am + am−1am−1 + · · · + a0

with a0, . . . ,am−1 in C[t].
(i) Since t jLB1 is contained in t jLB2 and contains t jC[t], it suffices to prove the assertion for i = 2. Let

us prove it by induction on j. Let c be in C[t]. Then c − c(0) is in tLB2. By Lemma 2.6,(ii), L ∩ tLB2 = {0}
since L is a field, whence C ∩ tLB2 = {0} since C is contained in L. As a result, if c is in tLB2, c(0) = 0 and
c is in tC[t], whence the assertion for j = 1. Suppose the assertion true for j − 1. Let c be in C[t] ∩ t jLB2.
By induction hypothesis, c = t j−1c′ with c′ in C[t]. Then c′ is in C[t] ∩ tLB2, whence c is in t jC[t] by the
assertion for j = 1.

(ii) Suppose that a is in tLB1. Since tLB2 is invariant under Γ, for i = 0, . . . ,m − 1, ai is in tm−iLB2. Set
for i = 0, . . . ,m − 1,

a′i :=
ai

tm−i .

Then by (i), a′0, . . . ,a
′
m−1 are in C[t]. Moreover,

(
a
t

)m + a′m−1(
a

tm−1 )m−1 + · · · + a′0 = 0,

so that a/t is in CB1, whence the assertion.
(iii) Suppose that a is in CB1. By Lemma 2.6,(iii), L is the quotient of LB1 by tLB1. So, denoting by a

the image of a by the quotient morphism,

am + am−1(0)am−1 + · · · + a0(0) = 0.

Then a is in C since C is integrally closed. Hence a is in C + tLB1. As a result, by (ii), CB1 is contained in
C + tCB1.

(iv) By Condition (III), B is integrally closed in L. So the assertion results from (iii) and Condition (IV)
for C = B. �

Corollary 2.10. The ideal R(C)t of R(C) is prime and t is not a zero divisor in R(C).

Proof. According to Lemma 2.9,(iv), R(C) = C+R(C)t. Furthermore, this sum is direct since C∩tCB1 = {0}
by Lemma 2.6,(ii) and since the restriction of µC to C is injective. Then R(C)t is a prime ideal of R(C) since
C is an integral algebra.

Since R(C)t is a prime ideal, n is contained in R(C)t. According to Lemma 2.8,(iv), n is the kernel of µC .
Let a be in n. Then a = a′t for some a′ in R(C). Since 0 = µC(a′t) = µC(a′)t, a′ is in n. As a result, by
induction on m, for all positive integer m, a = amtm for some am in n.

For k positive integer, denote by Jk the subset of elements a of R(C) such that atk = 0. Then (J1, J2, . . .)
is an increasing sequence of ideals of R(C). For a in Jk, 0 = µC(atk) = µC(a)tk. Hence Jk is contained in
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n. According to Lemma 2.8,(i), the k-algebra R(C) is finitely generated. So for some positive integer k0,
Jk = Jk0 for all k bigger than k0. Let a be in J1. Then a = ak0 tk0 for some ak0 in k. Since ak0 tk0+1 = 0, ak0 is
in Jk0 so that a = 0. Hence t is not a zero divisor in R(C). �

Proposition 2.11. Suppose that C is integrally closed and Cohen-Macaulay. Let p be a prime ideal of CB1,
containing t and let p̃ be its inverse image by µC .

(i) The local algebra (CB1)p is normal.
(ii) The local algebra R(C)p̃ is Cohen-Macaulay and reduced. In particular, the canonical morphism

R(C)p̃ → (CB1)p is an isomorphism.
(iii) The local algebra (CB1)p is Cohen-Macaulay.

Proof. (i) Let CB1 be the integral closure of CB1 in L1. Setting S := CB1 \ p, (CB1)p is the localization of
CB1 with respect to S . Denote by (CB1)p the localization of CB1 with respect to S . Then (CB1)p is a finite
(CB1)p-module since CB1 is a finite extension of CB1. According to Lemma 2.8,(iii),

CB1 ⊂ CB1 + tCB1.

Then since t is in p,
(CB1)p/(CB1)p = p(CB1)p/(CB1)p.

So, by Nakayama’s Lemma, (CB1)p = (CB1)p, whence the assertion.
(ii) According to Corollary 2.10, R(C)t is a prime ideal containing n. Denote by p the intersection of

p and C. Since p̃ is the inverse image of p by µC , Cp is the quotient of R(C)p̃ by R(C)p̃t. Since C is
Cohen-Macaulay, so is Cp. As a result, R(C)p̃ is Cohen-Macaulay since t is not a zero divisor in R(C) by
Corollary 2.10 and since R(C)p̃t is a prime ideal of height 1.

Denote by µC,p̃ the canonical extension of µC to R(C)p̃. Then (CB1)p is the image of µC,p̃. According to
Lemma 2.8,(iv), the nilradical nR(C)p̃ of R(C)p̃ is the minimal prime ideal of R(C)p̃ and it is the kernel of
µC,p̃. By Lemma 2.8,(v), the localization of R(C)p̃ at nR(C)p̃ is a field. In particular, it is regular. Then, by
[Bou98, §1, Proposition 15], R(C)p̃ is a reduced algebra since it is Cohen-Macaulay. As a result, µC,p̃ is an
isomorphism onto (CB1)p.

(iii) results from (ii). �

2.3. Return to the situation of Subsection 2.1, and keep its notations. From now on, and until the end of
the section, we assume that S = S(E) for some finite dimensional k-vector space E. As a rule, if B is a
subalgebra of S(E), we denote by K(B) its fraction field, and we set for simplicity

K := K(S(E)).

Furthermore we assume until the end of the section that the following conditions hold:

(a) dimN0 = N,
(b) A is a polynomial algebra,
(c) K(A) is algebraically closed in K.

We aim to prove Theorem 2.20 (see Subsection 2.4). Let (v1, . . . , vN) be a sequence of elements of E such
that its nullvariety in N0 equals {0}. Such a sequence does exist by Lemma 2.1,(iii). Set

C := A[v1, . . . , vN].

By Proposition 2.5,(ii), C is a polynomial algebra if and only if so is A since C is a faithfully flat extension
of A. Therefore, in order to prove Theorem 2.20, it suffices to prove that S(E) is a free extension of C, again
by Proposition 2.5,(ii). This is now our goal.

Condition (c) is actually not useful for the following lemma:
13



Lemma 2.12. The algebra C is integrally closed and S(E) is the integral closure of C in K.

Proof. Since A has dimension dim E − N and since the nullvariety of v1, . . . , vN in N0 is {0}, v1, . . . , vN are
algebraically independent over A and A. By Serre’s normality criterion [Bou98, §1, n◦10, Théorème 4],
any polynomial algebra over a normal ring is normal. So C is integrally closed since so is A by definition.
Moreover, C is a homogenous finitely generated subalgebra of S(E) since so is A by Corollary 2.4. Since C
has dimension dim E, S(E) is algebraic over C. Then, by Corollary 2.4, S(E) is the integral closure of C in
K. Indeed, S(E) is integrally closed as a polynomial algebra and {0} is the nullvariety of C+ in E∗. �

Set Z0 := Specm(A) and Z := Z0 × k
N . Then Z is equal to Specm(C). Let X0 be a desingularization of

Z0 and let π0 be the morphism of desingularization. Such a desingularization does exist by [Hir64]. Set
X := X0 × k

N and denote by π the morphism

X −→ Z, (x, v) 7−→ (π0(x), v).

Then (X, π) is a desingularization of Z.
Fix x0 in π−1

0 (C+). For i = 0, . . . ,N, set Xi := X0 × k
i and let xi := (x0, 0ki). Define Ki, C′i , Ci by the

induction relations:

(1) C′0 := C0 := A and K0 is the fraction field of A,
(2) C′i := C′i−1[vi],
(3) Ki is the algebraic closure of Ki−1(vi) in K and Ci is the integral closure of Ci−1[vi] in Ki.

Lemma 2.13. Let i = 1, . . . ,N.
(i) The field Ki is a finite extension of Ki−1(vi) and Ki−1 is algebraically closed in Ki.
(ii) The algebra Ci is finitely generated and integrally closed in K. Moreover, Ki is the fraction field of Ci.
(iii) The algebra Ci is contained in S(E) and CN = S(E). Moreover, KN = K.
(iv) The algebra Ci is a finite extension of C′i .
(v) The algebra Ci is the intersection of S(E) and Ki. Moreover, viCi is a prime ideal of Ci.

Proof. (i) By Condition (c), K0 is algebraically closed in K. So K0 is algebraically closed in K1. By
definition, for i > 1, Ki−1 is algebraically closed in K. So it is in Ki. Since the nullvariety of v1, . . . , vN in
N0 equals {0}, v1, . . . , vN are algebraically independent over K0. Hence Ki−1(vi, . . . , vN) is a field of rational
fractions over Ki−1. Moreover, K is an algebraic extension of Ki−1(vi, . . . , vN) by Lemma 2.12. Since S(E)
is a finitely generated k-algebra, K is a finite extension of Ki−1(vi, . . . , vN). By definition, Ki is the algebraic
closure of Ki−1(vi) in K. Hence Ki is a finite extension of Ki−1(vi).

(ii) Prove the assertion by induction on i. By definition, it is true for i = 0 and Ci is the integral closure of
Ci−1[vi] in Ki for i = 1, . . . ,N, whence the assertion by (i) and [Ma86, §33, Lemma 1].

(iii) Since S(E) is integrally closed in K, Ci is contained in S(E) by induction on i. By definition, the field
KN is algebraically closed in K and it contains C. So KN = K by Lemma 2.12. Since CN is integrally closed
in KN and it contains C, CN = S(E) by Lemma 2.12.

(iv) Prove the assertion by induction on i. By definition, it is true for i = 0. Suppose that it is true for
i − 1. Then Ci is a finite extension of C′i−1[vi] = C′i .

(v) Prove by induction on i that CN−i is the intersection of S(E) and KN−i for i = 0, . . . ,N. By (iii), it
is true for i = 0. Suppose that it is true for i − 1. By induction hypothesis, it suffices to prove that CN−i is
the intersection of CN−i+1 and KN−i. Let a be in this intersection. Then a satisfies an integral dependence
equation over CN−i[vN−i+1]:

am + am−1am−1 + · · · + a0 = 0.
14



Denoting by a j(0) the constant term of a j as a polynomial in vN−i+1 with coefficients in CN−i,

am + am−1(0)am−1 + · · · + a0(0) = 0

since a is in KN−i and vN−i+1 is algebraically independent over KN−i. Hence a is in CN−i since CN−i is
integrally closed in KN−i by (ii).

Let a and b be in Ci such that ab is in viCi. Since vi is in E, viS(E) is a prime ideal of S(E). So a or b is
in viS(E) since Ci is contained in S(E). Hence a/vi or b/vi are in the intersection of S(E) and Ki. So a or b
is in viCi. �

Remark 2.14. According to Lemma 2.13,(i),(ii),(iv), for i = 1, . . . ,N, Ki−1, vi, Ci−1, Ki, Ci satisfy Conditions
(I), (II), (III), (V) satisfed by L, t, B, L1, B1 in Subsection 2.2. Moreover, Condition (IV) is satisfied by
construction (cf. Lemma 2.13,(v)).

Proposition 2.15. Let i = 1, . . . ,N.
(i) The semi-local algebra OXi,xiCi is normal and Cohen-Macaulay.
(ii) The canonical morphism OXi,xi ⊗C′i Ci → OXi,xiCi is an isomorphism.

Proof. (i) The local ring OXi,xi is an extension of C′i and Ci is a finite extension of C′i by Lemma 2.13,(iv).
So OXi,xiCi is a semi-local ring as a finite extension of the local ring OXi,xi . Prove the assertion by induction
on i. For i = 0, OX0,x0C0 = OX0,x0 and OX0,x0 is a regular local algebra. Suppose that it is true for i − 1
and set Ai−1 := OXi−1,xi−1Ci−1. Then Ai−1 is a subalgebra of Ki−1 since OXi−1,xi−1 is contained in the fraction
field of C′i−1. Let m be a maximal ideal of OXi,xiCi. The local ring OXi,xi is the localization of OXi−1,xi−1[vi] at
m ∩ OXi−1,xi−1[vi]. Hence vi is in m, and m ∩ Ai−1Ci is a prime ideal of Ai−1Ci such that the localization of
Ai−1Ci at this prime ideal is the localization of OXi,xiCi atm. By the induction hypothesis, Ai−1 is normal and
Cohen-Macaulay. According to Remark 2.14 and Proposition 2.11,(i) and (iii), the localization of Ai−1Ci at
m ∩ Ai−1Ci is normal and Cohen-Macaulay, whence the assertion.

(ii) Prove the assertion by induction on i. For i = 0, C0 is contained in OX0,x0 . Suppose that it is true for
i − 1. For j ∈ {i − 1, i}, denote by ν j the canonical morphism

OX j,x j ⊗C′j C j −→ OX j,x jC j.

Recall that Ai−1 := OXi−1,xi−1Ci−1. By induction hypothesis, the morphism νi−1⊗idCi ,

(OXi−1,xi−1 ⊗C′i−1
Ci−1) ⊗Ci−1 Ci −→ Ai−1 ⊗Ci−1 Ci

is an isomorphism. Since C′i−1 is contained in OXi−1,xi−1 ,

OXi−1,xi−1 ⊗C′i−1
C′i−1[vi] = OXi−1,xi−1[vi].

Furthermore,

(OXi−1,xi−1 ⊗C′i−1
Ci−1) ⊗Ci−1 Ci = OXi−1,xi−1 ⊗C′i−1

Ci = (OXi−1,xi−1 ⊗C′i−1
C′i−1[vi]) ⊗C′i−1[vi] Ci,

whence an isomorphism
OXi−1,xi−1[vi] ⊗C′i−1[vi] Ci −→ Ai−1 ⊗Ci−1 Ci.

Let m be as in (i). Set
p := m ∩ Ai−1Ci, m̃ := ν−1

i (m),

and denote by p̃ the inverse image of p by the canonical morphism

Ai−1 ⊗Ci−1 Ci −→ Ai−1Ci.
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According to Proposition 2.11,(ii), the canonical morphism

(OXi−1,xi−1Ci−1 ⊗Ci−1 Ci)p̃ −→ (OXi−1,xi−1Ci)p

is an isomorphism since OXi−1,xi−1Ci−1 is a finitely generated subalgebra of Ki−1, containing Ci−1, which is
Cohen-Macaulay and integrally closed. Let p# be the inverse image of p̃ by the isomorphism

OXi−1,xi−1[vi] ⊗C′i−1[vi] Ci −→ OXi−1,xi−1Ci−1 ⊗Ci−1 Ci.

Then the canonical morphism

(OXi−1,xi−1[vi] ⊗C′i Ci)p# −→ (OXi−1,xi−1Ci)p

is an isomorphism. From the equalities

(OXi−1,xi−1[vi] ⊗C′i Ci)p# = (OXi,xi ⊗C′i Ci)m̃, (OXi−1,xi−1Ci)p = (OXi,xiCi)m

we deduce that the support of the kernel of νi in Spec(OXi,xi ⊗C′i Ci) does not contain m̃. As a result, denoting
by Si this support, Si does not contain the inverse images by νi of the maximal ideals of OXi,xiCi.

According to Lemma 2.8,(iv), the kernel of the canonical morphism

Ai−1 ⊗Ci−1 Ci −→ OXi−1,xi−1Ci

is the nilradical of Ai−1 ⊗Ci−1 Ci. Hence, the kernel of the canonical morphism

OXi−1,xi−1[vi] ⊗C′i Ci → OXi−1,xi−1[vi]Ci

is the nilradical of OXi−1,xi−1[vi] ⊗C′i Ci since the canonical map

OXi−1,xi−1[vi] ⊗C′i−1[vi] Ci −→ Ai−1 ⊗Ci−1 Ci

is an isomorphism by induction hypothesis. As a result, all element of Si is the inverse image of a prime
ideal in OXi,xiCi. Hence Si is empty, and νi is an isomorphism. �

The following Corollary results from Proposition 2.15 and Lemma 2.13,(iii) since π−1(C+) = π−1
0 (C+) ×

{0}.

Corollary 2.16. Let x be in π−1(C+).
(i) The semi-local algebra OX,xS(E) is normal and Cohen-Macaulay.
(ii) The canonical morphism OX,x ⊗C S(E)→ OX,xS(E) is an isomorphism.

Let d be the degree of the extension K of K(C). Let x be in π−1(C+), and denote by Qx the quotient of
OX,xS(E) by mxS(E), with mx the maximal ideal of OX,x.

Lemma 2.17. Let V be a homogenous complement to S(E)C+ in S(E).
(i) The k-space V has finite dimension, S(E) = CV and K = K(C)V.
(ii) The k-space Qx has dimension d. Furthermore, for all subspace V ′ of dimension d of V such that Qx

is the image of V ′ by the quotient map, the canonical map

OX,x ⊗k V ′ −→ OX,xS(E)

is bijective.
16



Proof. (i) According to Lemma 2.12, S(E) is a finite extension of C. Hence, the k-space V is finite dimen-
sional. On the other hand, we have S(E) = V +S(E)C+. Hence, by induction on m, S(E) = CV +S(E)Cm

+ for
any m, whence S(E) = CV since C+ is generated by elements of positive degree. As a result, K = K(C)V
since the k-space V is finite dimensional.

(ii) Let d′ be the dimension of Qx. By (i), since C+ is contained in mx,

OX,xS(E) = V +mxS(E).

As a result, for some subspace V ′ of dimension d′ of V , Qx is the image of V ′ by the quotient map. Then,

OX,xS(E) = OX,xV ′ +mxS(E),

and by Nakayama’s Lemma, OX,xS(E) = OX,xV ′. Let (v1, . . . , vd′) be a basis of V ′. Suppose that the elements
v1, . . . , vd′ are not linearly independent over OX,x. A contradiction is expected. Let l be the smallest integer
such that

a1v1 + · · · + ad′vd′ = 0

for some sequence (a1, . . . ,ad′) in ml
x, not contained in ml+1

x . According to Corollary 2.16,(i) and [Ma86,
Ch. 8, Theorem 23.1], OX,xS(E) is a flat extension of OX,x since OX,xS(E) is a finite extension of OX,x. So,
for some w1, . . . , wm in S(E) and for some sequences (bi,1, . . . ,bi,m, i = 1, . . . , d′) in OX,x,

vi =

m∑
j=1

bi, jw j and
d′∑
j=1

a jb j,k = 0

for all i = 1, . . . , d′ and for k = 1, . . . ,m. Since OX,xS(E) = OX,xV ′,

w j =

d′∑
k=1

c j,kvk

for some sequence (c j,k, j = 1, . . . ,m, i = 1, . . . , d′) in OX,x. Setting

ui,k =

m∑
j=1

bi, jc j,k

for i, k = 1, . . . , d′, we have
vi =

∑
k∈I

ui,kvk and
∑
j∈I

a ju j,i = 0

for all i = 1, . . . , d′. Since v1, . . . , vd′ are linearly independent modulo mxS(E),

ui,k − δi,k ∈ mx

for all (i, k), with δi,k the Kronecker symbol. As a result, ai is in ml+1
x for all i, whence a contradiction. Then

the canonical map
OX,x ⊗k V ′ −→ OX,xS(E)

is bijective. Since K = K(C)S(E) and since K(C) is the fraction field of OX,x, v1, . . . , vd′ is a basis of K over
K(C). Hence, d′ = d and the assertion follows. �

Recall that K0 is the fraction field of A. Let vN+1, . . . , vN+r be elements of E such that v1, . . . , vN+r is a
basis of E. Denoting by t1, . . . , tr some indeterminates, let ϑ be the morphism of C-algebras

C[t1, . . . , tr] −→ S(E), ti 7−→ vN+i,

and let ϑ̃ be the morphism of K0[v1, . . . , vN]-algebras

K0[v1, . . . , vN , t1, . . . , tr] −→ K0 ⊗A S(E), ti 7−→ vN+i.
17



For i = (i1, . . . , iN) in NN and for j = ( j1, . . . , jr) in Nr, set:

vi := vi1
1 · · · v

iN
N , tj := t j1

1 · · · t
jr
r .

For a in A, denote by a the polynomial in k[v1, . . . , vN , t1, . . . , tr] such that ϑ(a) = a.

Lemma 2.18. Let I be the ideal of C[t1, . . . , tr] generated by the elements a − a with a in A.
(i) For all homogenous generating family (a1, . . . ,am) of A+, I is the ideal generated by the sequence

(ai − ai , i = 1, . . . ,m).
(ii) The ideal I is the kernel of ϑ.

Proof. (i) Let I′ be the ideal of C[t1, . . . , tr] generated by the sequence (ai − ai, i = 1, . . . ,m). Since the
map a 7→ a is linear, it suffices to prove that a − a is in I′ for all homogenous element a of A+. Prove it by
induction on the degree of a. For some homogenous sequence (b1, . . . ,bm) in A,

a = b1a1 + · · · + bmam

so that

a − a =

m∑
i=1

bi(ai − ai) +

m∑
i=1

ai(bi − bi).

If a has minimal degree, b1, . . . ,bm are in k and bi = bi for i = 1, . . . ,m. Otherwise, for i = 1, . . . ,m, if bi is
not in k, bi has degree smaller than a, whence the assertion by induction hypothesis.

(ii) By definition, I is contained in the kernel of ϑ. Let a be in C[t1, . . . , tr]. Then a has an expansion

a =
∑

(i,j)∈NN×Nr

ai,jv
itj

with the ai,j’s in A, whence

a =
∑

(i,j)∈NN×Nr

(ai,j − ai,j)vitj +
∑

(i,j)∈NN×Nr

ai,jv
itj.

If ϑ(a) = 0, then ∑
(i,j)∈NN×Nr

ai,jv
itj = 0

since the restriction of ϑ to k[v1, . . . , vN , t1, . . . , tr] is injective, whence the assertion. �

For x in π−1(C+), denote by ϑx the morphism

OX,x[t1, . . . , tr] −→ K, atj 7−→ av j1
N+1 · · · v

jr
N+r.

Proposition 2.19. Let x be in π−1(C+).
(i) The kernel of ϑx is the ideal of OX,x[t1, . . . , tr] generated by I. Furthermore, the image of ϑx is the

subalgebra OX,xS(E) of K.
(ii) The intersection of mxS(E) and S(E) is equal to C+S(E).

Proof. (i) From the short exact sequence

0 −→ I −→ C[t1, . . . , tr] −→ S(E) −→ 0

we deduce the exact sequence

OX,x ⊗C I −→ OX,x ⊗C C[t1, . . . , tr] −→ OX,x ⊗C S(E) −→ 0.
18



Moreover, we have a commutative diagram

0

��
OX,x ⊗C I d //

δ

��

OX,x ⊗C C[t1, . . . , tr]

δ

��

d // OX,x ⊗C S(E)

δ

��

// 0

OX,xI

��

d // OX,x[t1, . . . , tr]

��

d // OX,xS(E)

��

// 0

0 0 0

with exact columns by Corollary 2.16,(ii). For a in OX,x[t1, . . . , t] such that da = 0,

a = δb, b = dc with b ∈ OX,x ⊗C C[t1, . . . , tr], c ∈ OX,x ⊗C I,

so that a = d◦δc. Hence OX,xI is the kernel of ϑx.
(ii) Let a1, . . . ,am be a homogenous generating family of A+. For i = 1, . . . ,m,

ai =
∑

(j,k)∈NN×Nr

ai,j,kv
jtk,

with the ai,j,k’s in k. Set:

a′i :=
∑

k∈NN

ai,0,ktk.

For i = 1, . . . ,m,
a′i ∈ ai − ai + C+[t1, . . . , tr]

since ai is in A+ so that ϑ(a′i) is in C+S(E).
Since C+ is contained in mx, C+S(E) is contained in mxS(E) ∩ S(E). Let a be in mx[t1, . . . , tr] such that

ϑx(a) is in S(E). According to (i),
a ∈ C[t1, . . . , tr] + OX,xI.

So, by Lemma 2.17,(i),
a = b + b1(a1 − a1) + · · · + bm(am − am),

with b in C[t1, . . . , tr] and b1, . . . ,bm in OX,x. Then,

b = b0 + b+, with b0 ∈ k[t1, . . . , tr] and b+ ∈ C+[t1, . . . , tr]

bi = bi,0 + bi,+, with bi,0 ∈ k and bi,+ ∈ mx

for i = 1, . . . ,m. Since a is in mx[t1, . . . , tr] and a1, . . . ,am are in C+,

b0 − b1,0a1 − · · · − bm,0am ∈ mx[t1, . . . , tr]

Moreover, for i = 1, . . . ,m,
ai − a′i ∈ C+[t1, . . . , tr].

Hence
b0 − b1,0a′1 − · · · − bm,0a′m = 0 since mx[t1, . . . , tr] ∩ k[t1, . . . , tr] = 0.

As a result, ϑx(a) is in C+S(E) since ϑx(a) = ϑx(b0) + ϑx(b+). �
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2.4. We are now in a position to prove the main result of the section. Recall the main notations: E is a
finite dimensional vector space over k, A is a homogenous subalgebra of S(E), different from S(E) and such
that A = k + A+, N0 is the nullvariety of A+ in E∗, K is the fraction field of S(E) and K(A) that one of A, the
algebraic closure of A in S(E).

Theorem 2.20. Suppose that the following conditions are satisfied:

(a) N0 has dimension N,
(b) A is a polynomial algebra,
(c) K(A) is algebraically closed in K.

Then A is a polynomial algebra. Moreover, S(E) is a free extension of A.

Proof. Use the notations of Subsection 2.3. In particular, set

C = A[v1, . . . , vN],

with (v1, . . . , vN) a sequence of elements of E such that its nullvariety in N0 is equal to {0} (cf. Lemma 2.1,(iii)),
and let K(C) be the fraction field of C. As already explained, according to Proposition 2.5,(ii), it suffices to
prove that S(E) is a free extension of C. Let V be as in Lemma 2.18, a homogenous complement to S(E)C+

in S(E). Recall that X is a desingularization of Z = Specm(C) and that π is the morphism of desingulariza-
tion. Let x be in π−1(C+). According to Proposition 2.19,(ii), for some subspace V ′ of V , V ′ is a complement
to mxS(E) in OX,xS(E). Then, by Lemma 2.17,(ii), V ′ has dimension the degree of the extension K of K(C)
and the canonical map

OX,x ⊗k V ′ −→ OX,xS(E)

is bijective. Moreover,
V ′ ⊕ S(E)C+ = S(E) and V ′ = V.

Indeed, for a ∈ S(E), write a = b + c with b ∈ V ′ and c ∈ mxS(E). Since V ′ is contained in S(E), c is in
S(E), whence c in S(E)C+ by Proposition 2.19,(ii). In addition, S(E) = CV as it has been observed in the
proof of Lemma 2.17,(i). As a result, the canonical map

C ⊗k V −→ S(E)

is bijective. This concludes the proof of the theorem. �

3. Good elements and good orbits

Recall that k is an algebraically closed field of characteristic zero. As in the introduction, g is a simple
Lie algebra over k of rank `, 〈. , .〉 denotes the Killing form of g, and G denotes the adjoint group of g.

3.1. The notions of good element and good orbit in g are introduced in this paragraph.
For x in g, denote by gx its centralizer in g, by Gx its stabilizer in G, by Gx

0 the identity component of
Gx and by Kx the fraction field of the symmetric algebra S(gx). Then S(gx)g

x
and Kg

x

x denote the sets of
Gx

0-invariant elements of S(gx) and Kx respectively.

Lemma 3.1. Let x be in g. Then Kg
x

x is the fraction field of S(gx)g
x

and Kg
x

x is algebraically closed in Kx of
transcendental degree ` over k.

Proof. Let a be in Kx, algebraic over Kg
x

x . For all g in Gx
0, g.a satisfies the same equation of algebraic

dependence over Kg
x

x as a. Since a polynomial in one indeterminate has a finite number of roots, the Gx
0-

orbit of a is finite. But this orbit is then reduced to {a}, Gx
0 being connected. Hence a is in Kg

x

x . This shows
that Kg

x

x is algebraically closed in Kx. According to [CMo10, Theorem 1.2] (see also Theorem 1.1), the
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index of gx is equal to `. So, by [R63], the transcendental degree of Kg
x

x over k is equal to `. It remains to
prove that Kg

x

x is the fraction field of S(gx)g
x
.

Since gx is the centralizer of xn in the reductive Lie algebra gxs , we can suppose x nilpotent. Any rational
invariant is a quotient of two semi-invariant polynomials, because of the prime factor decomposition. Each
semi-invariant has a central character λ, a character of the center of a Levi subalgebra in gx. By [JS10,
Lemma 4.6,(i)], there is also a semi-invariant with the character −λ. Multiplying both numerator and de-
nominator by this invariant, we get the same invariant as a quotient of invariants, whence the lemma. �

Definition 3.2. An element x ∈ g is called a good element of g if for some homogenous elements p1, . . . , p`
of S(gx)g

x
, the nullvariety of p1, . . . , p` in (gx)∗ has codimension ` in (gx)∗. A G-orbit in g is called good if

it is the orbit of a good element.

Since the nullvariety of S(g)g+ in g is the nilpotent cone of g, 0 is a good element of g. For (g, x) in G × g
and for a in S(gx)g

x
, g(a) is in S(gg(x))g

g(x)
. So, an orbit is good if and only if all its elements are good.

Theorem 3.3. Let x be a good element of g. Then S(gx)g
x

is a polynomial algebra and S(gx) is a free
extension of S(gx)g

x
.

Proof. Let p1, . . . , p` be homogenous elements of S(gx)g
x

such that the nullvariety of p1, . . . , p` in (gx)∗ has
codimension `. Denote by A the subalgebra of S(gx)g

x
generated by p1, . . . , p`. Then A is a homogenous

subalgebra of S(gx) and the nullvariety of A+ in (gx)∗ has codimension `. So, by Lemma 2.1,(ii), A has
dimension `. Hence, p1, . . . , p` are algebraically independent and A is a polynomial algebra. Denote by A
the algebraic closure of A in S(gx). By Lemma 3.1, A is contained in S(gx)g

x
and the fraction field of S(gx)g

x

is algebraically closed in Kx. As a matter of fact, A = S(gx)g
x

since the fraction fields of A and S(gx)g
x

have
the same transcendental degree. Hence, by Theorem 2.20, S(gx)g

x
is a polynomial algebra and S(gx) is free

extension of S(gx)g
x
. �

Remark 3.4. The algebra S(gx)g
x

may be polynomial even though x is not good. Indeed, let us consider
a nilpotent element e of g = so(k10) in the nilpotent orbit associated with the partition (3, 3, 2, 2). Then
the algebra S(ge)g

e
is polynomial, generated by elements of degrees 1, 1, 2, 2, 5. But the nullcone has an

irreducible component of codimension at most 4. So, e is not good. We refer the reader to Example 7.5 for
more details.

For x ∈ g, denote by xs and xn the semisimple and the nilpotent components of x respectively.

Proposition 3.5. Let x be in g. Then x is good if and only if xn is a good element of the derived algebra of
gxs .

Proof. Let z be the center of gxs and let a be the derived algebra of gxs . Then

gx = z ⊕ axn , S(gx)g
x

= S(z) ⊗k S(axn)a
xn
.

By the first equality, (axn)∗ identifies with the orthogonal complement to z in (gx)∗. Set d := dim z. Suppose
that xn is a good element of a and let p1, . . . , p`−d be homogenous elements of S(axn)a

xn whose nullvariety
in (axn)∗ has codimension `− d. Denoting by v1, . . . , vd a basis of z, the nullvariety of v1, . . . , vd, p1, . . . , p`−d

in (gx)∗ is the nullvariety of p1, . . . , p`−d in (axn)∗. Hence, x is a good element of g.
Conversely, let us suppose that x is a good element of g. By Theorem 3.3, S(gx)g

x
is a polynomial algebra

generated by homogenous polynomials p1, . . . , p`. Since z is contained in S(gx)g
x
, p1, . . . , p` can be chosen

so that p1, . . . , pd are in z and pd+1, . . . , p` are in S(axn)a
xn . Then the nullvariety of pd+1, . . . , p` in (axn)∗ has

codimension ` − d. Hence, xn is a good element of a. �
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3.2. In view of Theorem 3.3, we wish to find a sufficient condition for that an element x ∈ g is good.
According to Proposition 3.5, it is enough to consider the case where x is nilpotent.

Let e be a nilpotent element of g, embedded into an sl2-triple (e, h, f ) of g. Identify the dual of g with
g, and the dual of ge with g f through the Killing form 〈. , .〉 of g. For p in S(g) ' k[g], denote by κ(p) the
restriction to g f of the polynomial function x 7→ p(e+x) and denote by ep its initial homogenous component.
According to [PPY07, Proposition 0.1], for p in S(g)g, ep is in S(ge)g

e
.

The proof of the following theorem will be achieved in Subsection 4.4.

Theorem 3.6. Suppose that for some homogenous generators q1, . . . ,q` of S(g)g, the polynomial functions
eq1, . . . ,

eq` are algebraically independent. Then e is a good element of g. In particular, S(ge)g
e

is a poly-
nomial algebra and S(ge) is a free extension of S(ge)g

e
. Moreover, ( eq1, . . . ,

eq`) is a regular sequence in
S(ge).

The overall idea of the proof is the following.

According to Theorem 3.3, it suffices to prove that e is good, and more accurately that the nullvariety of
eq1, . . . ,

eq` in g f has codimension ` since eq1, . . . ,
eq` are invariant homogenous polynomials. As explained

in the introduction, we will use the Slodowy grading on S(ge)[[t]] and S(ge)((t)), induced from that on S(ge),
to deal with this problem. This is the main purpose of Section 4.

4. Slodowy grading and proof of Theorem 1.5

This section is devoted to the proof of Theorem 3.6 (or Theorem 1.5). The proof is achieved in Subsec-
tion 4.5. As in the previous section, g is a simple Lie algebra over k and (e, h, f ) is an sl2-triple of g. Let us
simply denote by S the algebra S(ge).

Let q1, . . . ,q` be homogenous generators of S(g)g of degrees d1, . . . ,d` respectively. The sequence
(q1, . . . ,q`) is ordered so that d16 · · · 6d`. We assume in the whole section that the polynomial functions
eq1, . . . ,

eq` are algebraically independent. The aim is to show that e is good (cf. Definition 3.2).

4.1. Let x1, . . . , xr be a basis of ge such that for i = 1, . . . , r, [h, xi] = nixi for some nonnegative integer ni.
For j = ( j1, . . . , jr) in Nr, set:

|j| := j1+ · · ·+ jr, |j|e := j1n1 + · · · + jrnr + 2|j|, xj = x j1
1 · · · x

jr
r .

The algebra S has two gradings: the standard one and the Slodowy grading. For all j inNr, xj is homogenous
with respect to these two gradings. It has standard degree |j| and Slodowy degree |j|e. In this section, we only
consider the Slodowy grading. So, by grading we will always mean Slodowy grading. For m nonnegative
integer, denote by S [m] the subspace of S of degree m.

Let t be an indeterminate. For all subspace V of S , set:

V[t] := k[t] ⊗k V, V[t, t−1] := k[t, t−1] ⊗k V, V[[t]] := k[[t]] ⊗k V, V((t)) := k((t)) ⊗k V,

with k((t)) the fraction field of k[[t]]. For V a subspace of S [[t]], denote by V(0) the image of V by the
quotient morphism

S [t] −→ S , a(t) 7−→ a(0).

The grading of S induces a grading of the algebra S ((t)) with t having degree 0. For V a homogenous
subspace of S ((t)) and for m a nonnegative integer, let V [m] be its component of degree m. In particular, for
V a homogenous subspace of S , V((t)) is a homogenous subspace of S ((t)) and

V((t))[m] = V [m]((t)).
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Let τ be the morphism of algebras,

τ : S −→ S [t], xi 7→ txi for i = 1, . . . , r.

The morphism τ is a morphism of homogenous algebras. Denote by δ1, . . . , δ` the standard degrees of
eq1, . . . ,

eq` respectively, and set for i = 1, . . . , `

Qi := t−δiτ(κ(qi)).

Let A be the subalgebra of S [t] generated by Q1, . . . ,Q`. Then observe that A(0) is the subalgebra of S
generated by eq1, . . . ,

eq`. For j = ( j1, . . . , j`) in N`, set

qj := q j1
1 · · · q

j`
`
, κ(q)j := κ(q j1

1 )· · · κ(q j`
`

), eqj := eq j1
1 · · ·

eq j`
`
, Qj := Q j1

1 · · ·Q
j`
`
.

Proposition 4.1. (i) For j in N`, κ(q)j and eqj are homogenous of degree 2d1 j1 + · · · + 2d` j`.
(ii) The map Q 7→ Q(0) is an isomorphism of homogenous algebras from A onto A(0).

Proof. (i) follows from [Pr02, Section 5] or [PPY07, Section 2].
(ii) The set (Qj, j ∈ N`) is a basis of the k-space A and the image of Qj by the map Q 7→ Q(0) is equal

to eqj. Moreover, by (i), Qj and eqj are homogenous of degree 2d1 j1 + · · · + 2d` j` so that Q 7→ Q(0)
is a morphism of graded algebras. By definition, its image is A(0). Since eq1, . . . ,

eq` are algebraically
independent, it is injective. �

By Proposition 4.1,(ii), A and A(0) are isomorphic homogenous subalgberas of S [t] and S respectively.
In particular, A is a polynomial algebra since A(0) is polynomial by our hypothesis.

Denote by A+ and A(0)+ the ideals of A and A(0) generated by the homogenous elements of positive
degree respectively, and denote by Ã the subalgebra of S [[t]] generated by k[[t]] and A, i.e.,

Ã := k[[t]]A.

Lemma 4.2. (i) The algebra Ã is isomorphic to k[[t]] ⊗k A. In particular, it is regular.
(ii) The element t of Ã is prime.
(iii) Each prime element of A is a prime element of Ã.

Proof. (i) Let am,m ∈ N, be in A such that ∑
m∈N

tmam = 0.

If am , 0 for some m, then ap(0) = 0 if p is the smallest one such that ap , 0. By Proposition 4.1,(ii), it is
not possible. Hence, the canonical map

k[[t]] ⊗k A −→ Ã

is an isomorphism. As observed just above, A is a polynomial algebra. Then Ã is a regular algebra by [Ma86,
Ch. 7, Theorem 19.5].

(ii) By (i), A is the quotient of Ã by tÃ so that t is a prime element of Ã.
(iii) By (i), for a in A, the quotient Ã/Ãa is isomorphic to k[[t]] ⊗k A/Aa. Hence a is a prime element of

Ã if it is a prime element of A. �

As it has been explained in Subsection 3.2, in order to prove Theorem 3.6, we aim to prove that S is
a free extension that A(0). As a first step, we describe in Subsections 4.2, 4.3 and 4.4 some properties of
the algebra A. We show in Subsection 4.3 that S ((t)) is a free extension of A (cf. Proposition 4.9,(iii)), and
we show in Subsection 4.4 that S [[t]] is a free extension of A (cf. Corollary 4.17). In Subsection 4.5, we
consider the algebra Ã and prove that S [[t]] is a free extension of Ã (cf. Theorem 4.21,(i)). The expected
result will follow from this (cf. Theorem 4.21,(iii)).
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4.2. Let θe be the map
G × (e + g f ) −→ g, (g, x) 7→ g(x),

and let Je be the ideal of S(ge) generated by the elements κ(q1), . . . , κ(q`). The following lemma is known
by [Pr02, Theorem 5.4] and the proof of [PPY07, Theorem 2.1].

Lemma 4.3. (i) The map θe is a smooth morphism onto a dense open subset of g, containing G.e.
(ii) The nullvariety of Je in g f is equidimensional of dimension r − `.
(iii) The ideal Je of S(ge) is radical.

Denote by V the nullvariety of A+ in g f × k, and by V0 the nullvariety of A(0)+ in g f . Then denote by V∗
the union of the irreducible components of V which are not contained in g f × {0}. Note that V0 × {0} is the
nullvariety of t in V, and that

V = V∗ ∪ V0 × {0}.

Corollary 4.4. (i) The variety V∗ is equidimensional of dimension r + 1− `. Moreover, for X an irreducible
component of V∗ and for z in k, the nullvariety of t − z in X has dimension r − `.

(ii) The algebra S [t, t−1] is a free extension of A.
(iii) The ideal S [t, t−1]A+ of S [t, t−1] is radical.

Proof. (i) Let V′∗ be the intersection of V∗ and g f × k∗ and let X be an irreducible component of V′∗. Then V′∗
is the nullvariety of Q1, . . . ,Q` in g f × k∗ since A+ is the ideal of A generated by Q1, . . . ,Q`. In particular, X
has dimension at least r +1−`. For z in k∗, denote by Xz the subvariety of g f such that Xz×{z} = X∩g f ×{z}.
By definition, for i = 1, . . . , `, Qi = t−δiτ◦κ(qi). Hence V′∗ is the nullvariety of τ◦κ(q1), . . . , τ◦κ(q`) in g f × k∗

and Xz is the image of X1 by the homothety v 7→ z−1v. By Lemma 4.3,(ii), X1 has dimension r − `. Hence Xz

has dimension r − ` and X has dimension at most r + 1 − `. As a result, X has dimension r + 1 − ` and Xz is
strictly contained in X, whence the assertion since X is not contained in g f × {0} by definition.

(ii) The algebra S [t, t−1] is graded and A is a homogenous polynomial subalgebra of S [t, t−1]. According
to (i), the fiber at A+ of the extension S [t, t−1] of A is equidimensional of dimension r + 1 − `. Hence, by
Proposition 2.5, S [t, t−1] is a free extension of A.

(iii) Let Ie be the ideal of S [t, t−1] generated by τ◦κ(q1), . . . , τ◦κ(q`). Since tδi Qi = τ◦κ(qi) for i = 1, . . . , `,
we get Ie = S [t, t−1]A+. Denote by τ the endomorphism of the algebra S [t, t−1] defined by

τ(t) = t, τ(x1) = tx1, . . . , τ(xr) = txr.

Then τ is an automorphism and Ie = τ(S [t, t−1]Je). So, it suffices to prove that the ideal S [t, t−1]Je is radical.
Let J′e be the radical of S [t, t−1]Je. For a in S [t, t−1], a has a unique expansion

a =
∑
m∈Z

tmam

with (am,m ∈ Z) a sequence of finite support in S . Denote by ν(a) the cardinality of this finite support.
Moreover, a is in S [t, t−1]Je if and only if am is in Je for all m. Suppose that S [t, t−1]Je is strictly contained
in J′e. A contradiction is expected. Let a be in J′e \ S [t, t−1]Je such that ν(a) is minimal. Denote by m0 the
smallest integer such that am0 , 0. For some positive integer, ak and (t−m0a)k are in S [t, t−1]Je and we have

(t−m0a)k = ak
m0

+
∑
m>0

tmbm

with the bm’s in Je. Then ak
m0

is in Je and by Lemma 4.3,(iii), am0 is in Je. As a result a′ := a − tm0am0 is an
element of J′e such that ν(a′) < ν(a). By the minimality of ν(a), a′ is in S [t, t−1]Je and so is a, whence the
contradiction. �

24



Let I∗ be the ideal of definition of V∗ in S [t]. Then I∗ is an ideal of S [t] containing the radical of S [t]A+.
It will be shown that V∗ = V and that S [t]A+ is radical (cf. Theorem 4.21). Thus, I∗ will be at the end equal
to S [t]A+.

Let p1, . . . ,pm be the minimal prime ideals containing S [t]A+ and let q1, . . . , qm be the primary decompo-
sition of S [t]A+ such that pi is the radical of qi for i = 1, . . . ,m.

Lemma 4.5. (i) For a in S [t], a is in I∗ if and only if tma is in S [t]A+ for some positive integer m. Moreover,
for some nonnegative integer l, tlI∗ is contained in S [t]A+.

(ii) The ideal I∗ is the intersection of the prime ideals pi which do not contain t. Furthermore, for such i,
pi = qi, i.e. qi is radical.

Proof. (i) Let a be in S [t]. If tla is in S [t]A+ for some positive integer l, then a is equal to 0 on V∗ so that
a is in I∗. Conversely, if a is in I∗, then ta is in the radical of S [t]A+ since V is contained in the union of
V∗ and g f × {0}. According to Corollary 4.4,(iii), for some positive integer m, tm(ta) is in S [t]A+. Since I∗
is finitely generated as an ideal of S [t], we deduce that for some nonnegative integer l, tlI∗ is contained in
S [t]A+, whence the assertion.

(ii) Let i ∈ {1, . . . ,m}. Then pi does not contain t if and only if the nullvariety of pi in g f × k is an
irreducible component of V∗, whence the first part of the statement.

By (i), for some nonnegative integer l, tlI∗ is contained in S [t]A∗. Let l be the minimal nonnegative
integer satisfying this condition. If l = 0, I∗ = S [t]A+, whence the assertion. Suppose l positive. Denote by
I′∗ the ideal of S [t] generated by tl and S [t]A+. It suffices to prove that S [t]A+ is the intersection of I∗ and I′∗.
As a matter of fact, if so, the primary decomposition of S [t]A+ is the union of the primary decompositions
of I∗ and I′∗ since the minimal prime ideals containing I∗ do not contain t.

Let a be in the intersection of I∗ and I′∗. Then

a = tlb +
∑̀
i=1

aiQi

with b, a1, . . . ,al in S [t]. Since S [t]A+ is contained in I∗, tlb is in I∗ and b is in I∗ by (i). Hence tlb
and a are in S [t]A+. As a result, S [t]A+ is the intersection of I∗ and I′∗ since S [t]A+ is contained in this
intersection. �

4.3. Let V0 be a homogenous complement to S A(0)+ in S . We will show that the linear map

V0 ⊗k A(0) −→ S , v⊗a 7−→ va

is a linear isomorphism (cf. Theorem 4.21).

Lemma 4.6. We have S [[t]] = V0[[t]] + S [[t]]A+ and S ((t)) = V0((t)) + S ((t))A+.

Proof. The equality S ((t)) = V0((t)) + S ((t))A+ will follow from the equality S [[t]] = V0[[t]] + S [[t]]A+.
Since S [[t]], V0[[t]] and S [[t]]A+ are homogenous, it suffices to show that for d a positive integer,

S [[t]][d] ⊂ V0[[t]][d] + (S [[t]]A+)[d],

the inclusion V0[[t]] + S [[t]]A+ ⊂ S [[t]] being obvious.
Let d be a positive integer and let a be in S [[t]][d]. Let (ϕ1, . . . , ϕm) be a basis of the k[[t]]-module

(S [[t]]A+)[d]. Such a basis does exist since k[[t]] is a principal ring and S [[t]][d] is a finite free k[[t]]-module.
Then ϕ1(0), . . . , ϕm(0) generate (S A(0)+)[d]. Since S [d] = V [d]

0 ⊕ (S A(0)+)[d],

a − a0 −

m∑
j=1

a0, jϕ j = tψ0,
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with a0 in V [d]
0 , a0,1, . . . ,a0,m in k and ψ0 ∈ S [[t]][d]. Suppose that there are sequences (a0, . . . ,an) and

(ai,1, . . . ,ai,m), for i = 0, . . . , n, in V [d]
0 and k respectively such that

a −
n∑

i=0

aiti −

n∑
i=0

m∑
j=1

tiai, jϕ j = tn+1ψn

for some ψn in S [[t]][d]. Then for some an+1 in V [d]
0 and an+1,1, . . . ,an+1,m in k,

ψn − an+1 −

m∑
j=1

an+1, jϕ j ∈ tS [[t]]

so that

a −
n+1∑
i=0

aiti −

n+1∑
i=0

m∑
j=1

ai, jϕ jti ∈ tn+2S [[t]].

As a result,
a ∈ V0[[t]][d] + (S [[t]]A+)[d]

since S [[t]][d] is a finite k[[t]]-module. �

Recall that p1, . . . ,pm are the minimal prime ideals of S [t] containing S [t]A+. Since A+ is a homogenous
subspace of S [t], S [t]A+ is a homogenous ideal of S [t], and so are p1, . . . ,pm. According to Lemma 4.5,(ii),
I∗ is the intersection of the pi’s which do not contain t. Hence, I∗ is homogenous. Thereby, I∗ ∩ V0[t] has a
homogenous complement in V0[t]. Set

W := I∗ ∩ V0[t].

Then W(0) is a homogenous subspace of V0. Denote by V ′0 a homogenous complement to W(0) in V0. Then
set

V ′′0 := W(0)

so that V0 = V ′0 ⊕ V ′′0 .

Lemma 4.7. Let (vi, i ∈ J) be a homogenous basis of V ′0.
(i) The elements vi, i ∈ J, are linearly independent over k[t].
(ii) The sum of W and of V ′0[t] is direct.

Proof. We prove (i) and (ii) all together.
Let (ci, i ∈ J) be a sequence in k[t], with finite support Jc, such that∑

i∈J

civi = w

for some w in W. Suppose that Jc is not empty. A contradiction is expected. Since V ′0 is a complement to
V ′′0 , ci(0) = 0 for all i in J. Then, for i in Jc, ci = tmic′i with mi > 0 and c′i(0) , 0. Denote by m the smallest
of the integers mi, for i ∈ Jc. Then w = tmw′ for some w′ in V0[t], and∑

i∈Jc

tmi−mc′ivi = w′.

According to Lemma 4.5,(i), w′ is in I∗. So, c′i(0) = 0 for i such that mi = m, whence the contradiction. �

As a rule, for M a k[t]-submodule of S [t], we denote by M̂ the k[[t]]-module generated by M, i.e.,

M̂ = k[[t]]M.
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Lemma 4.8. Let M be a k[t]-submodule of S [t].
(i) Let a be in the intersection of S [t] and M̂. For some q in k[t] such that q(0) , 0, qa is in M.
(ii) For N a k[t]-submodule of S [t], the intersection of M̂ and N̂ is the k[[t]]-module generated by M∩N.

Proof. (i) Denote by a the image of a in S [t]/M by the quotient map and by J its annihilator in k[t]. Then
we have a commutative diagram with exact lines and columns:

0 // M d // S [t] d // S [t]/M // 0

0 // J d // k[t] d //

δ

OO

k[t]a //

δ

OO

0

0

OO

0

OO

Since k[[t]] is a flat extension of k[t], tensoring this diagram by k[[t]] gives the following diagram with exact
lines and columns:

0 // M̂ d // S [[t]] d // k[[t]] ⊗k[t] S [t]/M // 0

0 // k[[t]]J d // k[[t]] d //

δ

OO

k[[t]]a //

δ

OO

0

0

OO

0

OO

For b in k[[t]], (δ◦d)b = (d◦δ)b = 0 since a is in M̂, whence db = 0. As a result, k[[t]]J = k[[t]]. So qa is in
M for some q in k[t] such that q(0) , 0.

(ii) Since k[[t]] is a flat extension of k[t], the canonical morphism

k[[t]] ⊗k[t] M −→ M̂.

is an isomorphism and from the short exact sequence

0 −→ M ∩ N −→ M ⊕ N −→ M + N −→ 0

we deduce the short exact sequence

0 −→ k[[t]] ⊗k[t] M ∩ N −→ k[[t]] ⊗k[t] (M ⊕ N) −→ k[[t]] ⊗k[t] (M + N) −→ 0,

whence the short exact sequence

0 −→ M̂ ∩ N −→ M̂ ⊕ N̂ −→ M̂ + N −→ 0,

and whence the assertion. �

Proposition 4.9. (i) The space V0[[t]] is the direct sum of V ′0[[t]] and Ŵ.
(ii) The space S [[t]] is the direct sum of V ′0[[t]] and of W + S [[t]]A+.
(iii) The linear map

V ′0((t)) ⊗k A −→ S ((t)), v⊗a 7−→ v⊗a

is a homogenous isomorphism onto S ((t)).
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(iv) For all nonnegative integer d,

dimS [d] =

d∑
i=0

dimV ′0
[d−i]

×dim A[i].

Proof. (i) According to Lemma 4.8,(ii), the intersection of V ′0[[t]] and Ŵ is the k[[t]]-submodule generated
by the intersection of V ′0[t] and W. So, by Lemma 4.7,(iii), the sum of V ′0[[t]] and Ŵ is direct.

Let (vi, i ∈ J) be a homogenous basis of V ′0. Let d be a positive integer and let v be in V [d]
0 . Denote by Jd

the set of indices i such that vi has degree d. Since V0 is the direct sum of V ′0 and V ′′0 , for some w in W [d] and
for some ci, i ∈ Jd, in k,

v −
∑
i∈J

civi = w(0).

Since w − w(0) is in tV0[t][d],
v −

∑
i∈Jd

civi − w ∈ tV0[t][d].

As a result,
V [d]

0 [[t]] ⊂ V ′0
[d][[t]] + Ŵ[d] + tV [d]

0 [[t]].

Then by induction on m,
V [d]

0 [[t]] ⊂ V ′0
[d][[t]] + Ŵ [d] + tmV [d]

0 [[t]].

So, since V [d]
0 [[t]] is a finitely generated k[[t]]-module,

V [d]
0 [[t]] = V ′0

[d][[t]] + Ŵ [d],

whence the assertion.
(ii) According to Lemma 4.5,(i), for some nonnegative integer l, tlI∗ is contained in S [t]A+. Hence

Ŵ + S [[t]]A+ is equal to W + S [[t]]A+. So, by (i) and Lemma 4.6,

S [[t]] = V ′0[[t]] + W + S [[t]]A+.

According to Lemma 4.7,(ii), the intersection of V ′0[t] and S [t]A+ is equal to {0} since S [t]A+ is contained
in I∗. As a result, by Lemma 4.8,(ii), the intersection of V ′0[[t]] and S [[t]]A+ is equal to {0}. If a is in the
intersection of V ′0[[t]] and W + S [[t]]A+, tla is in the intersection of V ′0[[t]] and S [[t]]A+. So the sum of
V ′0[[t]] and W + S [[t]]A+ is direct.

(iii) According to Lemma 4.5,(i), W is contained in S ((t))A+. So, by (ii),

S ((t)) = V ′0((t)) ⊕ S ((t))A+.

Since k[[t]] is a flat extension of k[t], and since

S ((t)) = k[[t]] ⊗k[t] S [t, t−1],

we deduce that S ((t)) is a flat extension of A by Corollary 4.4,(ii). So, by Lemma 2.2, all basis of V ′0[[t]]
over k consists of linearly independent elements over A. The assertion follows.

(iv) First of all, the canonical map
k((t)) ⊗k A −→ k((t))A

is an isomorphism by Lemma 4.2,(i). As a result, we have the canonical isomorphism

V ′0((t)) ⊗k((t)) k((t))A −→ V ′0((t)) ⊗k((t)) (k((t)) ⊗k A),

and for all nonnegative integer i,
dim A[i] = dim k((t))(k((t))A)[i].
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From the above isomorphism, it results that the canonical morphism

V ′0((t)) ⊗k((t)) k((t))A −→ V ′0((t)) ⊗k A

is an isomorphism of graded spaces since V ′0((t)) ⊗k((t)) k((t)) = V ′0((t)). As a result, by (iii), the canonical
morphism

V ′0((t)) ⊗k((t)) k((t))A −→ S ((t))

is a homogenous isomorphism. So, for all nonnegative integer d,

dim k((t))S ((t))[d] =

d∑
i=0

dim k((t))V ′0((t))[d−i]
×dim k((t))(k((t))A)[i],

whence the assertion since dimS [i] = dim k((t))S ((t))[i] and dimV ′0
[i] = dim k((t))V ′0((t))[i] for all i. �

4.4. Let (wk, k ∈ K) be a homogenous sequence in W such that (wk(0), k ∈ K) is a basis of V ′′0 = W(0). For
k in K, denote by mk the smallest integer such that tmkwk is in S [t]A+. According to Lemma 4.5,(i), mk is
finite for all k. Moreover, mk is positive since W(0) ∩ S A(0)+ = {0}. Set

Θ := {(k, i) | k ∈ K, i ∈ {0, . . . ,mk − 1}},

and set for all (k, i) in Θ,
wk,i := tiwk.

Let EΘ be the k-subspace of V0[t] generated by the elements wk,i, (k, i) ∈ Θ.
Set

Î∗ := k[[t]]I∗.

It is an ideal of S [[t]].

Lemma 4.10. (i) For some q in k[t] such that q(0) , 0, qI∗ is contained in W + S [t]A+.
(ii) The space W is contained in EΘ + S [t]A+. Moreover, Î∗ is the sum of EΘ and S [[t]]A+.
(iii) The sequence (wk,i, (k, i) ∈ Θ) is a homogenous basis of EΘ.
(iv) For all nonnegative integer i, E[i]

Θ
has finite dimension.

(v) For i a nonnegative integer, there exists a nonnegative integer li such that tli E[i]
Θ

is contained in
V ′0[[t]]A+.

Proof. (i) Let a be in I∗. According to Lemma 4.6 and Lemma 4.8,(i), for some q in k[t] such that q(0) , 0,
qa ∈ I∗ and qa = a1 + a2 with a1 in V0[t] and a2 in S [t]A+. Then a1 is in I∗ since so are a2 and qa. So
a1 ∈ I∗ ∩ V0[t] = W. The assertion follows because I∗ is finitely generated.

(ii) Let us prove the first assertion. It suffices to prove

W ⊂ EΘ + S [t]A+ + tmS [t]

for all m. Indeed, W, EΘ, S [t]A+ are contained in I∗. So, if w = e + a + tmb, with w ∈ W, e ∈ EΘ and
b ∈ S [t], then b is in I∗ and so, for m big enough, it is in S [t]A+ by Lemma 4.5,(i).

Prove now the inclusion by induction on m. The inclusion is tautological for m = 0, and it is true m = 1
because EΘ(0) = V ′′0 . Suppose that it is true for m > 0. Let w be in W. By induction hypothesis,

w = a + b + tmc, with a ∈ EΘ, b ∈ S [t]A+, c ∈ S [t].

Since EΘ and S [t]A+ are contained in I∗, c is in I∗ by Lemma 4.5,(i). According to (i), for some q in k[t]
such that q(0) , 0, qc = a′ + b′ with a′ in W and b′ in S [t]A+. Since the inclusion is true for m = 1,

tm(a′ + b′) ∈ tmEΘ + S [t]A+ + tm+1S [[t]],
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and by definition, tmEΘ is contained in EΘ + S [t]A+. Moreover, q(0)c is in qc + tS [t]. Then

tmc ∈ EΘ + S [t]A+ + tm+1S [t] and w ∈ EΘ + S [t]A+ + tm+1S [t],

whence the statement.
Turn to the second assertion. By (i), Î∗ is the sum of Ŵ and S [[t]]A+. An element of Ŵ is the sum of

terms tmwm, with m ∈ N and wn ∈ W. For m big enough, tmwm ∈ S [t]A+ by Lemma 4.5,(i). So Î∗ is the sum
of W and S [[t]]A+, whence the assertion by the previous inclusion.

(iii) By definition, the elements wk,i, (k, i) ∈ Θ, are homogenous. So it suffices to prove that they are
linearly independent over k. Let (ck,i, (k, i) ∈ Θ) be a sequence in k, with finite support, such that∑

k∈K

mk−1∑
i=0

ck,iwk,i = 0.

Let us prove that ck,i = 0 for all (k, i). Suppose ck,i , 0 for some (k, i). A contradiction is expected. Let K′

be the set of k such that ck,i , 0 for some i. Denote by i0 the smallest integer such that ck,i0 , 0 for some k
in K′ and set:

K′0 := {k ∈ K′ | ck,i0 , 0}.

Then ∑
k∈K′0

ck,i0wk(0) = 0,

whence the contradiction since the elements (wk(0), k ∈ K) are linearly independent.
(iv) Let Ki be the set of k such that wk is in S [t][i]. For such k, wk(0) is in S [i]. Hence Ki is finite since S [i]

has finite dimension and since the elements (wk(0), k ∈ K) are linearly independent. For k in K, k[t]wk ∩ EΘ

has dimension mk by (iii). Hence E[i]
Θ

has finite dimension.
(v) Let k be in Ki. Set

Θ[i] := Θ ∩ (Ki × N).

By Proposition 4.9,(iii), tl+mkwk is in V ′0[[t]]A+ since tmkwk is in S [t]A+ by definition, whence the assertion
since E[i]

Θ
is generated by the finite sequence (wk, j, (k, j) ∈ Θ[i]). �

Definition 4.11. We say that a subset T of Θ is complete if

(k, i) ∈ T =⇒ (k, j) ∈ T, ∀ j ∈ {0, . . . , i}.

For T subset of Θ, denote by KT the image of T by the projection (k, i) 7→ k, and by ET the subspace of
EΘ generated by the elements wk,i, (k, i) ∈ T . In particular, KΘ = K.

Lemma 4.12. For some complete subset T of Θ such that KT = K, the subspace ET is a complement to
S [t]A+ in EΘ + S [t]A+. In particular, the sum of ET and S [t]A+ is direct.

Proof. Since V ′′0 ∩S A(0)+ = {0}, the sum of EK×{0} and S [t]A+ is direct. Let T be the set of complete subsets
T of Θ satisfying the following conditions:

(1) for all k in K, (k, 0) is in T ,
(2) the sum of ET and S [t]A+ is direct.

Since the sum of EK×{0} and S [t]A+ is direct, T is not empty. If (T j, j ∈ J) is an increasing sequence of
elements of T, with respect to the inclusion, its union is in T. Then, by Zorn’s Lemma, T has a maximal
element. Denote it by T∗. It remains to prove that wk,i is in ET∗ + S [t]A+ for all (k, i) in Θ.
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Let k be in K. Denote by i the biggest integer such that (k, i) is in T∗. Prove by induction on i′ that for
mk > i′ > i, wk,i′ is in ET∗ + S [t]A+. By maximality of T∗ and i, wk,i+1 is in ET∗ + S [t]A+. Suppose that wk,i′

is in ET∗ + S [t]A+. Then, for some a in S [t]A+ and cm, j, (m, j) ∈ T∗ in k,

wk,i′ =
∑

(m, j)∈T∗

cm, jwm, j + a,

whence
wk,i′+1 =

∑
(m, j)∈T∗

cm, jt j+1wm + ta.

By maximality of T∗, t j+1wm is in ET∗ + S [t]A+ for all (m, j) such that t jwm is in T∗. Hence wk,i′+1 is in
ET∗ + S [t]A+. The lemma follows. �

Fix a complete subset T∗ of Θ such that

KT∗ = K and EΘ + S [t]A+ = ET∗ ⊕ S [t]A+,

and set
E := ET∗ .

Such a set T∗ does exist by Lemma 4.12.

Corollary 4.13. (i) The space S [[t]] is the direct sum of V ′0[[t]], E and S [[t]]A+.
(ii) The space S [[t]] is the sum of EA and V ′0[[t]]A.

Proof. (i) According to Proposition 4.9,(ii), S [[t]] is the direct sum of V ′0[[t]] and W + S [[t]]A+. By
Lemma 4.10,(ii) (and its proof), W + S [[t]]A+ is equal to EΘ + S [[t]]A+. Since EΘ + S [t]A+ is the di-
rect sum of E and S [t]A+, we deduce that W + S [[t]]A+ is the direct sum of E and S [[t]]A+. Hence, S [[t]]
is the direct sum of V ′0[[t]], E and S [[t]]A+.

(ii) By (i) and by induction on m,

S [[t]] ⊂ V ′0[[t]]A + EA + S [[t]]Am
+ .

Hence S [[t]] is the sum of V ′0[[t]]A and EA since S [[t]] is graded and A+ is generated by elements of positive
degree. �

Definition 4.14. For k in K, denote by νk the degree of wk. For T and T ′ subsets of Θ, we say that T is
smaller than T ′, and we denote T ≺ T ′, if the following conditions are satisfied:

(1) T is contained in T ′

(2) if for k in KT and k′ in KT ′ , we have νk′ < νk, then k′ is in KT .

Let µ be the linear map

E ⊗k A ⊕ V ′0[[t]] ⊗k A −→ S [[t]], w⊗a + v⊗b 7−→ wa + vb.

For T a subset of T∗, denote by µT the restriction of µ to the subspace

ET ⊗k A ⊕ V ′0[[t]] ⊗k A.

Lemma 4.15. Let T∗ be the set of subsets T of T∗ such that µT is injective.
(i) The set T∗ is not empty.
(ii) The set T∗ has a maximal element with respect to the order ≺.
(iii) The set T∗ is in T∗.
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Proof. (i) For k in K, set Tk := {(k, 0)}. Suppose that Tk is not in T∗. A contradiction is expected. Then for
some a in A \ {0}, wka is in V ′0[[t]]A+, whence

wka =
∑
i∈J

vibi

with (bi, i ∈ J) in k[[t]]A+ with finite support. By Lemma 4.10,(v), for some positive integer, tlwk is in
V ′0[[t]]A+. Then

tlwk =
∑
i∈J

vici

with (ci, i ∈ J) in k[[t]]A+ with finite support. Hence∑
i∈J

vitlbi =
∑
i∈J

vicia.

According to Proposition 4.9,(iii), tlbi = cia for all i. Since a , 0, a(0) , 0 by Proposition 4.1,(ii). Then, by
Lemma 4.2,(ii), ci = tlc′i for some c′i in Ã = k[[t]]A. As a result,

wk =
∑
i∈J

vic′i ,

whence the contradiction by Corollary 4.13,(i).
(ii) Let (Tl, l ∈ L) be a net in T∗ with respect to ≺. Let T be the union of the sets Tl, l ∈ L. Since ET is

the space generated by the subspaces ETl , l ∈ L, the map µT is injective. Let l0 be in L and k in KT such that
νk < νk′ for some k′ in KTl0

. Since KT is the union of the sets KTl , l ∈ L, we deduce that k is in KTl for some
l in L. By properties of the nets, for some l′ in L, Tl ≺ Tl′ and Tl0 ≺ Tl′ so that k is in KTl′ . Hence, k is in
KTl0

, whence Tl0 ≺ T . As a result, ≺ is an inductive order in T∗, and by Zorn’s Theorem, it has a maximal
element.

(iii) Let T be a maximal element of T∗ with respect to ≺. Suppose T strictly contained in T∗. A contra-
diction is expected. Let k be in K such that (k, i) is not in T and (k, i) is in T∗ for some i. We can suppose
that νk is minimal under this condition. Let i∗ be the smallest integer such that (k, i∗) is not in T and (k, i∗) is
in T∗. Then T ≺ T ∪ {(k, i∗)}. So, by the maximality of T , for some a in A \ {0},

wk,i∗a ∈ ET A + V ′0[[t]]A.

Since ET , V ′0[[t]], A, wk,i∗ are homogenous, we can suppose that a is homogenous. Then a has positive
degree. Otherwise, wk,i∗ ∈ ET A + V ′0[[t]]A ⊂ ET + V ′0[[t]] + S [[t]]A+, and we deduce from Corollary 4.13,(i),
that wk,i∗ ∈ ET since wk,i∗ ∈ ET∗ . This is impossible by the choice of (k, i∗). Thus, by Corollary 4.13,(ii),

wk,i∗a ∈ ET A+ + V ′0[[t]]A+.

Hence
wk,i∗a =

∑
(n, j)∈T

wn, jan, j +
∑
i∈J

vibi

with (an, j, (n, j) ∈ T ) in A+ and (bi, i ∈ J) in Ã+ with finite support.
By Corollary 4.13,(ii),

tmkwk =
∑

(l,s)∈T∗

wl,sal,s,k +
∑
i∈J

vibi,k

with (al,s,k, (l, s) ∈ T∗) in A+ and (bi,k, i ∈ J) in Ã+ with finite support. Moreover these two sequences are
homogenous, so that al,s,k = 0 if νl > νk. By minimality of νk, (l, s) is in T if al,s,k , 0. For (n, j) in T such
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that mk − i∗ + j > mn,
tmk−i∗wn, j =

∑
(l,s)∈T∗

wl,sal,s,n, j +
∑
i∈J

vibi,n, j

with (al,s,n, j, (l, s) ∈ T∗) in A+ and (bi,n, j, i ∈ J) in Ã+ with finite support. Moreover these two sequences are
homogenous, so that al,s,n, j = 0 if νl > νn. So, by minimality of νk, (l, s) is in T if al,s,n, j , 0 and νn 6 νk. As
a result, ∑

(l,s)∈T

wl,sal,s,ka +
∑
i∈J

vibi,ka =
∑

(n, j)∈T

wn, jtmk−i∗an, j +
∑
i∈J

vitmk−i∗bi

=
∑

(n, j)∈T
mk−i∗+ j<mn

wn,mk−i∗+ jan, j +
∑

(n, j)∈T
mk−i∗+ j>mn

wl,sal,s,n, jan, j

+
∑
i∈J

vitmk−i∗bi +
∑

(n, j)∈T
mk−i∗+ j>mn

∑
i∈J

vibi,n, jan, j

whence ∑
(l,s)∈T

wl,sal,s,ka +
∑
i∈J

vibi,ka =
∑

(n, j)∈T
mk−i∗+ j<mn

wn,mk−i∗+ jan, j +
∑

(n, j)∈T
mk−i∗+ j>mn

∑
(l,s)∈T

wl,sal,s,n, jan, j

+
∑
i∈J

vi(tmk−i∗bi +
∑

(n, j)∈T
mk−i∗+ j>mn

bi,n, jan, j).

Since µT is injective, for all i in J,

tmk−i∗bi +
∑

(n, j)∈T
mk−i∗+ j>mn

bi,n, jan, j − bi,ka = 0,(1)

and for all (l, s) in T ,

al,s+i∗−mk +
∑

(n, j)∈T
mk−i∗+ j>mn

an, jal,s,n, j − al,s,ka = 0.(2)

with al,s = 0 if s < 0.

Claim 4.16. For all (l, s) in T , a divides al,s in A.

Proof of Claim 4.16. Prove the claim by induction on νl. Let l be in KT such that

νl′ > νl and (l′, s′) ∈ T =⇒ al′,s′ = 0.

Then by Equality (2), al,s+i∗−mk = al,s,ka, whence the satement for l. Suppose that a divides al′,s′ in A for all
(l′, s′) in T such that νl′ > νl. By Equality (2) and the induction hypothesis, a divides al,s+i∗−mk in A since
al,s,n, j = 0 for νn 6 νl, whence the claim. �

By Claim 4.16 and Equality (1), for all i in J, a divides tmk−i∗bi in k[[t]]A. Since a has positive de-
gree, all prime divisor of a in A has positive degree and does not divide t since t has degree 0. Then, by
Lemma 4.2,(iii), a divides bi in k[[t]]A. As a result,

wk,i∗ ∈ ET A + V ′0[[t]]A

whence
wk,i∗ ∈ V ′0[[t]] + ET + S [[t]]A+.
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Since wk,i∗ is in E, wk,i∗ is in ET by Corollary 4.13,(i). We get a contradiction because (k, i∗) is not in T . �

Corollary 4.17. The canonical map

E ⊗k A ⊕ V ′0[[t]] ⊗k A −→ S [[t]]

is an isomorphism. In particular, S [[t]] is a free extension of A.

Proof. By Lemma 4.15, T∗ is the biggest element of T∗. Hence µ is injective. Then, by Corollary 4.13,(ii),
µ is bijective. As a matter of fact, µ is an isomorphism of A-modules, whence the corollary. �

4.5. Recall that Ã is the subalgebra of S [[t]] generated by k[[t]] and A. Our next aim is to show that S [[t]]
is a free extension of Ã (cf. Theorem 4.21). Theorem 3.6 will then follows.

For I an ideal of Ã, denote by σI and νI the canonical morphisms

S [[t]] ⊗A I
σI // S [[t]] ⊗A Ã S [[t]] ⊗Ã I

νI // S [[t]]I .

Consider on S [[t]]⊗AI and S [[t]]⊗ÃI the linear topologies such that {tn(S [[t]]⊗AI)}n∈N and {tn(S [[t]]⊗ÃI)}n∈N
are systems of neighborhood of 0 in these S [[t]]-modules. Denote by ϕI the canonical morphism

S [[t]] ⊗A I
ϕI // S [[t]] ⊗Ã I

and by KI its kernel. Then ϕI is continuous with respect to the above topologies.

Lemma 4.18. Let I be an ideal of Ã.
(i) The morphism σI is injective.
(ii) The module KI is the S [[t]]-submodule of S [[t]] ⊗A I generated by the elements r⊗a − 1⊗ra with r in

k[[t]] and a in I.

Proof. (i) According to Corollary 4.17, S [[t]] is a flat extension of A. The assertion follows since I is
contained in Ã.

(ii) Let K′I be the S [[t]]-submodule of S [[t]] ⊗A I generated by the elements r⊗a − 1⊗ra with r in k[[t]]
and a in I. Then K′I is contained in KI . Let us prove the opposite inclusion.

Let (x, y) be in S [[t]] × I and let a be in Ã. According to (i), a has an expansion

a =
∑
i=1

riai

with r1, . . . , rm in k[[t]] and a1, . . . ,am in A. Then, in S [[t]] ⊗A I,

x⊗ay − ax⊗y =

m∑
i=1

x⊗riaiy − rix⊗aiy =

m∑
i=1

x(1⊗riaiy − ri⊗aiy) ∈ K′I .

As a result, KI = K′I since KI is the S[[t]]-submodule of S [[t]] ⊗A I generated by the xa⊗y − x⊗ay’s. �

Corollary 4.19. Let I be an ideal of Ã. The module KI is the closure of the S [[t]]-submodule of S [[t]] ⊗A I
generated by the set {t⊗a − 1⊗ta}a∈I .

Proof. Let LI be the S [[t]]-submodule generated by the set {t⊗a − 1⊗ta}a∈I . Prove by induction on n that
tn⊗a − 1⊗tna is in LI for all a in I. The statement is straightforward for n = 0, 1. Suppose n > 2 and the
statement true for n − 1. For a in I,

tna − 1⊗tna = tn−1(t⊗a − 1⊗ta) + tn−1
⊗ta − 1⊗tn−1ta.

By induction hypothesis, tn−1⊗ta − 1⊗tn−1ta is in LI , whence tn⊗a − 1⊗tna is in LI . As a result, for r in k[t],
r⊗a−1⊗ra is in LI . So, for r in k[[t]], r⊗a−1⊗ra is in the closure of LI in S [[t]]⊗A I. Since ϕI is continuous,
KI is a closed submodule of S [[t]] ⊗A I, whence the corollary by Lemma 4.18,(iii). �
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Proposition 4.20. Let I be an ideal of Ã.
(i) The canonical morphism

V ′0Ã ⊗Ã I −→ S [[t]] ⊗Ã I

is an embedding.
(ii) For the structure of S [[t]]-module on S [[t]] ⊗Ã I, t is not a divisor of 0 in S [[t]] ⊗Ã I.

Proof. (i) We have the commutative diagram

V ′0Ã ⊗Ã I d //

δ

��

S [[t]] ⊗Ã I

δ

��
V ′0I d // S [[t]]I

with canonical arrows d and δ. According to Proposition 4.9,(iii), the left down arrow δ is an isomorphism.
Let a be in V ′0Ã ⊗Ã I such that da = 0. Then d◦δa = 0, whence δa = 0 since the bottom horizontal arrow d
is an embedding so that a = 0.

(ii) Let a be in S [[t]] ⊗A I such that tϕI(a) = 0. According to Corollary 4.19, for l in N such that l > 2,

ta −
m∑

i=1

bi(t⊗ai − 1⊗tai) ∈ tlS [[t]] ⊗A I

for some b1, . . . ,bm in S [[t]] and for some a1, . . . ,am in I. For i = 1, . . . ,m,

bi = bi,0 + tb′i

with bi,0 in S and b′i in S [[t]], whence

t(a −
m∑

i=1

b′i(t⊗ai − 1⊗tai)) −
m∑

i=1

bi,0(t⊗ai − 1 − ⊗tai) ∈ tlS [[t]] ⊗A I.

Set:

a′ := a −
m∑

i=1

b′i(t⊗ai − 1⊗tai) and a′′ =

m∑
i=1

bi,0(t⊗ai − 1⊗tai).

Then ϕI(a) = ϕI(a′) and σI(a′′) is in tS [[t]] ⊗k k[[t]]. Moreover, for i = 1, . . . ,m, ai has a unique expansion

ai =
∑
n∈N

tnai,n

with ai,n, n ∈ N, in A. Then

σI(a′′) =

m∑
i=1

bi,0(
∑
n∈N

tai,n⊗tn − ai,n⊗tn+1)

= t
m∑

i=1

ai,0bi,0⊗1 +
∑
n∈N∗

m∑
i=1

bi,0(tai,n − ai,n−1)⊗tn.

Since the right hand side is divisible by t in S [[t]] ⊗k k[[t]], for all positive integer n,
m∑

i=1

bi,0ai,n−1 = 0

since bi,0 and ai,n−1 are in S for all i. Hence σI(a′′) = 0 and a′′ = 0 by Lemma 4.18,(i). Thus,

a′ ∈ tl−1S [[t]] ⊗A I.
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As a result, ϕI(a) is in tlS [[t]] ⊗Ã I for all positive integer l. Since the S [[t]]-module S [[t]] ⊗Ã I is finitely
generated, by a Krull’s theorem [Ma86, Ch. 3, Theoreom 8.9], for some b in S [[t]], (1 + tb)ϕI(a) = 0,
whence ϕI(a) = 0 since tϕI(a) = 0. �

Remind that V0 is the nullvariety of A(0)+ in g f , and that Ã = k[[t]]A.

Theorem 4.21. (i) The algebra S [[t]] is a free extension of Ã.
(ii) The varieties V and V∗ are equal. Moreover, V0 is equidimensional of dimension r − `.
(iii) The A(0)-module S is free and V0 = V ′0. In particular, the canonical morphism

V0 ⊗k A(0) −→ S , v⊗a 7−→ va

is an isomorphism.

Proof. (i) First of all, prove that S [[t]] is a flat extension of Ã. Then the freeness of the extension will result
from the equality V0 = V ′0, Lemma 4.6 and Proposition 4.9,(iii).

By the criterion of flatness [Ma86, Ch. 3, Theorem 7.7], it is equivalent to say that for all ideal I of Ã, the
canonical morphism νI ,

S [[t]] ⊗Ã I −→ S [[t]]I

is injective. Let a be in the kernel of νI . Consider the commutative diagram

V ′0Ã ⊗Ã I d //

δ

��

S [[t]] ⊗Ã I

δ

��
V ′0I d // S [[t]]I

of the proof of Proposition 4.20,(i). According to Lemma 4.10,(v), for l sufficiently big, tla = db for some b
in V ′0Ã ⊗Ã I. Then δb = 0 since νI(tla) = 0. By Proposition 4.9,(iii), δ is an isomorphism. Hence b = 0 and
tla = 0. Then, by Proposition 4.20,(ii), a = 0, whence the the flatness.

(ii) Denote by k[t]0 the localization of k[t] at tk[t]. Then k[[t]] is a faithfully flat extension of k[t]0.
Hence, S [[t]] is a faithfully flat extension of

S [t]0 := k[t]0 ⊗k[t] S .

Set
Ã0 := k[t]0 ⊗k A.

Then
Ã = k[[t]] ⊗k[t]0 Ã0

so that Ã is faithfully flat extension of Ã0. For M a Ã0-module, we have

k[[t]] ⊗k[t]0 (S [t]0 ⊗Ã0
M) = (k[[t]] ⊗k[t]0 S [t]0) ⊗Ã0

M = S [[t]] ⊗Ã (Ã ⊗Ã0
M).

Hence, S [t]0 is a flat extension of Ã0 since so is the extension S [[t]] of Ã.
The variety V is the union of V∗ and V0 × {0}. Moreover V0 × {0} is the nullvariety in g f ×k of the ideal of

k[t]A generated by t and A+. Then, by [Ma86, Ch. 5, Theorem 15.1], V0 is equidimensional of dimension
r− ` since S [t]0 is a flat extension of Ã0 by (i) and since Ã0 has dimension `+1. Since V is the nullvariety of
` functions, all irreducible component of V has dimension at least r + 1− ` by [Ma86, Ch. 5, Theorem 13.5].
Hence any irreducible component of V0 × {0} is not an irreducible component of V. As a result, V0 × {0} is
contained in V∗ and so V = V∗.
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(iii) Since A(0) is a polynomial algebra, S is a free extension of A(0) by (ii) and Proposition 2.5. Moreover,
by Lemma 2.2, the linear map

V0 ⊗k A(0) −→ S , v⊗a 7−→ va

is a homogenous isomorphism with respect to the grading of V0 ⊗k A(0) induced by those of V0 and A(0).
As a result, for all nonnegative integer i,

dimS [i] =

i∑
j=0

dimV [i− j]
0 ×dim A(0)[ j],

whence dim V [i]
0 = dimV ′0

[i] for all i by Proposition 4.9,(iv) since dim A[i] = dim A(0)[i] for all i by Proposi-
tion 4.1,(ii). Then V0 = V ′0. �

As explained in Subsection 3.2, by Theorem 3.3 and Proposition 2.5,(ii), Theorem 3.6 results from The-
orem 4.21,(ii).

Remark 4.22. According to the part (ii) of Theorem 4.21, I∗ is the radical of S [t]A+. Hence S [t]A+ is radical
by Lemma 4.5,(ii), and then I∗ = S [t]A+.

5. Consequences of Theorem 1.5 for the simple classical Lie algebras

This section concerns some applications of Theorem 1.5 to the simple classical Lie algebras.

5.1. The first consequence of Theorem 3.6 is the following.

Theorem 5.1. Assume that g is simple of type A or C. Then all the elements of g are good.

Proof. This follows from [PPY07, Theorems 4.2 and 4.4], Theorem 3.6 and Proposition 3.5. Further, in
type A, the result is given by [PPY07, Theorem 5.4]. �

5.2. In this subsection and the next one, g is assumed to be simple of type B or D. More precisely, we
assume that g is the simple Lie algebra so(V) for some vector space V of dimension 2` + 1 or 2`. Then g
is embedded into g̃ := gl(V) = End(V). For x an endomorphism of V and for i ∈ {1, . . . , dimV}, denote
by Qi(x) the coefficient of degree dimV − i of the characteristic polynomial of x. Then, for any x in g,
Qi(x) = 0 whenever i is odd. Define a generating family (q1, . . . ,q`) of the algebra S(g)g as follows. For
i = 1, . . . , ` − 1, set qi := Q2i. If dimV = 2` + 1, set q` = Q2` and if dimV = 2`, let q` be the Pfaffian that is
a homogenous element of degree ` of S(g)g such that Q2` = q2

` .
Let (e, h, f ) be an sl2-triple of g. Following the notations of Subsection 3.2, for i ∈ {1, . . . , `}, denote by

eqi the initial homogenous component of the restriction to g f of the polynomial function x 7→ qi(e + x), and
by δi the degree of eqi. According to [PPY07, Theorem 2.1], eq1, . . . ,

eq` are algebraically independent if
and only if

dimge + ` − 2(δ1+ · · ·+ δ`) = 0.

Our first aim in this subsection is to describe the sum dimge + ` − 2(δ1+ · · ·+ δ`) in term of the partition of
dimV associated with e.

Remark 5.2. The sequence of the degrees (δ1, . . . , δ`) is described by [PPY07, Remark 4.2].

For λ = (λ1, . . . , λk) a sequence of positive integers, with λ1> · · · >λk, set:

|λ| := k, r(λ) := λ1+ · · ·+λk.
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Assume that the partition λ of r(λ) is associated with a nilpotent orbit of so(kr(λ)). Then the even integers
of λ have an even multiplicity, [CMc93, §5.1]. Thus k and r(λ) have the same parity. Moreover, there is an
involution i 7→ i′ of {1, . . . , k} such that i = i′ if λi is odd, and i′ ∈ {i − 1, i + 1} if λi is even. Set:

S (λ) :=
∑

i=i′, i odd

i −
∑

i=i′, i even

i

and denote by nλ the number of even integers in the sequence λ.
From now on, assume that λ is the partition of dimV associated with the nilpotent orbit G.e.

Lemma 5.3. (i) If dimV is odd, i.e., k is odd, then

dimge + ` − 2(δ1+ · · ·+ δ`) =
nλ − k − 1

2
+ S (λ).

(ii) If dimV is even, i.e., k is even, then

dimge + ` − 2(δ1+ · · ·+ δ`) =
nλ + k

2
+ S (λ).

Proof. (i) If dimV is odd, then by [PPY07, §4.4, (14)],

2(δ1+ · · ·+ δ`) = dimge +
dimV

2
+

k − nλ
2
− S (λ),

whence

dimge + ` − 2(δ1+ · · ·+ δ`) =
nλ − k − 1

2
+ S (λ)

since dimV = 2` + 1.
(ii) If dimV is even, then δ` = k/2 by [PPY07, Remark 4.2] and by [PPY07, §4.4, (14)],

2(δ1+ · · ·+ δ`) + k = dimge +
dimV

2
+

k − nλ
2
− S (λ)

whence

dimge + ` − 2(δ1+ · · ·+ δ`) =
nλ + k

2
+ S (λ)

since dimV = 2`. �

The sequence λ = (λ1, . . . , λk) satisfies one of the following five conditions:

1) λk and λk−1 are odd,
2) λk and λk−1 are even,
3) k > 3, λk and λ1 are odd and λi is even for any i ∈ {2, . . . , k − 1},
4) k > 4, λk is odd and there is k′ ∈ {2, . . . , k − 2} such that λk′ is odd and λi is even for any i ∈
{k′ + 1, . . . , k − 1},

5) k = 1 or λk is odd and λi is even for any i < k.

For example, (4, 4, 3, 1) satisfies Condition (1); (6, 6, 5, 4, 4) satisfies Condition (2); (7, 6, 6, 4, 4, 4, 4, 3) sat-
isfies Condition (3); (8, 8, 7, 5, 4, 4, 2, 2, 3) satisfies Condition (4) with k′ = 4; (9) and (6, 6, 4, 4, 3) satisfy
Condition (5). If k = 2, then one of the conditions (1) or (2) is satisfied.

Definition 5.4. Define a sequence λ∗ of positive integers, with |λ∗| 6 |λ|, as follows:

- if k = 2 or if Condition (3) or (5) is satisfied, then set λ∗ := λ,
- if Condition (1) or (2) is satisfied, then set:

λ∗ := (λ1, . . . , λk−2),
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- if k > 3 and if Condition (4) is satisfied, then set

λ∗ := (λ1, . . . , λk′−1).

In any case, the partition of r(λ∗) corresponding to λ∗ is associated with a nilpotent orbit of so(kr(λ∗)).
Recall that nλ is the number of even integers in the sequence λ.

Definition 5.5. Denote by dλ the integer defined by:

- if k = 2, then dλ := nλ,
- if k > 2 and if Condition (1) or (4) is satisfied, then dλ := dλ∗ ,
- if k > 2 and if Condition (2) is satisfied, then dλ := dλ∗ + 2,
- if k > 2 and if Condition (3) is satisfied, then dλ := 0,
- if Condition (5) is satisfied, then dλ := 0.

Lemma 5.6. (i) Assume that k is odd. If Condition (1), (2) or (5) is satisfied, then

nλ − k − 1
2

+ S (λ) =
nλ∗ − |λ∗| − 1

2
+ S (λ∗).

Otherwise,
nλ − k − 1

2
+ S (λ) =

nλ∗ − |λ∗| − 1
2

+ S (λ∗) + k − |λ∗| − 2.

(ii) If k is even, then
nλ + k

2
+ S (λ) =

nλ∗ + |λ∗|

2
+ S (λ∗) + dλ − dλ∗ .

Proof. (i) If Condition (3) or (5) is satisfied, there is nothing to prove. If Condition (1) is satisfied,

nλ = nλ∗ , S (λ) = S (λ∗) + 1.

Then
nλ − k − 1

2
+ S (λ) =

nλ∗ − |λ∗| − 1
2

− 1 + S (λ∗) + 1

whence the assertion. If Condition (2) is satisfied,

nλ = nλ∗ + 2, S (λ) = S (λ∗).

Then,
nλ − k − 1

2
+ S (λ) =

nλ∗ − |λ∗| − 1
2

+ S (λ∗)

whence the assertion. If Condition (4) is satisfied,

nλ = nλ∗ + k − |λ∗| − 2, S (λ) = S (λ∗) + k − |λ∗| − 1.

Then,
nλ − k − 1

2
+ S (λ) =

nλ∗ − |λ∗| − 1
2

− 1 + S (λ∗) + k − |λ∗| − 1

whence the assertion.
(ii) If k = 2 or if k > 2 and Condition (3) or (5) is satisfied, there is nothing to prove. Let us suppose that

k > 3. If Condition (1) is satisfied,

nλ = nλ∗ , S (λ) = S (λ∗) − 1.

Then
nλ + k

2
+ S (λ) =

nλ∗ + |λ∗|

2
+ 1 + S (λ∗) − 1
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whence the assertion since dλ = dλ∗ . If Condition (2) is satisfied,

nλ = nλ∗ + 2, S (λ) = S (λ∗).

Then,
nλ + k

2
+ S (λ) =

nλ∗ + |λ∗|

2
+ 2 + S (λ∗)

whence the assertion since dλ − dλ∗ = 2. If Condition (4) is satisfied,

nλ = nλ∗ + k − |λ∗| − 2, S (λ) = S (λ∗) + |λ∗| + 1 − k.

Then,
nλ + k

2
+ S (λ) =

nλ∗ + |λ∗|

2
+ k − |λ∗| − 1 + S (λ∗) + |λ∗| − k + 1

whence the assertion since dλ = dλ∗ . �

Lemma 5.7. (i) If λ1 is odd and if λi is even for i > 2, then dimge + ` − 2(δ1 + · · · + δ`) = 0.
(ii) If k is odd, then dimge + ` − 2(δ1+ · · ·+ δ`) = nλ − dλ.
(iii) If k is even, then dimge + ` − 2(δ1+ · · ·+ δ`) = dλ.

Proof. (i) By the hypothesis, nλ = k − 1 and S (λ) = 1, whence the assertion by Lemma 5.3,(i).
(ii) Let us prove the assertion by induction on k. For k = 3, if λ1 and λ2 are even, nλ = 2, dλ = 0 and

S (λ) = 3, whence the equality by Lemma 5.3,(i). Assume that k > 3 and suppose that the equality holds for
the integers smaller than k. If Condition (1) or (2) is satisfied, then by Lemma 5.3,(i), Lemma 5.6,(i) and by
induction hypothesis,

dimge + ` − 2(δ1+ · · ·+ δ`) = nλ∗ − dλ∗ .

But if Condition (1) or (2) is satisfied, then nλ − dλ = nλ∗ − dλ∗ . If Condition (5) is satisfied, then

nλ = k − 1, S (λ) = k, dλ = 0,

whence the equality by Lemma 5.3,(i). Let us suppose that Condition (4) is satisfied. By Lemma 5.3,(i),
Lemma 5.6,(i) and by induction hypothesis,

dimge + ` − 2(δ1+ · · ·+ δ`) = nλ∗ − dλ∗ + k − |λ∗| − 2 = nλ − dλ

whence the assertion since Condition (3) is never satisfied when k is odd.
(iii) The statement is clear for k = 2 by Lemma 5.3,(ii). Indeed, if Condition (1) is satisfied, then

dλ = nλ = 0 and S (λ) = −1 and if Condition (2) is satisfied, then dλ = nλ = 2 and S (λ) = 0. If Condition
(3) is satisfied, nλ = k − 2 and S (λ) = 1 − k, whence the statement by Lemma 5.3,(ii). When Condition (4)
is satisfied, by induction on |λ|, the statement results from Lemma 5.3,(ii) and Lemma 5.6,(ii), whence the
assertion since Condition (5) is never satisfied when k is even. �

Corollary 5.8. (i) If λ1 is odd and if λi is even for all i > 2, then e is good.
(ii) If k is odd and if nλ = dλ, then e is good. In particular, if g is of type B, then the even nilpotent

elements of g are good.
(iii) If k is even and if dλ = 0, then e is good. In particular, if g is of type D and of odd rank, then the even

nilpotent elements of g are good.

Proof. As it has been already noticed, by [PPY07, Theorem 2.1], the polynomials eq1, . . . ,
eq` are alge-

braically independent if and only if

dimge + ` − 2(δ1+ · · ·+ δ`) = 0.
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So, by Theorem 3.6 and Lemma 5.7, if either λ1 is odd and λi is even for all i > 2, or if k is odd and nλ = dλ,
or if k is even and dλ = 0, then e is good.

Suppose that e is even. Then the integers λ1, . . . , λk have the same parity, cf. e.g. [Ca85, §1.3.1]. More-
over, nλ = dλ = 0 whenever λ1, . . . , λk are all odd (cf. Definition 5.5). This in particular occurs if either g is
of type B, or if g is of type D with odd rank. �

Remark 5.9. The fact that the even nilpotent elements of g without (only) even Jordan blocks are good if g
is of type B or D was already observed by O. Yakimova in [Y09, Corollary 8.2] in a different formulation.
Corollary 5.8 is more general.

Definition 5.10. A sequence λ = (λ1, . . . , λk) is said to be very good if nλ = dλ whenever k is odd and if
dλ = 0 whenever k is even. A nilpotent element of g is said to be very good if it is associated with a very
good partition of dimV.

According to Corollary 5.8, if e is very good then e is good. The following lemma characterizes the very
good sequences.

Lemma 5.11. (i) If k is odd then λ is very good if and only if λ1 is odd and if (λ2, . . . , λk) is a concatenation
of sequences satisfying Conditions (1) or (2) with k = 2.

(ii) If k is even then λ is very good if and only if λ is a concatenation of sequences satisfying Condition (3)
or Condition (1) with k = 2.

For example, the partitions (5, 3, 3, 2, 2) and (7, 5, 5, 4, 4, 3, 1, 1) of 15 and 30 respectively are very good.

Proof. (i) Assume that λ1 is odd and that (λ2, . . . , λk) is a concatenation of sequences satisfying Condi-
tions (1) or (2) with k = 2. So, if k > 1, then nλ − dλ = nλ∗ − dλ∗ . Then, a quick induction proves that
nλ − dλ = n(λ1) − d(λ1) = 0 since λ1 is odd. The statement is clear for k = 1.

Conversely, assume that nλ − dλ = 0. If λ satisfies Conditions (1) or (2), then nλ − dλ = nλ∗ − dλ∗ and
|λ∗| < |λ|. So, we can assume that λ does not satisfy Conditions (1) or (2). Since k is odd, λ cannot satisfy
Condition (3). If λ satisfies Condition (4), then nλ − dλ = nλ − dλ∗ > nλ∗ − dλ∗ > 0. This is impossible since
nλ − dλ = 0. If λ satisfies Condition (5), then nλ − dλ = nλ. So, nλ − dλ = 0 if and only if k = 1. Thereby,
the direct implication is proven.

(ii) Assume that λ is a concatenation of sequences satisfying Condition (3) or Condition (1) with k = 2.
In particular, λ does not satisfy Condition (2). Moreover, Condition (5) is not satisfied since k is even. Then
dλ = 0 by induction on |λ|, whence e is very good.

Conversely, suppose that dλ = 0. If k = 2, Condition (1) is satisfied and if k = 4, then either Condition
(3) is satisfied, or λ1, . . . , λ4 are all odd. Suppose k > 4. Condition (2) is not satisfied since dλ = dλ∗ + 2 in
this case. If Condition (1) is satisfied then dλ∗ = 0 and λ is a concatenation of λ∗ and (λk−1, λk). If Condition
(4) is satisfied, then dλ∗ = 0 and λ is a concatenation of λ∗ and a sequence satisfying Condition (3), whence
the assertion by induction on |λ| since Condition (5) is not satisfied when k is even. �

5.3. Assume in this subsection that λ = (λ1, . . . , λk) satisfies the following condition:

(∗) For some k′ ∈ {2, . . . , k}, λi is even for all i 6 k′, and (λk′+1, . . . , λk)
is very good.

In particular, k′ is even and by Lemma 5.11, λk′+1 is odd and λ is not very good. For example, the sequences
λ = (6, 6, 4, 4, 3, 2, 2) and (6, 6, 4, 4, 3, 3, 3, 2, 2, 1) satisfy the condition (∗) with k′ = 4. Define a sequence
ν = (ν1, . . . , νk) of integers of {1, . . . , `} by

∀ i ∈ {1, . . . , k′}, νi :=
λ1 + · · · + λi

2
.
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If k′ = k, then νk = (λ1+ · · ·+λk)/2 = r(λ)/2 = `. Define elements p1, . . . , pk′ of S(ge) as follows:

- if k′ < k, set for i ∈ {1, . . . , k′}, pi := eqνi ,
- if k′ = k, set for i ∈ {1, . . . , k′ − 1}, pi := eqνi and set pk := ( eqνk )

2. In this case, set also p̃k := eqνk .

Remind that δi is the degree of eqi for i = 1, . . . , `. The following lemma is a straightforward consequence
of [PPY07, Remark 4.2]:

Lemma 5.12. (i) For all i ∈ {1, . . . , k′}, deg pi = i.
(ii) Set ν0 := 0. Then for i ∈ {1, . . . , k′} and r ∈ {1, . . . , νk′ − 1},

δr = i ⇐⇒ νi−1 < r 6 νi.

In particular, for r ∈ {1, . . . , νk′ − 2}, δr < δr+1 if and only if r is a value of the sequence ν.

Example 5.13. Consider the partition λ = (8, 8, 4, 4, 4, 4, 2, 2, 1, 1) of 38. Then k = 10, k′ = 8 and
ν = (4, 8, 10, 12, 14, 16, 17, 18). We represent in Table 1 the degrees of the polynomials p1, . . . , p8 and
eq1, . . . ,

eq18. Note that deg eq19 = 5. In the table, the common degree of the polynomials appearing on the
ith column is i.

eq4 = p1
eq8 = p2

eq3
eq7

eq2
eq6

eq10 = p3
eq12 = p4

eq14 = p5
eq16 = p6

eq1
eq5

eq9
eq11

eq13
eq15

eq17 = p7
eq18 = p8

degrees 1 2 3 4 5 6 7 8

Table 1.

Let s be the subalgebra of g generated by e, h, f and decompose V into simple s-modules V1, . . . ,Vk of
dimension λ1, . . . , λk respectively. One can order them so that for i ∈ {1, . . . , k′/2}, V(2(i−1)+1)′ = V2i. For
i ∈ {1, . . . , k}, denote by ei the restriction to Vi of e and set εi := eλi−1

i . Then ei is a regular nilpotent element
of gl(Vi) and (adh)εi = 2(λi − 1)εi.

For i ∈ {1, . . . , k′/2}, set
V[i] := V2(i−1)+1 + V2i

and set
V[0] := Vk′+1 ⊕ · · · ⊕ Vk.

Then for i ∈ {0, 1, . . . , k′/2}, denote by gi the simple Lie algebra so(V[i]). For i ∈ {1, . . . , k′/2}, e2(i−1)+1 + e2i

is an even nilpotent element of gi with Jordan blocks of size (λ2(i−1)+1, λ2i). Let i ∈ {1, . . . , k′/2} and set:

zi := ε2(i−1)+1 + ε2i.

Then zi lies in the center of ge and

(adh)zi = 2(λ2(i−1)+1 − 1)zi = 2(λ2i − 1)zi.

Moreover, 2(λ2i−1) is the highest weight of adh acting on gei := gi∩ge, and the intersection of the 2(λ2i−1)-
eigenspace of adh with gei is spanned by zi, see for instance [Y09, §1]. Set

g := g0 ⊕ g1 ⊕ · · · ⊕ gk′/2 = so(V[0]) ⊕ so(V[1]) ⊕ · · · ⊕ so(V[k′/2])
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and denote by ge (resp. g f ) the centralizer of e (resp. f ) in g. For p ∈ S(ge), denote by p its restriction to
g

f
' (ge)∗; it is an element of S(ge). Our goal is to describe the elements p1, . . . , pk′ (see Proposition 5.18).

The motivation comes from Lemma 5.14.
Let g f

reg (resp. g f
reg) be the set of elements x ∈ g f (resp. g f ) such that x is a regular linear form on ge

(resp. ge).

Lemma 5.14. (i) The intersection g f
reg ∩ g

f is a dense open subset of g f
reg.

(ii) The morphism

θ : Ge
0 × g

f
−→ g f , (g, x) 7−→ g.x

is a dominant morphism from Ge
0 × g

f to g f .

Proof. (i) Since λ satisfies the condition (∗), it satisfies the condition (1) of the proof of [Y06, §4, Lemma 3]
and so, g f

reg ∩ g
f is a dense open subset of g f . Moreover, since ge and ge have the same index by [Y06,

Theorem 3], g f
reg ∩ g

f is contained in g f
reg.

(ii) Let m be the orthogonal complement to g in g with respect to the Killing form 〈. , .〉. Since the
restriction to g × g of 〈. , .〉 is nondegenerate, g = g ⊕ m and [g,m] ⊂ m. Set me := m ∩ ge. Since the
restriction to g f

× g
e of 〈. , .〉 is nondegenerate, we get the decomposition

g
e = g

e
⊕me

and me is the orthogonal complement to g f in ge. Moreover, [ge,me] ⊂ me.
By (i), g f

reg ∩ g
f , ∅. Let x ∈ g f

reg ∩ g
f . The tangent map at (1g, x) of θ is the linear map

ge × g
f
−→ g f , (u, y) 7−→ u.x + y,

where u. denotes the coadjoint action of u on g f ' (ge)∗. The index of ge is equal to the index of ge

and [ge,me] ⊂ me. So, the stabilizer of x in ge coincides with the stabilizer of x in ge. In particular,
dimme.x = dimme. As a result, θ is a submersion at (1g, x) since dimg f = dimme + dimg f . In conclusion,
θ is a dominant morphism from Ge

0 × g
f to g f . �

Let (µ1, . . . , µm) be the strictly decreasing sequence of the values of the sequence (λ1, . . . , λk′) and let
k1, . . . , km be the multiplicity of µ1, . . . , µm respectively in this sequence. By our assumption, the integers
µ1, . . . , µm, k1, . . . , km are all even. Notice that k1+ · · ·+ km = k′. The set {1, . . . , k′} decomposes into parts
K1, . . . ,Km of cardinality k1, . . . , km respectively given by:

∀ s ∈ {1, . . . ,m}, Ks := {k0+ · · ·+ ks−1 + 1, . . . , k0 + · · · + ks}.

Here, the convention is that k0 := 0.

Remark 5.15. For s ∈ {1, . . . ,m} and i ∈ Ks,

νi := k0(
µ0

2
) + · · · + ks−1(

µs−1

2
) + j(

µs

2
),

where j = i − (k0 + · · · + ks−1) and µ0 = 0.

Decompose also the set {1, . . . , k′/2} into parts I1, . . . , Im of cardinality k1/2, . . . , km/2 respectively, with

∀ s ∈ {1, . . . ,m}, Is := {
k0 + · · · + ks−1

2
+ 1, . . . ,

k0 + · · · + ks

2
}.

For p ∈ S(ge) an eigenvector of adh, denote by wt(p) its adh-weight.
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Lemma 5.16. Let s ∈ {1, . . . ,m} and i ∈ Ks.
(i) Set j = i − (k0 + · · · + ks−1). Then,

wt(pi) = 2(2νi − i) =

s−1∑
l=1

2kl(µl − 1) + 2 j(µs − 1).

Moreover, if p ∈ { eq1, . . . ,
eq`−1, ( eq`)2} is of degree i, then wt(p) = wt(p) 6 2(2νi − i) and the equality holds

if and only if p = pi.
(ii) The polynomial pi is in k[zl, l ∈ I1 ∪ . . . ∪ Is].

Proof. (i) This is a consequence of [PPY07, Lemma 4.3] (or [Y09, Theorem 6.1]), Lemma 5.12 and Re-
mark 5.15.

(ii) Let g̃ f be the centralizer of f in g̃ = gl(V), and let eQ2νi be the initial homogenous component of the
restriction to (

gl(V[0]) ⊕ gl(V[1]) ⊕ · · · ⊕ gl(V[k′/2])
)
∩ g̃ f

of the polynomial function x 7→ Q2νi(e + x). Since pi , 0, pi is the restriction to g f of eQ2νi and we have

wt( eQ2νi) = wt(pi) = 2(2νi − i), deg eQ2νi = deg pi = i.

Then, by (i) and [PPY07, Lemma 4.3], eQ2νi is a sum of monomials whose restriction to g f is zero and of
monomials of the form

(ες(1)1 . . . ες(1)k1
) · · · (ες(s−1)1 . . . ες(s−1)ks−1

)(ες(s) j1 . . . ες(s) ji)

where j1< · · · < ji are integers of Ks, and ς(1), . . . , ς(s−1), ς(s) are permutations of K1, . . . ,Ks−1, { j1, . . . , ji}
respectively. Hence, pi is in k[zl, l ∈ I1∪ . . .∪ Is]. More precisely, for l ∈ I1∪ . . .∪ Is, the element zl appears
in pi with a multiplicity at most 2 since zl = ε2(l−1)+1 + ε2l. �

Let s ∈ {1, . . . ,m} and i ∈ Ks. In view of Lemma 5.16,(ii), we aim to give an explicit formula for pi in
term of the elements z1, . . . , zk′/2. Besides, according to Lemma 5.16,(ii), we can assume that s = m. As a
first step, we state inductive formulae. If k′ > 2, set

g
′ := so(V[1]) ⊕ · · · ⊕ so(V[k′/2 − 1]),

and let p′1, . . . , p′k′ be the restrictions to (g′) f := g′∩g f of p1, . . . , pk′ respectively. Note that p′k′−1 = p′k′ = 0.
Set by convention k0 := 0, p0 := 1, p′0 := 1 and p−1 := 0. It will be also convenient to set

k∗ := k0 + · · · + km−1.

Lemma 5.17. (i) If km = 2, then

pk∗+1 = −2 p′k∗ zk′/2 and pk∗+2 = p′k∗ (zk′/2)2.

(ii) If km > 2, then

pk∗+1 = p′k∗+1 − 2 p′k∗ zk′/2

and for j = 2, . . . , km,

pk∗+ j = p′k∗+ j − 2 p′k∗+ j−1 zk′/2 + p′k∗+ j−2 (zk′/2)2.
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Proof. For i = 1, . . . , k′/2, let wi be the element of g f
i := gi ∩ g f such that

(adh)wi = −2(λ2i − 1)wi and det (ei + wi) = 1.

Remind that pi(y), for y ∈ g f , is the initial homogenous component of the coefficient of the term T dimV−2νi

in the expression det (T − e − y). By Lemma 5.16,(ii), in order to describe pi, it suffices to compute det (T −
e − s1w1 − · · · − sk′/2wk′/2), with s1, . . . , sk′/2 in k.

1) To start with, consider the case k′ = km = 2. By Lemma 5.16, p1 = az1 and p2 = bz2
1 for some a, b ∈ k.

One has,
det (T − e − s1w1) = T 2µ1 − 2s1T µ1 + s2

1.

As a result, a = −2 and b = 1. This proves (i) in this case.

2) Assume from now that k′ > 2. Setting e′ := e1 + · · · + ek′/2−1, observe that

det (T − e − s1w1 − · · · − sk′/2wk′/2)(3)

= det (T − e′ − s1w1 − · · · − sk′/2−1wk′/2−1) det (T − ek′/2 − sk′/2wk′/2)

= det (T − e′ − s1w1 − · · · − sk′/2−1wk′/2−1) (T 2µm − 2sk′/2T µm + s2
k′/2)

where the latter equality results from Step (1).

(i) If km = 2, then k∗ = k′ − 2 and the constant term in det (T − e′ − s1w1 − · · · − sk′/2−1wk′/2−1) is p′k∗ . By
Lemma 5.16,(i),

wt(pk∗+1) = wt(p′k∗) + wt(zk′/2)

and p′k∗ is the only element appearing in the coefficients of det (T − e′ − s1w1 − · · · − sk′/2−1wk′/2−1) of this
weight. Similarly,

wt(pk∗+2) = wt(p′k∗) + wt((zk′/2)2)

and p′k∗ is the only element appearing in the coefficients of det (T − e′ − s1w1 − · · · − sk′/2−1wk′/2−1) of this
weight. As a consequence, the equalities follow.

(ii) Suppose km > 2. Then by Lemma 5.16,(i),

wt(pk∗+1) = wt(p′k∗+1) = wt(p′k∗) + wt(zk′/2).

Moreover, p′k∗+1 and p′k∗ are the only elements appearing in the coefficients of det (T − e′ − s1w1 − · · · −

sk′/2−1wk′/2−1) of this weight with degree k∗ + 1 and k∗ respectively. Similarly, by Lemma 5.16,(i), for
j ∈ {2, . . . , km},

wt(pk∗+ j) = wt(p′k∗+ j) = wt(p′k∗+ j−1) + wt(zk′/2) = wt(p′k∗+ j−2) + wt((zk′/2)2).

Moreover, p′k∗+ j, p′k∗+ j−1 and p′k∗+ j−2 are the only elements appearing in the coefficients of det (T − e′ −
s1w1 − · · · − sk′/2−1wk′/2−1) of this weight with degree k∗ + j, k∗ + j − 1 and k∗ + j − 2 respectively.

In both cases, this forces the inductive formula (ii) through the factorization (3). �

For a subset I = {i1, . . . , il} ⊆ {1, . . . , k′/2} of cardinality l, denote by σI,1, . . . , σI,l the elementary sym-
metric functions of zi1 , . . . , zil :

∀ j ∈ {1, . . . , l}, σI, j =
∑

16a1<a2<···<a j6l

zia1
zia2

. . . zia j
.

Set also σI,0 := 1 and σI, j := 0 if j > l so that σI, j is well defined for any nonnegative integer j. Set at
last σI, j := 1 for any j if I = ∅. If I = Is, with s ∈ {1, . . . ,m}, denote by σ(s)

j , for j > 0, the elementary
symmetric function σIs, j.
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Proposition 5.18. Let s ∈ {1, . . . ,m} and j ∈ {1, . . . , ks}. Then

pk0+···+ks−1+ j = (−1) j pk0+···+ks−1

j∑
r=0

σ(s)
j−rσ

(s)
r = (−1) j (σ(1)

k0/2
. . . σ(s−1)

ks−1/2
)2

j∑
r=0

σ(s)
j−rσ

(s)
r .

Example 5.19. If m = 1, then k′ = k1 and

p1 = −σ(1)
1 σ(1)

0 − σ
(1)
0 σ(1)

1 = −2σ(1)
1 = −2(z1 + · · · + zk′/2),

p2 = σ(1)
2 σ(1)

0 + (σ(1)
1 )2 + σ(1)

0 σ(1)
2 = 2σ(1)

2 + (σ(1)
1 )2,

· · · ,

pk′ = (σ(1)
k′/2)2 = (z1z2 . . . zk′/2)2.

Proof. By Lemma 5.16,(ii), we can assume that s = m. Retain the notations of Lemma 5.17. In particular,
set again

k∗ := k0 + · · · + km−1.

We prove the statement by induction on k′/2. If k′ = 2, then m = 1, km = k′ = 2 and the statement follows
from by Lemma 5.17,(i). Assume now that k′ > 2 and the statement true for the polynomials p′1, . . . , p′k′−1.

If km = 2, the statement follows from Lemma 5.17,(i).
Assume km > 2. For any r > 0, we set σ′r := σI′,r where I′ = { k

∗

2 + 1, . . . , k′
2 − 1} ⊂ Im. In particular,

σ′0 = 1 by convention. Observe that for any r > 1,

σ(m)
r = σ′r + σ′r−1zk′/2.

Settingσ′
−1 := 0, the above equality remains true for r = 0. By the induction hypothesis and by Lemma 5.17,(ii),

for j ∈ {2, . . . , km},

pk∗+ j = p′k∗+ j − 2 p′k∗+ j−1 zk′/2 + p′k∗+ j−2 (zk′/2)2

= pk∗
(
(−1) j

j∑
r=0

σ′j−rσ
′
r − 2(−1) j−1

j−1∑
r=0

σ′j−r−1σ
′
r zk′/2 + (−1) j−2

j−2∑
r=0

σ′j−r−2σ
′
r z2

k′/2
)
.

= (−1) j pk∗
( j∑

r=0

σ′j−rσ
′
r + 2 (

j−1∑
r=0

σ′j−r−1σ
′
r) zk′/2 + (

j−2∑
r=0

σ′j−r−2σ
′
r) z2

k′/2
)

since p′k∗ = pk∗ . On the other hand, we have

j∑
r=0

σ(m)
j−rσ

(m)
r =

j∑
r=0

(σ′j−r + σ′j−r−1zk′/2)(σ′r + σ′r−1zk′/2)

=

j∑
r=0

σ′j−rσ
′
r + (

j∑
r=0

σ′j−r−1σ
′
r +

j∑
r=0

σ′j−rσ
′
r−1) zk′/2 + (

j∑
r=0

σ′j−r−1σ
′
r−1) z2

k′/2

=

j∑
r=0

σ′j−rσ
′
r + 2 (

j−1∑
r=0

σ′j−r−1σ
′
r) zk′/2 + (

j−2∑
r=0

σ′j−r−2σ
′
r) z2

k′/2.

Thereby, for any j ∈ {2, . . . , km}, we get

pk∗+ j = (−1) j pk∗

j∑
r=0

σ(m)
j−rσ

(m)
r .
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For j = 1, since p′k∗ = pk∗ , by Lemma 5.17,(ii), and our induction hypothesis,

pk∗+1 = p′k∗+1 − 2 p′k∗ zk′/2 = pk∗(−2σ′1) − 2 pk∗ zk′/2 = pk∗(−2σ(m)
1 ).

This proves the first equality of the proposition.

For the second one, it suffices to prove by induction on s ∈ {1, . . . ,m} that

pk0+···+ks−1
= (σ(1)

k0/2
. . . σ(s−1)

ks−1/2
)2.

For s = 1, then pk0+···+ks−1
= p0 = 1 and σ∅,0 = 1 by convention. Assume s > 2 and the statement true for

1, . . . , s − 1. By the first equality with j = ks, pk0+···+ks
= (−1)ks pk0+···+ks−1

(σ(s)
ks/2

)2, whence the statement by
induction hypothesis since ks is even. �

Remark 5.20. Remind that the polynomial p̃k was defined before Lemma 5.12. As a by product of the
previous formula, whenever k′ = k, we obtain

p̃k = σ(1)
k0/2

. . . σ(m)
km/2

.

For s ∈ {1, . . . ,m} and j ∈ {1, . . . , ks}, set

ρk0+···+ks−1+ j :=
pk0+···+ks−1+ j

pk0+···+ks−1

.

Proposition 5.18 says that ρk0+···+ks−1+ j is an element of Frac(S(ge)g
e
) ∩ S(ge) = S(ge)g

e
.

Lemma 5.21. Let s ∈ {1, . . . ,m} and j ∈ {ks/2 + 1, . . . , ks}. There is a polynomial R(s)
j of degree j such that

ρk0+···+ks−1+ j = R(s)
j (ρk0+···+ks−1+1, . . . , ρk0+···+ks−1+ks/2).

In particular, for any j ∈ {k1/2 + 1, . . . , k1}, we have

p j = R(1)
j (p1, . . . , pk1/2).

Proof. 1) Prove by induction on j ∈ {1, . . . , ks/2} that for some polynomial T (s)
j of degree j,

σ(s)
j = T (s)

j (ρk0+···+ks−1+1, . . . , ρk0+···+ks−1+ j).

By Proposition 5.18, ρk0+···+ks−1+1 = −(σ(s)
1 σ(s)

0 + σ(s)
0 σ(s)

1 ) = −2σ(s)
1 . Hence, the statement is true for j = 1.

Suppose j ∈ {2, . . . , ks/2} and the statement true for σ(s)
1 , . . . , σ(s)

j−1. Since j 6 ks/2, σ(s)
j , 0, and by

Proposition 5.18,

ρk0+···+ks−1+ j = (−1) j(σ(s)
j σ

(s)
0 + σ0σ

(s)
j ) + (−1) j

j−1∑
r=1

σ(s)
j−rσ

(s)
r = 2(−1) jσ(s)

j + (−1) j
j−1∑
r=1

σ(s)
j−rσ

(s)
r .

So, the statement for j follows from our induction hypothesis.

2) Let j ∈ {ks/2 + 1, . . . , ks}. Proposition 5.18 shows that ρk0+···+ks−1+ j is a polynomial in σ(s)
1 , . . . , σ(s)

ks/2
.

Hence, by Step 1), ρk0+···+ks−1+ j is a polynomial in

ρk0+···+ks−1+1, . . . , ρk0+···+ks−1+ks/2.

Furthermore, by Proposition 5.18 and Step (1), this polynomial has degree j. �

Remark 5.22. By Remark 5.20 and the above proof, if k′ = k then for some polynomial R̃ of degree km/2,

p̃k

σ(1)
k0/2

. . . σ(m−1)
km−1/2

= σ(m)
km/2

= R̃(ρk0+···+km−1+1, . . . , ρk0+···+km−1+km/2).
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Theorem 5.23. (i) Assume that λ satisfies the condition (∗) and that λ1 = · · · = λk′ . Then e is good.
(ii) Assume that k = 4 and that λ1, λ2, λ3, λ4 are even. Then e is good.

For example, (6, 6, 6, 6, 5, 3) satisfies the hypothesis of (i) and (6, 6, 4, 4) satisfies the hypothesis of (ii).

Remark 5.24. If λ satisfies the condition (∗) then by Lemma 5.7,

dimge + ` − 2(δ1 + · · · + δ`) = k′.

Indeed, if k is odd, then nλ−dλ = nλ′−dλ′ where λ′ = (λ1, . . . , λk′ , λk′+1) so that nλ−dλ = nλ′−dλ′ = nλ′ = k′

since λk′+1 is odd. If k is even, then dλ = nλ′ = k′ where λ′ = (λ1, . . . , λk′).

Proof. (i) In the previous notations, the hypothesis means that m = 1 and k′ = km. According to Lemma 5.21
and Lemma 5.14, for j ∈ {k′/2 + 1, . . . , k′ − 1},

p j = R(1)
j (p1, . . . , pk′/2),

where R(1)
j is a polynomial of degree j. Moreover, if k′ = k, then by Remark 5.22 and Lemma 5.14,

p̃k = R̃(p1, . . . , pk/2),

where R̃ is a polynomial of degree k/2.

- If k′ < k, set for any j ∈ {k′/2 + 1, . . . , k′},

r j := qν j − R(1)
j (qν1 , . . . , qνk′/2).

Then by Lemma 5.12,
∀ j ∈ {k′/2 + 1, . . . , k′}, deg er j > j + 1.

- If k′ = k, set for j ∈ {k/2 + 1, . . . , k′ − 1},

r j := qν j − R(1)
j (qν1 , . . . , qνk′/2) and rk := qνk − R̃(qν1 , . . . , qνk/2).

Then by Lemma 5.12,

∀ j ∈ {k/2 + 1, . . . , k − 1}, deg er j > j + 1 and deg erk > k/2 + 1.

In both cases,
{q j | j ∈ {1, . . . , `} r {νk′/2+1, . . . , νk′}} ∪ {rk′/2+1, . . . , rk′}

is a homogenous generating system of S(g)g. Denote by δ̂ the sum of the degrees of the polynomials
eq j, j ∈ {1, . . . , `} r {νk′/2+1, . . . , νk′},

erk′/2+1, . . . ,
erk′ .

The above discussion shows that δ̂ > δ1 + · · · + δ` + k′/2. By Remarks 5.24, we obtain

dimge + ` − 2δ̂ 6 0.

In conclusion, by [PPY07, Theorem 2.1] and Theorem 3.6, e is good.
(ii) In the previous notations, the hypothesis means that k′ = k = 4. If m = 1 the statement is a

consequence of (i). Assume that m = 2. Then by Proposition 5.18, p1 = −2z1, p2 = z2
1, p3 = −2z2

1z2 and
p4 = (z1z2)2. Moreover, p̃4 = z1z2. Hence, by Lemma 5.14, p2 = 1

4 p2
1 and p3 = p1 p̃4. Set r2 := qν2 −

1
4 q2

ν1

and r3 := qν3 − qν1qν4 . Then deg er2 > 3 and deg er3 > 4. Moreover,

{q1, . . . ,q`} r {qν2 , qν3} ∪ {r2, r3}

is a homogenous generating system of S(g)g. Denoting by δ̂ the sum of the degrees of the polynomials

{ eq1, . . . ,
eq`} r { eqν2 ,

eqν3} ∪ {
er2,

er3},
48



we obtain that δ̂ > δ1 + · · · + δ` + 2. But dimge + ` − 2(δ1 + · · · + δ`) = k′ = 4 by Remark 5.24. So,
dimge + ` − 2δ̂ 6 0. In conclusion, by [PPY07, Theorem 2.1] and Theorem 3.6, e is good. �

Remark 5.25. Assume that g = so(V), with dimV = 12, and that e belongs to the nilpotent orbit of g
associated with the partition (5, 5, 1, 1) of 12. Then the degrees of eq1,

eq2,
eq3,

eq4,
eq5,

eq6 are 1, 1, 2, 2, 2, 2
respectively. Since 10 = 1+1+2+2+2+2 = (dimge+`)/2, the polynomial functions eq1,

eq2,
eq3,

eq4,
eq5,

eq6

are algebraically independent, and by Theorem 3.6, S (ge)g
e

is polynomial. One can satisfy that eq5 = z2 for
some z in the center z(ge) of ge. Since z(ge) has dimension 3, for any other choice of homogenous generators
q1, . . . , q` of S (g)g, S (ge)g

e
cannot be generated by the elements eq1,

eq2,
eq3,

eq4,
eq5,

eq6 for degree reasons.
This shows that Condition (2) of Theorem 1.2 cannot be removed to ensure that S (ge)g

e
is a polynomial

algebra in the variables eq1,
eq2,

eq3,
eq4,

eq5,
eq6. However, one can sometimes, as in this example, provide

explicit generators.

6. Examples in simple exceptional Lie algebras

We give in this section examples of good nilpotent elements in simple exceptional Lie algebras of type
E6, F4 or G2 which are not covered by [PPY07]. These examples are all obtained through Theorem 3.6.

According to [PPY07, Theorem 0.4] and Theorem 3.6, the elements of the minimal nilpotent orbit of g,
for g not of type E8, are good. In addition, as it is explained in the Introduction, the elements of the regular,
or subregular, nilpotent orbit of g are good. So we do not consider here these cases.

Example 6.1. Suppose that g has type E6. Let V be the module of highest weight the fundamental weight
$1 with the notation of Bourbaki. Then V has dimension 27 and g identifies with a subalgebra of sl27(k).
For x in sl27(k) and for i = 2, . . . , 27, let pi(x) be the coefficient of T 27−i in det (T − x) and denote by qi

the restriction of pi to g. Then (q2, q5, q6, q8, q9, q12) is a generating family of S(g)g since these polynomials
are algebraically independent, [Me88]. Let (e, h, f ) be an sl2-triple of g. Then (e, h, f ) is an sl2-triple of
sl27(k). We denote by epi the initial homogenous component of the restriction to e + g̃ f of pi where g̃ f is
the centralizer of f in sl27(k). As usual, eqi denotes the initial homogenous component of the restriction to
e + g f of qi. For i = 2, 5, 6, 8, 9, 12,

deg epi 6 deg eqi.

In some cases, from the knowledge of the maximal eigenvalue of the restriction of adh to g and the adh-
weight of epi, it is possible to deduce that deg epi < deg eqi. On the other hand,

deg eq2 + deg eq5 + deg eq6 + deg eq8 + deg eq9 + deg eq12 6
1
2

(dimge + 6),

with equality if and only if eq2,
eq5,

eq6,
eq8,

eq9,
eq12 are algebraically independent. From this, it is possible

to deduce in some cases that e is good. These cases are listed in Table 2 where the nine columns are indexed
in the following way:

1: the label of the orbit G.e in the Bala-Carter classification,
2: the weighted Dynkin diagram of G.e,
3: the dimension of ge,
4: the partition of 27 corresponding to the nilpotent element e of sl27(k),
5: the degrees of ep2,

ep5,
ep6,

ep8,
ep9,

ep12,
6: their adh-weights,
7: the maximal eigenvalue ν of the restriction of adh to g,
8: the sum Σ of the degrees of ep2,

ep5,
ep6,

ep8,
ep9,

ep12,
9: the sum Σ′ = 1

2 (dimge + `).
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Label c c c c cc dimge partition deg epi weights ν Σ Σ′

1. D5 2 0 2 0 2
2

10 (11,9,5,1,1) 1,1,1,1,1,1 2,8,10,14,16,22 14 6 8

2. E6(a3) 2 0 2 0 2
0

12 (9, 7, 52, 1) 1,1,1,1,1,2 2,8,10,14,16,20 10 7 9

3. D5(a1) 1 1 0 1 1
2

14 (8,7,6,3,2,1) 1,1,1,1,2,2 2,8,10,14,14,20 10 8 10

4. A5 2 1 0 1 2
1

14 (9, 62, 5, 1) 1,1,1,1,1,2 2,8,10,14,16,20 10 7 10

5. A4 + A1 1 1 0 1 1
1

16 (7, 6, 5, 4, 3, 2) 1,1,1,2,2,2 2,8,10,12,14,20 8 9 11

6. D4 0 0 2 0 0
2

18 (73, 16) 1,1,1,2,2,2 2,8,10,12,14,20 10 9 12

7. D4(a1) 0 0 2 0 0
0

20 (53, 33, 13) 1,1,2,2,2,3 2,8,8,12,14,18 6 11 13

8. 2A2 + A1 1 0 1 0 1
0

24 (5, 42, 33, 22, 1) 1,1,2,2,2,3 2,8,8,12,14,18 5 11 15

Table 2. Data for E6

In all cases, we observe that Σ < Σ′, i.e.,

deg ep2 + deg ep5 + deg ep6 + deg ep8 + deg ep9 + deg ep12 <
1
2

(dimge + 6).

So, we need some arguments that we give below.

1. Since 14 < 16, deg epi < deg eqi for i = 9, 12.
2. Since 10 < 14, deg epi < deg eqi for i = 8, 9.
3. Since 10 < 14, deg ep8 < deg eq8. Moreover, the multiplicity of the weight 10 equals 1. So, either

deg eq6 > 1, or deg eq12 > 2, or eq12 ∈ k
eq2

6.
4. Since 10 < 14, deg epi < deg eqi for i = 8, 9. Moreover, the multiplicity of the weight 10 equals 1.

So, either deg eq6 > 1, or deg eq12 > 2, or eq12 ∈ k
eq2

6.
5. Since 8 < 10 and 2×8 < 20, deg epi < deg eqi for i = 6, 12.
6. Since the center of ge has dimension 2 and the weights of h in the center are 2 and 10, deg ep5 <

deg eq5. Moreover, since the weights of h in ge are 0, 2, 6, 10, deg ep9 < deg eq9 and since the
multiplicity of the weight 10 equals 1, either deg eq6 > 1, or deg eq12 > 2, or eq12 ∈ k

eq2
6.

7. Since 6 < 8 and 2×6 < 14, deg epi < deg eqi for i = 5, 9.
8. Since 5 < 8, 2×5 < 12 and 3×5 < 18, deg epi < deg eqi for i = 5, 8, 9, 12.

In cases 1, 2, 5, 7, 8, the discussion shows that

deg eq2 + deg eq5 + deg eq6 + deg eq8 + deg eq9 + deg eq12 =
1
2

(dimge + 6).

Hence, eq2,
eq5,

eq6,
eq8,

eq9,
eq12 are algebraically independent and by Theorem 3.6, e is good. In cases

3, 4, 6, if the above equality does not hold, then for some a in k∗,

deg eq2 + deg eq5 + deg eq6 + deg eq8 + deg eq9 + deg e(q12 − aq2
6) =

1
2

(dimge + 6).
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Hence eq2,
eq5,

eq6,
eq8,

eq9,
e(q12 − aq2

6) are algebraically independent and by Theorem 3.6, e is good.
In conclusion, it remains nine unsolved nilpotent orbits in type E6.

Example 6.2. Suppose that g is simple of type F4. Let V be the module of highest weight the fundamental
weight $4 with the notation of Bourbaki. Then V has dimension 26 and g identifies with a subalgebra of
sl26(k). For x in sl26(k) and for i = 2, . . . , 26, let pi(x) be the coefficient of T 26−i in det (T − x) and denote by
qi the restriction of pi to g. Then (q2, q6, q8, q12) is a generating family of S(g)g since these polynomials are
algebraically independent, [Me88]. Let (e, h, f ) be an sl2-triple of g. Then (e, h, f ) is an sl2-triple of sl26(k).
As in Example 6.1, in some cases, it is possible to deduce that e is good. These cases are listed in Table 3,
indexed as in Example 6.1.

Label c c c c> dimge partition deg epi weights ν Σ Σ′

1. F4(a2) 0 2 0 2 8 (9, 7, 52) 1,1,1,2 2,10,14,20 10 5 6

2. C3 1 0 1 2 10 (9, 62, 5) 1,1,1,2 2,10,14,20 10 5 7

3. B3 2 2 0 0 10 (73, 15) 1,1,2,2 2,10,12,20 10 6 7

4. F4(a3) 0 2 0 0 12 (53, 33, 12) 1,2,2,3 2,8,12,18 6 8 8

5. C3(a1) 1 0 1 0 14 (52, 42, 3, 22, 1) 1,2,2,3 2,8,12,18 6 8 9

6. Ã2 + A1 0 1 0 1 16 (5, 42, 33, 22) 1,2,2,3 2,8,12,18 5 8 10

Table 3. Data for F4

For the orbits 1, 2, 3, 5,6, we observe that Σ < Σ′. So, we need some more arguments to conclude as in
Example 6.1.

1. Since 10 < 14, deg ep8 < deg eq8.
2. Since 10 < 14, deg ep8 < deg eq8. Moreover, the multiplicity of the weight 10 equals 1 so that

deg eq6 > 1 or deg eq12 > 2 or eq12 ∈ k
eq2

6.
3. The multiplicity of the weight 10 equals 1. So, either deg eq6 > 1, or deg eq12 > 2, or eq12 ∈ k

eq2
6.

5. Suppose that eq2,
eq6,

eq8,
eq12 have degree 1, 2, 2, 3. We expect a contradiction. Since the center

has dimension 2 and since the multiplicity of the weight 6 equals 1, for z of weight 6 in the center,
eq6 ∈ kez, eq8 ∈ kz2, eq12 ∈ kz3. So, for some a and b in k∗,

eq2
2

eq8 − a eq2
6 = 0, eq2

12 − b eq3
8 = 0

Hence, q2, q6, q2
2q8 − aq2

6, q
2
12 − bq3

8 are algebraically independent element of S(g)g such that

deg eq2 + deg eq6 + deg e(q2
2q8 − aq2

6) + deg e(q2
12 − bq3

8) > 1 + 2 + 5 + 7 > 2 + 3 + 9

whence a contradiction by [PPY07, Theorem 2.1] (see Lemma 7.1).
6. Since 2×5 < 12 and 3×5 < 18, deg eq8 > deg ep8 and deg eq12 > deg ep12.

In conclusion, it remains six unsolved nilpotent orbits in type F4.
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Example 6.3. Suppose that g is simple of type G2. Let V be the module of highest weight the fundamental
weight $1 with the notation of Bourbaki. Then V has dimension 7 and g identifies with a subalgebra of
sl7(k). For x in sl7(k) and for i = 2, . . . , 7, let pi(x) be the coefficient of T 7−i in det (T − x) and denote by qi

the restriction of pi to g. Then q2, q6 is a generating family of S(g)g since these polynomials are algebraically
independent, [Me88]. Let (e, h, f ) be an sl2-triple of g. Then (e, h, f ) is an sl2-triple of sl7(k). There is only
one nonzero nilpotent orbit which is neither regular, subregular or minimal. For e in it, we deduce that e is
good from Table 4, indexed as in Example 6.1, since Σ = Σ′.

Label c c< dimge partition deg epi weights ν Σ Σ′

Ã1 1 0 6 (3, 22) 1,3 2,6 3 4 4

Table 4. Data for G2

In conclusion, all elements are good in type G2.

7. Other examples, remarks and a conjecture

This section provides examples of nilpotent elements which satisfy the polynomiality condition but that
are not good. We also obtain an example of nilpotent element in type D7 which does not satisfy the polyno-
miality condition (cf. Example 7.8). Then we conclude with some remarks and a conjecture.

7.1. Some general results. In this subsection, g is a simple Lie algebra over k and (e, h, f ) is an sl2-triple
of g. For p in S(g), ep is the initial homogenous component of the restriction of p to the Slodowy slice e+g f .
Recall that k[e + g f ] identifies with S(ge) by the Killing form 〈. , .〉 of g.

Let η0 ∈ g
e ⊗k

∧2 g f be the bivector defining the Poisson bracket on S(ge) induced from the Lie bracket.
According to the main theorem of [Pr02], S(ge) is the graded algebra relative to the Kazhdan filtration of the
finite W-algebra associated with e so that S(ge) inherits another Poisson structure. The so-obtained graded
algebra structure is the Slodowy graded algebra structure (see Subsection 4.1). Let η ∈ S(ge) ⊗k

∧2 g f be
the bivector defining this other Poisson structure. According to [Pr02, Proposition 6.3] (see also [PPY07,
§2.4]), η0 is the initial homogenous component of η. Denote by r the dimension of ge and set:

ω := η(r−`)/2 ∈ S(ge) ⊗k
∧r−` g f , ω0 := η(r−`)/2

0 ∈ S(ge) ⊗k
∧r−` g f .

Then ω0 is the initial homogenous component of ω.
Let v1, . . . , vr be a basis of g f . For µ in S(ge)⊗k

∧i ge, denote by j(µ) the image of v1∧ · · · ∧ vr by the right
interior product of µ so that

j(µ) ∈ S(ge) ⊗k
r−i∧
g

f .

Lemma 7.1. Let q1, . . . ,q` be some homogenous generators of S(g)g and let r1, . . . , r` be algebraically
independent homogenous elements of S(g)g.

(i) For some homogenous element p of S(g)g,

dr1∧ · · · ∧dr` = p dq1∧ · · · ∧dq`.

(ii) The following inequality holds:∑̀
i=1

deg eri 6 deg ep +
1
2

(dimge + `).
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(iii) The polynomials er1, . . . ,
er` are algebraically independent if and only if∑̀

i=1

deg eri = deg ep +
1
2

(dimge + `).

Proof. (i) Since q1, . . . ,q` are generators of S(g)g, for i ∈ {1, . . . , `}, ri = Ri(q1, . . . ,q`) where Ri is a
polynomial in ` indeterminates, whence the assertion with

p = det (
∂Ri

∂q j
, 1 6 i, j 6 `).

(ii) Remind that for p in S(g), κ(p) denotes the restriction to g f of the polynomial function x 7→ p(e + x).
According to [PPY07, Theorem 1.2],

j(dκ(q1) ∧ · · · ∧ dκ(q`)) = aω

for some a in k∗. Hence by (i),
j(dκ(r1) ∧ · · · ∧ dκ(r`)) = aκ(p)ω.

The initial homogenous component of the right-hand side is a epω0 and the degree of the initial homogenous
component of the left-hand side is at least

deg er1+ · · ·+ deg er` − `.

The assertion follows since ω0 has degree
1
2

(dimge − `).

(iii) If er1, . . . ,
er` are algebraically independent, then the degree of the initial homogenous component of

j(dr1∧ · · · ∧dr`) equals
deg er1+ · · ·+ deg er` − `

whence
deg er1+ · · ·+ deg er` = deg ep +

1
2

(dimge + `)

by the proof of (ii). Conversely, if the equality holds, then

j(d er1∧ · · · ∧d er`) = a epω0(4)

by the proof of (ii). In particular, er1, . . . ,
er` are algebraically independent. �

Corollary 7.2. For i = 1, . . . , `, let ri := Ri(q1, . . . ,qi) be a homogenous element of S(g)g such that
∂Ri

∂qi
, 0.

Then er1, . . . ,
er` are algebraically independent if and only if

deg er1+ · · ·+ deg er` =
∑̀
i=1

deg epi +
1
2

(dimge + `)

with pi =
∂Ri

∂qi
for i = 1, . . . , `.

Proof. Since
∂Ri

∂qi
, 0 for all i, r1, . . . , r` are algebraically independent and

dr1∧ · · · ∧dr` =
∏̀
i=1

∂Ri

∂qi
dq1∧ · · · ∧dq`

whence the corollary by Lemma 7.1,(iii). �
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Let g f
sing be the set of nonregular elements of the dual g f of ge. Recall that if g f

sing has codimension at least
2 in g f , we will say that ge is nonsingular.

Corollary 7.3. Let r1, . . . , r` and p be as in Lemma 7.1 and such that er1, . . . ,
er` are algebraically indepen-

dent.
(i) If ep is a greatest divisor of d er1∧ · · · ∧d er` in S(ge) ⊗k

∧` ge, then ge is nonsingular.
(ii) Assume that there are homogenous polynomials p1, . . . , p` in S(ge)g

e
satisfying the following condi-

tions:

1) er1, . . . ,
er` are in k[p1, . . . , p`],

2) if d is the degree of a greatest divisor of dp1∧ · · · ∧dp` in S(ge), then

deg p1+ · · ·+ deg p` = d +
1
2

(dimge + `).

Then ge is nonsingular.

Proof. (i) Suppose that ep is a greatest divisor of d er1∧ · · · ∧d er` in S(ge) ⊗k
∧` ge. Then for some ω1 in

S(ge) ⊗k
∧` ge whose nullvariety in g f has codimension at least 2,

d er1∧ · · · ∧d er` = epω1.

Therefore j(ω1) = aω0 by Equality (4). Since x is in g f
sing if and only if ω0(x) = 0, we get (i).

(ii) By Condition (1),
d er1∧ · · · ∧d er` = q dp1∧ · · · ∧dp`

for some q in S(ge)g
e
, and for some greatest divisor q′ of dp1∧ · · · ∧dp` in S(ge) ⊗k

∧` ge,

dp1∧ · · · ∧dp` = q′ω1.

So, by Equality (4),

qq′ j(ω1) = a epω0,(5)

so that ep divides qq′ in S(ge). By Condition (2) and Equality (5), ω0 and ω1 have the same degree. Then
qq′ is in k∗ ep, and for some a′ in k∗,

j(ω1) = a′ω0,

whence (ii), again since x is in g f
sing if and only if ω0(x) = 0. �

The following proposition is a particular case of [JS10, §5.7]. More precisely, part (i) follows from [JS10,
Remark 5.7] and part (ii) follows from [JS10, Theorem 5.7].

Proposition 7.4. Suppose that ge is nonsingular.
(i) If there exist algebraically independent homogenous polynomials p1, . . . , p` in S(ge)g

e
such that

deg p1+ · · ·+ deg p` =
1
2

(dimge + `)

then S(ge)g
e

is a polynomial algebra generated by p1, . . . , p`.
(ii) Suppose that the semiinvariant elements of S(ge) are invariant. If S(ge)g

e
is a polynomial algebra then

it is generated by homogenous polynomials p1, . . . , p` such that

deg p1+ · · ·+ deg p` =
1
2

(dimge + `).
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7.2. New examples. To produce new examples, our general strategy is to apply Proposition 7.4,(i). To that
end, we first apply Corollary 7.3 in order to prove that ge is nonsingular. Then, we search for independent
homogenous polynomials p1, . . . , p` in S(ge)g

e
satisfying the conditions of Corollary 7.3,(ii) with d = 0.

Example 7.5. Let e be a nilpotent element of so(k10) associated with the partition (3, 3, 2, 2). Then S(ge)g
e

is
a polynomial algebra but e is not good as explained below.

In this case, ` = 5 and let q1, . . . ,q5 be as in Subsection 5.2. The degrees of eq1, . . . ,
eq5 are 1, 2, 2, 3, 2

respectively. By a computation performed by Maple, eq1, . . . ,
eq5 satisfy the algebraic relation:

eq2
4 − 4 eq3

eq2
5 = 0.

Set:

ri :=
{

qi if i = 1, 2, 3, 5
q2

4 − 4q3q2
5 if i = 4.

The polynomials r1, . . . , r5 are algebraically independent over k and

dr1∧ · · · ∧dr5 = 2 q4 dq1∧ · · · ∧dq5

Moreover, er4 has degree at least 7. Then, by Corollary 7.2, er1, . . . ,
er5 are algebraically independent since

1
2

(dimge + 5) + 3 = 14 = 1 + 2 + 2 + 2 + 7,

and by Lemma 7.1,(ii) and (iii), er4 has degree 7.
A precise computation performed by Maple shows that er3 = p2

3 for some p3 in the center of ge, and that
er4 = p4

er5 for some polynomial p4 of degree 5 in S(ge)g
e
. Setting pi := eri for i = 1, 2, 5, the polyno-

mials p1, . . . , p5 are algebraically independent homogenous polynomials of degree 1, 2, 1, 5, 2 respectively.
Furthermore, a computation performed by Maple proves that the greatest divisors of dp1∧ · · · ∧dp5 in S(ge)
have degree 0, and that p4 is in the ideal of S(ge) generated by p3 and p5. So, by Corollary 7.3,(ii), ge is
nonsingular, and by Proposition 7.4,(i), S(ge)g

e
is a polynomial algebra generated by p1, . . . , p5. Moreover,

e is not good since the nullvariety of p1, . . . , p5 in (ge)∗ has codimension at most 4.

Example 7.6. In the same way, for the nilpotent element e of so(k11) associated with the partition (3, 3, 2, 2, 1),
we can prove that S(ge)g

e
is a polynomial algebra generated by polynomials of degree 1, 1, 2, 2, 7, ge is non-

singular but e is not good.
We also obtain that for the nilpotent element e of so(k12) (resp. so(k13)) associated with the partition

(5,3,2,2) or (3,3,2,2,1,1) (resp. (5,3,2,2,1), (4,4,2,2,1), or (3,3,2,2,1,1,1)), S(ge)g
e

is a polynomial algebra, ge

is nonsingular but e is not good.

We can summarize our conclusions for the small ranks. Assume that g = so(V) for some vector spaceV of
dimension 2`+ 1 or 2` and let e ∈ g be a nilpotent element of g associated with the partition λ = (λ1, . . . , λk)
of dimV. If ` 6 6, our previous results (Corollary 5.8, Lemma 5.11, Theorem 5.23, Examples 7.5 and
7.6) show that either e is good, or e is not good but S(ge)g

e
is nevertheless a polynomial algebra and ge is

nonsingular. We describe in Table 5 the partitions λ corresponding to good e, and those corresponding to
the case where e is not good. The third column of the table gives the degrees of the generators in the latter
case.

Remark 7.7. The above discussion shows that there are good nilpotent elements for which the codimension
of (ge)∗sing in (ge)∗ is 1. Indeed, by [PPY07, §3.9], for some nilpotent element e′ in B3, the codimension of
(ge

′

)∗sing in (ge
′

)∗ is 1 but, in B3, all nilpotent elements are good (cf. Table 5).
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Type e is good S(ge)g
e

is polynomial, ge is nonsingular degrees of the generators
but e is not good

Bn, Dn, n 6 4 any λ ∅

B5 λ , (3, 3, 2, 2, 1) λ = (3, 3, 2, 2, 1) 1, 1, 2, 2, 7
D5 λ , (3, 3, 2, 2) λ = (3, 3, 2, 2) 1,1,2,2,5
B6 λ < {(5, 3, 2, 2, 1), (4, 4, 2, 2, 1), λ ∈ {(5, 3, 2, 2, 1), (4, 4, 2, 2, 1), {1, 1, 1, 2, 2, 7; 1, 1, 2, 2, 3, 6;

(3, 3, 2, 2, 1, 1, 1)} (3, 3, 2, 2, 1, 1, 1)} 1, 1, 2, 2, 6, 7}
D6 λ < {(5, 3, 2, 2), (3, 3, 2, 2, 1, 1)} λ ∈ {(5, 3, 2, 2), (3, 3, 2, 2, 1, 1)} {1,1,1,2,2,5; 1,1,2,2,3,7}

Table 5. Conclusions for g of type B` or D` with ` 6 6

7.3. A counter-example. From the rank 7, there are elements that do no satisfy the polynomiality condi-
tion. The following example provides a new counter-example to Premet’s conjecture.

Example 7.8. Let e be a nilpotent element of so(k14) associated with the partition (3, 3, 2, 2, 2, 2). Then e
does not satisfy the polynomiality condition.

In this case, ` = 7 and let q1, . . . ,q7 be as in Subsection 5.2. The degrees of eq1, . . . ,
eq7 are 1, 2, 2, 3, 4, 5, 3

respectively. By a computation performed by Maple, we can prove that eq1, . . . ,
eq7 satisfy the two following

algebraic relations:

16 eq2
3

eq5
2 + eq4

4 − 8 eq3
eq5

eq2
4 − 64 eq3

3
eq7

2 = 0, eq3
eq2

6 −
eq2

7
eq4

2 = 0

Set:

ri :=


qi if i = 1, 2, 3, 4, 7

16 q2
3q5

2 + q4
4 − 8 q3q5q2

4 − 64 q3
3q7

2 if i = 5
q3q2

6 − q2
7q2

4 if i = 6

The polynomials r1, . . . , r7 are algebraically independent over k and

dr1∧ · · · ∧dr7 = 2q3q6 (32q2
3q5 − 8q3q2

4) dq1∧ · · · ∧dq7

Moreover, er5 and er6 have degree at least 13 and e(2q3q6(32q2
3q5 − 8q3q2

4)) has degree 15. Then, by Corol-
lary 7.2, er1, . . . ,

er7 are algebraically independent since

1
2

(dimge + 7) + 15 = 37 = 1 + 2 + 2 + 3 + 3 + 26

and by Lemma 7.1,(ii) and (iii), er5 and er6 have degree 13.
A precise computation performed by Maple shows that er3 = p2

3 for some p3 in the center of ge, er4 = p3 p4

for some polynomial p4 of degree 2 in S(ge)g
e
, er5 = p3

3
eq7 p5 for some polynomial p5 of degree 7 in S(ge)g

e
,

and er6 = p4
er7 p6 for some polynomial p6 of degree 8 in S(ge)g

e
. Setting pi := eri for i = 1, 2, 7, the

polynomials p1, . . . , p7 are algebraically independent homogenous polynomials of degree 1, 2, 1, 2, 7, 8, 3
respectively. Let l be a reductive factor of ge. According to [Ca85, Ch. 13],

l ' so2(k) × sp4(k) ' k × sp4(k).

In particular, the center of l has dimension 1. Let {x1, . . . , x37} be a basis of ge such that x37 lies in the center
of l and such that x1, . . . , x36 are in [l, l] + geu with geu the nilpotent radical of ge. Then p2 is a polynomial
in k[x1, . . . , x37] depending on x37. As a result, by [DDV74, Theorems 3.3 and 4.5], the semiinvariant
polynomials of S(ge) are invariant.

Claim 7.9. The algebra ge is nonsingular.
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Proof. [Proof of Claim 7.9] The space k14 is the orthogonal direct sum of two subspaces V1 and V2 of
dimension 6 and 8 respectively and such that e, h, f are in g := so(V1) ⊕ so(V2). Then ge = g ∩ ge is a
subalgebra of dimension 21 containing the center of ge. For p in S(ge), denote by p its restriction to g f .
The partition (3, 3, 2, 2, 2, 2) satisfies Condition (1) of the proof of [Y06, §4, Lemma 3]. So, the proof of
Lemma 5.14 remains valid, and the morphism

Ge
0 × g

f
−→ g f , (g, x) 7−→ g(x)

is dominant. As a result, for p in S(ge)g
e
, the differential of p is the restriction to g f of the differential of p.

A computation performed by Maple proves that p3
10 is a greatest divisor of dp1 ∧ · · · ∧ dp7 in S(ge). If q

is a greatest divisor of dp1 ∧ · · · ∧ dp7 in S(ge), then q is in S(ge)g
e

since the semiinvariant polynomials are
invariant. So q = pd

3 for some nonnegative integer d. One can suppose that {x1, . . . , x16} is a basis of the
orthogonal complement to g f in ge. Then the Pfaffian of the matrix(

[xi, x j], 1 6 i, j 6 16
)

is in k∗p8
3 so that p2

3 is a greatest divisor of dp1∧ · · · ∧dp7 in S(ge). Since

deg p1 + · · · + deg p7 = 2 + 22 = 2 +
1
2

(dimge + `),

we conclude that ge is nonsingular by Corollary 7.3,(ii). �

Claim 7.10. Suppose that S(ge)g
e

is a polynomial algebra. Then for some homogenous polynomials p′5
and p′6 of degrees at least 5 and at most 8 respectively, S(ge)g

e
is generated by p1, p2, p3, p4, p′5, p′6, p7.

Furthermore, the possible values for (deg p′5, deg p′6) are (5, 8) or (6, 7).

Proof. [Proof of Claim 7.10] Since the semiinvariants are invariants, by Claim 7.9 and Proposition 7.4,(ii),
there are homogenous generators ϕ1, . . . , ϕ` of S(ge)g

e
such that

degϕ16 · · · 6degϕ`,

and

degϕ1+ · · ·+ degϕ` =
1
2

(dimge + `) = 22.

According to [Mo06c, Theorem 1.1.8] or [Y06b], the center of ge has dimension 2. Hence, ϕ1 and ϕ2 have
degree 1. Thereby, we can suppose that ϕ1 = p1 and ϕ2 = p3 since p1 and p3 are linearly independent
elements of the center of ge. Since p2 and p4 are homogneous elements of degree 2 such that p1, . . . , p4 are
algebraically indepent, ϕ3 and ϕ4 have degree 2 and we can suppose that ϕ3 = p2 and ϕ4 = p4. Since p7 has
degree 3, ϕ5 has degree at most 3 and at least 2 since the center of ge has dimension 2. Suppose that ϕ5 has
degree 2. A contradiction is expected. Then

degϕ6 + degϕ7 = 22 − (1 + 1 + 2 + 2 + 2) = 14.

Moreover, since p1, . . . , p7 are algebraically independent, ϕ7 has degree at most 8 and ϕ6 has degree at least
6. Hence p7 is in the ideal of k[p1, p3, ϕ3, ϕ4, ϕ5] generated by p1 and p3. But a computation shows that the
restriction of p7 to the nullvariety of p1 and p3 in g f is different from 0, whence the expected contradiction.
As a result, ϕ5 has degree 3 and

degϕ6 + degϕ7 = 13.

One can suppose ϕ5 = p7 and the possible values for (degϕ6, degϕ7) are (5, 8) and (6, 7) since ϕ7 has degree
at most 8. �
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Suppose that S(ge)g
e

is a polynomial algebra. A contradiction is expected. Let p′5 and p′6 be as in
Claim 7.10 and such that deg p′5 < deg p′6. Then (deg p′5, deg p′6) equals (5, 8) or (6, 7). A computation
shows that we can choose a basis {x1, . . . , x37} of ge with x37 = p3, with p1, p2, p3, p4, p7 in k[x3, . . . , x37]
and with p5, p6 of degree 1 in x1. Moreover, the coefficient of x1 in p5 is a prime element of k[x3, . . . , x37],
the coefficient of x1 in p6 is a prime element of k[x2, . . . , x37] having degree 1 in x2, and the coefficient of
x1x2 in p6 equals a2 p2

3 with a a prime homogenous polynomial of degree 2 such that a, p1, p2, p3, p4 are
algebraically independent. In particular, a is not invariant. If p′5 has degree 5, then

p5 = p′5r0 + r1

with r0 in k[p1, p2, p3, p4] and r1 in k[p1, p2, p3, p4, p7] so that p′5 has degree 1 in x1, and the coefficient of
x1 in p5 is the product of r0 and the coefficient of x1 in p′5. But this is impossible since this coefficient is
prime. So, p′5 has degree 6 and p′6 has degree 7. We can suppose that p′6 = p5. Then

p6 = p5r0 + p′6r1 + r2

with r0 homogenous of degree 1 in k[p1, p3], r1 homogenous of degree 2 in k[p1, p2, p3, p4], and r2 ho-
mogenous of degree 8 in k[p1, p2, p3, p4, p7]. According to the above remarks on p5 and the coefficient of
x1x2 in p6, r1 is in k∗p2

3 since r1 has degree 2.
For p in S(ge), denote by p its image in S(ge)/p3S(ge). A computation shows that for some u in

S(ge)/p3S(ge),
p5 = p4

2u, p6 = −p4 p7u.

Furthermore, p4 and p7 are different prime elements of S(ge)/p3S(ge) and the coefficient u1 of x1 in u is the
product of two different polynomials of degree 1. The coefficient of x1 in p6 is u1 p4

2r0 since

p6 = p5r0 + r2.

On the other hand, the coefficient of x1 in p6 is −u1 p4 p7, whence the contradiction since r0 has degree 1.

7.4. A conjecture. All examples of good elements we achieved satisfy the hypothesis of Theorem 3.6.

Conjecture 7.11. Let g be a simple Lie algebra and let e be a nilpotent of g. If e is good then for some
homogenous generating sequence (q1, . . . ,q`) in S(g)g, eq1, . . . ,

eq` are algebraically independent over k. In
other words, the converse implication of Theorem 3.6 holds.

Notice that it may happen that for some r1, . . . , r` in S(g)g, the elements er1, . . . ,
er` are algebraically

independent over k, and that however e is not good. This is the case for instance for the nilpotent elements
in so(k12) associated with the partition (5, 3, 2, 2), cf. Example 7.6.

In fact, according to [PPY07, Corollary 2.3], for any nilpotent e of g, there exist r1, . . . , r` in S(g)g such
that er1, . . . ,

er` are algebraically independent over k.
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