THE SYMMETRIC INVARIANTS OF CENTRALIZERS AND SLODOWY GRADING II

JEAN-YVES CHARBONNEL AND ANNE MOREAU

ABSTRACT. Let g be a finite-dimensional simple Lie algebra of rank ℓ over an algebraically closed field k of characteristic zero, and let (e, h, f) be an sI₂-triple of g. Denote by g^e the centralizer of e in g and by $S(g^e)^{g^e}$ the algebra of symmetric invariants of g^e . We say that e is good if the nullvariety of some ℓ homogeneous elements of $S(g^e)^{g^e}$ in $(g^e)^*$ has codimension ℓ . If e is good then $S(g^e)^{g^e}$ is a polynomial algebra. In this paper, we prove that the converse of the main result of [CM16] is true. Namely, we prove that e is good if and only if for some homogeneous generating sequence q_1, \ldots, q_ℓ of $S(g)^g$, the initial homogeneous components of their restrictions to $e + g^f$ are algebraically independent over k.

CONTENTS

1.	Introduction	1
2.	Some results on commutative algebra	5
3.	Proof of Theorem 1.5	16
4.	Proof of Theorem 1.4	23
References		25

1. Introduction

1.1. Let g be a finite-dimensional simple Lie algebra of rank ℓ over an algebraically closed field k of characteristic zero, let $\langle .,. \rangle$ be the Killing form of g and let G be the adjoint group of g. If a is a subalgebra of g, we denote by S(a) the symmetric algebra of a. For $x \in g$, we denote by g^x the centralizer of x in g and by G^x the stabilizer of x in G. Then $\text{Lie}(G^x) = \text{Lie}(G^x_0) = g^x$ where G^x_0 is the identity component of G^x . Moreover, $S(g^x)$ is a g^x -module and $S(g^x)^{g^x} = S(g^x)^{G^x_0}$.

In [CM16], we continued the works of [PPY07] and we studied the question on whether the algebra $S(g^x)^{g^x}$ is polynomial in ℓ variables; see [Y07, CM10, JS10, Y16] for other references related to the topic.

Date: August 10, 2016.

¹⁹⁹¹ Mathematics Subject Classification. 17B35,17B20,13A50,14L24.

Key words and phrases. symmetric invariant, centralizer, polynomial algebra, Slodowy grading.

1.2. Let us first summarize the main results of [CM16].

Definition 1.1 ([CM16, Definition 1.3]). An element $x \in g$ is called a *good element* of g if for some homogeneous sequence (p_1, \ldots, p_ℓ) in $S(g^x)^{g^x}$, the nullvariety of p_1, \ldots, p_ℓ in $(g^x)^*$ has codimension ℓ in $(g^x)^*$.

Thus an element $x \in g$ is good if the nullcone of $S(g^x)$, that is, the nullvariety in $(g^x)^*$ of the augmentation ideal $S(g^x)^{g^x}_+$ of $S(g^x)^{g^x}$, is a complete intersection in $(g^x)^*$ since the transcendence degree over k of the fraction field of $S(g^x)^{g^x}$ is ℓ by the main result of [CM10].

For example, regular nilpotent elements are good; see the introduction of [CM16] for more details and other examples.

Theorem 1.2 ([CM16, Theorem 3.3]). Let x be a good element of g. Then $S(g^x)^{g^x}$ is a polynomial algebra and $S(g^x)$ is a free extension of $S(g^x)^{g^x}$.

An element x is good if and only if so is its nilpotent component in the Jordan decomposition [CM16, Proposition 3.5]. As a consequence, we can restrict the study to the case of nilpotent elements.

Let *e* be a nilpotent element of g. By the Jacobson-Morosov Theorem, *e* is embedded into an \mathfrak{sl}_2 -triple (e, h, f) of g. Identify g with \mathfrak{g}^* , and \mathfrak{g}^f with $(\mathfrak{g}^e)^*$, through the Killing isomorphism $\mathfrak{g} \to \mathfrak{g}^*$, $x \mapsto \langle x, . \rangle$. Thus we have the following algebra isomorphisms: $S(\mathfrak{g}) \simeq \Bbbk[\mathfrak{g}^*] \simeq \Bbbk[\mathfrak{g}]$ and $S(\mathfrak{g}^e) \simeq \Bbbk[(\mathfrak{g}^e)^*] \simeq \Bbbk[\mathfrak{g}^f]$. Denote by $S_e := e + \mathfrak{g}^f$ the *Slodowy slice associated with e*, and let $T_e : \mathfrak{g} \to \mathfrak{g}$, $x \mapsto e + x$ be the translation map. It induces an isomorphism of affine varieties $\mathfrak{g}^f \simeq S_e$, and the comorphism T_e^* induces an isomorphism between the coordinate algebras $\Bbbk[S_e]$ and $\Bbbk[\mathfrak{g}^f]$.

Let *p* be a homogeneous element of $S(g) \simeq k[g]$. Then its restriction to S_e is an element of $k[S_e] \simeq k[g^f] \simeq S(g^e)$ through the above isomorphisms. For *p* in S(g), we denote by $\kappa(p)$ its restriction to S_e so that $\kappa(p) \in S(g^e)$. Denote by ep the initial homogeneous component of $\kappa(p)$. According to [PPY07, Proposition 0.1], if *p* is in $S(g)^g$, then ep is in $S(g^e)^{g^e}$.

Theorem 1.3 ([CM16, Theorem 1.5]). Suppose that for some homogeneous generators q_1, \ldots, q_ℓ of $S(g)^g$, the polynomial functions ${}^eq_1, \ldots, {}^eq_\ell$ are algebraically independent over k. Then e is a good element of g. In particular, $S(g^e)^{g^e}$ is a polynomial algebra and $S(g^e)$ is a free extension of $S(g^e)^{g^e}$. Moreover, ${}^eq_1, \ldots, {}^eq_\ell$ is a regular sequence in $S(g^e)$.

In other words, Theorem 1.3 provides a sufficient condition for that $S(g^e)^{g^e}$ is polynomial. By [PPY07], one knows that for homogeneous elements q_1, \ldots, q_ℓ of $S(g)^g$, the polynomial functions ${}^eq_1, \ldots, {}^eq_\ell$ are algebraically independent if and

only if

(1)
$$\sum_{i=1}^{\ell} \deg {}^{e}q_{i} = \frac{\dim \mathfrak{g}^{e} + \ell}{2}.$$

So we have a practical criterion to verify the sufficient condition of Theorem 1.3. However, even if the condition of Theorem 1.3 holds, that is, if (1) holds, $S(g^e)^{g^e}$ is not necessarily generated by the polynomial functions ${}^eq_1, \ldots, {}^eq_\ell$. As a matter of fact, there are nilpotent elements *e* satisfying this condition and for which $S(g^e)^{g^e}$ is not generated by some ${}^eq_1, \ldots, {}^eq_\ell$, for any choice of homogeneous generators q_1, \ldots, q_ℓ of $S(g)^g$ (cf. [CM16, Remark 2.25]).

Theorem 1.3 can be applied to a great number of nilpotent orbits in the simple classical Lie algebras, and for some nilpotent orbits in the exceptional Lie algebras, see [CM16, Sections 5 and 6]. We also provided in [CM16, Example 7.8] an example of a nilpotent element *e* for which $S(g^e)^{g^e}$ is not polynomial, with g of type D₇.

1.3. In this note, we prove that the converse of Theorem 1.3 also holds. Namely, our main result is the following theorem.

Theorem 1.4. The nilpotent element e of \mathfrak{g} is good if and only if for some homogeneous generating sequence q_1, \ldots, q_ℓ of $S(\mathfrak{g})^{\mathfrak{g}}$, the elements ${}^eq_1, \ldots, {}^eq_\ell$ are algebraically independent over \Bbbk .

Theorem 1.4 was conjectured in [CM16, Conjecture 7.11]. Notice that it may happen that for some r_1, \ldots, r_ℓ in S(g)^g, the elements ${}^er_1, \ldots, {}^er_\ell$ are algebraically independent over k, and that however e is not good. This is the case for instance for the nilpotent elements in $\mathfrak{so}(\mathbb{k}^{12})$ associated with the partition (5, 3, 2, 2), cf. [CM16, Example 7.6]. In fact, according to [PPY07, Corollary 2.3], for any nilpotent element e of g, there exist r_1, \ldots, r_ℓ in S(g)^g such that ${}^er_1, \ldots, {}^er_\ell$ are algebraically independent over k. So the assumption that q_1, \ldots, q_ℓ generate S(g)^g is crucial.

1.4. We introduce in this subsection the main notations of the paper and we outline our strategy to prove Theorem 1.4.

First of all, recall that g^f identifies with the dual of g^e through the Killing isomorphism so that $S(g^e)$ is the algebra $\Bbbk[g^f]$ of polynomial functions on g^f , and that $\Bbbk[g^f]$ identifies with the coordinate algebra of the Slodowy slice $S_e = e + g^f$.

Let x_1, \ldots, x_r be a basis of g^e such that for $i = 1, \ldots, r$, $[h, x_i] = n_i x_i$ with n_i a nonnegative integer. For $\mathbf{j} = (j_1, \ldots, j_r)$ in \mathbb{N}^r , set:

$$|\mathbf{j}| := j_1 + \dots + j_r, \quad |\mathbf{j}|_e := j_1(n_1 + 2) + \dots + j_r(n_r + 2), \quad x^{\mathbf{j}} := x_1^{j_1} \cdots x_r^{j_r}.$$

There are two gradings on $S(\mathfrak{g}^e)$: the standard one and the Slodowy grading. For all **j** in \mathbb{N}^r , $x^{\mathbf{j}}$ has standard degree $|\mathbf{j}|$ and, by definition, it has Slodowy degree $|\mathbf{j}|_e$. Denoting by $t \mapsto \rho(t)$ the one-parameter subgroup of *G* generated by ad *h*, the

Slodowy slice $e + g^f$ is invariant under the one-parameter subgroup $t \mapsto t^{-2}\rho(t)$ of *G*. Hence the one-parameter subgroup $t \mapsto t^{-2}\rho(t)$ induces an action on $\Bbbk[S_e]$. Let $j \in \{1, ..., r\}$, y in g^f and t in \Bbbk^* . Viewing the element x_j of $g^e \subset S(g^e)$ as an element $\Bbbk[S_e]$, we have:

$$x_j(t^{-2}\rho(t)(e+y)) = x_j(e+t^{-2}\rho(t)(y)) = t^{-2}\rho(t^{-1})(x_j)(e+y) = t^{-2-n_j}x_j(e+y),$$

whence for all **j** in \mathbb{N}^r and for all *y* in \mathfrak{g}^j ,

$$x^{\mathbf{j}}(t^{-2}\rho(t)(e+y)) = t^{-|\mathbf{j}|_e}x^{\mathbf{j}}(e+y).$$

This means that x^{j} , as a regular function on S_{e} , is homogeneous of degree $|\mathbf{j}|_{e}$ for the Slodowy grading.

Let *t* be an indeterminate and let *R* be the polynomial algebra $\Bbbk[t]$. The polynomial algebra

$$\mathbf{S}(\mathfrak{g}^e)[t] := \Bbbk[t] \otimes_{\Bbbk} \mathbf{S}(\mathfrak{g}^e)$$

identifies with the algebra of polynomial functions on $g^f \times k$. The grading of $S(g^e)$ induces a grading of $S(g^e)[t]$ such that *t* has degree 0. Denote by ε the evaluation map at t = 0 so that ε is a graded morphism from $S(g^e)[t]$ onto $S(g^e)$. Let τ be the embedding of $S(g^e)$ into $S(g^e)[t]$ such that $\tau(x_i) := tx_i$ for i = 1, ..., r.

Recall that for *p* in S(g), $\kappa(p)$ denotes the restriction to S_e of *p* so that $\kappa(p) \in$ S(g^{*e*}). Denote by *A* the intersection of S(g^{*e*})[*t*] with the sub- $k[t, t^{-1}]$ -module of

$$\mathbf{S}(\mathfrak{g}^e)[t,t^{-1}] := \Bbbk[t,t^{-1}] \otimes_{\Bbbk} \mathbf{S}(\mathfrak{g}^e)$$

generated by $\tau \circ \kappa(S(\mathfrak{g})^{\mathfrak{g}})$, and let A_+ be its augmentation ideal. Let \mathcal{V} be the nullvariety of A_+ in $\mathfrak{g}^f \times \Bbbk$ and \mathcal{V}_* the union of the irreducible components of \mathcal{V} which are not contained in $\mathfrak{g}^f \times \{0\}$. Let \mathcal{N} be the nullvariety of $\varepsilon(A)_+$ in \mathfrak{g}^f , with $\varepsilon(A)_+$ the augmentation ideal of $\varepsilon(A)$. Then \mathcal{V} is the union of \mathcal{V}_* and $\mathcal{N} \times \{0\}$.

The properties of the varieties \mathcal{V} and \mathcal{V}_* allow us to prove the following result.

Theorem 1.5. Suppose that \mathbb{N} has dimension $r - \ell$. Then for some homogeneous generating sequence q_1, \ldots, q_ℓ of $S(\mathfrak{g})^{\mathfrak{g}}$, the elements ${}^eq_1, \ldots, {}^eq_\ell$ are algebraically independent over \Bbbk .

The key point is to show that, under the hypothesis of Theorem 1.5, $\varepsilon(A)$ is the subalgebra of $S(g^e)$ generated by the family ep , $p \in S(g)^g$, and hence that \mathcal{N} coincides with the nullvariety in g^f of ${}^eq_1, \ldots, {}^eq_\ell$. So, if \mathcal{N} has dimension $r - \ell$, then the elements ${}^eq_1, \ldots, {}^eq_\ell$ must be algebraically independent over \Bbbk .

The remainder of the paper is organized as follows. In Section 2, we state useful results on commutative algebra of independent interest. Some of these results are probably well-known. Since we have not found appropriate references, proofs are provided. Moreover, we formulate them as they are used in the paper. We study in Section 3 properties of the varieties \mathcal{V} and \mathcal{V}_* . The proof of Theorem 1.5 is achieved in Section 3. Theorem 1.4 is a consequence of Theorem 1.5, and it is proven in Section 4.

Acknowledgments. The second author is partially supported by the ANR Project GeoLie Grant number ANR-15-CE40-0012. We thank the referee for valuable comments and suggestions.

2. Some results on commutative algebra

In this section *t* is an indeterminate and the base ring *R* is $\mathbb{k}, \mathbb{k}[t]$ or $\mathbb{k}[[t]]$. For *M* a graded space over \mathbb{N} and for *j* in \mathbb{N} , denote by $M^{[j]}$ the space of degree *j* and by M_+ the sum of $M^{[j]}, j > 0$. Let *A* be a finitely generated graded *R*-algebra over \mathbb{N} such that $A^{[0]} = R$ and such that $A^{[j]}$ is a free *R*-module of finite rank for any $j \in \mathbb{N}$. Moreover, *A* is an integral domain. Denote by dim *A* the Krull dimension of *A* and set¹:

$$\ell := \begin{cases} \dim A & \text{if } R = \Bbbk \\ \dim A - 1 & \text{if } R = \Bbbk[t] \text{ or } \Bbbk[t] \end{cases}$$

As a rule, for B an integral domain, we denote by K(B) its fraction field.

The one-dimensional multiplicative group of k is denoted by G_m .

2.1. Let *B* be a graded subalgebra of *A*.

- Lemma 2.1. (i) Let \$\partial_1, \ldots, \$\partial_m\$ be pairwise different graded prime ideals contained in A₊. If they are the minimal prime ideals containing their intersection, then for some homogeneous element p of A₊, the element p is not in the union of \$\partial_1, \ldots, \$\partial_m\$.
 - (ii) For some homogeneous sequence p₁,..., p_ℓ in A₊, A₊ is the radical of the ideal generated by p₁,..., p_ℓ.
 - (iii) Suppose that A_+ is the radical of AB_+ . Then for some homogeneous sequence p_1, \ldots, p_ℓ in B_+, A_+ is the radical of the ideal generated by p_1, \ldots, p_ℓ .

Proof. (i) Prove by induction on *j* that for some homogeneous element p_j of A_+ , p_j is not in the union of $\mathfrak{p}_1, \ldots, \mathfrak{p}_j$. Since \mathfrak{p}_1 is a graded ideal strictly contained in A_+ , it is true for j = 1. Suppose that it is true for j - 1. If p_{j-1} is not in \mathfrak{p}_j , there is nothing to prove. Suppose that p_{j-1} is in \mathfrak{p}_j . According to the hypothesis, \mathfrak{p}_j is strictly contained in A_+ and it does not contain the intersection of $\mathfrak{p}_1, \ldots, \mathfrak{p}_{j-1}$. So, since $\mathfrak{p}_1, \ldots, \mathfrak{p}_j$ are graded ideals, for some homogeneous sequence r, q in A_+ ,

$$r \in \bigcap_{k=1}^{j-1} \mathfrak{p}_k \setminus \mathfrak{p}_j, \text{ and } q \in A_+ \setminus \mathfrak{p}_j$$

Denoting by *m* and *n* the respective degrees of p_{j-1} and rq, $p_{j-1}^n + (rq)^m$ is homogeneous of degree *mn* and it is not in p_1, \ldots, p_j since these ideals are prime.

¹Since the Lie algebra g does not appear in this section, there will be no possible confusion between ℓ and the rank of g, denoted ℓ , in the introduction too. However, the notation will be justified in the next sections.

(ii) Prove by induction on *i* that for some homogeneous sequence p_1, \ldots, p_i in A_+ , the minimal prime ideals of *A* containing p_1, \ldots, p_i have height *i*. Let p_1 be in $A_+ \setminus \{0\}$. By [Ma86, Ch. 5, Theorem 13.5], all minimal prime ideal containing p_1 has height 1. Suppose that it is true for i - 1. Let $\mathfrak{p}_1, \ldots, \mathfrak{p}_m$ be the minimal prime ideals containing p_1, \ldots, p_{i-1} . Since A_+ has height $\ell > i - 1$, A_+ strictly contains $\mathfrak{p}_1, \ldots, \mathfrak{p}_m$. By (i), there exists a homogeneous element p_i in A_+ not in the union of $\mathfrak{p}_1, \ldots, \mathfrak{p}_m$. Then, by [Ma86, Ch. 5, Theorem 13.5], the minimal prime ideals containing p_1, \ldots, p_i have height *i*. For $i = \ell$, the minimal prime ideals containing p_1, \ldots, p_ℓ have height ℓ . Hence they are equal to A_+ since A_+ is a prime ideal of height ℓ containing p_1, \ldots, p_ℓ , whence the assertion.

(iii) The ideal AB_+ is generated by a homogeneous sequence a_1, \ldots, a_m in B_+ . Denote by B' the subalgebra of A generated by a_1, \ldots, a_m . Then B' is a finitely generated graded subalgbera of A such that A_+ is the radical of AB'_+ . If $R = \Bbbk$, denote by d its dimension and if $t \in R$, denote by d + 1 its dimension. By (ii), for some homogeneous sequence p_1, \ldots, p_d in B'_+ , B'_+ is the radical of the ideal generated by p_1, \ldots, p_d . Then A_+ is the radical of the ideal of A generated by p_1, \ldots, p_d . Then A_+ is the radical of the ideal of A generated by p_1, \ldots, p_d . Since A_+ has height $\ell, \ell \leq d$ by [Ma86, Ch. 5, Theorem 3.5]. Since B' is a subalgebra of A, its dimension is at most dim A. Hence $d = \ell$.

Proposition 2.2. Suppose that A_+ is the radical of AB_+ . Then B is finitely generated and A is a finite extension of B.

Proof. Since *A* is a noetherian ring, for some homogeneous sequence a_1, \ldots, a_m in B_+, AB_+ is the ideal generated by this sequence. Denote by *C* the *R*-subalgebra of *A* generated by a_1, \ldots, a_m . Then *C* is a graded subalgebra of *A*. Denote by π the morphism

$$\operatorname{Specm}(A) \xrightarrow{\pi} \operatorname{Specm}(C)$$

whose comorphism is the canonical injection $C \hookrightarrow A$. Let \overline{A} and \overline{C} be the respective integral closures of A and C in K(A). Since C is contained in A, \overline{C} is contained in \overline{A} . Let α and β be the morphisms

 $\operatorname{Specm}(\overline{A}) \xrightarrow{\alpha} \operatorname{Specm}(A) \quad \text{and} \quad \operatorname{Specm}(\overline{C}) \xrightarrow{\beta} \operatorname{Specm}(C)$

whose comorphisms are the canonical injections $A \hookrightarrow \overline{A}$ and $C \hookrightarrow \overline{C}$ respectively. Then there is a commutative diagram

with $\overline{\pi}$ the morphism whose comorphism is the canonical injection $\overline{C} \to \overline{A}$.

6

The action of G_m in A extends to an action of K(A), and \overline{A} is invariant under this action. Denoting by \overline{R} the integral closure of R in K(A), \overline{R} is the set of fixed points under the action of G_m in \overline{A} . Since C is invariant under G_m so is \overline{C} . For \mathfrak{m} a maximal ideal of \overline{R} , the ideal $\mathfrak{m} + \overline{C}_+$ is the maximal ideal of \overline{C} containing \mathfrak{m} and invariant under G_m . Then, for \mathfrak{p} a maximal ideal of \overline{C} , $\mathfrak{p} \cap \overline{R} + \overline{C}_+$ is in the closure of the orbit of \mathfrak{p} under G_m . Moreover,

$$\{\mathfrak{m} + \overline{A}_+\} = \overline{\pi}^{-1}\{\mathfrak{m} + \overline{C}_+\}$$

for all maximal ideal m of \overline{R} . Hence $\overline{\pi}$ is quasi finite. Moreover $\overline{\pi}$ is birational. Then, by Zariski's main theorem [Mu88], $\overline{\pi}$ is an open immersion. The image of $\overline{\pi}$ contains fixed points for the G_m-action, and the closure of each G_m-orbit contains fixed points. As a result, $\overline{\pi}$ is surjective since it is G_m-equivariant. Hence $\overline{\pi}$ is an isomorphism and $\overline{A} = \overline{C}$. As a result, \overline{A} is a finite extension of *C* since β is a finite morphism. As submodules of the finite module \overline{A} over the noetherian ring *C*, *A* and *B* are finite *C*-modules. Hence *A* is a finite extension of *B*. Denoting by $\omega_1, \ldots, \omega_d$ a generating family of the *C*-module *B*, *B* is the subalgebra of *A* generated by $a_1, \ldots, a_m, \omega_1, \ldots, \omega_d$.

Denote by $k[t]_*$ the localization of k[t] at the prime ideal tk[t] and set:

 $R_* := \begin{cases} \mathbb{k} & \text{if } R = \mathbb{k} \\ \mathbb{k}[t]_* & \text{if } R = \mathbb{k}[t] \\ \mathbb{k}[[t]] & \text{if } R = \mathbb{k}[[t]] \end{cases} \qquad \widehat{R} := \begin{cases} \mathbb{k} & \text{if } R = \mathbb{k} \\ \mathbb{k}[[t]] & \text{if } R = \mathbb{k}[[t]] \\ \mathbb{k}[[t]] & \text{if } R = \mathbb{k}[[t]]. \end{cases}$

For *M* a *R*-module, set $\widehat{M} := \widehat{R} \otimes_R M$.

Lemma 2.3. Suppose $R = \Bbbk[t]$. Let M be a torsion free R-module and let N be a submodule of M. Then for a in $\widehat{N} \cap M$, ra is in N for some r in R such that $r(0) \neq 0$.

Proof. Since *M* is torsion free, the canonical map $M \to \widehat{M}$ is an embedding. Moreover, the canonical map $\widehat{N} \to \widehat{M}$ is an embedding since \widehat{R} is flat over *R*. Let *a* be in $\widehat{N} \cap M$ and let \overline{a} be its image in M/N by the quotient map. Denote by J_a the annihilator of \overline{a} in *R*, whence a commutative diagram

with exact lines and columns. Since \widehat{R} is a flat extension of *R*, tensoring this diagram by *R* gives the following diagram with exact lines and columns:

For b in \widehat{R} , $(\delta \circ d)b = (d \circ \delta)b = 0$ since a is in \widehat{N} , whence db = 0. As a result, $\widehat{R}J_a = \widehat{R}$. Hence J_a contains an element r, invertible in \widehat{R} , that is $r(0) \neq 0$, whence the lemma.

Set

$$A_* := R_* \otimes_R A$$
 and $A := R \otimes_R A$.

Since $A^{[0]} = R$, the grading on A extends to gradings on A_* and \widehat{A} such that $A^{[0]}_* = R_*$ and $\widehat{A}^{[0]} = \widehat{R}$. When $R = \Bbbk$ or $R = \Bbbk[[t]]$, $A_* = A$ and $\widehat{A} = A$.

For p_1, \ldots, p_ℓ a homogeneous sequence in A_+ set:

$$\underline{p} := \begin{cases} p_1, \dots, p_\ell & \text{if } R = \Bbbk \\ t, p_1, \dots, p_\ell & \text{if } R = \Bbbk[[t]], \end{cases}$$

and denote by J_p the ideal of A generated by the sequence p.

Lemma 2.4. Suppose that A is Cohen-Macaulay. Let p_1, \ldots, p_ℓ be a homogeneous sequence in A_+ such that A_+ is the radical of the ideal of A generated by p_1, \ldots, p_ℓ and let V be a graded complement in A to the k-subspace J_p .

- (i) The space V has finite dimension.
- (ii) The space A_* is equal to $VR_*[p_1, \ldots, p_\ell]$.
- (iii) The algebra A is a flat extension of $R[p_1, \ldots, p_\ell]$.
- (iv) For all homogeneous elements a₁,..., a_n in A, linearly independent over k modulo J_p, a₁,..., a_n are linearly independent over R[p₁,..., p_ℓ].
- (v) *The linear map*

 $V \otimes_{\Bbbk} R_*[p_1, \dots, p_\ell] \longrightarrow A_*, \qquad v \otimes a \longmapsto va$

is an isomorphism.

Proof. According to Lemma 2.1(ii), the sequence p does exist.

(i) Let J_p be the ideal of A generated by p_1, \ldots, p_ℓ . Since A_+ is the radical of J_p , $A^{[d]} = J_p^{[d]}$ for d sufficiently big. When $t \in R$, for all d, then $tA^{[d]}$ has finite codimension in $A^{[d]}$ since $A^{[d]}$ is a finite free R-module. Hence J_p has finite codimension in A so that V has finite dimension.

(ii) Suppose that t is in R. First of all, we prove by induction on d the inclusion

$$A^{[d]} \subset (VR[p_1, \dots, p_\ell])^{[d]} + tA^{[d]}$$

Since $A^{[0]}$ is the direct sum of $V^{[0]}$ and $J^{[0]}_{\underline{p}}$, $V^{[0]}$ is contained in $\Bbbk + tR$, whence the inclusion for d = 0. Suppose that it is true for all j smaller than d. Since p_1, \ldots, p_ℓ have positive degrees, by induction hypothesis,

$$J_{\underline{p}}^{[d]} \subset (VR[p_1,\ldots,p_\ell])^{[d]} + tA^{[d]},$$

whence the inclusion for d. Then, by induction on m,

$$A^{[d]} \subset (VR[p_1, \dots, p_\ell])^{[d]} + t^m A^{[d]}$$

As a result, since $A^{[d]}$ is a finite *R*-module,

$$A^{[d]} \subset (V\widehat{R}[p_1,\ldots,p_\ell])^{[d]},$$

whence $\widehat{A} = V\widehat{R}[p_1, \dots, p_\ell]$. This equality remains true when $R = \Bbbk$ by an analogous and simpler argument.

When $R = \Bbbk[t]$, according to Lemma 2.3, for *a* in *A*, *ra* is in $VR[p_1, \ldots, p_\ell]$ for some *r* in *R* such that $r(0) \neq 0$. As a result, $A_* = VR_*[p_1, \ldots, p_\ell]$.

(iii) By Proposition 2.2, *A* is a finite extension of $R[p_1, \ldots, p_\ell]$. In particular, $R[p_1, \ldots, p_\ell]$ has dimension ℓ + dim *R* so that p_1, \ldots, p_ℓ are algebraically independent over *R*. Hence $R[p_1, \ldots, p_\ell]$ is a regular algebra, whence the assertion by [Ma86, Ch. 8, Theorem 23.1].

(iv) Prove the assertion by induction on *n*. Since *A* is an integral domain, the assertion is true for n = 1. Suppose the assertion true for n - 1. Let (b_1, \ldots, b_n) be a homogeneous sequence in $R[p_1, \ldots, p_\ell]$ such that

$$b_1a_1+\cdots+b_na_n=0.$$

Let *K* and *I* be the kernel and the image of the linear map

$$R[p_1,\ldots,p_\ell]^n \longrightarrow R[p_1,\ldots,p_\ell], \qquad (c_1,\ldots,c_n) \longmapsto c_1b_1 + \cdots + c_nb_n,$$

whence the short exact sequence of $R[p_1, \ldots, p_\ell]$ modules

$$0 \longrightarrow K \longrightarrow R[p_1, \dots, p_\ell]^n \longrightarrow I \longrightarrow 0.$$

The grading of $R[p_1, \ldots, p_\ell]$ induces a grading of $R[p_1, \ldots, p_\ell]^n$ and K is a graded submodule of $R[p_1, \ldots, p_\ell]^n$ since b_1, \ldots, b_n is a homogeneous sequence in $R[p_1, \ldots, p_\ell]$. Denote by y_1, \ldots, y_m a generating homogeneous sequence of the $R[p_1, \ldots, p_\ell]$ module K. By (iii), the short sequence of A-modules

$$0 \longrightarrow A \otimes_{R[p_1, \dots, p_\ell]} K \longrightarrow A^n \longrightarrow A \otimes_{R[p_1, \dots, p_\ell]} I \longrightarrow 0$$

is exact. So, for some homogeneous sequence x_1, \ldots, x_m in A,

$$a_i = \sum_{j=1}^m x_j y_{j,i}$$

for i = 1, ..., n. Since a_n is not in J_p , for some j_* , the element $y_{j_*,i}$ is an invertible element of R_* , whence

$$b_n y_{j_*,n} = -\sum_{i=1}^{n-1} b_i y_{j_*,i}$$
 and $\sum_{i=1}^{n-1} b_i (y_{j_*,n} a_i - a_n y_{j_*,i}) = 0.$

So, by induction hypothesis,

$$b_1 = \cdots = b_{n-1} = 0$$

since the elements

$$y_{j_*,n}a_1 - a_n y_{j_*,1}, \ldots, y_{j_*,n}a_{n-1} - a_n y_{j_*,n-1}$$

are linearly independent over k modulo J_p . Then $b_n = 0$ since $y_{j_k,n}$ is invertible.

(v) Let (v_1, \ldots, v_n) be a homogeneous basis of *V*. Since the space of relations of linear dependence over $R[p_1, \ldots, p_\ell]$ of v_1, \ldots, v_n is graded, it is equal to {0} by (iv), whence the assertion by (ii).

- **Corollary 2.5.** (i) The algebra A_* is Cohen-Macaulay if and only if for some homogeneous sequence p_1, \ldots, p_ℓ in A_+ , the algebra A_* is a finite free extension of $R_*[p_1, \ldots, p_\ell]$.
 - (ii) Suppose that A_{*} is Cohen-Macaulay. For a homogeneous sequence q₁,..., q_ℓ in A₊, A_{*} is a finite free extension of R_{*}[q₁,..., q_ℓ] if and only if R_{*}A₊ is the radical of the ideal of A_{*} generated by q₁,..., q_ℓ.

Proof. (i) The "only if" part results from Lemma 2.4(v). Suppose that for some homogeneous sequence p_1, \ldots, p_ℓ in A_+ , the algebra A_* is a finite free extension of $R_*[p_1, \ldots, p_\ell]$. In particular, $R_*[p_1, \ldots, p_\ell]$ is a polynomial algebra over R_* since A_* has dimension dim A. Let \mathfrak{p} be a prime ideal of A_* and let \mathfrak{q} be its intersection with $R_*[p_1, \ldots, p_\ell]$. Denote by $A_\mathfrak{p}$ and $R[p_1, \ldots, p_\ell]_\mathfrak{q}$ the localizations of A_* and $R_*[p_1, \ldots, p_\ell]$ at \mathfrak{p} and \mathfrak{q} respectively. Since A_* is a finite extension of $R_*[p_1, \ldots, p_\ell]$, these local rings have the same dimension. Denote by d this dimension. By flatness, any regular sequence a_1, \ldots, a_d in $R[p_1, \ldots, p_\ell]_\mathfrak{q}$ is regular in $A_\mathfrak{p}$ so that $A_\mathfrak{p}$ is Cohen-Macaulay. Hence A_* is Cohen-Macaulay.

(ii) The "only if" part results from (i) and Proposition 2.2. Suppose that A_* is a finite free extension of $R_*[q_1, \ldots, q_\ell]$. Let \mathfrak{p} be a minimal prime ideal of A_* containing q_1, \ldots, q_ℓ and let \mathfrak{q} be its intersection with $R_*[q_1, \ldots, q_\ell]$. Then \mathfrak{q} is generated by q_1, \ldots, q_ℓ . In particular it has height ℓ . So \mathfrak{p} has height ℓ since A_* is a finite extension of $R_*[q_1, \ldots, q_\ell]$. As a result, $\mathfrak{p} = R_*A_+$ since R_*A_+ is a prime ideal of height ℓ , containing q_1, \ldots, q_ℓ , whence the assertion.

Recall that *B* is a graded subalgebra of *A*. Set $B_* := R_* \otimes_R B$ and for p a prime ideal of *B*, denote by B_p its localization at p.

Proposition 2.6. Suppose that the following conditions are satisfied:

(1) B is normal,

- (2) A_+ is the radical of AB_+ ,
- (3) A is Cohen-Macaulay.
- (i) Let p₁,..., p_ℓ be a homogeneous sequence in B₊ such that B₊ is the radical of the ideal of B generated by this sequence. Then for some graded subspace V of A, having finite dimension, the linear morphisms

 $V \otimes_{\Bbbk} R_*[p_1, \ldots, p_\ell] \longrightarrow A_*, \qquad v \otimes a \longmapsto va,$

 $(V \cap B) \otimes_{\Bbbk} R_*[p_1, \ldots, p_\ell] \longrightarrow B_*, \qquad v \otimes a \longmapsto va$

are isomorphisms.

- (ii) If R = k or R = k[[t]], the algebra B_* is Cohen-Macaulay.
- (iii) For \mathfrak{p} prime ideal of B, containing t, the local ring $B_{\mathfrak{p}}$ is Cohen-Macaulay.

Proof. (i) By Proposition 2.2 and by Condition (2), *B* is finitely generated and *A* is a finite extension of *B*. By Condition (2) and by Lemma 2.1(iii), for some homogeneous sequence p_1, \ldots, p_ℓ in B_+, A_+ is the radical of the ideal generated by p_1, \ldots, p_ℓ .

Let \underline{p} be as in Lemma 2.4. Denote by m the degree of the extension K(A) of K(B). For a in $A_* \subset K(A)$, set:

$$a^{\#} := \frac{1}{m} \mathrm{tr} \, a$$

with tr := tr_{*K*(*A*)/*K*(*B*)} the trace map. By Condition (1), *B*_{*} is normal and the map $a \mapsto a^{\#}$ is a projection from *A*_{*} onto *B*_{*} whose restriction to *A* is a projection onto *B*. Moreover, it is a graded morphism of *B*-modules. Let *M* be its kernel. Let *J*₀ and *J* be the ideals of *B* and *A* generated by *p* respectively. Since *t*, *p*₁,..., *p*_ℓ are in *B*, *J* is the direct sum of *J*₀ and *MJ*₀. Let V_0 be a graded complement in *B* to the k-space *J*₀ and let *V*₁ be a graded complement in *A* to the k-space *MJ*₀. Setting $V := V_0 + V_1$, *V* is a graded complement in *A* to the k-space *J*. By Condition (3) and Lemma 2.4, *V* has finite dimension and the linear map

$$V \otimes_{\Bbbk} R_*[p_1, \dots, p_\ell] \longrightarrow A_*, \qquad v \otimes a \longmapsto va$$

is an isomorphism. So, since $V_0 = V^{\#}$, the linear map

$$V_0 \otimes_{\Bbbk} R_*[p_1, \dots, p_\ell] \longrightarrow B_*, \qquad v \otimes a \longmapsto va$$

is an isomorphism, whence the assertion.

(ii) results from (i) and Corollary 2.5.

(iii) By (i) and Corollary 2.5, A_* is Cohen-Macaulay. For p a prime ideal of *B*, containing *t*, B_p is the localization of B_* at the prime ideal B_*p , whence the assertion by (ii).

2.2. In this subsection $R = \Bbbk[t]$. Then $\widehat{R} = \Bbbk[[t]]$. For *M* a graded module over *R* such that $M^{[j]}$ is a free submodule of finite rank for all *j*, we denote by $P_{M,R}(T)$ its Hilbert series:

$$P_{M,R}(T) := \sum_{j \in \mathbb{N}} \operatorname{rk} M^{[j]} T^{j}.$$

For V a graded space over \Bbbk such that $V^{[j]}$ has finite dimension, we denote by $P_{V,\Bbbk}(T)$ its Hilbert series:

$$P_{V,\Bbbk}(T) := \sum_{j \in \mathbb{N}} \dim V^{[j]} T^j.$$

Let *S* be a graded polynomial algebra over \Bbbk such that $S^{[0]} = \Bbbk$ and $S^{[j]}$ has finite dimension for all *j*. Consider on *S*[*t*] and *S*[[*t*]] the gradings extending that of *S* and such that *t* has degree 0. Consider the following conditions on *A*:

- (C1) A is graded subalgebra of S[t],
- (C2) for some homogeneous sequence a_1, \ldots, a_ℓ in $A_+, A = \Bbbk[t, t^{-1}, a_1, \ldots, a_\ell] \cap S[t]$,
- (C3) A is Cohen-Macaulay.

If the condition (C2) holds, then $A[t^{-1}] = R[a_1, ..., a_\ell][t^{-1}]$. Moreover, if so, since *A* has dimension $\ell + 1$, then the elements $t, a_1, ..., a_\ell$ are algebraically independent over \Bbbk . Set $\widehat{A} := \widehat{R} \otimes_R A$.

Lemma 2.7. Assume that the conditions (C1) and (C2) hold.

- (i) The element t is a prime element of A.
- (ii) The algebra A is a factorial ring.
- (iii) The Hilbert series of the R-module A is equal to

$$P_{A,R}(T) = \prod_{i=1}^{\ell} \frac{1}{1 - T^{d_i}},$$

with d_1, \ldots, d_ℓ the degrees of a_1, \ldots, a_ℓ respectively.

Proof. (i) Let *a* and *b* be in *A* such that *ab* is in *tA*. Since *tS*[*t*] is a prime ideal of *S*[*t*], *a* or *b* is in *tS*[*t*]. Suppose a = ta' for some *a'* in *S*[*t*]. Then *a'* is in *A*[*t*⁻¹]. By Condition (C2), *A*[*t*⁻¹] = *R*[*a*₁,...,*a*_{*l*}][*t*⁻¹]. Hence *a'* is in *A* by Condition (C2) again. As a result, *At* is a prime ideal of *A*.

(ii) Since A is finitely generated, it suffices to prove that all prime ideal of height 1 is principal by [Ma86, Ch. 7, Theorem 20.1]. Let \mathfrak{p} be a prime ideal of height 1. If t is in \mathfrak{p} , then $\mathfrak{p} = At$ by (i). Suppose that t is not in \mathfrak{p} and set $\overline{\mathfrak{p}} = A[t^{-1}]\mathfrak{p}$. Then $\overline{\mathfrak{p}}$ is a prime ideal of height 1 of $R[a_1, \ldots, a_\ell][t^{-1}]$ by Condition (C2). For a in $\overline{\mathfrak{p}}$, $t^m a$ is in \mathfrak{p} for some nonnegative integer m. Hence

$$\mathfrak{p} = \overline{\mathfrak{p}} \cap A$$

since p is prime. As a polynomial ring over the principal ring $\mathbb{k}[t, t^{-1}]$, the ring $R[a_1, \ldots, a_\ell][t^{-1}]$ is a factorial ring. Then \overline{p} is generated by an element a in p. Since S is a polynomial ring, S[t] is a factorial ring. So, for some nonnegative integer m and for some a' in S[t], prime to $t, a = t^m a'$. By Condition (C2), a' is in A. Then a' is an element of p, generating \overline{p} and not divisible by t in A. Let b and c be in A such that bc is in Aa'. Then b or c is in $A[t^{-1}]a'$. Suppose b in $A[t^{-1}]a'$. So, for some l in \mathbb{N} , $t^l b = b'a'$ for some b' in A. We choose l minimal satisfying this condition. By (i), since a' is not divisible by t in A, b' is divisible by t in A if l > 0. By minimality of l, l = 0 and b is in Aa'. As a result, Aa' is a prime ideal and p = Aa' since p has height 1.

(iii) By Condition (C2),

$$A[t^{-1}] = \Bbbk[t, t^{-1}] \otimes_{\Bbbk} \Bbbk[a_1, \dots, a_\ell] \quad \text{whence} \quad \operatorname{rk} A^{[d]} = \dim \Bbbk[a_1, \dots, a_\ell]^{[d]}$$

for all nonnegative integer d. Since a_1, \ldots, a_ℓ are algebraically independent over \Bbbk ,

$$P_{\Bbbk[a_1,...,a_\ell],\Bbbk}(T) = \prod_{i=1}^{\ell} \frac{1}{1 - T^{d_i}},$$

whence the assertion.

Let p_1, \ldots, p_ℓ be a homogeneous sequence in *A* such that A_+ is the radical of the ideal of *A* generated by this sequence. By Lemma 2.1(ii), such a sequence does exist. Denote by *C* the integral closure of $k[p_1, \ldots, p_\ell]$ in $k(t, a_1, \ldots, a_\ell)$.

Lemma 2.8. Assume that the conditions (C1), (C2) and (C3) hold.

- (i) The algebra C is a graded subalgebra of A and t is not algebraic over C.
- (ii) The algebra C is Cohen-Macaulay. Moreover, C is a finite free extension of $\Bbbk[p_1, \ldots, p_\ell]$.
- (iii) The algebra C + tA is normal.

Proof. (i) By Lemma 2.7(ii), *A* is a normal ring such that $K(A) = \Bbbk(t, a_1, ..., a_\ell)$ by Condition (C2). Then *C* is contained in *A* since $\Bbbk[p_1, ..., p_\ell]$ is contained in *A*. Moreover, *C* is a graded algebra since so is $\Bbbk[p_1, ..., p_\ell]$. By Proposition 2.2, *A* is a finite extension of $R[p_1, ..., p_\ell]$. So, since *A* has dimension $\ell + 1$, the elements $t, p_1, ..., p_\ell$ are algebraically independent over \Bbbk . As a result, *t* is not algebraic over *C*.

(ii) By (i), $C[[t]] = C \otimes_{\Bbbk} \Bbbk[[t]]$ so that C[[t]] is a flat extension of $\Bbbk[[t]]$. Moreover, *C* is the quotient of C[[t]] by tC[[t]]. As *C* and $\Bbbk[[t]]$ are normal rings, C[[t]]is a normal ring by [Ma86, Ch. 8, Corollary of Theorem 23.9]. By definition, A_+ is the radical of the ideal of *A* generated by p_1, \ldots, p_ℓ . As $\Bbbk[[t]]$ is a flat extension of $\Bbbk[t]$, from the short exact sequence

$$0 \longrightarrow A_{+} \longrightarrow A \longrightarrow \Bbbk[t] \longrightarrow 0$$

we deduce the short exact sequence

 $0 \longrightarrow \widehat{A}_+ \longrightarrow \widehat{A} \longrightarrow \Bbbk[[t]] \longrightarrow 0 \ .$

Hence \widehat{A}_+ is a prime ideal. As A_+ is the radical of the ideal generated by the sequence p_1, \ldots, p_ℓ , \widehat{A}_+ is contained in the radical of $AC[[t]]_+$. Then, by (i), \widehat{A}_+ is the radical of $AC[[t]]_+$. Since \widehat{R} is a flat extension of R, the algebra \widehat{A} is Cohen-Macaulay by Condition (C3). Then, by Proposition 2.6(ii), C[[t]] is Cohen-Macaulay. Let V be a graded complement in C to the ideal of C generated by p_1, \ldots, p_ℓ . Since t is not algebraic over C, the space V is a complement in C[t] to the ideal of C[t] generated by t, p_1, \ldots, p_ℓ . Then, by Lemma 2.4, V has finite dimension and the linear morphism

 $V \otimes_{\Bbbk} R_*[p_1, \ldots, p_\ell] \longrightarrow R_*C, \qquad v \otimes a \longmapsto va$

is an isomorphism. As a result, the linear morphism

$$V \otimes_{\Bbbk} \Bbbk[p_1, \ldots, p_\ell] \longrightarrow C, \qquad v \otimes a \longmapsto va$$

is an isomorphism, whence the assertion by Corollary 2.5(ii).

(iii) Set $\tilde{A} := C + tA$. At first, \tilde{A} is a graded subalgebra of A since C is a graded algebra and tA is a graded ideal of A. According to Proposition 2.6(i), for some graded subspace V of A, having finite dimension, the linear morphisms

$$V \otimes_{\Bbbk} R_*[p_1, \dots, p_\ell] \longrightarrow A_*, \qquad v \otimes a \longmapsto va,$$
$$(V \cap C[t]) \otimes_{\Bbbk} R_*[p_1, \dots, p_\ell] \longrightarrow R_*C, \qquad v \otimes a \longmapsto va$$

are isomorphisms. Let v_1, \ldots, v_n be a basis of V such that v_1, \ldots, v_m is a basis of $V \cap C[t]$. For a in A_* , the element a has unique expansion

$$a = v_1 a_1 + \dots + v_n a_n$$

with a_1, \ldots, a_n in $R_*[p_1, \ldots, p_\ell]$. If *a* is in tA_* , a_1, \ldots, a_n are in $tR_*[p_1, \ldots, p_\ell]$ and if *a* is in R_*C , a_1, \ldots, a_m are in $\Bbbk[p_1, \ldots, p_\ell]$ and a_{m+1}, \ldots, a_n are equal to 0, whence $R_*C \cap tA_* = tR_*C$ and $C \cap tA = \{0\}$. In particular, *C* is the quotient of \tilde{A} by $t\tilde{A}$.

For \mathfrak{p} a prime ideal of \tilde{A} , denote by $\tilde{A}_{\mathfrak{p}}$ the localization of \tilde{A} at \mathfrak{p} . If t is not in \mathfrak{p} , then $A[t^{-1}]$ is contained in $\tilde{A}_{\mathfrak{p}}$ so that $\tilde{A}_{\mathfrak{p}}$ is a localization of the regular algebra $R[a_1, \ldots, a_\ell][t^{-1}]$ by Condition (C2). Hence $\tilde{A}_{\mathfrak{p}}$ is a regular local algebra. Suppose that t is in \mathfrak{p} . Denote by $\overline{\mathfrak{p}}$ the image of \mathfrak{p} in C by the quotient map. Then $\tilde{A}_{\mathfrak{p}}/t\tilde{A}_{\mathfrak{p}}$ is the localization $C_{\overline{\mathfrak{p}}}$ of C at the prime ideal $\overline{\mathfrak{p}}$. Since C is Cohen-Macaulay, so are $C_{\overline{\mathfrak{p}}}$ and $\tilde{A}_{\mathfrak{p}}$. As a result, \tilde{A} is Cohen-Macaulay.

Let \mathfrak{p} be a prime ideal of height 1 of \tilde{A} . If t is not in \mathfrak{p} , $\tilde{A}_{\mathfrak{p}}$ is a regular local algebra as it is already mentioned. Suppose that t is in \mathfrak{p} . By Lemma 2.7(i), $t\tilde{A} = \mathfrak{p}$ so that all element of $C \setminus \{0\}$ is invertible in $\tilde{A}_{\mathfrak{p}}$, whence

$$\tilde{A}_{\mathfrak{p}} = K(C) + t\tilde{A}_{\mathfrak{p}}$$
 and $t\tilde{A}_{\mathfrak{p}} = tK(C) + t^2\tilde{A}_{\mathfrak{p}}$.

Hence $\tilde{A}_{\mathfrak{p}}$ is a regular local ring of dimension 1. As a result, \tilde{A} is regular in codimension 1. Then, by Serre's normality criterion [B98, §1, n°10, Théorème 4], \tilde{A} is normal since \tilde{A} is Cohen-Macaulay.

Corollary 2.9. Assume that the conditions (C1), (C2) and (C3) hold.

- (i) The algebra \widehat{A} is equal to C[[t]].
- (ii) For a in A, the element ra is in C[t] for some r in k[t] such that $r(0) \neq 0$.

Proof. (i) Since *tA* is contained in *A*, we have $K(A) = K(\tilde{A})$. Since C_+ is contained in \tilde{A}_+ , A_+ is the radical of $A\tilde{A}_+$. Then, by Proposition 2.2, *A* is a finite extension of \tilde{A} . So, by Lemma 2.8(iii), $A = \tilde{A}$ and by induction on *m*,

$$A \subset C[t] + t^m A$$

for all positive integer *m*. Since *A* and *C*[*t*] are graded and since the *R*-module $A^{[d]}$ is finitely generated for all d, $\widehat{A} = C[[t]]$.

(ii) The assertion results from (i) and Lemma 2.3.

Proposition 2.10. Assume that the conditions (C1), (C2) and (C3) hold. Then the algebra A_* is polynomial over R_* . Moreover, for some homogeneous sequence q_1, \ldots, q_ℓ in A_+ such that q_1, \ldots, q_ℓ have degree d_1, \ldots, d_ℓ respectively, $A_* = R_*[q_1, \ldots, q_\ell]$.

Proof. According to Corollary 2.9 and Lemma 2.8(i), it suffices to prove that *C* is a polynomial algebra over k generated by a homogeneous sequence q_1, \ldots, q_ℓ such that q_1, \ldots, q_ℓ have degree d_1, \ldots, d_ℓ respectively. According to Corollary 2.9(i) Lemma 2.8(i) and Lemma 2.7(iii),

$$P_{C,\Bbbk}(T) = \prod_{i=1}^{\ell} \frac{1}{1 - T^{d_i}}.$$

By Corollary 2.9(ii), for $i = 1, ..., \ell$, for some r_i in R such that $r_i(0) \neq 0$, $r_i a_i$ has an expansion

$$r_i a_i = \sum_{m \in \mathbb{N}} c_{i,m} t^m$$

with $c_{i,m}, m \in \mathbb{N}$ in $C^{[d_i]}$, with finite support. For z in \Bbbk and $i = 1, \ldots, \ell$, set:

$$b_i(z) = \sum_{m \in \mathbb{N}} c_{i,m} z^m$$

so that $b_i(z)$ is in $C^{[d_i]}$ for all z. As already mentioned, t, a_1, \ldots, a_ℓ are algebraically independent over k by Condition (C2) since A has dimension $\ell + 1$. Then, so are $t, r_1a_1, \ldots, r_\ell a_\ell$ and for some z in k, $b_1(z), \ldots, b_\ell(z)$ are algebraically independent over k. Denoting by C' the subalgebra of C generated by this sequence,

$$P_{C',\Bbbk}(T) = \prod_{i=1}^{\ell} \frac{1}{1 - T^{d_i}},$$

whence C = C' so that C is a polynomial algebra.

3. Proof of Theorem 1.5

In this section, unless otherwise specified, the grading on $S(g^e)$ is the Slodowy grading.

For *m* a nonnegative integer, $S(g^e)^{[m]}$ denotes the space of degree *m* of $S(g^e)$. We retain the notations of the introduction, in particular of Subsection 1.4.

3.1. Let *R* be the ring $\Bbbk[t]$. As in Section 2, for *M* a graded subspace of $S(g^e)[t] = R \otimes_{\Bbbk} S(g^e)$, its subspace of degree *m* is denoted by $M^{[m]}$. In particular, $S(g^e)[t]^{[m]}$ is equal to $S(g^e)^{[m]}[t]$ and it is a free *R*-module of finite rank. As a result, for all graded *R*-submodule *M* of $S(g^e)[t]$, its Hilbert series is well defined.

For *m* a nonnegative integer, denote by F_m the space of elements of $\kappa(S(g)^g)$ whose component of minimal standard degree is at least *m*. Then F_0, F_1, \ldots is a decreasing filtration of the algebra $\kappa(S(g)^g)$. Let d_1, \ldots, d_ℓ be the standard degrees of a homogeneous generating sequence of $S(g)^g$. We assume that the sequence d_1, \ldots, d_ℓ is increasing.

Recall that *A* is the intersection of $S(g^e)[t]$ with the sub- $k[t, t^{-1}]$ -module of $S(g^e)[t, t^{-1}]$ generated by $\tau \circ \kappa(S(g)^g)$, and that A_+ is the augmentation ideal of *A*.

Lemma 3.1. (i) For *p* a homogeneous element of standard degree *d* in S(g)^g, the element κ(*p*) and ^{*e*}*p* have degree 2*d*.

- (ii) For some homogeneous sequence a₁,..., a_ℓ in A₊, the elements t, a₁,..., a_ℓ are algebraically independent over k, and A is the intersection of S(g^e)[t] with k[t, t⁻¹, a₁,..., a_ℓ].
- (iii) The Hilbert series of the R-algebra A is equal to

$$P_{A,R}(T) = \prod_{i=1}^{\ell} \frac{1}{1 - T^{2d_i}}.$$

(iv) The Hilbert series of the \Bbbk -algebra $\varepsilon(A)$ is equal to

$$P_{\varepsilon(A),\Bbbk}(T) = \prod_{i=1}^{\ell} \frac{1}{1 - T^{2d_i}}.$$

(v) The subalgebra $\varepsilon(A)$ is the graded algebra associated with the filtration F_0, F_1, \ldots

Proof. (i) Let ρ be as in Subsection 1.4. For y in g^f and s in \Bbbk^* ,

$$p(s^{-2}\rho(s)(e+y)) = s^{-2d}p(\rho(s)(e+y)) = s^{-2d}p(e+y)$$

since p is invariant under the one-parameter subgroup ρ . Hence $\kappa(p)$ is homogeneous of degree 2d. Since the monomials x^j are homogeneous, ep has degree 2d.

(ii) Let q_1, \ldots, q_ℓ be a homogeneous generating sequence of $S(g)^g$. By a well known fact (cf. e.g. [CM16, Lemma 4.4(i)]), the morphism

$$G \times (e + \mathfrak{g}^f) \longrightarrow \mathfrak{g}, \qquad (g, x) \longmapsto g(x)$$

is dominant. Then $\kappa(S(g)^g)$ is a polynomial algebra generated by $\kappa(q_1), \ldots, \kappa(q_\ell)$. So, setting $a_i := \tau \circ \kappa(q_i)$ for $i = 1, \ldots, \ell$, the sequence a_1, \ldots, a_ℓ is a homogeneous sequence in A_+ such that

$$\tau \circ \kappa(\mathbf{S}(\mathfrak{g})^{\mathfrak{g}})[t,t^{-1}] = \Bbbk[t,t^{-1},a_1,\ldots,a_\ell].$$

Let $\overline{\tau}$ be the automorphism of $S(g^e)[t, t^{-1}]$ extending τ and such that $\overline{\tau}(t) = t$. Then

$$\tau \circ \kappa(\mathbf{S}(\mathfrak{g})^{\mathfrak{g}})[t,t^{-1}] = \overline{\tau}(\kappa(\mathbf{S}(\mathfrak{g})^{\mathfrak{g}})[t,t^{-1}]).$$

Since $\kappa(S(\mathfrak{g})^{\mathfrak{g}})[t, t^{-1}]$ has dimension $\ell + 1$, $\tau \circ \kappa(S(\mathfrak{g})^{\mathfrak{g}})[t, t^{-1}]$ has dimension $\ell + 1$ too, and t, a_1, \ldots, a_ℓ are algebraically independent over \Bbbk . By definition, $A = S(\mathfrak{g}^e)[t] \cap \tau \circ \kappa(S(\mathfrak{g})^{\mathfrak{g}})[t, t^{-1}]$. Hence

$$A[t^{-1}] = \Bbbk[t, t^{-1}, a_1, \dots, a_\ell]$$
 and $A = S(\mathfrak{g}^e)[t] \cap \Bbbk[t, t^{-1}, a_1, \dots, a_\ell].$

(iii) Since *t* has degree 0, the grading of $S(g^e)[t]$ extends to a grading of $S(g^e)[t, t^{-1}]$ such that for all *m*, its space of degree *m* is equal to $S(g^e)^{[m]}[t, t^{-1}]$. Then for all $\Bbbk[t, t^{-1}]$ -submodule *M* of $S(g^e)[t, t^{-1}]$, *M* has a Hilbert series:

$$P_{M,\Bbbk[t,t^{-1}]}(T) := \sum_{m \in \mathbb{N}} \operatorname{rk} M^{[m]} T^{t}$$

with $M^{[m]}$ the subspace of degree *m* of *M*. From the equality $A[t^{-1}] = \Bbbk[t, t^{-1}, a_1, \dots, a_\ell]$, we deduce

$$P_{A[t^{-1}],\Bbbk[t,t^{-1}]}(T) = \prod_{i=1}^{t} \frac{1}{1 - T^{2d_i}}$$

since for $i = 1, ..., \ell$, the element a_i has degree $2d_i$ by (i). For all *m*, the rank of the *R*-module $A^{[m]}$ is equal to the rank of the $\Bbbk[t, t^{-1}]$ -module $A[t^{-1}]^{[m]}$, whence

$$P_{A,R}(T) = \prod_{i=1}^{\ell} \frac{1}{1 - T^{2d_i}}.$$

(iv) Let *m* be a nonnegative integer. The *R*-module $A^{[m]}$ is free of finite rank and for (v_1, \ldots, v_n) a basis of this module, (tv_1, \ldots, tv_n) is a basis of the *R*-module $tA^{[m]}$. Since $\varepsilon(A)^{[m]}$ is the quotient of $A^{[m]}$ by $tA^{[m]}$,

$$\dim \varepsilon(A)^{[m]} = n = \operatorname{rk} A^{[m]},$$

whence the assertion by (iii).

(v) Let $\operatorname{gr}_F A$ be the graded algebra associated with the filtration F_0, F_1, \ldots of $\kappa(\operatorname{S}(\mathfrak{g})^{\mathfrak{g}})$. Denote by $a \mapsto a(1)$ the evaluation map at t = 1 from $\operatorname{S}(\mathfrak{g}^e)[t]$ to $\operatorname{S}(\mathfrak{g}^e)$. For a in A such that $\varepsilon(a) \neq 0$, a(1) is in $\kappa(\operatorname{S}(\mathfrak{g})^{\mathfrak{g}})$ and $\varepsilon(a)$ is the component of minimal degree of a(1) with respect to the standard grading, whence $\varepsilon(A) \subset \operatorname{gr}_F A$. Conversely, let \overline{a} be a homogeneous element of degree m of $\operatorname{gr}_F A$ and let a be a representative of \overline{a} in F_m . Then $\tau(a) = t^m b$ with b in A such that $\varepsilon(b) = \overline{a}$, whence $\operatorname{gr}_F A \subset \varepsilon(A)$ and the assertion.

Let R_* be the localization of R at the prime ideal tR and set

$$\widehat{R} := \Bbbk[[t]], \qquad A_* := R_* \otimes_R A, \qquad \widehat{A} := \widehat{R} \otimes_R A.$$

The grading of A extends to gradings on A_* and \widehat{A} such that $A_*^{[0]} = R_*$ and $\widehat{A}^{[0]} = \widehat{R}$.

- **Proposition 3.2.** (i) The algebra $\varepsilon(A)$ is polynomial if and only if for some standard homogeneous generating sequence q_1, \ldots, q_ℓ of $S(g)^g$, the elements ${}^eq_1, \ldots, {}^eq_\ell$ are algebraically independent over \Bbbk . Moreover, in this case, A is a polynomial algebra.
 - (ii) If A_{*} is a polynomial algebra over R_{*}, then for some homogeneous sequence p₁,..., p_ℓ in A₊, we have A_{*} = R_{*}[p₁,..., p_ℓ], the elements t, p₁,..., p_ℓ are algebraically independent over k and p₁,..., p_ℓ have degree 2d₁,..., 2d_ℓ respectively.

Proof. (i) Let q_1, \ldots, q_ℓ be a homogeneous generating sequence of $S(g)^g$ such that ${}^eq_1, \ldots, {}^eq_\ell$ are algebraically independent over k. We can assume that for $i = 1, \ldots, \ell, q_i$ has standard degree d_i . For $i = 1, \ldots, \ell, {}^eq_i$ has degree $2d_i$ by Lemma 3.1(i), and we set

$$Q_i := t^{-2d_i} \tau \circ \kappa(q_i)$$

Then Q_i , for $i = 1, ..., \ell$, is in A by definition of A. For $\mathbf{i} = (i_1, ..., i_\ell)$ in \mathbb{N}^ℓ , set:

$$q^{\mathbf{i}} := q_{1}^{i_{1}} \cdots q_{\ell}^{i_{\ell}}, \qquad Q^{\mathbf{i}} := Q_{1}^{i_{1}} \cdots Q_{\ell}^{i_{\ell}}, \qquad {}^{e}q^{\mathbf{i}} := {}^{e}q_{1}^{i_{1}} \cdots {}^{e}q_{\ell}^{i_{\ell}},$$
$$|\mathbf{i}|_{\min} := 2i_{1}d_{1} + \cdots + 2i_{\ell}d_{\ell}.$$

Then, for all **i** in \mathbb{N}^{ℓ} ,

$$\tau \circ \kappa(q^{\mathbf{i}}) = t^{|\mathbf{i}|_{\min}} Q^{\mathbf{i}}.$$

Moreover,

$$\tau \circ \kappa(\mathbf{S}(\mathfrak{g})^{\mathfrak{g}})[t,t^{-1}] = \Bbbk[t,t^{-1},Q_1,\ldots,Q_\ell]$$

Let *a* be in *A*. For some *l* in \mathbb{N} and for some sequence $c_{\mathbf{i},m}$, $(\mathbf{i}, m) \in \mathbb{N}^{\ell} \times \mathbb{N}$ in \Bbbk , of finite support,

$$t^{l}a = \sum_{(\mathbf{i},m)\in\mathbb{N}^{\ell}\times\mathbb{N}} c_{\mathbf{i},m}t^{m}Q^{\mathbf{i}}$$
 whence $\sum_{\mathbf{i}\in\mathbb{N}^{\ell}} c_{\mathbf{i},m}{}^{e}q^{\mathbf{i}} = 0$

for m < l. Hence *a* is in $R[Q_1, \ldots, Q_\ell]$ since the elements ${}^eq^i$, $i \in \mathbb{N}^\ell$ are linearly independent over k. As a result,

$$A = R[Q_1, \dots, Q_\ell]$$
 and $\varepsilon(A) = \mathbb{k}[{}^eq_1, \dots, {}^eq_\ell]$

so that A and $\varepsilon(A)$ are polynomial algebras over \Bbbk since ${}^{e}q_{1}, \ldots, {}^{e}q_{\ell}$ are algebraically independent over \Bbbk .

Conversely, suppose that $\varepsilon(A)$ is a polynomial algebra. By Lemma 3.1, (i) and (iv), the algebra $\varepsilon(A)$ is graded for both Slodowy grading and standard grading.

Let *d* be the dimension of $\varepsilon(A)$. As $\varepsilon(A)$ is a polynomial algebra, it is regular so that the k-space $\varepsilon(A)_+/\varepsilon(A)_+^2$ has dimension *d*. Moreover, the two gradings on $\varepsilon(A)$ induce gradings on $\varepsilon(A)_+/\varepsilon(A)_+^2$. Hence $\varepsilon(A)_+/\varepsilon(A)_+^2$ has a bihomogeneous basis. Then some bihomogeneous sequence u_1, \ldots, u_d in $\varepsilon(A)_+$ represents a basis of $\varepsilon(A)_+/\varepsilon(A)_+^2$. As a result, the k-algebra $\varepsilon(A)$ is generated by the bihomogeneous sequence u_1, \ldots, u_d . For $i = 1, \ldots, d$, denote by δ_i the Slodowy degree of u_i . As ε is homogeneous with respect to the Slodowy grading, $u_i = \varepsilon(r_i)$ for some homogeneous element r_i of degree δ_i of A. Let m_i be the smallest nonnegative integer such that $t^{m_i}r_i$ is in $\tau \circ \kappa(S(g)^g)$. According to Lemma 3.1(i), δ_i is even and for some standard homogeneous element p_i of standard degree $\delta_i/2$ of $S(g)^g, t^{m_i}r_i =$ $\tau \circ \kappa(p_i)$. Then $u_i = {}^e p_i$ since p_i is standard homogeneous.

Let \mathfrak{P} be the subalgebra of $S(\mathfrak{g})$ generated by p_1, \ldots, p_d . Suppose that \mathfrak{P} is strictly contained in $S(\mathfrak{g})^{\mathfrak{g}}$. A contradiction is expected. For some positive integer m, the space $S(\mathfrak{g})_m^{\mathfrak{g}}$ of standard degree m of $S(\mathfrak{g})^{\mathfrak{g}}$ is not contained in \mathfrak{P} . Let q be in $(S(\mathfrak{g})^{\mathfrak{g}})_m \setminus \mathfrak{P}$ such that ${}^e q$ has maximal standard degree. By Lemma 3.1(i), ${}^e q$ is a polynomial in u_1, \ldots, u_d , of degree 2m. So, for some polynomial q' of degree min \mathfrak{P} , ${}^e(q - q')$ has standard degree bigger than the standard degree of ${}^e q$. So, by maximality of the standard degree of ${}^e q$, the elements q - q' and q are in \mathfrak{P} , whence the contradiction. As a result, $\mathfrak{P} = S(\mathfrak{g})^{\mathfrak{g}}$ and $d = \ell$.

(ii) Suppose that A_* is a polynomial algebra. Denoting by J the ideal of A_* generated by t and A_+ , the k-space J/J^2 is a graded space of dimension $\ell + 1$ since A_* is a regular algebra of dimension $\ell + 1$. Then for some homogeneous sequence p_1, \ldots, p_ℓ in A_+ , (t, p_1, \ldots, p_ℓ) is a basis of J modulo J^2 . Since p_1, \ldots, p_ℓ have positive degree, we prove by induction on d that

$$A_*^{[d]} \subset R_*[p_1, \dots, p_\ell]^{[d]} + tA_*^{[d]}.$$

Then by induction on *m*, we get

$$A_*^{[d]} \subset R_*[p_1, \dots, p_\ell] + t^m A_*^{[d]}.$$

So, since the R_* -module $A_*^{[d]}$ is finitely generated,

$$A_*^{[d]} \subset \widehat{R}[p_1, \dots, p_\ell]^{[d]}.$$

Apply Lemma 2.3 to N = A and $M = S(g^e)[t]$. Since $\widehat{N} = \widehat{R}[p_1, \dots, p_\ell]$, for $a \in N$, there exists $r \in R$ such that $r(0) \neq 0$ and $ra \in R[p_1, \dots, p_\ell]$ by Lemma 2.3. So A_* is contained in $R_*[p_1, \dots, p_\ell]$, whence $A_* = R_*[p_1, \dots, p_\ell]$.

Denote by $\delta_1, \ldots, \delta_\ell$ the respective degrees of p_1, \ldots, p_ℓ . We can suppose that p_1, \ldots, p_ℓ is ordered so that $\delta_1 \leq \cdots \leq \delta_\ell$. Prove by induction on *i* that $\delta_j = 2d_j$ for $j = 1, \ldots, i$. By Lemma 3.1(iii), $2d_1$ is the smallest positive degree of the elements of *A*. Moreover, δ_1 is the smallest positive degree of the elements of *R*[p_1, \ldots, p_ℓ], whence $\delta_1 = 2d_1$. Suppose $\delta_j = 2d_j$ for $j = 1, \ldots, i - 1$. Set $A_i := R[p_i, \ldots, p_\ell]$.

Then, by induction hypothesis and Lemma 3.1(iii),

$$P_{A_i,R}(T) = \prod_{j=i}^{\ell} \frac{1}{1 - T^{\delta_j}} = \prod_{j=i}^{\ell} \frac{1}{1 - T^{2d_j}}.$$

By the first equality, δ_i is the smallest positive degree of the elements of A_i and by the second equality, $2d_i$ is the smallest positive degree of the elements of A_i too, whence $\delta_i = 2d_i$. Then with $i = \ell$, we get that $\delta_j = 2d_j$ for $j = 1, \dots, \ell$.

Recall that $\widehat{R} = \Bbbk[[t]]$.

Corollary 3.3. Suppose that A_* is a polynomial algebra. Then for some standard homogeneous generating sequence q_1, \ldots, q_ℓ in $S(g)^g$,

$$A_* = R_*[t^{-2d_1}\tau \circ \kappa(q_1), \ldots, t^{-2d_\ell}\tau \circ \kappa(q_\ell)].$$

Proof. For *m* nonnegative integer, denote by $S(g)_m^g$ the space of standard degree *m* of $S(g)^g$. By Proposition 3.2(ii), for some homogeneous sequence p_1, \ldots, p_ℓ in A_+ such that p_1, \ldots, p_ℓ have degree $2d_1, \ldots, 2d_\ell$ respectively,

$$A_* = R_*[p_1,\ldots,p_\ell].$$

For $i = 1, ..., \ell$, let m_i be the smallest integer such that $t^{m_i} p_i$ is in $\tau \circ \kappa(S(g)^g)$. By Lemma 3.1(i), $t^{m_i} p_i$ has an expansion

$$t^{m_i}p_i = \sum_{j\in\mathbb{N}} t^j \tau \circ \kappa(q_{i,j})$$

with $q_{i,j}$, $j \in \mathbb{N}$, in $S(\mathfrak{g})_{d_i}^{\mathfrak{g}}$ of finite support. Denoting by $\delta_{i,j}$ the standard degree of ${}^{e}q_{i,j}$, set:

$$J'_{i} := \{ j \in \mathbb{N} ; m_{i} = j + \delta_{i,j} \}, \qquad \delta_{i} := \inf\{ \delta_{i,j} ; j \in J'_{i} \},$$
$$j_{i} := m_{i} - 2d_{i}, \qquad Q_{i} := t^{-2d_{i}} \tau \circ \kappa(q_{i,j_{i}}).$$

For $i = 1, ..., \ell$, since p_i is not divisible by t in A,

$$p_i - Q_i \in tA$$
,

whence

$$A_* \subset R_*[Q_1,\ldots,Q_\ell] + tA_*.$$

Then, by induction m,

$$A_* \subset R_*[Q_1,\ldots,Q_m] + t^m A_*$$

for all *m*. As a result,

$$\widehat{A} = \widehat{R}[Q_1, \ldots, Q_\ell],$$

since for all d, the R_* -module $A_*^{[d]}$ is finitely generated. Then, by Lemma 2.3,

$$A_* = R_*[Q_1,\ldots,Q_\ell].$$

As a result, since *A* has dimension $\ell + 1$, the elements t, Q_1, \ldots, Q_ℓ are algebraically independent over \Bbbk and so are $q_{1,j_1}, \ldots, q_{\ell,j_\ell}$. Moreover the algebra $S(\mathfrak{g})^{\mathfrak{g}}$ is generated by $q_{1,j_1}, \ldots, q_{\ell,j_\ell}$ since they have degree d_1, \ldots, d_ℓ respectively.

3.2. Denote by \mathcal{V} the nullvariety of A_+ in $\mathfrak{g}^f \times \Bbbk$. Let \mathcal{V}_* be the union of the irreducible components of \mathcal{V} which are not contained in $\mathfrak{g}^f \times \{0\}$. The following result is proven in [CM16, Corollary 4.4(i)]. Indeed, the proof of this result does not use the assumption of [CM16, Section 4] that for some homogeneous generators q_1, \ldots, q_ℓ of $S(\mathfrak{g})^\mathfrak{g}$, the elements ${}^eq_1, \ldots, {}^eq_\ell$ are algebraically independent.

- **Lemma 3.4** ([CM16, Corollary 4.4(i)]). (i) The variety \mathcal{V}_* is equidimensional of dimension $r + 1 \ell$.
 - (ii) For all irreducible component X of 𝒱_{*} and for all z in k, X is not contained in g^f × {z}.

Let \mathcal{N} be the nullvariety of $\varepsilon(A)_+$ in \mathfrak{g}^f . Then \mathcal{V} is the union of \mathcal{V}_* and $\mathcal{N} \times \{0\}$.

- **Lemma 3.5.** (i) All irreducible component of \mathbb{N} have dimension at least $r \ell$ and all irreducible component of \mathbb{V} have dimension at least $r + 1 \ell$.
 - (ii) Assume that \mathbb{N} has dimension $r \ell$. Then for some homogeneous sequence $p_1, \ldots, p_{r-\ell}$ in $S(\mathfrak{g}^e)_+$, the nullvariety of $t, p_1, \ldots, p_{r-\ell}$ in \mathcal{V} is equal to $\{0\}$.

Proof. (i) By Lemma 3.1(ii), for some homogeneous sequence a_1, \ldots, a_ℓ in A_+ , the elements t, a_1, \ldots, a_ℓ are algebraically independent over \Bbbk . Let b_1, \ldots, b_m be a homogeneous sequence in A_+ , generating the ideal $S(g^e)[t]A_+$ of $S(g^e)[t]$. Set:

$$B := \Bbbk[a_1, \dots, a_{\ell}, b_1, \dots, b_m], \qquad B_+ := Ba_1 + \dots + Ba_{\ell} + Bb_1 + \dots + Bb_m,$$
$$C := B[t], \qquad C_{++} := B_+[t] + Ct.$$

Then *B* and *C* are graded subalgebras of *A* and B_+ and C_{++} are maximal ideals of *B* and *C* respectively. Moreover, *C* has dimension $\ell + 1$. We have a commutative diagram

with α , β , π the morphisms whose comorphisms are the canonical injections

 $C \hookrightarrow S(\mathfrak{g}^e)[t], \quad B \hookrightarrow S(\mathfrak{g}^e)[t], \quad B \hookrightarrow C$

respectively. Since *C* has dimension $\ell + 1$, the irreducible components of the fibers of α have dimension at least $r-\ell$, whence the result for \mathbb{N} since $\mathbb{N} \times \{0\} = \alpha^{-1}(C_{++})$. Moreover, $\mathcal{V} = \beta^{-1}(B_+)$ and $\pi^{-1}(B_+)$ is a subvariety of dimension 1 of Specm(*C*). Hence all irreducible component of \mathcal{V} has dimension at least $r + 1 - \ell$.

(ii) Prove by induction on *i* that there exists a homogeneous sequence p_1, \ldots, p_i in $S(g^e)_+$ such that the minimal prime ideals of $S(g^e)$ containing $\varepsilon(A)_+$ and p_1, \ldots, p_i have height $\ell + i$. First of all, $S(g^e)\varepsilon(A)_+$ is graded. Then the minimal prime ideals of $S(g^e)$ containing $\varepsilon(A)_+$ are graded too. By, (i), they have height ℓ since \mathbb{N} has dimension $r - \ell$ by hypothesis. In particular, they are strictly contained in $S(g^e)_+$. Hence, by Lemma 2.1(ii), for some homogeneous element p_1 in $S(g^e)$, p_1 is not in the union of these ideals so that the statement is true for i = 1 by [Ma86, Ch. 5, Theorem 13.5]. Suppose that it is true for i - 1. Then the minimal prime ideals containing $\varepsilon(A)_+$ and p_1, \ldots, p_{i-1} are graded and strictly contained in $S(g^e)_+$ by the induction hypothesis. So, by Lemma 2.1(ii), for some homogeneous element p_i in $S(g^e)$, p_i is not in the union of these ideals and the sequence p_1, \ldots, p_i satisfy the condition of the statement by [Ma86, Ch. 5, Theorem 13.5]. For $i = r - \ell$, the nullvariety of $p_1, \ldots, p_{r-\ell}$ in \mathbb{N} has dimension 0. Then it is equal to {0} as the nullvariety of a graded ideal, whence the assertion since $\mathbb{N} \times \{0\}$ is the nullvariety of t in \mathbb{V} .

3.3. We assume in this subsection that N has dimension $r - \ell$. Let $p_1, \ldots, p_{r-\ell}$ be as in Lemma 3.5(ii), and set

$$C := A[p_1, \ldots, p_{r-\ell}].$$

Then $p_1, \ldots, p_{r-\ell}$ are algebraically independent over A since \mathbb{N} has dimension $r-\ell$.

Lemma 3.6. The ideal $S(g^e)[t]_+$ of $S(g^e)[t]$ is the radical of $S(g^e)[t]C_+$.

Proof. Let *Y* be an irreducible component of the nullvariety of C_+ in $g^f \times \Bbbk$. Then *Y* has dimension at least 1. By definition the nullvariety of *t* in *Y* is equal to {0}. Hence *Y* has dimension 1. The grading on $S(g^e)[t]$ induces an action of the onedimensional multiplicative group G_m on $g^f \times \Bbbk$ such that for all (x, z) in $g^f \times \Bbbk$, (0, z) is in the closure of the orbit of (x, z) under G_m . Since C_+ is graded, *Y* is invariant under G_m . As a result, $Y = \{0\} \times \Bbbk$ or for some *x* in $g^f \times \Bbbk$, *Y* is the closure of the orbit of (x, 0) under G_m since 0 is the nullvariety of *t* in *Y*. In the last case, *x* is a zero of $p_1, \ldots, p_{r-\ell}$ in \mathbb{N} , that is x = 0. Hence $Y = \{0\} \times \Bbbk$. As a result, the nullvariety of C_+ in $g^f \times \Bbbk$ is equal to $\{0\} \times \Bbbk$ that is the nullvariety of $S(g^e)[t]_+$, whence the assertion since $S(g^e)[t]_+$ is a prime ideal of $S(g^e)[t]$.

For p a prime ideal of A, denote by A_p the localization of A at p and by \overline{p} the ideal of C generated by p. Since C is a polynomial algebra over A, \overline{p} is a prime ideal of C and $A \setminus p$ is the intersection of A and $C \setminus \overline{p}$. Hence the localization $C_{\overline{p}}$ of C at \overline{p} is a localization of the polynomial algebra $A_p[p_1, \ldots, p_{r-\ell}]$. Moreover, A_p is the quotient of $C_{\overline{p}}$ by the ideal generated by $p_1, \ldots, p_{r-\ell}$. According to [Ma86, Ch. 6, Theorem 17.4], if $C_{\overline{p}}$ is Cohen-Macaulay, $p_1, \ldots, p_{r-\ell}$ is a regular sequence in $C_{\overline{p}}$ since A_p has dimension dim $C_{\overline{p}}-r+\ell$. Then, again by [Ma86, Ch. 6, Theorem 17.4], A_p is Cohen-Macaulay if so is $C_{\overline{p}}$.

Proof of Theorem 1.5. By Lemma 3.6 and Proposition 2.2, the algebra *C* is finitely generated. Then *A* is finitely generated as a quotient of *C*. Hence by Lemma 2.7(ii),

A is a factorial ring and so is C as a polynomial ring over A. As a result, C is normal so that $S(g^e)[t]$ and C satisfy the conditions (1), (2), (3) of Proposition 2.6. Hence by Proposition 2.6, for all prime ideal p of A, containing t, $C_{\overline{p}}$ is Cohen-Macaulay, whence A_p is Cohen-Macaulay. By Lemma 3.1(ii), for p a prime ideal of A, not containing t, A_p is the localization of $k[t, t^{-1}, a_1, \ldots, a_\ell]$ at the prime ideal generated by p. Therefore A_p is Cohen-Macaulay since the algebra $k[t, t^{-1}, a_1, \ldots, a_\ell]$ is regular. As a result A is Cohen-Macaulay. In particular, A satisfies the conditions (1), (2), (3) of Subsection 2.2. So, by Proposition 2.10, A_* is a polynomial algebra over R_* . Then by Corollary 3.3, for some homogeneous generating sequence q_1, \ldots, q_ℓ in $S(g)^g$,

$$A_* = R_*[t^{-2d_1}\tau \circ \kappa(q_1), \ldots, t^{-2d_\ell}\tau \circ \kappa(q_\ell)].$$

Form the above equality, we deduce that any element of *A* is the product of an element of the algebra $R[t^{-2d_1}\tau \circ \kappa(q_1), \ldots, t^{-2d_\ell}\tau \circ \kappa(q_\ell)]$ by a polynomial in *t* with nonzero constant term, whence

 $A = R[t^{-2d_1}\tau \circ \kappa(q_1), \dots, t^{-2d_\ell}\tau \circ \kappa(q_\ell)] \quad \text{and so} \quad \varepsilon(A) = \Bbbk[{}^eq_1, \dots, {}^eq_\ell]$

since for $i = 1, \ldots, \ell$,

$${}^{e}q_{i} := \varepsilon(t^{-2d_{i}}\tau \circ \kappa(q_{i})).$$

Since $\mathcal{N} \times \{0\}$ is the nullvariety of t and A_+ in $\mathfrak{g}^f \times \Bbbk$, \mathcal{N} is the nullvariety in \mathfrak{g}^f of ${}^eq_1, \ldots, {}^eq_\ell$. Hence ${}^eq_1, \ldots, {}^eq_\ell$ are algebraically independent over \Bbbk since \mathcal{N} has dimension $r - \ell$.

4. Proof of Theorem 1.4

Let (e, h, f) be an \mathfrak{sl}_2 -triple in \mathfrak{g} . We use the notations κ and ep , $p \in S(\mathfrak{g})^{\mathfrak{g}}$, as in the introduction. In this section, we use the standard gradings on $S(\mathfrak{g})$ and $S(\mathfrak{g}^e)$. Let A_0 be the subalgebra of $S(\mathfrak{g}^e)$ generated by the family ep , $p \in S(\mathfrak{g})^{\mathfrak{g}}$, and let \mathcal{N}_0 be the nullvariety of $A_{0,+}$ in \mathfrak{g}^f where $A_{0,+}$ denotes the augmentation ideal of A_0 .

Let a_1, \ldots, a_m be a homogeneous sequence in $A_{0,+}$ generating the ideal of $S(g^e)$ generated by $A_{0,+}$. According to [PPY07, Corollary 2.3], A_0 contains homogeneous elements b_1, \ldots, b_ℓ algebraically independent over k.

Lemma 4.1. Let \mathfrak{A} be the integral closure of $\mathbb{k}[a_1, \ldots, a_m, b_1, \ldots, b_\ell]$ in the fraction field of $S(\mathfrak{g}^e)$.

- (i) The algebra A is contained in S(g^e)^{g^e} and its fraction field is the fraction field of S(g^e)^{g^e}.
- (ii) Let a in $S(g^e)^{g^e}_+$. If a is equal to 0 on \mathcal{N}_0 , then a is in \mathfrak{A}_+ .
- (iii) The algebra \mathfrak{A} is the integral closure of A_0 in the fraction field of $S(\mathfrak{g}^e)$.

Proof. (i) Let K_0 be the field of invariant elements under the adjoint action of g^e in the fraction field of $S(g^e)$. According to [CM16, Lemma 3.1], K_0 is the fraction field of $S(g^e)^{g^e}$. Since $a_1, \ldots, a_m, b_1, \ldots, b_\ell$ are in $S(g^e)^{g^e}$, \mathfrak{A} is contained

in K_0 . Moreover, \mathfrak{A} is contained in $S(\mathfrak{g}^e)^{\mathfrak{g}^e}$ since $S(\mathfrak{g}^e)^{\mathfrak{g}^e}$ is integrally closed in K_0 . Since K_0 has transcendence degree ℓ over \Bbbk and since b_1, \ldots, b_ℓ are algebraically independent over \Bbbk , K_0 is the fraction field of \mathfrak{A} .

(ii) Since \mathcal{N}_0 is the nullvariety of $a_1, \ldots, a_m, b_1, \ldots, b_\ell$ in $\mathfrak{g}^f, \mathcal{N}_0$ is the nullvariety of \mathfrak{A}_+ in \mathfrak{g}^f . Let *a* be in $S(\mathfrak{g}^e)^{\mathfrak{g}^e}_+$ such that *a* is equal to 0 on \mathcal{N}_0 . Since \mathcal{N}_0 is a cone, all homogeneous components of *a* is equal to 0 on \mathcal{N}_0 . So it suffices to prove the assertion for *a* homogeneous. We have a commutative diagram

with π , α , β the comorphisms of the canonical injections

$$\mathfrak{A}[a] \hookrightarrow S(\mathfrak{g}^e), \quad \mathfrak{A} \hookrightarrow S(\mathfrak{g}^e), \quad \mathfrak{A} \hookrightarrow \mathfrak{A}[a].$$

Since \mathcal{N}_0 is the nullvariety of $\mathfrak{A}[a]_+$ and \mathfrak{A}_+ in \mathfrak{g}^f , $\beta^{-1}(\mathfrak{A}_+) = \mathfrak{A}[a]_+$. The gradings of \mathfrak{A} and $\mathfrak{A}[a]$ induce actions of G_m on Specm(\mathfrak{A}) and Specm($\mathfrak{A}[a]$) such that β is equivariant. Moreover, \mathfrak{A}_+ is in the closure of all orbit under G_m in Specm(\mathfrak{A}). Hence β is a quasi finite morphism. Moreover, β is a birational since \mathfrak{A} and $\mathfrak{A}[a]$ have the same fraction field by (i). Hence, by Zariski's main theorem [Mu88], β is an open immersion from Specm($\mathfrak{A}[a]$) into Specm(\mathfrak{A}). So, β is surjective since \mathfrak{A}_+ is in the image of β and since it is in the closure of all G_m -orbit in Specm(\mathfrak{A}). As a result, β is an isomorphism and a is in \mathfrak{A} , whence the assertion.

(iii) By (ii), A_0 is contained in \mathfrak{A} . Moreover, since $a_1, \ldots, a_m, b_1, \ldots, b_\ell$ are in A_0 , \mathfrak{A} is contained in the integral closure of A_0 in the fraction field of $S(\mathfrak{g}^e)$, whence the assertion.

Corollary 4.2. Suppose that the algebra $S(g^e)^{g^e}$ is finitely generated. Then \mathfrak{A} is equal to $S(g^e)^{g^e}$.

Proof. Let *C* be the quotient of $S(g^e)^{g^e}$ by the ideal $S(g^e)^{g^e}\mathfrak{A}_+$. By hypothesis, *C* is finitely generated. Then it has finitely many minimal prime ideals. Denote them by $\mathfrak{p}_1, \ldots, \mathfrak{p}_m$. For *a* in the radical of $S(g^e)^{g^e}\mathfrak{A}_+$, *a* is equal to 0 on \mathcal{N}_0 . Moreover, it is in $S(g^e)^{g^e}_+$. Then, by Lemma 4.1(ii), *a* is in \mathfrak{A}_+ . As a result, *C* is a reduced algebra and the canonical map

$$C \longrightarrow C/\mathfrak{p}_1 \times \cdots \times C/\mathfrak{p}_m$$

is injective. Since \mathfrak{A} and $S(\mathfrak{g}^e)^{\mathfrak{g}^e}$ have the same fraction field, they have the same Krull dimension. Denote by *d* this dimension and by \mathfrak{p}'_j , for $j = 1, \ldots, m$, the inverse image of \mathfrak{p}_i in $S(\mathfrak{g}^e)^{\mathfrak{g}^e}$ by the quotient map $S(\mathfrak{g}^e)^{\mathfrak{g}^e} \to C$.

Claim 4.3. Let j = 1, ..., m. For i = 1, ..., d, there exists a sequence $c_1, ..., c_i$ of elements of \mathfrak{A}_+ and an increasing sequence

$$\{0\} = \mathfrak{q}_0 \subsetneq \cdots \subsetneq \mathfrak{q}_i \subset \mathfrak{p}'_i$$

of prime ideals of of $S(g^e)^{g^e}$ such that c_i is not q_{i-1} and c_1, \ldots, c_j are in q_j for $j = 1, \ldots, i$.

Proof of Claim 4.3. Prove the claim by induction on *i*. Let c_1 be in $\mathfrak{A}_+ \setminus \{0\}$. As \mathfrak{A}_+ is contained in \mathfrak{p}'_j , there exists a minimal prime ideal \mathfrak{q}_1 of $S(\mathfrak{g}^e)^{\mathfrak{g}^e}$, contained in \mathfrak{p}'_j and containing c_1 . Suppose i > 1 and the claim true for i - 1. As the sequence

$$\{0\} = \mathfrak{A}_+ \cap \mathfrak{q}_1 \subsetneq \cdots \subsetneq \mathfrak{A}_+ \cap \mathfrak{q}_{i-1} \subset \mathfrak{A}_+$$

is an increasing sequence of prime ideals of \mathfrak{A}_+ and \mathfrak{A}_+ has height d > i - 1, \mathfrak{A}_+ is not contained in \mathfrak{q}_{i-1} . Let c_i be in $\mathfrak{A}_+ \setminus \mathfrak{q}_{i-1}$ and \mathfrak{q}_i the minimal prime ideal of $S(\mathfrak{g}^e)^{\mathfrak{g}^e}$ contained in \mathfrak{p}'_j and containing c_i and \mathfrak{q}_{i-1} . So by the induction hypothesis, the sequence c_1, \ldots, c_i satisfies the conditions of the claim. This concludes the proof.

By the claim, \mathfrak{p}'_j has height at least d for $j = 1, \ldots, m$. Hence $\mathfrak{p}_1, \ldots, \mathfrak{p}_m$ are maximal ideals of C. As a result, the k-algebra C is finite dimensional. Let V be a graded complement to $S(\mathfrak{g}^e)^{\mathfrak{g}^e}\mathfrak{A}_+$ in $S(\mathfrak{g}^e)$. From the equality $S(\mathfrak{g}^e) = V + S(\mathfrak{g}^e)^{\mathfrak{g}^e}\mathfrak{A}_+$, we get that $S(\mathfrak{g}^e) = V\mathfrak{A} + S(\mathfrak{g}^e)^{\mathfrak{g}^e}\mathfrak{A}_+^m$ for any nonnegative integer m by induction on m. Hence $S(\mathfrak{g}^e)^{\mathfrak{g}^e} = V\mathfrak{A}$ so that $S(\mathfrak{g}^e)^{\mathfrak{g}^e}$ is a finite extension of \mathfrak{A} . Since \mathfrak{A} is integrally closed in the fraction field of $S(\mathfrak{g}^e)^{\mathfrak{g}^e}$, $\mathfrak{A} = S(\mathfrak{g}^e)^{\mathfrak{g}^e}$.

Proof of Theorem 1.4. The "if" part results from [CM16, Theorem 1.5] (or, here, Theorem 1.3).

Suppose that *e* is good. By Definition 1.1 and Theorem 1.2, $S(g^e)^{g^e}$ is a polynomial algebra and the nullvariety of $S(g^e)^{g^e}_+$ in g^f is equidimensional of dimension $r - \ell$. On the other hand, by Lemma 4.1(iii), \mathfrak{A} is the integral closure of A_0 in the fraction field of $S(g^e)$. Hence the nullvarieties of \mathfrak{A}_+ and $A_{0,+}$ in g^f are the same. But by Corollary 4.2, $\mathfrak{A} = S(g^e)^{g^e}$, so \mathcal{N}_0 has dimension $r-\ell$ since *e* is good. On the other hand, A_0 is contained in $\varepsilon(A)$ by construction of $\varepsilon(A)$, and $\varepsilon(A)$ is contained in $S(g^e)^{g^e}$ by [PPY07, Proposition 0.1], whence $\mathcal{N} = \mathcal{N}_0$.

As a result, \mathcal{N} has dimension $r-\ell$ and so by Theorem 1.5, for some homogeneous generating sequence q_1, \ldots, q_ℓ of $S(\mathfrak{g})^\mathfrak{g}$, the element ${}^eq_1, \ldots, {}^eq_\ell$ are algebraically independent over \Bbbk .

References

- [B98] N. Bourbaki, Algèbre commutative, Chapitre 10, Éléments de mathématiques, Masson (1998), Paris.
- [CM10] J.-Y. Charbonnel and A. Moreau, *The index of centralizers of elements of reductive Lie algebras*, Documenta Mathematica, **15** (2010), 387-421.

- [CM16] J.-Y. Charbonnel and A. Moreau, The symmetric invariants of centralizers and Slodowy grading, Math. Zeitschrift 282 (2016), n°1-2, 273-339.
- [JS10] A. Joseph and D. Shafrir, *Polynomiality of invariants, unimodularity and adapted pairs*, Transformation Groups, **15**, (2010), 851–882.
- [Ma86] H. Matsumura, *Commutative ring theory* Cambridge studies in advanced mathematics (1986), n°8, Cambridge University Press, Cambridge, London, New York, New Rochelle, Melbourne, Sydney.
- [Mu88] D. Mumford, *The Red Book of Varieties and Schemes*, Lecture Notes in Mathematics (1988), n° 1358, Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo.
- [PPY07] D.I. Panyushev, A. Premet and O. Yakimova, On symmetric invariants of centralizers in reductive Lie algebras, Journal of Algebra 313 (2007), 343–391.
- [Y07] O. Yakimova, A counterexample to Premet's and Joseph's conjecture, Bulletin of the London Mathematical Society 39 (2007), 749–754.
- [Y16] O. Yakimova, Symmetric invariants of \mathbb{Z}_2 -contractions and other semi-direct products, preprint 2016.

JEAN-YVES CHARBONNEL, UNIVERSITÉ PARIS DIDEROT - CNRS, INSTITUT DE MATHÉMATIQUES DE JUSSIEU - PARIS RIVE GAUCHE, UMR 7586, GROUPES, REPRÉSENTATIONS ET GÉOMÉTRIE, BÂTIMENT SOPHIE GERMAIN, CASE 7012, 75205 PARIS CEDEX 13, FRANCE

E-mail address: jean-yves.charbonnel@imj-prg.fr

Anne Moreau, Laboratoire de Mathématiques et Applications, Téléport 2 - BP 30179, Boulevard Marie et Pierre Curie, 86962 Futuroscope Chasseneuil Cedex, France

E-mail address: anne.moreau@math.univ-poitiers.fr