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Introduction

The goal of this workshop is to introduce the theory of vertex algebras and affine
W-algebras, which are certain vertex algebras, with emphasis on their geometrical
aspects.

Overview of theory, and goals of the workshop

Roughly speaking, a vertex algebra is a vector space V , endowed with a distin-
guished vector, the vacuum vector, and the vertex operator map from V to the space
of formal Laurent series with linear operators on V as coefficients. These data sat-
isfy a number of axioms and have some fundamental properties as, for example, an
analogue to the Jacobi identity, locality and associativity. Although the definition
is purely algebraic, the above axioms have deep geometric meaning. They reflect
the fact that vertex algebras give an algebraic framework of the two-dimensional
conformal field theory. The connections of this topic with other branches of math-
ematics and physics include algebraic geometry (moduli spaces), representation
theory (modular representation theory, geometric Langlands correspondence), two
dimensional conformal field theory, string theory (mirror symmetry) and four di-
mensional gauge theory (AGT conjecture).

The (affine) W-algebras were first introduced by Zamolodchikov in the 1980s
in physics and then developed by Fateev-Lukyanov, Feigin-Frenkel, Kac-Roan-
Wakimoto and others. The finite W-algebras, the finite dimensional analogs of
W-algebras, were introduced by Premet. They go back to Kostant’s works in
the 1970s who studied some particular cases. The W-algebras were extensively
studied by physicists in 1990s in connection with two dimensional conformal field
theory. More recently, the appearance of the AGT conjecture in physics led many
researchers in mathematics towards W-algebras. In the meantime, the finite W-
algebras have caught attention for different reasons that are mostly related with
more classical problems of representation theory.

The nicest vertex algebras are those which are both rational and lisse (or C2-
cofinite). The rationality means the completely irreducibility of modules. The
lisse condition is a certain finiteness condition as explained next paragraph. If a
vertex algebra V is rational and lisse, then it gives rise to a rational conformal
field theory. In particular, the characters of simple V -modules form vector valued
modular functions, and moreover, the category of V -modules forms a modular
tensor category, so that one can associate with it an invariant of knots.

To each vertex algebra V one can naturally attach a certain Poisson variety XV

called the associated variety of V . A vertex algebra V is called lisse if dimXV = 0.
Lisse vertex algebras are natural generalizations of finite-dimensional algebras and
possess remarkable properties. For instance, the modular invariance of characters
still holds without the rationality assumption.
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6 INTRODUCTION

In fact the geometry of the associated variety often reflects some algebraic
properties of the vertex algebras V . More generally, vertex algebras whose associ-
ated variety has only finitely symplectic leaves, are also of great interest for several
reasons that will be addressed in the workshop.

Important examples of vertex algebras are those coming from affine Kac-Moody
algebra, which are called affine vertex algebras. They play a crucial role in the
representation theory of affine Kac-Moody algebras, and of W-algebras. In the
case that V is a simple affine vertex algebra, its associated variety is an invariant
and conic subvariety of the corresponding simple Lie algebra. It plays an analog role
to the associated variety of primitive ideals of the enveloping algebra of simple Lie
algebras. However, associated varieties of affine vertex algebras are not necessarily
contained in the nilpotent cone and it is difficult to describe them in general.

In fact, although associated varieties seem to be significant also in connection
with the recent study of four dimensional superconformal field theory, their general
description is fairly open, except in a few cases.

The affine W-algebras are certain vertex algebras associated with nilpotent
elements of simple Lie algebras. They can be regarded as affinizations of finite
W-algebras, and can also be considered as generalizations of affine Kac-Moody
algebras and Virasoro algebras. They quantize the arc space of the Slodowy slices
associated with nilpotent elements. The study of affine W-algebras began with
the work of Zamolodchikov in 1985. Mathematically, affine W-algebras are defined
by the method of quantized Drinfeld-Sokolov reduction that was discovered by
Feigin and Frenkel in the 1990s. The general definition of affine W-algebras were
given by Kac, Roan and Wakimoto in 2003. Affine W-algebras are related with
integrable systems, the two-dimensional conformal field theory and the geometric
Langlands program. The most recent developments in representation theory of
affine W-algebras were done by Kac-Wakimoto and Arakawa.

Since they are not finitely generated by Lie algebras, the formalism of vertex
algebras is necessary to study them. The study of affine W-algebras will be the
ultimate goal of the workshop. In this context, associated varieties of W-algebras,
and their quotients, are important tools to understand some properties, such as the
lisse condition and even the rationality condition.

It is only quite recently that the study of associated varieties of vertex algebras
and their arc spaces, has been more intensively developed. In this workshop we
wish to highlight this aspect of the theory of vertex algebras which seems to be very
promising. In particular, the workshop will include open problems on associated
varieties of W-algebras raised by recent works of Tomoyuki Arakawa and Anne
Moreau.

Overview of lectures

One of the first interesting examples of non-commutative vertex algebras are
the affine vertex algebras associated with affine Kac-Moody algebras which play
a crucial role in the representation theory of affine Kac-Moody algebras, and of
W-algebras. For this reason the note will start with an introduction to affine Kac-
Moody algebras and their representations (see Part 1).

We will introduce the notion of vertex algebras in Part 2, and discuss some
important related objects as Zhu’s C2 algebras, Zhu’s algebras and Zhu’s func-
tors. The Zhu’s functor gives a correspondence between the theory of modules



OVERVIEW OF LECTURES 7

over a vertex algebra and the representation theory of its Zhu’s algebra. This
correspondence is particularly well-understood in the case of the universal affine
vertex algebras, where Zhu’s algebras are enveloping algebras of the corresponding
finite-dimensional simple Lie algebras.

The W-algebras are certain vertex algebras associated with nilpotent elements
of a simple Lie algebra. Zhu’s algebras of W-algebras are finite W-algebras. The
later are certain generalizations of the enveloping algebra of a simple Lie algebra.
They can be defined through the BRST cohomology associated with nilpotent ele-
ments. So the definition and properties of (finite and affine) W-algebras are deeply
related to the geometry of of nilpotent orbits. We will explain in Part 3 the defini-
tion of finite W-algebras by BRST reduction (= a form of quantized Hamiltonian
reduction) after outlining basics on nilpotent orbits.

Any vertex algebra is naturally filtered and the corresponding graded algebra is
a Poisson vertex algebra. Moreover, the spectrum of the Zhu’s C2 algebra, which is
a generating ring of this graded algebra, is what we call the associated variety. Its
geometry gives important information on the vertex algebra as we wish to illustrate
in this workshop. A nice way to construct Poisson vertex algebras is to consider
the coordinate ring of the arc space of a Poisson variety. Actually, strong relations
exists, at least conjecturally, between the arc space of the associated variety and
the singular support of a vertex algebra, that is, the spectrum of the corresponding
graded algebra. All these aspects will be discussed in Part 4.

Part 5 will be about affine W-algebras. They are defined by a certain BRST
reduction, called the quantum Drinfeld-Sokolov reduction, associated with nilpotent
elements. Rational W-algebras and lisse W-algebras are particularly interesting
classes of W-algebras. The rationality and the lisse conditions, and some other
properties will be considered. Associated varieties of affine W-algebras, and their
quotients, will be also discussed.

We assume the reader is familiar with basics on semisimple Lie algebras and
their representations (although we give a short review), commutative algebras, al-
gebraic geometry and algebraic groups.





PART 1

Introduction to affine Lie algebras and their
representations

One of the first interesting examples of non-commutative vertex algebras are
the affine vertex algebras associated with affine Kac-Moody algebras which play
a crucial role in the representation theory of affine Kac-Moody algebras, and of
W-algebras. For this reason we start with an introduction to affine Kac-Moody
algebras and their representations.

1.1. Quick review on semisimple Lie algebras, main notations

Let g be a complex finite dimensional semisimple Lie algebra, i.e., {0} is the
only abelian ideal of g. Let G be the adjoint group of g: it is the smallest algebraic
subgroup of GL(g) whose Lie algebra contains ad g. Since g is semisimple, G =
Aute(g), where Aute(g) is the subgroup of elementary elements, that is, the elements
exp(adx) with x a nilpotent element of g (i.e., (adx)n = 0 for n� 0). Hence

Lie(G) = ad g ∼= g

since the adjoint representation ad: g→ End(g), x 7→ (adx)(y) = [x, y] is faithful,
g being semisimple.

1.1.1. Main notations. For a a subalgebra of g, we shall denote by S(a) the
symmetric algebra of a and by U(a) its enveloping algebra which are the quotient of
the tensor algebra of a by the two-sided ideal generated by the elements x⊗y−y⊗x
and the two-sided ideal generated by the elements x⊗y−y⊗x− [x, y] respectively,
with x, y ∈ a.

For x ∈ g, we shall denote by ax the centralizer of x in a, that is,

ax = {y ∈ a | [x, y] = 0},

which is also the intersection of a with the kernel of the map

adx : g→ g, y 7→ [x, y].

Let κg be the Killing form of g,

κg : g× g→ C, (x, y) 7→ tr(adx ad y).

It is a nondegenerate symmetric bilinear form of g which is G-invariant, that is,

κg(g.x, g.y) = κg(x, y) for all x, y ∈ g,

or else,

κg([x, y], z) = κg(x, [y, z]) for all x, y, z ∈ g.

Since g is semisimple, any other such bilinear form is a nonzero multiple of the
Killing form.
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Example 1.1. Let g be the Lie algebra sln, n > 2, which is the set of traceless
complex n-size square matrices, with bracket [A,B] = AB − BA. The Lie algebra
sln is actually simple, that is, {0} and g are the only ideals of g and dim g > 3. Its
Killing form is given by

(A,B) 7→ 2n tr(AB).

The bilinear form (A,B) 7→ tr(AB) looks more natural. In fact, for our purpose,
we will prefer a certain normalization ( | ) of the Killing form which will coincide
with this bilinear form for sln (see Section 1.2).

1.1.2. Cartan matrix and Chevalley generators. Let h be a Cartan sub-
algebra of g, and let

g = h⊕
⊕
α∈∆

gα, gα := {y ∈ g | [x, y] = α(x)y for all x ∈ h},

be the corresponding root decomposition of (g, h), where ∆ is the root system of
(g, h). Let Π = {α1, . . . , αr} be a basis of ∆, with r the rank of g, and let α∨1 , . . . , α

∨
r

be the coroots of α1, . . . , αr respectively. The element α∨i , i = 1, . . . , r, viewed as
an element of (h∗)∗ ∼= h, will be often denoted it by hi.

Recall that the Cartan matrix of ∆ is the matrix C = (Ci,j)16i,j6r where
Ci,j := αj(hi). The Cartan matrix C does not depend on the choice of the basis
Π. It verifies the following properties:

Ci,j ∈ Z for all i, j,(1)

Ci,i = 2 for all i,(2)

Ci,j 6 0 if i 6= j,(3)

Ci,j = 0 if and only if Cj,i = 0.(4)

Moreover, all principal minors of C are strictly positive,

det ((Ci,j)16i,j6s) > 0 for 1 6 s 6 r.

The semsimple Lie algebra g has a presentation in term of Chevalley generators.
Namely, consider the generators (ei)16i6r, (fi)16i6r, (hi)16i6r with relations

[hi, hj ] = 0,(5)

[ei, fj ] = δi,jhi,(6)

[hi, ej ] = Ci,jej ,(7)

[hi, fj ] = −Ci,jfj ,(8)

(ad ei)
1−Ci,jej = 0 for i 6= j,(9)

(ad fi)
1−Ci,jfj = 0 for i 6= j,(10)

where δi,j is the Kronecker symbol. The last two relations are called the Serre
relations. By (3) and (4), ei ∈ gαi and fi ∈ g−αi for all i.

It is well-known that dim gα = 1 for any α ∈ ∆. One can choose nonzero
elements eα ∈ gα for all α such that (hi; i = 1, . . . , r) ∪ (eα; α ∈ ∆) forms a
Chevalley basis of g. This means, apart from the above relations, that:

[eβ , eγ ] = ±(p+ 1)eβ+γ(11)

for all β, γ ∈ ∆, where p is the greatest positive integer such that γ − pβ is a root.
Here we consider that eβ+γ = 0 if β + γ is not a root, and that eαi = ei, e−αi = fi
for i = 1, . . . , r.
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Let ∆+ be the positive root system corresponding to Π, and let

g = n− ⊕ h⊕ n+(12)

be the corresponding triangular decomposition. Thus n+ =
⊕

α∈∆+
gα and n− =⊕

α∈∆−
gα are both nilpotent Lie subalgebras of g.

1.1.3. Verma modules. Let λ ∈ h∗. Set

Kg(λ) := U(g)n+ +
∑
x∈h

U(g)(x− λ(x)).

Since Kg(λ) is a left U(g)-module,

Mg(λ) := U(g)/Kg(λ)

is naturally a left U(g)-module, called a Verma module.

Theorem 1.2 ([Carter, Theorem 10.6]). (1) Each element of Mg(λ) is
uniquely written in the form umλ for some u ∈ U(g) where mλ := 1 +
Kg(λ).

(2) The elements fn1

β1
. . . fnsβsmλ for all ni > 0 form a basis of Mg(λ).

Note that Mg(λ) can also be described as follows (up to isomorphism of U(g)-
modules):

Mg(λ) ∼= U(g)⊗U(b) Cλ =: Indg
b(Cλ),

where b := h⊕ n+ and Cλ is a 1-dimensional b-module whose b-action is given by:
(x+ n).z = λ(x)z for x ∈ h, n ∈ n+ and z ∈ Cλ. Then, up to scalars, mλ = 1⊗ 1.

For each µ ∈ h∗, set

Mg(λ)µ := {m ∈Mg(λ) | xm = µ(x)m for all x ∈ h}.

For λ, µ ∈ h∗ we write µ 4 λ if λ − µ =
∑r
i=1miαi where mi ∈ Z, mi > 0.

This defines a partial order on h∗.

Theorem 1.3 ([Carter, Theorem 10.7]). (1) Mg(λ) =
⊕

µ∈h∗Mg(λ)µ.

(2) Mg(λ)µ 6= 0 if and only if µ 4 λ, and dimMg(λ)µ is the number of ways of
expressing λ−µ as a sum of positive roots. In particular, dimMg(λ)λ = 1.

If Mg(λ)µ 6= 0, then µ called a weight of Mg(λ), and Mg(λ)µ is called the weight
space of Mg(λ) with weight µ.

Theorem 1.3 says that the weights of Mg(λ) are precisely the elements µ ∈ h∗

such that µ 4 λ. Thus λ is the highest weight of Mg(λ) with respect to the partial
order 4. We say that Mg(λ) is the Verma module with highest weight λ.

One of the important fact about Mg(λ) is that it has a unique proper submodule
Ng(λ). It is constructed as follows: since Mg(λ)λ = Cmλ and that Mg(λ) is
generated by mλ, any proper submodule N of Mg(λ) satisfy Nλ = 0. In particular
the sum Nmax of all proper submodules of M satisfies (Nmax)λ = 0. This proves
the existence and the unicity of the maximal proper submodule of Mg(λ): just set
Ng(λ) := Nmax.

Since Ng(λ) is a maximal submodule of Mg(λ),

Lg(λ) := Mg(λ)/Ng(λ).
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is a simple U(g)-module (that is, an irreducible representation of g). There is
vλ ∈ Lg(λ) \ {0} such that

hiv = λ(hi)v for all i = 1, . . . , r,(13)

eiv = 0 for all i = 1, . . . , r, that is, n+v = 0,(14)

Lg(λ) = U(n−)vλ,(15)

λ is the highest weight of Lg(λ).(16)

Let

P := {λ ∈ h∗ | λ(hi) ∈ Z for all i = 1, . . . , r},
P+ := {λ ∈ h∗ | λ(hi) ∈ Z>0 for all i = 1, . . . , r},

be the weight lattice of h∗ and the set of dominant integral weights respectively.
The elements $i ∈ h∗, i = 1, . . . , r, satisfying $i(hj) = δi,j for all j are called the
fundamental weights. We denote by $∨1 , . . . , $

∨
r the fundamental coweights. They

are the elements of h such that ($∨1 , . . . , $
∨
r ) is the dual basis of (α1, . . . , αr).

We conclude this section by the following crucial result.

Theorem 1.4 ([Carter, Theorem 10.21]). The simple U(g)-module Lg(λ) is
finite dimensional if and only if λ ∈ P+. Moreover, all simple finite dimensional
U(g)-modules are of the form Lg(λ) for some λ ∈ P+. These modules are pairwise
non-isomorphic.

The highest weight modules Mg(λ) and Lg(λ) are both elements of the category
O of g. To avoid repetitions, we will define the categoryO only for affine Kac-Moody
algebras (see Section 1.4); the definition and properties are very similar.

For more about semisimple Lie algebras and their representations, possible
references are [Tauvel-Yu, Carter]; see [Humphreys] about the category O.

For the categoryO in the affine Kac-Moody algebras setting, we refer to Moody-
Pianzola’s book [Moody-Pianzola].

1.2. Affine Kac-Moody algebras

We assume from now on that g is simple, that is, the only ideals of g are {0}
or g and dim g > 3.

1.2.1. The loop algebra. Consider the loop algebra of g which is the Lie
algebra

Lg := g[t, t−1] = g⊗ C[t, t−1],

with commutation relations

[xtm, ytn] = [x, y]tm+n, x, y ∈ g, m, n ∈ Z,

where xtm stands for x⊗ tm.

Remark 1.5. The Lie algebra Lg is the Lie algebra of polynomial functions
from the unit circle to g. This is the reason why it is called the loop algebra.
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1.2.2. Definition of affine Kac-Moody algebras. Define the bilinear form
( | ) on g by:

( | ) =
1

2h∨
κg,

where h∨ is the dual Coxeter number (see §1.3.3 for the definition). For example,
if g = sln then h∨ = n. Thus with respect to the induced bilinear form on h∗,
(θ|θ) = 2 where θ is the highest root of g, that is, the unique (positive) root θ ∈ ∆
such that θ + αi 6∈ ∆ ∪ {0} for i = 1, . . . , r.

Definition 1.6. We define a bilinear map ν on Lg by setting:

ν(x⊗ f, y ⊗ g) := (x|y)Rest=0(
df

dt
g),

for x, y ∈ g and f, g ∈ C[t, t−1], where the linear map Rest=0 : C[t, t−1] → C is
defined by Rest=0(tm) = δm,−1 for m ∈ Z.

The bilinear ν is a 2-cocycle on Lg, that is, for any a, b, c ∈ Lg,

ν(a, b) = −ν(b, a),(17)

ν([a, b], c) + ν([b, c], a) + ν([c, a], b) = 0.(18)

Definition 1.7. We define the affine Kac-Moody algebra ĝ as the vector space
ĝ := Lg⊕CK, with the commutation relations [K, ĝ] = 0 (so K is a central element),
and

[x⊗ f, y ⊗ g] = [x, y]Lg + ν(x⊗ f, y ⊗ g)K, x, y ∈ g, f, g ∈ C[t, t−1],(19)

where [ , ]Lg is the Lie bracket on Lg. In other words the commutation relations
are given by:

[xtm, ytn] = [x, y]tm+n +mδm+n,0(x|y)K,

[K, ĝ] = 0,

for x, y ∈ g and m,n ∈ Z.

Exercise 1.8. Verify that the identifies (17) and (18) are true, and then that
the above commutation relations indeed define a Lie bracket on ĝ.

1.2.3. Chevalley generators. The following result shows that affine Kac-
Moody algebras are natural generalizations of finite dimensional semisimple Lie
algebras.

Theorem 1.9. The Lie algebra ĝ can be presented by generators (Ei)06i6r,
(Fi)06i6r, (Hi)06i6r, and relations

[Hi, Hj ] = 0,(20)

[Ei, Fj ] = δi,jHi,(21)

[Hi, Ej ] = Ci,jEj ,(22)

[Hi, Fj ] = −Ci,jFj ,(23)

(adEi)
1−Ci,jEj = 0 for i 6= j,(24)

(adFi)
1−Ci,jFj = 0 for i 6= j,(25)
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where Ĉ = (Ci,j)06i6r is an affine Cartan matrix, that is, Ĉ satisfies the relations
(1)–(4) of a Cartan matrix, all proper principal minors are strictly positive,

det ((Ci,j)16i,j6s) > 0 for 0 6 s 6 r − 1,

and det(Ĉ) = 0.

Moreover, we can choose the labeling {0, . . . , r} so that the subalgebra gener-
ated by (Ei)16i6r, (Fi)16i6r, (Hi)16i6r is isomorphic to g, that is, (Ci,j)16i6r is
the Cartan matrix C of g.

Let us give the general idea of the construction of the Chevalley generators of
ĝ (see [Hernandez-lectures]1). Set for i = 1, . . . , r,

Ei := ei = ei ⊗ 1, Fi := fi = fi ⊗ 1, Hi := hi = hi ⊗ 1.

The point is to define E0, F0, H0. Recall that θ is the highest root of ∆. Consider
the Chevalley involution ω which is the linear involution map of g defined by ω(ei) =
−fi, ω(fi) = −ei and ω(hi) = −hi for i = 1, . . . , r. Then pick f0 ∈ gθ and e0 ∈ g−θ
such that

(f0|ω(f0)) = − 2

(θ|θ)
= −1.

Then we set e0 := −ω(f0) ∈ g−θ and,

E0 := e0t = e0 ⊗ t, F0 := f0t
−1 = f0 ⊗ t−1, H0 := [E0, F0].

Example 1.10. Assume that g = sl2. Then the Cartan matrix C is C = (2).

Let us check that the affine Cartan matrix of ŝl2 is Ĉ =

(
2 −2
−2 2

)
. We have

ŝl2 = e⊗ C[t, t−1]⊕ f ⊗ C[t, t−1]⊕ h⊗ C[t, t−1]⊕ CK,

where

e :=

(
0 1
0 0

)
, f :=

(
0 0
1 0

)
, h :=

(
1 0
0 1

)
.

We follow the above construction. We set E1 := e, F1 := f and H1 := h. We have
h∨ = 2 and ∆ = {α,−α} with α(h) = 2. The highest root is θ = α and (sl2)θ = Ce.
So f0 is of the form f0 = λe, λ ∈ C∗ and verifies:

−1 = (f0, ω(f0)) = −λ2,

whence λ2 = ±1. Let us fix λ = 1. So we have

E0 = ft and F0 = et−1.

Then

H0 = [E0, F0] = [f, e] + (f |e)K = K −H1.

We can verify the relations of Chevalley generators. In particular, [H1, E0] = −2E0

and [H0, E1] = −2E1 whence the expected affine Cartan matrix Ĉ.

1.3. Root systems and triangular decomposition

In order to construct analogs of highest weight representations, we need a tri-
angular decomposition for ĝ and the corresponding combinatoric, that is, a system
of roots.

1Since we don’t have exactly the same normalization, we give the details here.
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1.3.1. Triangular decomposition. Recall the triangular decomposition (12)
of g, and consider the following subspaces of ĝ:

n̂+ := (n− ⊕ h)⊗ tC[t]⊕ n+ ⊗ C[t] = n+ + tg[t],

n̂− := (n+ ⊕ h)⊗ t−1C[t−1]⊕ n− ⊗ C[t−1] = n− + t−1g[t−1],

ĥ := (h⊗ 1)⊕ CK = h + CK.

They are Lie subalgebras of ĝ and we have

ĝ = n̂− ⊕ ĥ⊕ n̂+.(26)

In fact, n̂+ (resp. n̂−, ĥ) is generated by the Ei (resp. Fi, Hi), for i = 0, . . . , r. The
verifications are left to the reader.

1.3.2. Extended affine Kac-Moody algebras. We now intend to define a

corresponding root system, and simple roots. The simple roots αi ∈ ĥ∗ are defined

by αj(Hi) = Ci,j for 0 6 i, j 6 r. As det(Ĉ) = 0, the simple roots α0, . . . , αr are

not linearly independent. For example, for ŝl2, α0 + α1 = 0.
For the following constructions, we need linearly independent simple roots.

That is why we consider the extended affine Lie algebra:

g̃ := ĝ⊕ CD,

with commutation relations (apart from those of ĝ),

[D,x⊗ f ] = x⊗ tdf
dt
, [D,K] = 0, x ∈ g, f ∈ C[t, t−1],

that is,

[D,xtm] = mxtm, [D,K] = 0, x ∈ g, m ∈ Z.

We have the new Cartan subalgebra

h̃ := ĥ⊕ CD.

It is a commutative Lie subalgebra of g̃ of dimension r+ 2, and we have the corre-
sponding triangular decomposition :

g̃ = n̂− ⊕ h̃⊕ n̂+.

Let us define the new simple roots αi ∈ h̃∗ for i = 0, . . . , r. The action of αi on

ĥ has already been defined, and so we only have to specify αi(D) for i = 0, . . . , r.
From the relations

αi(D)Ei = [D,Ei] = [D, ei] = 0, i = 1, . . . , r,

we deduce that αi(D) = 0 for i = 1, . . . , r. From the relation

α0(D)E0 = [D,E0] = [D, e0t] = E0,

we deduce that α0(D) = 1.
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1.3.3. Root system. The bilinear form ( | ) extends from g to a symmetric
bilinear form on g̃ by setting for x, y ∈ g, m,n ∈ Z:

(xtm|ytn) = δm+n,0(x|y), (Lg|CK ⊕ CD) = 0,

(K|K) = (D|D) = 0, (K|D) = 1.

Since the restriction of the bilinear form ( | ) to h̃ is nondegenerate, we can identify

h̃∗ with h̃ using this form. Through this identification, α0 = K − θ. For α ∈ h̃∗

such that (α|α) 6= 0, we set α∨ =
2α

(α|α)
. Note that α∨ obviously corresponds to

α∨i = hi for α = αi, i = 1, . . . , r.

The set of roots ∆̂ of g̃ with basis Π̂ := {α0, α1, . . . , αr} is

∆̂ = ∆̂re ∪ ∆̂im,

where the set of real roots is

∆̂re := {α+ nK | α ∈ ∆, n ∈ Z},

and the set of imaginary roots is

∆̂im := {nK | n ∈ Z, n 6= 0}.

Then we set ∆̂∨ := ∆̂∨,re ∪ ∆̂∨,im, with

∆̂∨,re := {α∨ | α ∈ ∆̂re}, ∆̂∨,im := {α∨ | α ∈ ∆̂im}.

The positive integers

h := (ρ∨|θ) + 1 and h∨ = (ρ|θ∨) + 1

are called the Coxeter number and the dual Coxeter number of g respectively, where
ρ (resp. ρ∨) is as usual the half sum of positive roots (resp. coroots), that is, it
is defined by (ρ|α∨i ) = 1 (resp. (ρ∨|αi) = 1), for i = 1, . . . , r. Defining ρ̂ :=

h∨D + ρ ∈ h̃ and ρ̂∨ := hD + ρ∨ ∈ h̃ we have the following formulas: (ρ̂|α∨i ) = 1
and (ρ̂∨|αi) = 1, for i = 0, . . . , r.

1.4. Representations of affine Kac-Moody algebras, category O

We extend some notations and definitions of Section 1.1 to g̃. For example, for

M a g̃-module and λ ∈ h̃∗, we set

Mλ := {m ∈M | xm = λ(x)m for all x ∈ h̃∗}.

The space Mλ is called the weight space of weight λ of M . The set of weights of M
is

wt(M) := {λ ∈ h̃∗ |Mλ 6= 0}.

The partial order 4 is extended to h̃∗ as follows: we write µ 4 λ if λ − µ =∑r
i=0miαi with mi ∈ Z, mi > 0. For λ ∈ h̃∗, we set D(λ) := {µ ∈ h̃∗ | µ 4 λ}.
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1.4.1. The category O. Let U(ĝ) and U(g̃) be the enveloping algebras of ĝ
and g̃ respectively. Let U(g̃) -Mod be the category of left U(g̃)-modules.

Definition 1.11. The catgeory O is defined to be the full subcategory of
U(g̃) -Mod whose objects are the modules M satisfying the following conditions:

(O1) M is h̃-diagonalizable, that is, M = ⊕λ∈h̃∗Mλ,

(O2) all weight spaces of M are finite dimensional,

(O3) there exists a finite number of λ1, . . . , λs ∈ h̃∗ such that

wt(M) ⊂
⋃

16i6s

D(λi).

The category O is stable by submodules and quotients. For M1,M2 two rep-
resentations of g̃ we can define a structure of g̃-module on M1 ⊗M2 by using the
coproduct g̃ → g̃, x 7→ x⊗ 1 + 1⊗ x for x ∈ g̃. Then if M1 and M2 are objects of
O, then so are M1 ⊕M2 and M1 ⊗M2.

Exercise 1.12. Check the last assertion.

1.4.2. Verma modules. We now give important examples of modules in the

category O. For λ ∈ h̃∗, set:

K(λ) := U(g̃)n̂+ +
∑
x∈h̃∗

U(g̃)(x− λ(x)) ⊂ U(g̃).

As it is a left ideal of U(g̃),

M(λ) := U(g̃)/K(λ)

has a natural structure of a left U(g̃)-module. It is called a Verma module.

Proposition 1.13. The U(g̃)-module M(λ) is in the category O and has a
unique proper submodule N(λ).

We construct N(λ) in the same way as Ng(λ) for g (see §1.1.3).
As a consequence of the proposition, M(λ) has a unique simple quotient

L(λ) := M(λ)/N(λ).

Proposition 1.14. The simple module L(λ) is in the category O and all simple

modules of the category O are of the form L(λ) for some λ ∈ h̃∗.

The character of a module M in the category O is by definition

ch(M) =
∑
λ∈h̃∗

(dimMλ)e(λ)

where the e(λ) are formal elements.
In general a representation M in O does not have a finite composition series.

However, the multiplicity [M : L(λ)] of L(λ) in M makes sense ([KK79]). As a
consequence, we have

chM =
∑
λ

[M : L(λ)] chL(λ), [M : L(λ)] ∈ Z>0,
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1.5. Integrable and admissible representations

1.5.1. Integrable representations. The representation L(λ), λ ∈ h̃∗, is fi-
nite dimensional if and only if λ = 0, that is, L(λ) is the trivial representation.
The notion of finite dimensional representations has to be replaced by the notion
of integrable representations in the category O.

Definition 1.15. A representation M of g̃ is said to be integrable if

(1) M is h̃-diagonalizable,

(2) for λ ∈ h̃∗, Mλ is finite dimensional,
(3) for all λ ∈ wt(M), for all i = 0, . . . , r, there is N > 0 such that for m > N ,

λ+mαi 6∈ wt(M) and λ−mαi 6∈ wt(M).

As a ai-module, i = 0, . . . , r, an integrable representation M decomposes into

a direct sum of finite dimensional irreducible h̃-invariant modules, where ai ∼= sl2
is the Lie algebra generated by Ei, Fi, Hi. Hence the action of ai on M can be
“integrated” to the action of the group SL2(C).

The character of the simple integrable representations in the category O satisfy
remarkable combinatorial identities (related to MacDonald identities).

1.5.2. Level of a representation. According to the well-known Schur Lemma,
any central element of a Lie algebra acts as a scalar on a simple finite dimensional
representation L. As the Schur Lemma extends to a representation with countable
dimension, the result holds for highest weight g̃-modules. In particular, K ∈ g̃ acts
as a scalar k ∈ C on the simple representations of the category O.

Definition 1.16. A representation M is said to be of level k if K acts as kId
on M .

All simple representations of the category O have a level. Namely, L(λ) has
level k = λ(K) ∈ C, and so k = µ(K) for all µ ∈ wt(L(λ)). Note that

k = λ(K) =

r∑
i=0

aiλ(α∨i )

where the ai are defined by K =
∑r
i=0 aiα

∨
i .

Lemma 1.17. The simple representation L(λ) is integrable if and only if λ is
dominant and integrable, that is, λ(Hi) ∈ Z>0 for all i = 0, . . . , r. It has level 0 if
and only if dimL(λ) = 1.

Recall that h̃∗ is identified with h̃ through ( | ), and that through this identi-
fication the dual of K is D. Then, as a particular case of Lemma 1.17, L(kD) is
integrable if and only if k ∈ Z>0.

The category of modules of the category O of level k will be denoted by Ok
([Kac74]).

The level k = −h∨ is particular since the center of ĝ/ĝ(K − k) is large and
the representation theory changes drastically at this level. This level is called the
critical level. It is of particular importance for applications to Conformal Field
Theory and the Geometric Langlands Program.

Unless the category O is stable by tensor product, the category Ok is not stable
by tensor product (except for k = 0). Indeed from the coproduct, we get that for
M1,M2 representations in Ok1

, Ok2
respectively, the module M1⊗M2 is in Ok1+k2

.
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This is one motivation to study the fusion product; see [Bakalov-Kirillov01],
[Hernandez-lectures, Section 5] for more details on this topic.

1.5.3. Admissible representations. We now introduce a class of represen-
tations, called admissible representations, which includes the class of integrable rep-
resentations. The definition goes back to Kac and Wakimoto [Kac-Wakimoto89].
While the notion of integrable representations has a geometrical meaning, the no-
tion of admissible representations is purely combinatorial. However, conjecturally,
admissible representations are precisely the representations which satisfy a certain
modular invariant property (see below).

Recall the definition of the affine and extended affine Weyl groups (see e.g.,

[Kac-Wakimoto08]). Let W be the Weyl group of (g, h) and extend it to ĥ by
setting w(K) = K, w(D) = D for all w ∈W. Let Q∨ =

∑r
i=1 Zα∨i be the coroot

lattice of g. For α ∈ h, define the translation ([Kac1]),

tα(v) = v + (v|K)α−
(

1

2
|α|2(v|K) + (v|α)

)
K, v ∈ ĥ,

and for a subset L ⊂ h, let

tL := {tα | α ∈ L}.

The affine Weyl groups Ŵ and the extended affine Weyl group W̃ are then defined
by:

Ŵ := W n tQ∨ , W̃ := W n tP∨ ,

so that Ŵ ⊂ W̃. Here P∨ = {λ ∈ h | 〈λ, α〉 ∈ Z for all α ∈ Q}, withQ =
∑r
i=1 Zαi

the root lattice.
The group W̃+ := {w ∈ W̃ | w(Π̂∨) = Π̂∨} acts transitively on orbits of

Aut Π̂∨ and simply transitively acts on the orbit of α∨0 . Moreover W̃ = W̃+ n Ŵ.

Here, Π̂∨ := {α∨ | α ∈ Π̂}.

Definition 1.18 ([Kac-Wakimoto89, Kac-Wakimoto08]). A weight λ ∈
ĥ∗ is called admissible if

(1) λ is regular dominant, that is,

〈λ+ ρ̂, α∨〉 6∈ −Z>0 for all α ∈ ∆̂re
+ ,

(2) the Q-span of ∆̂λ contains ∆̂re where ∆̂λ := {α ∈ ∆̂re | (λ|α∨) ∈ Z}.

The irreducible highest weight representation L(λ) of ĝ with highest weight

λ ∈ ĥ∗ is called admissible if λ is admissible. Note that an irreducible integrable
representation of ĝ is admissible.

Proposition 1.19 ([Kac-Wakimoto08, Proposition 1.2]). For k ∈ C, the
weight λ = kD is admissible if and only if k satisfies one of the following conditions:

(1) k = −h∨ +
p

q
where p, q ∈ Z>0, (p, q) = 1, and p > h∨,

(2) k = −h∨ +
p

r∨q
where p, q ∈ Z>0, (p, q) = 1, (p, r∨) = 1 and p > h.

Here r∨ is the lacety of g (i.e., r∨ = 1 for the types A,D,E, r∨ = 2 for the types
B,C, F and r∨ = 3 for the type G2), h and h∨ are the Coxeter and dual Coxeter
numbers.
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Definition 1.20. If k satisfies one of the conditions of Proposition 1.19, we
say that k is an admissible level.

For an admissible representation L(λ) we have [Kac-Wakimoto88]

ch(L(λ)) =
∑

w∈Ŵ (λ)

(−1)`λ(w)ch(M(w ◦ λ))(27)

since λ is regular dominant, where Ŵ(λ) is the integral Weyl group ([Kashiwara-Tanisaki98,

Moody-Pianzola]) of λ, that is, the subgroup of Ŵ generated by the reflections

sα associated with α ∈ ∆̂λ, w ◦ λ = w(λ + ρ) − ρ and `λ is the length function of

the Coxeter group Ŵ(λ). Further, Condition (2) of Proposition 1.19 implies that
ch(L(λ)) is written in terms of certain theta functions [Kac1, Ch 13]. Kac and
Wakimoto [Kac-Wakimoto89] showed that admissible representations are modu-
lar invariant, that is, the characters of admissible representations form an SL2(Z)
invariant subspace.

Let λ, µ be distinct admissible weights. Then Condition (1) of Proposition 1.19
implies that

Ext1
ĝ(L(λ), L(µ)) = 0.

Further, the following fact is known by Gorelik and Kac [Gorelik-Kac11].

Theorem 1.21 ([Gorelik-Kac11]). Let λ be admissible. Then Ext1
ĝ(L(λ), L(λ)) =

0.

Therefore admissible representations form a semisimple full subcategory of the
category of ĝ-modules.



PART 2

Vertex algebras and Zhu functors, the canonical
filtration and Zhu’s C2-algebras

Our main references for this part are [Frenkel-BenZvi, Kac2].

2.1. Definition of vertex algebras, first properties

A field on a vector space V is a formal series

a(z) =
∑
n∈Z

a(n)z
−n−1 ∈ EndV [[z, z−1]]

such that for any v ∈ V , a(n)v = 0 for large enough n. Denote by F (V ) the space
of all fields on V .

2.1.1. Definition. A vertex algebra is a vector space V equipped with the
following data:

• (the vertex operators) a linear map

Y (?, z) : V → F (V ), a 7→ a(z) =
∑
n∈Z

a(n)z
−n−1,

• (the vacuum vector) a vector |0〉 ∈ V ,
• (the translation operator) a linear map T : V → V .

These data are subject to the following axioms:

• (the vacuum axiom) |0〉(z) = idV . Furthermore, for all a ∈ V ,

a(z)|0〉 ∈ V [[z]]

and lim
z→0

a(z)|0〉 = a. In other words, a(n)|0〉 = 0 for n > 0 and a(−1)|0〉 =
a.

• (the translation axiom) for any a ∈ V ,

[T, a(z)] = ∂za(z),

and T |0〉 = 0.
• (the locality axiom) for all a, b ∈ V , (z − w)Na,b [a(z), b(w)] = 0 for some
Na,b ∈ Z>0.

The locality axiom is equivalent to the fact that

[a(z), b(w)] =

Na,b−1∑
n=0

(a(n)b)(w)
1

n!
∂nwδ(z − w),(28)

where δ(z − w) :=
∑
n∈Z w

nz−n−1 ∈ C[[z, w, z−1, w−1]]. Note that the translation
axiom says that

[T, a(n)] = −na(n−1), n ∈ Z,

21
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and together with the vacuum axiom we get that

Ta = a(−2)|0〉.

2.1.2. Goddard’s uniqueness theorem. The Goddard uniqueness theorem
is important since it says that one can reconstruct a vertex algebra from the knowl-
edge of how it acts in the vaccum vector.

Theorem 2.1. Let V be a vertex algebra, and Ỹ (?, z) : V → F (V ) a (new)
field on V . Suppose there exists a ∈ V such that

Ỹ (a, z)|0〉 = Y (a, z)|0〉

and Ỹ (a, z) is local with respect to Y (b, z), that is, (z − w)N [Ỹ (a, z), Y (b, z)] = 0

for N � 0, for any b ∈ V . Then Ỹ (a, z) = Y (a, z).

Exercise 2.2. Using the Goddard uniqueness theorem, verify that for all a ∈
V ,

Y (Ta, z) = ∂zY (a, z).(29)

Note that the above property is different from the translation axiom.

Exercise 2.3. Using the Goddard uniqueness theorem, verify that for all a, b ∈
V ,

Y (a, z)b = ezTY (b,−z)a.(30)

2.1.3. Borcherds identities and λ-bracket. A consequence of the defini-
tion is the following relations, called Borcherds identities:

[a(m), b(n)] =
∑
i>0

(
m
i

)
(a(i)b)(m+n−i),(31)

(a(m)b)(n) =
∑
j>0

(−1)j
(
m
j

)
(a(m−j)b(n+j) − (−1)mb(m+n−j)a(j)),(32)

for m,n ∈ Z. In the above formulas, the notation

(
m
i

)
for i > 0 and m ∈ Z means(

m
i

)
=
m(m− 1)× · · · × (m− i+ 1)

i(i− 1)× · · · × 1
.

The vertex algebra V is also endowed with a λ-bracket structure. Set for a, b ∈
V :

[aλb] = Resz=0e
λzY (a, z)b =

∑
n>0

λn

n!
a(n)b ∈ V [λ].

The λ-bracket satisfies properties similar to the axioms of a Lie algebra:

[(Ta)λb] = −λ[aλb], [aλ(Tb)] = (λ+ T )[aλb],(33)

[bλa] = −[a−λ−T b],(34)

[aλ[bµc]]− [bµ[aλc]] = [[aλb]λ+µc].(35)

In the above, we have extended the λ-bracket (a, b) 7→ [aλb] to V [λ] × V [λ] by
bilinearity.
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2.1.4. Normally ordered product. The normally ordered product on V is
defined as : ab := a(−1)b. We also write : ab : (z) = : a(z)b(z) :. We have

: a(z)b(z) : = a(z)+b(z) + b(z)a(z)−,

where

a(z)+ =
∑
n<0

a(n)z
−n−1, a(z)− =

∑
n>0

a(n)z
−n−1.

We have the following non-commutative Wick formulas:

[aλ : bc :] =: [aλb]c : + : [aλc]b : +

∫ λ

0

[[aλb]µc]dµ,(36)

[: ab :λ c] =: (eT∂λa)[bλc] : + : (eT∂λb)[aλc] : +

∫ λ

0

[bµ[aλ−µc]]dµ.(37)

2.2. First examples of vertex algebras

2.2.1. Commutative vertex algebras. A vertex algebra V is called com-
mutative if all vertex operators Y (a, z), a ∈ V , commute each other (i.e., we have
Na,b = 0 in the locality axiom). This condition is equivalent to that

[a(m), b(n)] = 0, ∀a, b ∈ Z, m, n ∈ Z

by (31). It is also equivalent to that

[aλb] = 0, ∀a, b ∈ V,

or else that, a(n) = 0 for n > 0 in EndV for all a ∈ V .
Hence if V is a commutative vertex algebra, then a(z) ∈ EndV [[z]] for all a ∈ V .

Then a commutative vertex algebra has a structure of a unital commutative algebra
with the product:

a · b = : ab : = a(−1)b,

where the unit is given by the vacuum vector |0〉. The translation operator T of V
acts on V as a derivation with respect to this product:

T (a · b) = (Ta) · b+ a · (Tb).

Therefore a commutative vertex algebra has the structure of a differential algebra,
that is, a unital commutative algebra equipped with a derivation. Conversely, there
is a unique vertex algebra structure on a differential algebra R with derivation ∂
such that:

Y (a, z)b =
(
ez∂a

)
b =

∑
n>0

zn

n!
(∂na)b,

for all a, b ∈ R. We take the unit as the vacuum vector. This correspondence gives
the following result.

Theorem 2.4 ([Borcherds86]). The category of commutative vertex algebras
is the same as that of differential algebras.
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2.2.2. Universal affine vertex algebras. Let a be a Lie algebra endowed
with a symmetric invariant bilinear form κ. Let

â = a[t, t−1]⊕C1

be the Kac-Moody affinization of a. It is a Lie algebra with commutation relations

[xtm, ytn] = [x, y]tm+n +mδm+n,0κ(x, y)1, x, y ∈ a, m, n ∈ Z, [1, â] = 0.

Let

V κ(a) = U(â)⊗U(a[t]⊕C1) C,(38)

where C is a one-dimensional representation of a[t] ⊕ C1 on which a[t] acts triv-
ially and 1 acts as the identity. By the PBW Theorem, we have the following
isomorphism of vector spaces:

V κ(a) ∼= U(a⊗ t−1C[t−1]).

The space V κ(a) is naturally graded: V κ(a) =
⊕

∆∈Z>0
V κ(a)∆, where the

grading is defined by setting deg(xtn) = −n, deg |0〉 = 0. Here |0〉 = 1 ⊗ 1. We
have V κ(a)0 = C|0〉. We identify a with V κ(a)1 via the linear isomorphism defined
by x 7→ xt−1|0〉.

There is a unique vertex algebra structure on V κ(a), such that |0〉 is the vacuum
vector and

Y (x, z) = x(z) :=
∑
n∈Z

(xtn)z−n−1, x ∈ a.

(So x(n) = xtn for x ∈ a = V κ(a)1, n ∈ Z). The vertex algebra V κ(a) is called the
universal affine vertex algebra associated with (a, κ).

Let us describe the vertex algebra structure in more details. Set

x(n) = xtn, ∀x ∈ a, n ∈ Z,

and let |0〉 be the image of 1⊗ 1 ∈ U(â)⊗C in V κ(a). Let (xi ; i = 1 . . . ,dim a) be
an ordered basis of a. By the PBW Theorem, V κ(a) has a basis of the form

xi1(n1) . . . x
im
(nm)|0〉,

where n1 6 n2 6 · · · 6 nm < 0, and if nj = nj+1, then ij 6 ij+1.
Then (V κ(a), |0〉, T, Y ) is a vertex algebra where the translation operator T is

given by
T |0〉 = 0, [T, xi(n)] = −nxi(n−1),

for n ∈ Z, and the vertex operators Y (?, z) are given by:

Y (|0〉, z) = IdV κ(a), Y (xi−1|0〉, z) = xi(z) =
∑
n∈Z

xi(n)z
−n−1,

Y (xi1(n1) . . . x
im
(nm)|0〉, z)

=
1

(−n1 − 1)! . . . (−nm − 1)!
: ∂−n1−1

z xi1(z) . . . ∂−nm−1
z xim(z) :

When a = g is the simple Lie algebra as in Part 1, so that â = ĝ is the affine
Kac-Moody algebra as in Section 1.2, and and

κ = k( | ) =
k

2h∨
× κg, for k ∈ C,

with κg the Killing form of g, then we write V k(g) for the universal affine vertex
algebra vertex algebra V κ(a). We call it the universal vacuum representation of
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level k of ĝ. By what foregoes, V k(g) has a natural vertex algebra structure, and
it is called the universal affine vertex algebra associated with ĝ of level k.

2.2.3. The Virasoro vertex algebra. Let V ir = C((t))∂t ⊕ CC be the
Virasoro Lie algebra, with the commutation relations

[Ln, Lm] = (n−m)Ln+m +
n3 − n

12
δn+m,0C,(39)

[C, V ir] = 0,(40)

where Ln := −tn+1∂t for n ∈ Z.
Let c ∈ C and define the induced representation

Virc = IndV irC[[t]]∂t⊕CCCc = U(V ir)⊗C[[t]]∂t⊕CC Cc,

where C acts as multiplication by c and C[[t]]∂t acts by 0 on the 1-dimensional
module Cc.

By the PBW Theorem, Virc has a basis of the form

Lj1 . . . Ljm |0〉, j1 6 · · · 6 jl 6 −2,

where |0〉 is the image of 1 ⊗ 1 in Virc. Then (Virc, |0〉, T, Y ) is a vertex algebra,
called the universal Virasoro vertex algebra with central charge c, such that T = L−1

and:

Y (|0〉, z) = IdVircc , Y (L−2|0〉, z) =: L(z) =
∑
n∈Z

Lnz
−n−2,

Y (Lj1 . . . Ljm |0〉, z)

=
1

(−j1 − 2)! . . . (−jm − 2)!
: ∂−j1−2

z T (z) . . . ∂−jm−2
z T (z) :

Moreover, Virc is Z>0-graded by deg |0〉 = 0 and degLn|0〉 = −n.

2.2.4. Conformal vertex algebras. A Hamiltonian of V is a semisimple
operator H on V satisfying

[H, a(n)] = −(n+ 1)a(n) + (Ha)(n)

for all a ∈ V , n ∈ Z.

Definition 2.5. A vertex algebra equipped with a Hamiltonian H is called
graded. Let V∆ = {a ∈ V | Ha = ∆a} for ∆ ∈ C, so that V =

⊕
∆∈C V∆. For

a ∈ V∆, ∆ is called the conformal weight of a and it is denoted by ∆a. We have

a(n)b ∈ V∆a+∆b−n−1(41)

for homogeneous elements a, b ∈ V .

For example, the universal affine vertex algebra V k(g) is Z>0-graded (that is,
V k(g)∆ = 0 for ∆ 6∈ Z>0) and the Hamiltonian is given by H = −D.

Definition 2.6. A graded vertex algebra V =
⊕

∆∈C V∆ is called conformal
of central charge c ∈ C if there is a conformal vector ω ∈ V2 such that the Fourier
coefficients Ln of the corresponding vertex operators

Y (ω, z) =
∑
n∈Z

Lnz
−n−2
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satisfy the defining relations (39) of the Virasoro algebra with central charge c, and
if in addition we have

ω(0) = L−1 = T,

ω(1) = L0 = H i.e., L0|V∆
= ∆IdV∆

∀∆ ∈ Z.

A Z-graded conformal vertex algebra is also called a vertex operator algebra.

Example 2.7. The Virasoro vertex algebra Virc is clearly conformal with cen-
tral charge c and conformal vector ω = L−2|0〉.

Example 2.8. The universal affine vertex algebra V k(g) has a natural confor-
mal vector, provided that k 6= −h∨. Set

S =
1

2

dim g∑
i=1

xi,−1x
i
(−1)|0〉,

where (xi; i = 1, . . . ,dim g) is the dual basis of (xi; i = 1, . . . ,dim g) with respect
to the bilinear form ( | ), and

xi(z) =
∑
n∈Z

xi(n)z
−n−1, xi(z) =

∑
n∈Z

xi,(n)z
−n−1.

Then for k 6= −h∨, L =
S

k + h∨
is a conformal vector of V k(g), called the Segal-

Sugawara vector, with central charge

c(k) =
k dim g

k + h∨
.

We have

[Lm, x(n)] = (m− n)x(m+n) x ∈ g, m.n ∈ Z.(42)

2.3. Modules over vertex algebras

2.3.1. Definition. A module over the vertex algebra V is a vector space M
together with a linear map

YM (?, z) : V → F (M), a 7→ aM (z) =
∑
n∈Z

aM(n)z
−n−1,

which satisfies the following axioms:

|0〉(z) = IdM ,(43)

YM (Ta, z) = ∂zY
M (a, z),(44) ∑

j60

(
m
j

)
(a(n+j)b)

M
(m+k−j)(45)

=
∑
j>0

(−1)j
(
n
j

)
(aM(m+n−j)b

M
(k+j) − (−1)nbM(n+k−j)a

M
(m+j)).

Notice that (45) is equivalent to (31) and (32) for M = V .
Suppose in addition V is graded (cf. Definition 2.5). A V -module M is called

graded if there is a compatible semisimple action ofH onM , that is, M =
⊕

d∈CMd,
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where Md = {m ∈ M | Hm = dm} and [H, aM(n)] = −(n + 1)aM(n) + (Ha)M(n) for all

a ∈ V . We have

aM(n)Md ⊂Md+∆a−n−1(46)

for homogeneous a ∈ V .
When there is no ambiguity, we will often denote by a(n) the element aM(n) of

End(M).
The axioms imply that V is a module over itself (called the adjoint module).

We have naturally the notions of submodules, quotient module and vertex ideals.
Note that vertex ideals are the same as submodules of adjoint modules by (30). A
module whose only submodules are 0 and itself is called simple.

2.3.2. Modules of the universal affine vertex algebra. In the case that
V is the universal affine vertex algebra V k(g) associated with ĝ at level k ∈ C,
V -modules play a crucial important role in the representation theory of the affine
Kac-Moody algebra ĝ.

A ĝ-module M of level k is called smooth if x(z) is a field on M for x ∈ g, that
is, for any m ∈ M there is N > 0 such that (xtn)m = 0 for all x ∈ g and n > N .
Any V k(g)-module M is naturally a smooth ĝ-module of level k. Conversely, any
smooth ĝ-module of level k can be regarded as a V k(g)-module. It follows that a
V k(g)-module is the same as a smooth ĝ-module of level k.

Namely, we have the following.

Proposition 2.9 (See [Frenkel-BenZvi, §5.1.18] for a proof). There is an
equivalence of category between the category of V k(g)-modules and the category of
smooth ĝ-modules of level k.

Remark 2.10. Suppose that k is not critical, that is, k 6= −h∨, so that V k(g)
is conformal. Then, by (42), any smooth ĝ-module of level k module can be re-
garded as a g̃-module by letting D act by −L0. Thus, the representation theory
of g̃ and ĝ are essentially the same. To put it another way, one can define the
generalized Casimir operator [Kac1] of g̃ as the sum S0 + 2(k + h∨)D, where
S(z) =

∑
n∈Z Snz

−n−2 and S is as in Example 2.8.

The vertex algebra V k(g), as a module over itself, has a unique proper graded
submodule Nk(g) (it is a maximal vertex ideal of V k(g)), and so the quotient

Vk(g) := V k(g)/Nk(g)

is a simple V k(g)-module, that is, an irreducible ĝ-representation of level k. More-
over, as a ĝ-module, it is isomorphic to L(kD),

Vk(g) ∼= L(kD),

in the notations of Part 1 (Sections 1.4 and 1.5). Note that D, the dual of the central
element K with respect to ( | ), is the highest weight of the basic representation
of ĝ (i.e., obtained for k = 1). As a quotient of V k(g), Vk(g) has a natural vertex
algebra structure induced from that of Vk(g).

2.3.3. C2-cofinite condition. For a V -module M , set

C2(M) = spanC{a(−2)m ; a ∈ V, m ∈M}.
Then

C2(M) = spanC{a(−n)m ; a ∈ V, m ∈M, n > 2}
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by the property (44).
A V -module M is called C2-cofinite if dimM/C2(M) < ∞, and V is called

C2-cofinite if it is C2-cofinite as a module over itself. Such vertex algebras are also
called lisse. Later we shall see a more geometrical interpetation of the lisse condition
(cf. Lemma 4.21) in term of the associated variety of V (cf. Definition 4.17).

Lisse vertex algebras may be regarded as an analogue of finite-dimensional
algebras. One of remarkable properties of a lisse vertex algebra V is the modular
invariance of characters of modules [Zhu96, Miyamoto04]. Further, if it is also
rational, it is known [Huang08] that under some mild assumptions, the category of
V -modules forms a modular tensor category, which for instance yields an invariant
of 3-manifolds, see [Bakalov-Kirillov01].

2.3.4. Rational vertex algebras.

Definition 2.11. A conformal vertex algebra V is called rational if every Z>0-
graded V -modules is completely reducible (i.e., isomorphic to a direct sum of simple
V -modules).

It is known ([Dong-Li-Mason98]) that this condition implies that V has
finitely many simple Z>0-graded modules and that the graded components of each
of these Z>0-graded modules are finite dimensional.

In fact lisse vertex algebras also verify this property (see Theorem 2.26). It is
actually conjectured by [Zhu96] that rational vertex algebras must be lisse (this
conjecture is still open).

2.4. The canonical filtration, Zhu’s C2 algebras, and Zhu’s functors

2.4.1. The canonical filtration and the Zhu’s C2-algebra. Haisheng Li
[Li05] has shown that every vertex algebra is canonically filtered: For a vertex
algebra V , let F pV be the subspace of V spanned by the elements

a1
(−n1−1)a

2
(−n2−1) · · · a

r
(−nr−1)|0〉

with a1, a2, · · · , ar ∈ V , ni > 0, n1 + n2 + · · ·+ nr > p. Then

V = F 0V ⊃ F 1V ⊃ . . . .

It is clear that TF pV ⊂ F p+1V .
Set

(F pV )(n)F
qV := spanC{a(n)b ; a ∈ F pV, b ∈ F qV }.

Note that F 1V = spanC{a(−2)b | a, b ∈ V } = C2(V ).

Lemma 2.12. We have

F pV =
∑
j>0

(F 0V )(−j−1)F
p−jV.

Proposition 2.13. (1) (F pV )(n)(F
qV ) ⊂ F p+q−n−1V . Moreover, if n >

0, we have (F pV )(n)(F
qV ) ⊂ F p+q−nV . Here we have set F pV = V for

p < 0.
(2) The filtration F •V is separated, that is,

⋂
p>0 F

pV = {0}, if V is a
positive energy representation, i.e., positively graded over itself.

Exercise 2.14. The verifications are straightforward and are left as an exercise.



2.5. THE ZHU’S ALGEBRA 29

In this note we always assume that the filtration F •V is separated.
Set

grFV =
⊕
p>0

F pV/F p+1V.

We denote by σp : F pV 7→ F pV/F p+1V , for p > 0, the canonical quotient map.
Recall that a commutative vertex algebra is the same as a differential algebra

(Theorem 2.4). Then Proposition 2.13 gives the following.

Proposition 2.15 ([Li05]). The space grFV is a commutative vertex algebra
by

σp(a) · σq(b) := σp+q(a(−1)b),

Tσp(a) := σp+1(Ta),

for a ∈ F pV , b ∈ F qV , n > 0.

When the filtration F if obvious, we often denote simply by grV the space
grF V .

Set

RV := F 0V/F 1V = V/C2(V ) ⊂ grV.

Definition 2.16. The algebra RV is called the Zhu’s C2-algebra of V . The
algebra structure is given by:

ā · b̄ := a(−1)b,(47)

where ā = σ0(a).

We will see in Part 4 that grV is actually a Poisson vertex algebra (see Sub-
section 4.2.1) and that RV inherits a Poisson algebra structure (cf. §3.3.1) from the
Poisson vertex algebra structure on V (see Propositions 4.15 and 4.16).

Definition 2.17. A vertex algebra V is called finitely strongly generated if
there exist finitely many elements a1, . . . , ar in V such that V is spanned by the
elements of the form

ai1(−n1) . . . a
is
(−ns)|0〉

with s > 0, ni > 1.

For example, the universal affine vertex algebra and the Virasoro vertex algebra
are strongly finitely generated.

From now we always assume that a vertex algebra V is finitely strongly gener-
ated.

2.5. The Zhu’s algebra

Let V be a Z-graded vertex algebra. The Zhu’s algebra Zhu(V ) of V ([Frenkel-Zhu92,
Zhu96]) is defined as

Zhu(V ) := V/V ◦ V

where V ◦ V := span{a ◦ b ; a, b ∈ V }, and

a ◦ b :=
∑
i>0

(
∆a

i

)
a(i−2)b
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for homogeneous elements a, b, is extended linearly. It is an associative algebra with
multiplication defined as

a ∗ b :=
∑
i>0

(
∆a

i

)
a(i−1)b

for homogeneous elements a, b ∈ V .
For a simple positive energy representation M =

⊕
n∈Z>0

Mλ+n, Mλ 6= 0, of

V , let Mtop be the top degree component Mλ of M . Also, for a homogeneous vector
a ∈ V , let o(a) = a(∆a−1) = aM(∆a−1), so that o(a) preserves the homogeneous

components of any graded representation of V by (46).
The importance of Zhu’s algebra in vertex algebra theory comes from the fol-

lowing fact that was established by Yonchang Zhu.

Theorem 2.18 ([Zhu96]). For any positive energy representation M of V ,
[a] 7→ o(a) defines a well-defined representation of Zhu(V ) on Mtop, where [a] is the
image of a in Zhu(V ). Moreover, the correspondence M 7→ Mtop gives a bijection
between the set of isomorphism classes of irreducible positive energy representations
of V and that of simple Zhu(V )-modules.

A vertex algebra V is called a chiralization of an algebra A if Zhu(V ) ∼= A.
Now we define an increasing filtration of the Zhu’s algebra. For this, we assume

that V is Z>0-graded, V =
⊕

∆>0 V∆. Then V6p :=
⊕p

∆=0 V∆ gives an increasing
filtration of V . Define

Zhup(V ) := im(V6p → Zhu(V )).

Obviously, we have

0 = Zhu−1(V ) ⊂ Zhu0(V ) ⊂ Zhu1(V ) ⊂ · · · , and Zhu(V ) =
⋃
p>−1

Zhup(V ).

Also, since a(n)b ∈ V∆a+∆b−n−1 for a ∈ V∆a
, b ∈ V∆b

, we have

Zhup(V ) ∗ Zhuq(V ) ⊂ Zhup+q(V ).(48)

The following assertion follows from the skew symmetry.

Lemma 2.19 ([Zhu96]). We have

b ∗ a ≡
∑
i>0

(
∆a − 1

i

)
a(i−1)b (mod V ◦ V ),

and hence,

a ∗ b− b ∗ a ≡
∑
i>0

(
∆a − 1

i

)
a(i)b (mod V ◦ V ).

By Lemma 2.19, we have

[Zhup(V ),Zhuq(V )] ⊂ Zhup+q−1(V ).(49)

By (48) and (49), the associated graded gr Zhu(V ) =
⊕

p Zhup(V )/Zhup−1(V ) is
naturally a graded Poisson algebra.

Note that a ◦ b ≡ a(−2)b (mod
⊕

∆6∆a+∆b
V∆) for homogeneous elements a, b

in V .
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Lemma 2.20 (Zhu; see [DeSole-Kac06, Proposition 2.17(c)], [Arakawa-Lam-Yamada14,
Proposition 3.3]). The following map defines a well-defined surjective algebra ho-
momorphism:

ηV : RV −→ gr Zhu(V )

ā 7−→ a (mod V ◦ V +
⊕

∆<∆a

V∆).

Remark 2.21. Later we shall see (cf. Lemma 4.42) that ηV is actually a sur-
jective homomorphism of Poisson algebras.

Remark 2.22. The map ηV is not an isomorphism in general. For exam-
ple, let g be the simple Lie algebra of type E8 and V = V1(g). Then dimRV >
dim Zhu(V ) = 1.

Conjecture 1 ([Arakawa15b]). If V is a simple Z>0-graded conformal ver-
tex algebra, then

(XV )red
∼= Specm(gr ZhuV ).

Remark 2.23. One may also ask wether the following diagram is commutative.

grFV

Zhu(?)

��

V
grF (?)

oo

Zhu(?)

��

? Zhu(V )
gr(?)

oo

In other words, one may ask wether one has Zhu(grFV ) ∼= gr Zhu(V ). Note that
RV is not isomorphic to Zhu(grFV ) in general since C2(V ) 6= V ◦ V even for
commutative vertex algebras.

Although the above diagram is known to be commutative in several examples,
e.g., the unviversal affine vertex algebra V k(g), the fermion Fock space (cf. §??),
the W-algebra W k(g, f) (cf. Section ??), etc., it is not true in general.

Exercise 2.24. Verify that the example in Remark 2.22 provides a counter-
example, that is, Zhu(grFV ) 6∼= gr Zhu(V ) in this case.

Corollary 2.25. If V is lisse then Zhu(V ) is finite dimensional. Hence the
number of isomorphic classes of simple positive energy representations of V is finite.

In fact the following stronger facts are known.

Theorem 2.26 ([Abe-Buhl-Dong04]). Let V be lisse. Then any simple V -
module is a positive energy representation. Therefore the number of isomorphic
classes of simple V -modules is finite.

Theorem 2.27 ([Dong-Li-Mason98, Matsuo-Nagatomo-Tsuchiya10]).
Le V be lisse. Then the abelian category of V -modules is equivalent to the module
category of a finite-dimensional associative algebra.

To give examples of computations of Zhu’s algebras, one needs more ingredients.
So this will be done in Part 4.





PART 3

BRST cohomology, quantum Hamiltonian
reduction, geometry of nilpotent orbits and finite

W-algebras

This part is independent from Part 2, and use only notations of Section 1.1 in
Part 1.

It will be important for Part 5. Also, some geometrical aspects on nilpotent
orbits and Poisson algebras are useful for Part 4.

Recall that g is assumed to be simple.

3.1. Nilpotent orbits and nilpotent elements

Our main references for the results of this section are [Jantzen, Collingwood-McGovern,
Tauvel-Yu].

3.1.1. Nilpotent cone. Let N be the nilpotent cone of g, that is, the set of
all nilpotent elements of g. If g is a simple Lie algebra of matrices, note that N
coincides with the set of nilpotent matrices. For e ∈ g, we denote by G.e its adjoint
G-orbit. The nilpotent cone is a finite union of nilpotent G-orbits and it is itself
the closure of the regular nilpotent orbit, denoted by Oreg. It is the unique nilpotent
orbit of codimension the rank r of g. An element x ∈ g is regular if its centralizer
gx has the minimal dimension, that is, the rank r of g. Thus, Oreg is the set of all
regular nilpotent elements of g.

Example 3.1. If g = sln, then the rank of g is n− 1 and Oreg is the conjugacy
class of the n-size Jordan block Jn, i.e., Oreg = SLn.Jn with

Jn :=


0 1 0

. . .
. . .

. . . 1
0 0

 =

n−1∑
i=1

ei,i+1,

where ei,j is the elementary matrix whose entries are all zero, except the one in
position (i, j) which equals 1.

Next, there is a unique dense open orbit in N \Oreg which is called the subreg-
ular nilpotent orbit of g, and denoted by Osubreg. Its codimension in g is the rank
of g plus two. At the extreme opposite, there is a unique nilpotent orbit of smallest
positive dimension called the minimal nilpotent orbit of g, and denoted by Omin.
Its dimension is 2h∨ − 2 ([Wang99]).

33
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3.1.2. Chevalley order. The set of nilpotent orbits in g is naturally a poset
P with partial order 6, called the Cheveally order, defined as follows: O′ 6 O
if and only if O′ ⊆ O. The regular nilpotent orbit Oreg is maximal and the zero
orbit is the minimal with respect to this order. Moreover, Osubreg is maximal in
the poset P \Oreg and Omin is minimal in the poset P \ {0}.

The Chevalley order on P corresponds to a partial order on the set P(n) of
partitions of n, n > 1, for g = sln, first described by Gerstenhaber. More generally,
the Chevalley order corresponds to a partial order on some subset of P(n) when g
is of classical type as we explain below.

Let n ∈ Z>0. As a rule, unless otherwise specified, we write an element λ of
P(n) as a decreasing sequence λ = (λ1, . . . , λs) omitting the zeroes. Thus,

λ1 > · · · > λs > 1 and λ1 + · · ·+ λs = n.

We shall denote the dual partition of a partition λ ∈P(n) by tλ.
Let us denote by > the partial order on P(n) relative to dominance. More

precisely, given λ = (λ1, · · · , λs),η = (µ1, . . . , µt) ∈P(n), we have λ > η if

k∑
i=1

λi >
k∑
i=1

µi for 1 6 k 6 min(s, t).

Case sln. Every nilpotent matrix in sln is conjugate to a Jordan block diagonal
matrix. Therefore, the nilpotent orbits in g are parameterized by P(n). We shall
denote by Oλ the corresponding nilpotent orbit of sln. Then Oλ is represented by
the standard Jordan form diag(Jλ1

, . . . , Jλs), where Jk is the k-size Jordan block.
If we write tλ = (d1, . . . , dt), then

dimOλ = n2 −
t∑
i=1

d2
i .

If λ,η ∈P(n), then Oη ⊂ Oλ if and only if η 6 λ.
The regular, subregular, minimal and zero nilpotent orbits of sln correspond to

the partitions (n), (n− 1, 1), (2, 1n−2) and (1n) of n respectively.
We give in Figure 1 the description of the poset P(n) for n = 6. The column

on the right indicates the dimension of the orbits appearing in the same row. Such
diagram is called a Hasse diagram.

Cases on and son. For n ∈ N∗, set

P1(n) := {λ ∈P(n) ; number of parts of each even number is even}.

The nilpotent orbits of son are parametrized by P1(n), with the exception that
each very even partition λ ∈ P1(n) (i.e., λ has only even parts) corresponds to
two nilpotent orbits. For λ ∈ P1(n), not very even, we shall denote by O1,λ,
or simply by Oλ when there is no possible confusion, the corresponding nilpotent
orbit of son. For very even λ ∈P1(n), we shall denote by OI1,λ and OII1,λ the two

corresponding nilpotent orbits of son. In fact, their union forms a single O(n)-orbit.
Thus nilpotent orbits of on are parametrized by P1(n).

Let λ = (λ1, . . . , λs) ∈P1(n) and tλ = (d1, . . . , dt), then

dimO•1,λ =
n(n− 1)

2
− 1

2

(
t∑
i=1

d2
i −#{i;λi odd}

)
,
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Oreg = O(6) 30

Osubreg = O(5,1) 28

O(4,2) 26

O
(4,12)

O
(32)

24

O(3,2,1) 22

O
(23)

O
(3,13)

18

O
(22,12)

16

Omin = O
(2,14)

10

0 0

Figure 1. Hasse diagram for sl6

where O•1,λ is either O1,λ, OI1,λ or OII1,λ according to whether λ is very even or not.

Using the same notations, If λ,η ∈P1(n), then O•1,η ( O•1,λ if and only if η < λ,

where O•1,λ is either O1,λ, OI1,λ or OII1,λ according to whether λ is very even or not.

Given λ ∈ P(n), there exists a unique λ+ ∈ P1(n) such that λ+ 6 λ, and
if η ∈ P1(n) verifies η 6 λ, then η 6 λ+. More precisely, let λ = (λ1, . . . , λn)
(adding zeroes if necessary). If λ ∈P1(n), then λ+ = λ. Otherwise if λ 6∈P1(n),
set

λ′ = (λ1, . . . , λs, λs+1 − 1, λs+2, . . . , λt−1, λt + 1, λt+1, . . . , λn),

where s is maximum such that (λ1, . . . , λs) ∈P1(λ1 + · · ·+ λs), and t is the index
of the first even part in (λs+2, . . . , λn). Note that s = 0 if such a maximum does not
exist, while t is always defined. If λ′ is not in P1(n), then we repeat the process
until we obtain an element of P1(n) which will be our λ+.

Case spn. For n ∈ N∗, set

P−1(n) := {λ ∈P(n) ; number of parts of each odd number is even}.

The nilpotent orbits of spn are parametrized by P−1(n). For λ = (λ1, . . . , λr) ∈
P−1(n), we shall denote by O−1,λ, or simply by Oλ when there is no possible
confusion, the corresponding nilpotent orbit of spn, and if we write tλ = (d1, . . . , dt),
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then

dimO−1,λ =
n(n+ 1)

2
− 1

2

(
s∑
i=1

d2
i + #{i;λi odd}

)
.

As in the case of sln, if λ,η ∈P−1(n), then O−1,η ⊂ O−1,λ if and only if η 6 λ.

Given λ ∈P(n), there exists a unique λ− ∈P−1(n) such that λ− 6 λ, and if
η ∈P−1(n) verifies η 6 λ, then η 6 λ−. The construction of λ− is the same as in
the orthogonal case except that t is the index of the first odd part in (λs+2, . . . , λn).

3.1.3. Jacobson-Morosov Theorem and Dynkin grading. A 1
2Z-grading

of the Lie algebra g is a decomposition Γ: g =
⊕

j∈ 1
2Z

gj which verifies [gi, gj ] ⊂ gi+j
for all i, j.

Lemma 3.2. If Γ is a 1
2Z-grading of g, then for some semisimple element hΓ

of g,
gj = {x ∈ g | [hΓ, x] = 2jx}.

Proof. See [Tauvel-Yu, Proposition 20.1.5]. �

Since the bilinear form ( | ) of g is adhΓ-invariant and nondegenerate, we get

(gi, gj) = 0 ⇐⇒ i+ j 6= 0.

Hence gj and g−j are in pairing. In particular, they have the same dimension.
Fix a nonzero nilpotent element e ∈ g. By the Jacobson-Morosov Theorem (cf.

e.g., [Collingwood-McGovern, §3.3]), there exist h, f ∈ g such that the triple
(e, h, f) verifies the sl2-triple relations:

[h, e] = 2e, [e, f ] = h, [h, f ] = −2f.

In particular, h is semisimple and the eigenvalues of adh are integers. Moreover, e
and f belongs to the same nilpotent G-orbit.

Example 3.3. Let g = sln, and set,

e := Jn, h :=

n∑
i=1

(n+ 1− 2i)ei,i, f :=

n−1∑
i=1

i(n− i)ei+1,i.

Then (e, h, f) is an sl2-triple. From this observation, we readily construct sl2-triples
for any standard Jordan form diag(Jλ1 , . . . , Jλn) with (λ1, . . . , λn) ∈P(n).

The group G acts on the collection of sl2-triples in g by simultaneous conjuga-
tion. This defines a natural map:

Ω : {sl2-triples}/G −→ {nonzero nilpotent orbits}, (e, h, f) 7→ G.e.

Theorem 3.4 ([Collingwood-McGovern, Theorem 3.2.10]). The map Ω is
bijective.

The map Ω is surjective according to Jacobson-Morosov Theorem. The in-
jectivity is a result of Kostant ([Collingwood-McGovern, Theorem 3.4.10]); see
[Wang-lectures, §2.6] for a sketch of proof.

Since h is semisimple and since the eigenvalues of adh are integers, we get a
1
2Z-grading on g defined by h, called the Dynkin grading associated with h:

g =
⊕
j∈ 1

2Z

gj , gj := {x ∈ g | [h, x] = 2jx}.(50)
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We have e ∈ g1. Moreover, it follows from the representation theory of sl2 that
ge ⊂

⊕
j>0 gj and that dim ge = dim g0 + dim g 1

2
.

Remark 3.5. One can draw a picture to visualize the above properties. Decom-
pose g into simple sl2-modules g = V1⊕· · ·⊕Vs and denote by dk the dimension of
Vk for k = 1, . . . , s. We can assume that d1 > · · · > ds > 1. We have dimVk∩gj 6 1
for any j ∈ 1

2Z. We represent the module Vk on the kth row with dk boxes, each
box corresponding to a nonzero element of Vk∩gj for j such that Vk∩gj 6= {0}. We
organize the rows so that the 2jth column corresponds to a generator of Vk ∩ gj .
Then the boxes appearing on the right position of each row lie in ge.

Example 3.6. Consider the element e = diag(J3, J1) of sl4. Here, we get
dim g0 = 5, dim g 1

2
= 0, dim g1 = 4 and dim g2 = 1.

The picture here gives:

0 1 2
�����
���
���
���
�

In the picture, the boxes � correspond to nonzero elements lying in [f, g]. The
boxes � correspond to nonzero elements lying in ge.

This is an example of even nilpotent element, which means that gi = {0} for all
half-integers i. The nilpotent orbit of an even nilpotent element is called an even
nilpotent orbit. Note that the regular nilpotent orbit is always even.

Example 3.7. Consider the element e = diag(J2, J1, J1) of sl4 which lies in the
minimal nilpotent orbit of sl4. Here, we get dim g0 = 5, dim g 1

2
= 4, dim g1 = 1.

The picture here gives:

0 1
21

���
��
��
��
��
�
�
�
�

We observe that
⊕

i>1 gi equals g1 and has dimension 1. This is actually a
general fact: if e lies in the minimal nilpotent orbit of any simple g, then ⊕i>1gi =
g1 = Ce and thus

⊕
i>1 gi has dimension 1.

One can assume that the Cartan subalgebra h of g is also a Cartan subalgebra
of the reductive Lie algebra g0.

Lemma 3.8. (1) For any α ∈ ∆, gα is contained in gj for some j ∈ 1
2Z.

(2) Fix a root system ∆0 of (g0, h), and set ∆0,+ = ∆+ ∩ ∆0. Then ∆+ =
∆0,+ ∪ {α | gα ⊂ g>0}.

Denoting by Π the set of simple roots of ∆+, we get

Π =
⋃
j∈ 1

2Z

Πj with Πj := {α ∈ Π | gα ⊂ gj}.
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Lemma 3.9. We have Π = Π0 ∪Π 1
2
∪Π1.

Proof. Assume that there exists β ∈ Πs for s > 1. A contradiction is ex-
pected. Since e ∈ g1 and since g1 is contained in the subalgebra generated by the
root spaces gα with α ∈ Π0 ∪ Π 1

2
∪ Π1, we get [e, g−β ] = {0}. In other words,

g−β ⊂ ge. This contradicts the fact that ge ⊂ g>0. �

From Lemma 3.9 we define the weighted Dynkin diagram, or characteristic, of
the nilpotent orbit G.e when g is simple as follows. Consider the Dynkin diagram
of the simple Lie algebra g. Each node of this diagram corresponds to a simple
root α ∈ Π. Then the weighted Dynkin diagram is obtained by labeling the node
corresponding to α with the value α(h) ∈ {0, 1, 2}.

By convention, the zero orbit has a weighted Dynkin diagram with every node
labeled with 0.

Example 3.10. In type E6, the characteristics of the regular, subregular and
minimal nilpotent orbits are respectively:

c2 c2 c2 c2 c2c
2

c2 c2 c0 c2 c2c
2

c0 c0 c0 c0 c0c
1

An important consequence of Lemma 3.9 is that there are only finitely many
nilpotent orbits, namely at most 3rankg. Also, the weighted Dynkin diagram is a
complete invariant, i.e., two such diagrams are equal if and only if the corresponding
nilpotent orbits are equal, [Collingwood-McGovern, Theorem 3.5.4].

The regular nilpotent orbit always corresponds to the weighted Dynkin diagram
with only 2’s (this result is not obvious, cf. e.g., [Collingwood-McGovern, The-
orem 4.1.6]). More generally, a nilpotent orbit is even if and only if the weighted
Dynkin diagram have only 2’s or 0’s (see Example 3.6 for the definition of even).

3.2. Kirillov form and Slodowy slice

Below we will often identify g with its dual g∗ through the nondenegerate
bilinear form ( | ).

3.2.1. Kirillov form. Let (e, h, f) be an sl2-triple of g and let χ = (f |·) be
the linear form associated with f .

The restriction of the antisymmetric bilinear form,

ωχ : g× g→ C, (x, y) 7→ (f |[x, y]),

to g 1
2
× g 1

2
is nondegenerate. This results from the paring between g 1

2
and g− 1

2
,

and from the injectivity of the map ad f : g 1
2
→ g− 1

2
. It is called the Kirillov form

associated with f . Let L be a Lagrangian subspace of g 1
2
, that is, ωχ(L,L) = 0 and

dimL = 1
2 dim g 1

2
, and set

m = mχ,L := L⊕
⊕
j> 1

2

gj .

Then m is an ad-nilpotent1, adh-graded subalgebra, of g. Moreover, the algebra m
verifies the following properties:

1i.e., m only consists of nilpotent elements of g.
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(χ1) χ([m,m]) = (f |[m,m]) = 0,
(χ2) m ∩ gf = {0};
(χ3) dimm = 1

2 dim G.f .

Consider a slightly more general situation. Let L be an isotropic subspace of
g 1

2
, that is, ωχ(L,L) = 0, and set

mχ,L := l⊕
⊕
j> 1

2

gj , nχ,L := L⊥ωχ ⊕
⊕
j> 1

2

gj

where

L⊥ωχ = {x ∈ g 1
2a
| ωχ(x,L) = 0}

is the orthogonal complement of L in g 1
2

with respect to the bilinear form ωχ. Then

m := mχ,L and n := nχ,L satisfy the following properties:

(1) m and n are adh-graded and g>1 ⊂ m ⊂ n ⊂ g>0,
(2) m⊥ ∩ [g, f ] = [n, f ],
(3) n ∩ gf = 0,
(4) [n,m] ⊂ m,
(5) dimm + dim n = dim g− dim gf .

Here, ⊥ refers to the orthogonal with respect to the bilinear form ( | ).

Example 3.11. If f is regular, that is, dim gf = r, then m = n = n+.

3.2.2. Slodowy slice. Let

Sf := χ+ (gf )∗ ⊂ g∗

be the Slodowy slice associated with f , or with (e, h, f). The affine space Sf is
identified with f + ge through ( | ) by the theory of sl2-triples.

Let us introduce a C∗-action on g which stabilizes Sf
∼= f + ge. The embed-

ding spanC{e, h, f} ∼= sl2 ↪→ g exponentiates to a homomorphism SL2 → G. By
restriction to the 1-dimensional torus consisting of diagonal matrices, we obtain a
one-parameter subgroup ρ : C∗ → G. Thus ρ(t)x = t2jx for any x ∈ gj . For t ∈ C∗
and x ∈ g, set

ρ̃(t)x := t2ρ(t)(x).(51)

So, for any x ∈ gj , ρ̃(t)x = t2+2jx. In particular, ρ̃(t)f = f and the C∗-action of ρ̃
stabilizes Sf . Moreover, it is contracting to f on Sf , that is,

lim
t→0

ρ̃(t)(f + x) = f

for any x ∈ ge, because ge ⊂ m⊥ ⊆ g>−1. The same lines of arguments show that
the action ρ̃ stabilizes f + m⊥ and it is contracting to f on f + m⊥, too.

The affine space Sf is a “slice” according to the following result.

Theorem 3.12. The affine space Sf is transversal to the coadjoint orbits of
g∗. More precisely, for any ξ ∈ Sf , Tξ(G.ξ)+Tξ(Sf ) = g∗. An analogue statement
holds for the affine variety χ+ m⊥.

Sketch of proof. We have to prove that [g, x] + ge = g for any x ∈ f + ge

since Tx(G.x) = [g, x] and Tx(e+ ge) = ge. First, we verify that the map

η : G× (f + ge)→ g
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is a submersion2 at any point of G × Ω where Ω is an open neighborhood of f in
f + ge. In particular, for any x ∈ Ω,

g = [g, x] + ge

Next, we use the contracting C∗-action ρ on f + ge to show that η is actually a
submersion at any point of G× (f + ge). �

Let N be the unipotent subgroup (hence it is connected) of G with Lie algebra
n. When m = n, that is, L is Lagrangian, we also write M the closed connected
subgroup of G with Lie algebra m.

Consider the adjoint map

N× (f + m⊥)→ g, (g, x) 7→ g.x

It image is contained in f+m⊥. Indeed, for any x ∈ n and any y ∈ m⊥, exp(adx)(f+
y) ∈ f + m⊥ since [n,m] ⊂ m and χ([n,m]) = 0, and this is enough to conclude
because, n being ad-nilpotent, N is generated by the elements exp(adx) for x
running through n. As a result, by restriction, we get a map

α : N×Sf → f + m⊥.

Theorem 3.13 ([Gan-Ginzburg02, §2.3]). The map α is an isomorphism of
affine varieties.

Proof. We have a contracting C∗-action on N×Sf defined by:

∀ t ∈ C∗, g ∈ N, x ∈ Sf , t.(g, x) := (ρ(t−1)gρ(t), ρ̃(t)x).

The morphism α is C∗-equivariant with respect to this contracting C∗-action, and
the C∗-action ρ̃ on f + m⊥.

Then we conclude thanks to the following result, formulated in [Gan-Ginzburg02,
Proof of Lemma 2.1]:

“a C∗-equivariant morphism α : X1 → X2 of smooth affine C∗-varieties with
contracting C∗-actions which induces an isomorphism between the tangent spaces
of the C∗-fixed points is an isomorphism.” �

As a consequence of this result, we get the isomorphism:

C[Sf ] ∼= C[f + m⊥]N.

3.3. Poisson algebras, Poisson varieties and Hamiltonian reduction

We want to show that the Slodowy slice Sf inherits a Poisson structure from
that of g∗. To explain this, we start with some recalls on Poisson algebras and
Poisson varieties.

3.3.1. Poisson algebras and Poisson varieties. Let A be a commutative
associative C-algebra with unit.

Definition 3.14. Suppose that A is endowed with an additional C-bilinear
bracket { , } : A×A→ A. Then A is called a Poisson algebra if the following
conditions holds:

(1) A is a Lie algebra with respect to { , },
(2) (Leibniz rule) {a, b · c} = {a, b} · c+ b · {a, c}, for all a, b, c ∈ A.

2 η is a submersion at a point (g, x) ∈ G × (f + ge) if the differential of η at (g, x), that is,
the linear map g× ge → g, (v, w) 7→ g([v, x]) + g(w), is surjective.
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The Lie bracket { , } is called a Poisson bracket on A.

Example 3.15. Let (X,ω) be a symplectic variety. Then the algebra (O(X), { , })
of regular functions, with pointwise multiplication, is a Poisson algebra.

As an example, let O = G.ξ be a coadjoint orbit of g∗. Then O has a natural
structure of symplectic structure, see e.g. [Chriss-Ginzburg, Proposition 1.1.5];
for ξ ∈ g∗, we have

Tξ(O) = Tξ(G/Gξ) ' g/gξ

and the bilinear form ωξ : (x, y) 7→ ξ([x, y]) descends to g/gξ. This gives the sym-
plectic structure. Hence, together with a coadjoint orbit in g∗, we have a natural
Poisson algebra.

3.3.2. Almost commutative algebras. In another direction, we have ex-
amples of Poisson algebras coming from some noncommutative algebras. Let B be
an associative filtered (noncommutative) algebra with unit,

0 = B−1 ⊂ B0 ⊂ B1 ⊂ · · · ,
⋃
i>0

Bi = B,

such that Bi.Bj ⊂ Bi+j for any i, j > 0. Let

A := grB =
⊕
i

Bi/Bi−1

be its graded algebra (the multiplication in B gives rise a well-defined product
Bi/Bi−1 × Bj/Bj−1 → Bi+j/Bi+j−1, making A an associative algebra). We said
that B is almost commutative if A is commutative: this means that aibj − bjai ∈
Bi+j−1 for ai ∈ Bi, bj ∈ Bj .

Assume that B is almost commutative. Then grB has a natural structure of
Poisson algebra. We define the Poisson bracket

{ , } : Bi/Bi−1 ×Bj/Bj−1 → Bi+j−1/Bi+j−2

as follows: for a1 ∈ Bi/Bi−1 and a2 ∈ Bj/Bj−1, let b1 (resp. b2) be a representative
of a1 in Bi (resp. Bj) and set

{a1, a2} := b1b2 − b2b1 mod Bi+j−2 .

Then we can check the required properties.

Example 3.16. Let {Ui(g)} be the PBW filtration of the universal enveloping
algebra U(g) of g, that is, Ui(g) is the subspace of U(g) spanned by the products
of at most i elements of g, and U(g)0 = C1. Then

0 = U−1(g) ⊂ U0(g) ⊂ U1(g) ⊂ . . . , U(g) =
⋃
i

Ui(g),

Ui(g) · Uj(g) ⊂ Ui+j(g), [Ui(g), Uj(g)] ⊂ Ui+j−1(g).

Then the associated graded space grU(g) =
⊕

i>0 Ui(g)/Ui−1(g) is naturally a
Poisson algebra, and the PBW Theorem states that

grU(g) ∼= S(g) ∼= C[g∗]

as Poisson algebras, where S(g) is the symmetric algebra of g.
Let us describe explicitly the Poisson bracket on C[g∗] (see [Chriss-Ginzburg,

Proposition 1.3.18]). Let (x1, . . . , xn) be a basis of g, with structure constants cki,j ,

that is, [xi, xj ] =
∑
k

cki,jxk. Through the canonical isomorphism (g∗)∗ ∼= g, any
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element of g is regarded as a linear functions on g∗, and thus as an element of
C[g∗]. We get for f, g ∈ C[g∗],

{f, g} =
∑
i,j,k

cki,jxk
∂f

∂x∗i

∂g

∂x∗j
.

In a more concise way, we have:

{f, g} : g∗ → C, ξ 7→ 〈ξ, [dξf, dξg]〉
where dξf, dξg ∈ (g∗)∗ ∼= g denote the differentials of f and g at ξ. In particular, if
x, y ∈ g ∼= (g∗)∗ ⊂ C[g∗], then

{x, y} = [x, y].

Moreover, if O is a coadjoint orbit of g∗,

{f, g}|O = {f |O, g|O}symplectic.

A affine Poisson scheme (resp. affine Poisson variety) is an affine scheme X =
SpecA (resp. X = SpecmA) such that A is a Poisson algebra. A Poisson scheme
(resp. Poisson variety) is a scheme (resp. reduced scheme) such that the structure
sheaf OX is a sheaf of Poisson algebras.

For example, let B be as above and continue to assume that B is almost
commutative, that is, A = grB is commutative. Assume furthermore that A is
a finitely generated commutative algebra without zero-divisors. In other words,
A = C[X] is the coordinate ring of a (reduced) irreducible affine algebraic variety
X. So the Poisson structure on A makes X a Poisson variety.

3.3.3. Symplectic leaves. IfX is smooth, then one may viewX as a complex-
analytic manifold equipped with a holomorphic Poisson structure. For each point
x ∈ X one defines the symplectic leaf Sx through x to be the set of points that
could be reached from x by going along Hamiltonian flows3.

If X is not necessarily smooth, let Sing(X) be the singular locus of X, and

for any k > 1 define inductively Singk(X) := Sing(Singk−1(X)). We get a finite

partition X =
⊔
kX

k, where the strata Xk := Singk−1(X) \ Singk(X) are smooth
analytic varieties (by definition we put X0 = X \ Sing(X)). It is known (cf. e.g.,
[Brown-Gordon03]) that each Xk inherits a Poisson structure. So for any point
x ∈ Xk there is a well defined symplectic leaf Sx ⊂ Xk. In this way one defines
symplectic leaves on an arbitrary Poisson variety. In general, each symplectic leaf is
a connected smooth analytic (but not necessarily algebraic) subset in X. However,
if the algebraic variety X consists of finitely many symplectic leaves only, then it
was shown in [Brown-Gordon03] that each leaf is a smooth irreducible locally-
closed algebraic subvariety in X, and the partition into symplectic leaves gives an
algebraic stratification of X.

Example 3.17. The space g∗ is a (smooth) Poisson variety and the symplectic
leaves of g∗ are the coadjoint orbits of g∗, cf. [Vaisman, Proposition 3.1]. The
Poisson structure on the coadjoint orbits of g∗ is known as the Kirillov-Kostant
Poisson structure. The nilpotent cone N of g, which is the (reduced) subscheme

3A Hamiltonian flow in X from x to x′ is a curve γ defined on an open neighborhood of

[0, 1] in C, with γ(0) = x and γ(1) = x′, which is an integral curve of a Hamiltonian vector

field ξf , for some f ∈ O(X), defined on an open neighborhood of γ([0, 1]). See for example

[LaurentGengoux-Pichereau-Vanhaecke, Chapter 1] for more details.
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of g∗ associated with the augmentation ideal C[g∗]G+ of the ring of invariants C[g∗],
is an example of Poisson variety with finitely many symplectic leaves. These are
precisely the nilpotent orbits of g∗ ∼= g.

3.3.4. Induced Poisson structures. Recall a result of Weinstein; see [Vaisman,
Proposition 3.10, p 39]:

Proposition 3.18 (Weinstein, 83). Let Y be a submanifold of a Poisson man-
ifold X such that:

(1) Y is transversal to the symplectic leaves, i.e., for any symplectic leaf S
and any x ∈ Y ∩ S, TxY + TxS = TxX;

(2) For any x ∈ Y , TxY ∩ TxS is a symplectic subspace of TxS, where S is
the leaf of X containing x.

Then, there is a natural induced Poisson structure on Y and the symplectic leaf of
Y through x ∈ Y is Y ∩ S if S is the symplectic leaf through x in X.

We aim to apply the result to Sf ⊂ g∗. Part (1) is known (cf. Theorem 3.12).
For the part (2), it suffices to prove that for any coadjoint orbit O in g∗ and any
ξ ∈ O ∩ Sf , the restriction of the symplectic form on Tξ(O) to Tξ(Sf ) ∩ Tξ(O)
is nondegenerate. Remember that the symplectic form on Tξ(O) was described in
Example 3.15. Since the annihilator of Tξ(Sf ) ' ge in g is (ge)⊥ = [e, g], it suffices
to verify that for any ξ ∈ Sf ,

[ξ, [e, g]] ∩ Tξ(Sf ) = [ξ, [e, g]] ∩ ge = 0.

The result is a consequence of:

Lemma 3.19. Let ξ ∈ Sf . Then [ξ, [e, g]] ∩ ge = {0}.

Proof. Let Y be the set of y ∈ f + ge such that [y, [e, g]] ∩ ge 6= 0. Since ge

and [e, g] are adh-stable, we have for any t ∈ C∗,

ρ(t−1)([y, [e, g]]) ∩ ge = [ρ(t−1)y, [e, g]] ∩ ge

whence

ρ̃(t)([y, [e, g]] ∩ ge) = [ρ̃(t)y, [e, g]] ∩ ge.

Therefore, ρ̃ stabilizes Y . In addition, since g = [f, g]⊕ ge,

f ∈ (f + ge) \ Y

Hence, for any y is an open neighborhood U of f in f+ge, y ∈ (f+ge)\Y . Assume
that Y 6= ∅ and let y ∈ Y . Since ρ stabilizes Y , we get ρ(t)y ∈ Y for any t ∈ C∗.
But for t sufficiently small, ρ̃(t)y lies in U because ρ̃ is contracting, whence the
contradiction. �

In conclusion, according to Proposition 3.18, Sf ⊂ g∗ has a Poisson structure
induced by the Kirillov-Kostant structure on g∗ (see Example 3.17). In other words,
the Poisson bracket { , }Sf

on C[Sf ] is given by,

{f, g}Sf
(ξ) = {f |O, g|O}symplectic(ξ),

for any f, g ∈ C[Sf ] and ξ ∈ Sf , if O denotes the coadjoint orbit through ξ in g∗.
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3.3.5. Hamiltonian reduction. The Poisson structure on Sf can also be
described via Hamiltonian reduction in the case where m = n, that is, L is La-
grangian.

Let us first recall the classical Hamiltonian reduction in a more general setting.
Let A be a Lie group, with Lie algebra a, acting on a Poisson variety (X, { , }).

Definition 3.20. The action of A in X is said to be Hamiltonian if there is a
Lie algebra homomorphism

µ̃ : a −→ OX(X), x 7→ µ̃x

such that the following diagram is commutative:

a //

µ̃
''

X (X)

OX(X)

OO

where X (X) is the Lie algebra of (symplectic) vector fields on X and where the
vertical map is the natural map from OX(X) to X (X). As for the horizontal map,
it comes from the A-action on X. Namely, it is the map

a→X (X), a 7→ (x 7→ d

dt
(exp(t ad a).x)|t=0 ∈ TxX).

We call the map µ̃ the co-moment map of the action, or the Hamiltonian of the
action. Its dual map

µ : X −→ a∗, x 7−→ µ(x),

with µ(x) ∈ a∗ the linear map a 7→ µ̃a(x), is called the moment map of the action.

Remark 3.21. If the group A is connected, then µ is A-equivariant with re-
spect to the coadjoint action on a∗.

We refer to [Vaisman] or [LaurentGengoux-Pichereau-Vanhaecke, Propo-
sition 5.39 and Definition 5.9] for the following result.

Theorem 3.22 (Marsden-Weinstein). Assume that A is connected and that the
action of A in X is Hamiltonian. Let γ ∈ a∗. Assume that γ is a regular value4

of µ, that µ−1(γ) is A-stable and that µ−1(γ)/A is a variety. Let ι : µ−1(γ) ↪→ X
and π : µ−1(γ) � µ−1(γ)/A be the natural maps: ι is the inclusion and π is the
quotient map. Then the triple

(X,µ−1(γ), µ−1(γ)/A)

is Poisson-reducible, i.e., there exists a Poisson structure { , }′ on µ−1(γ)/A such
that for all open subset U ⊂ X and for all f, g ∈ OX(π(U ∩ µ−1(γ)), on has

{f, g}′ ◦ π(u) = {f̃ , g̃} ◦ ι(u)

at any point u ∈ U ∩ µ−1(γ), where f̃ , g̃ ∈ OX(U) are arbitrary extensions of
f ◦ π|U∩µ−1(γ), g ◦ π|U∩µ−1(γ) to U .

4If f : X → Y is a smooth map between varieties, we say that a point y is a regular value
of f if for all x ∈ f−1(y), the map dxf : Tx(X) → Ty(Y ) is surjective. If so, then f−1(y) is a

subvariety of X and the codimension of this variety in X is equal to the dimension of Y .
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Assume that m = n and let in this case M be the unipotent subgroup of G
with Lie algebra m.

We intend to apply the theorem to the connected Lie group M acting on the
Poisson variety g∗ by the coadjoint action. The action is Hamiltonian and the
moment map

µ : g∗ → m∗(52)

is the restriction of functions from g to m. Recall that χ = (f |·). Since χ|m is a
character on m, it is fixed by the coadjoint action of M. As a consequence, the set

µ−1(χ|m) = {ξ ∈ g∗ | µ(ξ) = χ|m}

is M-stable. Moreover, we have the following lemma:

Lemma 3.23. χ|m is a regular value for the restriction of µ to each symplectic
leaf of g∗.

Proof. Note that µ−1(χ|m) = χ + m⊥. Then we have to prove that for any
ξ ∈ χ+ m⊥, the map

dξµ : Tξ(G.ξ)→ Tχ|m(m∗)

is surjective. But Tξ(G.ξ) ' [g, ξ] while Tχ|m(m∗) = m∗. Since χ+m⊥ is transversal
to the coadjoint orbits in g∗ (cf. Theorem 3.12), we have

g = [g, ξ] + m⊥.

Let γ ∈ m∗ and write γ = x + x′, with x ∈ [g, ξ] and x′ ∈ m⊥, according to the
above decomposition of g. Then µ(x) = γ. �

Since the map

M×Sf −→ χ+ m⊥

is an isomorphism of affine varieties (cf. Theorem 3.13),

Sf
∼= (χ+ m⊥)/M.

Therefore, the conditions of Theorem 3.22 are fulfilled and we get a symplectic
structure on Sf .

In fact, thanks to Lemma 3.23, we have shown that the symplectic form on
each leaf on Sf is obtained by symplectic reduction from the symplectic form of
the corresponding leaf of g∗.

From this, one can see that the latter Poisson structure defined on Sf is the
same as that defined in §3.3.4. It is described as follows. Let π : χ + m⊥ �
(χ + m⊥)/M ' Sf be the natural projection map, and ι : χ + m⊥ ↪→ g∗ be the
natural inclusion. Then for any f, g ∈ C[Sf ],

{f, g}Sf
◦ π = {f̃ , g̃} ◦ ι

where f̃ , g̃ are arbitrary extensions of f ◦ π, g ◦ π to g∗.
The Poisson structure of Sf is described as follows. Let

Iχ = C[g∗]
∑
x∈m

(x− χ(x)),

so that

C[µ−1(χ)] = C[g∗]/Iχ.
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Then C[Sf ] = C[µ−1(χ)]M can be identified as the subspace of C[g∗]/Iχ consisting
of all cosets φ + Iχ such that {x, φ} ∈ Iχ for all x ∈ m. In this realization, the
Poisson structure on C[Sf ] is defined by the formula

{φ+ Iχ, φ
′ + Iχ} = {φ, φ′}+ Iχ

for φ, φ′ such that {x, φ}, {x, φ′} ∈ Iχ for all x ∈ m.

3.4. BRST cohomology, quantum Hamiltonian reduction and definition
of finite W-algebras

We introduce in this part the finite W-algebras. We first describe the Hamil-
tonian reduction in terms of BRST cohomology, essentially following Kostant and
Sternberg [Kostant-Sternberg87]. Then we describe its natural quantization,
and define finite W-algebras. With this definition, finite W-algebras will naturally
appear as finite dimensional analogs of (affine) W-algebras.

3.4.1. BRST reduction. In this subsection we shall describe the Hamilton-
ian reduction of §3.3.5 in a more factorial way, in terms of the BRST cohomology
(where BRST refers to the physicists Becchi, Rouet, Stora and Tyutin) for later
purpose.

We refer the reader to Appendix A for backgrounds on superspaces, superalge-
bras, Lie superalgebras, etc. and Clifford algebras.

Let G be any connected affine algebraic group, g = Lie(G) (we don’t assume G
is semisimple). Let {xi}16i6d a basis of g, and let {x∗i }16i6d be the corresponding
dual basis of g∗. Denote by cki,j the structure constants of g, that is, [xi, xj ] =∑d
k=1 c

k
i,jxk for i, j = 1, . . . , d.

Let Cl(g) be the Clifford algebra associated with the vector space g⊕g∗ and the
nondegenerate bilinear form 〈·|·〉 defined by 〈f+x|g+y〉 = f(y)+g(x) for f, g ∈ g∗,
x, y ∈ g. Namely, Cl(g) is the unital superalgebra isomorphic to ∧(g⊕g∗) ∼= ∧(g)⊗
∧(g∗) as C-vector spaces, the natural embeddings ∧(g) ↪→ Cl(g), ∧(g∗) ↪→ Cl(g)
are homogeneous homomorphism of superalgebras, and

[x, f ] = f(x) x ∈ g ⊂ ∧(g), f ∈ g∗ ⊂ ∧(g∗).

(Note that [x, f ] = xf + fx since x, f are odd.)

Lemma 3.24. The following map gives a Lie algebra homomorphism.

ρ : g −→ Cl(g)

xi 7−→
∑

16j,k6d

cki,jxkx
∗
j

We have

[ρ(x), y] = [x, y] ∈ g ⊂ Cl(g),

for x, y ∈ g where the first bracket is in Cl(g) while the second is in g.

Define an increasing filtration on Cl(g) by setting Clp(g) := ∧6p(g) ⊗ ∧(g∗)
where ∧(g) =

⊕
i>0 ∧i(g) is the natural grading. We have

0 = Cl−1(g) ⊂ Cl0(g) ⊂ Cl1(g) · · · ⊂ Cld(g) = Cl(g),

and

Clp(g) · Clq(g) ⊂ Clp+q(g), [Clp(g), Clq(g)] ⊂ Clp+q−1(g).(53)



3.4. BRST COHOMOLOGY 47

Let Cl(g) be its associated graded algebra:

Cl(g) := grCl(g) =
⊕
p>0

Clp(g)

Clp−1(g)
.

By (53), Cl(g) is naturally a graded Poisson superalgebra, called the classical Clif-
ford algebra associated with g⊕ g∗.

We have Cl(g) = ∧(g) ⊗ ∧(g∗) as a commutative superalgebra. Its Poisson
(super)bracket is given by

{x, f} = f(x), x ∈ g ⊂ ∧(g), f ∈ g∗ ⊂ ∧(g∗),

{x, y} = 0, x, y ∈ g ⊂ ∧(g), {f, g} = 0, f, g ∈ g∗ ⊂ ∧(g∗).

Lemma 3.25. We have Cl(g)g = ∧(g), where Cl(g)g := {w ∈ Cl | {x,w} =
0 for all x ∈ g}.

The Lie algebra homomorphism ρ : g −→ Cl1(g) ⊂ Cl(g) induces a Lie algebra
homomorphism

ρ̄ := σ1 ◦ ρ : g −→ Cl(g),(54)

where σ1 is the projection Cl1(g)→ Cl1(g)/Cl0(g) ⊂ grCl(g). We have for x, y ∈ g,

{ρ̄(x), y} = [x, y].

Set

C(g) = C[g∗]⊗ Cl(g).

Since it is a tensor product of Poisson superalgebras, C(g) is naturally a Poisson
superalgebra.

Lemma 3.26. For any character χ of g, the following map gives a Lie algebra
homomorphism:

θ̄χ : g −→ C(g)

x 7−→ (x− χ(x))⊗ 1 + 1⊗ ρ̄(x),

that is, {θ̄χ(x), θ̄χ(y)} = θ̄χ([x, y]) for x, y ∈ g.

Let C(g) =
⊕

n∈Z C
n
(g) be the Z-grading defined by deg φ⊗1 = 0 for φ ∈ C[g∗],

deg 1⊗ f = 1 for f ∈ g∗, and deg 1⊗ x = −1 for x ∈ g. We have

C
n
(g) = C[g∗]⊗ (

⊕
j−i=n

∧i(g)⊗ ∧j(g∗)).

The following result is due to Beilinson and Drinfeld ([Beilinson-Drinfeld96,
Lemma 7.13.3]).

Lemma 3.27. There exists a unique element Q̄ ∈ C1
(g) such that

{Q̄, 1⊗ x} = θ̄χ(x) for x ∈ g.

We have {Q̄, Q̄} = 0.
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Proof. Existence. It is straightforward to see that the element

Q̄ =
∑
i

(xi − χ(xi))⊗ x∗i − 1⊗ 1

2

∑
i,j,k

cki,jx
∗
i x
∗
jxk

satisfies the condition.
Uniqueness. Suppose that Q̄1, Q̄2 ∈ C

1
(g) satisfy the condition. Set R =

Q1 − Q2 ∈ C
1
(g). Then {R, 1 ⊗ x} = 0, and so, R ∈ C[g∗] ⊗ Cl(g)g. But by

Lemma 3.25, Cl(g)g ∩ Cl1 = 0, where Cl
1

is Cl1/Cl0. Thus R = 0 as required.
To show that {Q̄, Q̄} = 0, observe that

{1⊗ x, {1⊗ y, {Q̄, Q̄}}} = 0, ∀x, y ∈ g

(note that Q̄ is odd). Applying Lemma 3.25 twice, we get that {Q̄, Q̄} = 0. �

Since Q̄ is odd, Lemma 3.27 implies that

{Q̄, {Q̄, a}} =
1

2
{{Q̄, Q̄}, a} = 0

for any a ∈ C(g). That is, ad Q̄ := {Q̄, ·} satisfies that

(ad Q̄)2 = 0.

Thus, (C(g), ad Q̄) is a differential graded Poisson superalgebra. Its cohomology

H•BRST,χ(g,C[g∗]) := H•(C(g), ad Q̄) =
⊕
i∈Z

Hi(C(g), ad Q̄)

inherits a graded Poisson superalgebra structure from C(g).
More generally, let R be a Poisson algebra equipped with a Poisson algebra

homomorphism µ∗ : C[g∗]→ R. View Q̄ as an element of R⊗Cl(g) through the map
µ∗⊗id. Then µ∗⊗id : C(g∗)→ R⊗Cl(g) is a Poisson superalgebra homomorphism,
and (R⊗Cl(g), ad Q̄) is a differential graded Poisson superalgebra, where the image
of Q̄ is also denoted by Q̄. Therefore, its cohomology

H•BRST,χ(g, R) := H•(R⊗ Cl(g), ad Q̄)(55)

inherits a graded Poisson superalgebra structure from R⊗ Cl(g).
Let X be any affine Poisson scheme5 equipped with a Hamiltonian G-action,

χ ∈ g∗ a one-point G-orbit, that is, χ is a character of g. The above construction
gives the Poisson algebra H0

BRST,χ(g,C[X]) ⊂ H•BRST,χ(g,C[X]). (Note that the

degree zero part is purely even.) The affine Poisson scheme

X//BRST,χG := Spec(H0
BRST,χ(g,C[X]))

is called the BRST reduction of X. We write X//BRSTG for X//BRST,χG if χ = 0.
The BRST reduction coincides with the geometric Hamiltonian reduction in

§3.3.5 in some “nice” cases.

Theorem 3.28. Let X = SpecR be an affine Poisson scheme equipped with a
Hamiltonian G-action, χ ∈ g∗ a one-point G-orbit. Suppose that

(1) the moment map µ : X → g∗ is flat,
(2) there exists a subscheme S of µ−1(χ) such that the action map gives the

isomorphism G×S
'−→ µ−1(χ).

5In this note we assume that all Poisson schemes are of finite type unless otherwise stated.
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Then

H•BRST,χ(g, R) ∼= C[S ]⊗H•DR(G).

Here H•DR(G) denotes the de Rham cohomology of G equipped with the trivial Pois-
son structure. In particular, H0

DR(G) = 0 since G is connected.

Lemma 3.29. Let A be a commutative C-algebra with a regular sequence x1, x2, . . . ,
that is, A/(x1, . . . , xr) 6= 0 and xr+1 is not a zero devisor of A/(x1, . . . , xr) for all
r. If M is a flat A-module, that is, M⊗A? is an exact functor, then

HKos
i (A,M) = δi,0M/(x1, x2, . . . , )M.

Here HKos
i (A,M) denotes the homology of the Koszul complex with respect to the

sequence x1, x2, . . . ,.

Proof of Theorem 3.28. Give a bigrading on C := R⊗ C̄l by setting

C
i,j

= R⊗ ∧i(g∗)⊗ ∧−j(g),

so that C =
⊕

i>0,j60

C
i,j

.

Observe that ad Q̄ decomposes as ad Q̄ = d+ + d− such that

d−(C
i,j

) ⊂ Ci+1,j
, d+(C

i,j
) ⊂ Ci,j+1

.(56)

Explicitly, we have

d− =
∑
i

(xi − χ(xi))⊗ adx∗i ,

d+ =
∑
i

adxi ⊗ x∗i − 1⊗ 1

2

∑
i,j,k

cki,jx
∗
i x
∗
j adxk +

∑
i

1⊗ ρ̄(xi) adx∗i .

Since (ad Q̄)2 = 0, (56) implies that

d2
− = d2

+ = [d−, d+] = 0.

It follows that there exists a spectral sequence

Er =⇒ H•BRST,χ(g, R) = H•(C̄, ad Q̄)

such that

E•,q1 = Hq(C, d−) = Hq(R⊗ ∧(g), d−)⊗ ∧•(g∗),
Ep,q2 = Hp(Hq(C, d−), d+).

Observe that (C, d−) is identical to the Koszul complex C[g∗] associated with the
sequence x1 − χ(x1), x2 − χ(x2.) . . . , xd − χ(xd) tensorized with ∧(g∗). Hence by
Lemma 3.29 we get that

Hi(C, d−) =

{
C[µ−1(χ)]⊗ ∧(g∗), if i = 0

0, if i 6= 0.

Next, notice that (H•(C, d−), d+) is identical to the Chevalley complex for the
Lie algebra cohomology H•(g,C[µ−1(χ)]). Since C[µ−1(χ)] = C[S ]⊗ C[G] by the
assumption as G-modules, where G acts only on C[G] on the right-hand-side, we
get that

Hi(Hj(C, d−), d+) =

{
C[S ]⊗Hi(g,C[G]), if j = 0

0, if j 6= 0.
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Hence the spectral sequence collapses at E2 = E∞. Thus there is an isomorphism

H•(C, ad Q̄)
'−→ H•(H0(C, d−), d+) = C[S ]⊗H•(g,C[G]), [c] 7→ [c],

of Poisson algebras. The assertion follows noting that Hi(g,C[G]) = Hi
DR(G) as G

is affine. �

We write H•BRST (g,C[g∗]) for H•BRST,χ(g,C[g∗]) if χ = 0.

3.4.2. BRST realization of Slodowy slices. We now apply Theorem 3.28
to X = g∗, G = M, the projection µ : X = g∗ → m∗ and χ = (f |·). Observe
that µ−1(χ) = f + m⊥. Clearly µ is flat, and the second assumption is satisfied by
Theorem 3.13.

Theorem 3.30. We have Hi
BRST,χ(m,C[g∗]) = 0 for i 6= 0 and

H0
BRST,χ(m,C[g∗]) ∼= C[Sf ]

as Poisson algebras.

Proof. Since M is unipotent, we have Hi
DR(M) = δi,0C. Therefore the asser-

tion follows immediately from Theorem 3.28. �

3.4.3. BRST realization of equivariant Slodowy slices. Consider the
cotangent bundle T ∗G of G. We have T ∗G = G× g∗, and there are the following
two commuting Hamiltonian G action g 7→ gL and g 7→ gR on T ∗G, where

gL(a, x) = (ag−1, g.x), gR(a, x) = (ga, x).(57)

The moment map corresponding to the former is just the projection

µL : T ∗G 3 (a, x) 7→ x ∈ g∗.(58)

The moment map corresponding to the latter is given by

µR : T ∗G 3 (a, x) 7→ a.x ∈ g∗.(59)

The action of g on C[T ∗G] = C[G]⊗C[g∗] obtained by differentiating these actions
are

πL(x) = xL + adx , πR(x) = xR,

where xL and xR denote the action of x on C[G] as a left invariant vector field and
a right invariant vector field respectively, and adx denotes the action f 7→ {x, f}
on C[g∗].

Now consider the composition

µ : T ∗G
µL−→ g∗

projection−→ m∗.(60)

Then µ is the moment map for the M-action by restriction to gL. We have µ−1(χ) =
G× (χ+m⊥). Clearly the action of M on µ−1(χ) is free and χ is the regular value
of µ. Thus,

S̃f := µ−1(χ)/M = G×M (χ+ m⊥)

is a symplectic variety. We have

S̃f
∼= G×Sf

and S̃f is called the equivariant Slodowy slice [Los10].
As µ is clearly flat we can apply Theorem 3.28 to obtain the following.
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Proposition 3.31. Hi
BRST,χ(m,C[T ∗G]) = 0 for i 6= 0 and

H0
BRST,χ(m,C[T ∗G]) = C[S̃f ]

as Poisson algebras.

Remark 3.32. The equivariant Slodowy slice S̃f = G×M(χ+m⊥) is naturally

a vector bundle over G/M. As a bundle over G/M, S̃f is called a twisted cotangent
bundle [Chriss-Ginzburg, 1.4.13].

The relationship between the Slodowy slice Sf and the equivariant Slodowy

slice S̃f is described as follows. There is an action of G on S̃f defined by

g(a, x) = (ga, x).(61)

Proposition 3.33. We have C[Sf ] ∼= C[S̃f ]G as Poisson algebras.

The G-action (61) is Hamiltonian and the corresponding moment map is given
by

µ : S̃f = G×M (χ+ m⊥) 3 (g, x) 7→ g.x ∈ g∗.(62)

Theorem 3.34 ([Slodowy80],[Premet02, Theorem 5.4],[Charbonnel-Moreau16,

Lemma 4.3]). The moment map µ : S̃f → g∗ given by(62) is smooth onto a dense
open subset of g∗ containing G.χ. In particular, µ is flat.

Proof. Since the proof is short, we give the argument.
It suffices to prove that the morphism

θf : G× (f + ge)→ g∗, (g, x) 7→ g.x

is smooth onto a dense open subset of g∗ containing G.f . Since g = ge + [f, g], θf
is a submersion at (1G, f). Then θf is a submersion at all points of G × (f + ge)
since it is G-equivariant for the left multiplication in G and since

lim
t→∞

ρ̃(t).x = f

for all x in f+ge. So, by [Hartshorne77, Ch. III, Proposition 10.4], θf is a smooth
morphism onto a dense open subset of g, containing G.f . �

Theorem 3.35. The natural map C[g∗]G → C[Sf ] = H0
BRST,χ(m,C[g∗]) de-

fined by sending p to p ⊗ 1 induces an isomorphism from C[g∗]G to the Poisson
center of C[Sf ].

Proof. By Theorem 3.34, the moment map µ : S̃f → g∗ induces an embed-

ding µ∗ : C[g∗] ↪→ C[S̃f ] of Poisson algebras. By taking G-invariants, we get the

embedding C[g∗]G ↪→ C[S̃f ]G = C[Sf ].
Consider the morphism ϕ : Sf → g∗//G. Each of the fibers is a finite union

of symplectic leaves for Sf . Remember that the symplectic leaves of Sf are the
intersections Sf ∩ G.ξ with ξ ∈ g∗. On the other hand, by [?, §§5.4 & 6.4], all
scheme-theoretic fibers of ϕ are reduced and irreducible. Hence each fiber of ϕ is
the closure of some symplectic leaf of Sf . Let now z be in the Poisson center of
C[Sf ]. It is constant on each symplectic leaf by definition of the Hamiltonian flow:
If σx is an integral curve of {H, .}, with H ∈ C[Sf ] and σx(0) = x ∈ Sf , then
d

dt
(z ◦ σx) = {H, z} ◦ σx = 0, and so z is constant on all flows through x, that is,
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on the symplectic leaf of x. As a result, z is constant on all fibers of the morphism
ϕ.

Lemma 3.36 ([Goodman-Wallach09, Theorem A.2.9]). Let X,Y, Z be irre-
ducible affine varieties. Assume that f : X → Y and h : X → Z are dominant
morphisms such that h is constant on the fibers of f . There there exists a rational

map g : Y → Z making the following diagram commutative: X
f
//

h
��

Y

g
~~

Z

If z is constant, then clearly z lies in the Poisson center of C[g∗]. In addition, one
can assume that z is homogeneous for the Slodowy grading on C[Sf ] induced from
the C∗-action of ρ̃ on Sf since the Poisson center of C[Sf ] is Slodowy invariant.
So for any t ∈ C∗, t.z = tkz if k is the Slodowy degree of z. Hence one can assume
that z : Sf → C is a dominant (and even surjective) morphism.

So by Lemma 3.36, z induces a rational morphism on g∗//G since z is constant
on the fibers of the dominant morphism ϕ. Then it remains to prove the following:

C(g∗//G) ∩ C[Sf ] = C[g∗//G],(63)

since C[g∗//G] ∼= C[g∗]G.
To prove (63), we follow the arguments of [Bass-Connel-Wright82]. Write

z = p/q, with p, q relatively prime elements of C[g∗//G]. Since p, q are relatively
prime, the multiplication by p induces an injective homomorphism

C[g∗]G/qC[g∗//G]→ C[g∗//G]/qC[g∗//G].

Since C[Sf ] is flat over C[g∗//G], the base change C[Sf ] ⊗C[g∗//G] − yields an
injective homomorphism

C[Sf ]/qC[Sf ]→ C[Sf ]/qC[Sf ].

The image of 1 is 0 because z is regular. Hence p and q are relatively prime in
C[Sf ]. Since z = p/q ∈ C[Sf ] we deduce that q ∈ C∗ and so z ∈ C[g∗//G]. �

3.4.4. Moore-Tachikawa operation. LetX,Y be (any) affine Poisson schemes
equipped with Hamiltonian G-action, µX : X → g∗, µY : Y → g∗ the correspond-
ing moment maps. Then the diagonal action of G on X × Y is Hamiltonian, with
the moment map µX×Y : X × Y 3 (x, y) 7→ µX(x) + µY (y) ∈ g∗. Motivated by
[MT12], we define the affine Poisson scheme X ◦ Y by

X ◦ Y := (X × Y )//BRSTG = Spec(H0
BRST (g,C[X]⊗ C[Y ]).

Clearly, X ◦ Y ∼= Y ◦X.

Proposition 3.37. T ∗G ◦X ∼= X for any affine Poisson scheme X equipped
with a Hamiltonian G-action.

Proof. From Exercise 3.38 below, it follows that it is enough to show that
H0
BRST (g,C[T ∗G]) = C. But this is easy to see. �
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Exercise 3.38. Let X be an affine Poisson schemes equipped with a Hamil-
tonian G-action. There are the following four Hamiltonian G-actions on T ∗G×X:

π1,L(g)(a, f, x) = (ag−1, gf, gx), π1,R(g)(a, f, x) = (ga, f, x),

π2,L(g)(a, f, x) = (ag−1, gf, x), π2,R(g)(a, f, x) = (ga, f, gx).

Clearly the actions π1,L and π1,R (resp. π2,L and π2,R) mutually commute.
Consider the morphism

Φ : T ∗G×X → T ∗G×X

defined by (g, f, x) 7→ (g, f, gx) for g ∈ G, f ∈ g∗, x ∈ X.
Check that Φ is an isomorphism of Poisson schemes such that

Φ ◦ π1,L = π2,L ◦ Φ, Φ ◦ π1,R = π2,R ◦ Φ.

Theorem 3.39. Let X be an affine Poisson scheme equipped with a Hamilton-

ian G-action, and µX : X → g∗ the corresponding moment map. Then S̃f ◦X is

isomorphic to the scheme theoretic intersection X ×g∗ Sf = X ∩ µ−1
X (Sf ), where

Sf → g∗ is given by the inclusion x 7→ −x.

Proof. Let

µ : S̃f ×X = G×Sf ×X → g∗, (g, s, x) 7→ g.s+ µX(x),

be the moment map that is the sum of the moment maps. By Theorem 3.34, µ is
flat. Further, the action map gives the isomorphism

G× (Sf ×g∗ X)
'−→ µ−1(0).

Thus, Theorem 3.28 gives that

H•BRST (g,C[X × S̃f ]) ∼= C[X ×g∗ Sf ]⊗H•DR(G).

�

Exercise 3.40. Show that g∗ ◦ g∗ ∼= g∗//G, that is, C[g∗ ◦ g∗] ∼= C[g∗]G.

3.4.5. Drinfeld-Sokolov reduction in the Poisson setting. Let X be an
affine Poisson scheme equipped with a Hamiltonian G-action. The composition
of the moment map µX with the projection g∗ → m∗ is the moment map for the
M-action on X. We define the affine Poisson scheme DSf (X) by

DSf (X) := X//BRST,χM = Spec(H0
BRST,χ(m,C[X])).

Here χ = (f |·) as before.
Note that Theorem 3.30 and Proposition 3.31 say that

DSf (g∗) = Sf , DSf (T ∗G) = S̃f .

Theorem 3.41 (Ginzburg[Gan-Ginzburg02]). For any affine Poisson scheme
X equipped with a Hamiltonian G-action, we have

DSf (X) ∼= S̃f ◦X ∼= X ×g∗ Sf .

Moreover, Hi
BRST,χ(m,C[X]) = 0 for i 6= 0.
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Proof. Recall the isomorphism Φ: T ∗G × X → T ∗G × X in Exercise 3.38.
We will show that the following diagram commutes:

T ∗G×X

DSf
��

//BRSTG
// X

DSf

��

S̃f ×X
//BRSTG

// DSf (X).

Set

C := C[X]⊗ C[T ∗G]⊗ Cl(m)⊗ Cl(g).

Let Q̄m,χ ∈ C(m) and Q̄g ∈ C(g) be the elements that give the differentials of
the BRST complex for H•BRST,χ(m,C[m]) and H•BRST (g,C[g]), respectively. Let

Q̄1,m ∈ C be the image of Q̄m,χ by the embedding C(m) ↪→ C given by the moment
map with respect to the action π1,L of M (this corresponds to the right vertical
arrow). Let Q̄1,g ∈ C be the image of Q̄g, by the embedding C̄(g) ↪→ C given
by the moment map with respect to the action π1,R of G (this corresponds to the
upper horizontal arrow). Let Q̄2,m ∈ C be the image of Q̄m,χ by the embedding

C(m) ↪→ C given by the moment map with respect to the action π2,L of M (this
corresponds to the left vertical arrow). Let Q̄2,g ∈ C be the image of Q̄g, by the
embedding C̄(g) ↪→ C given by the moment map with respect to the action π2,R of
G (this corresponds to the lower horizontal arrow).

Define

Q1 = Q̄1,m + Q̄1,g, Q2 = Q̄2,m + Q̄2,g.

Since ad Q̄i,m and ad Q̄i,g obviously commute each other, (adQi)
2 = 0 for i =

1, 2. Moreover Φ induces the isomorphism (C, adQ1)
'−→ (C, adQ2) of differential

graded Poisson algebras. In particular

H•(C, adQ1)
'−→ H•(C, adQ2).(64)

To compute H•(C, adQ1) one can use the spectral sequence (Er, dr) whose d0

is ad Q̄1,g and d1 is ad Q̄1,m. We have

E•,q1 = Hq(C, ad Q̄1,g) = C[X]⊗ Cl(m)⊗Hq
BRST (g,C[T ∗G])

∼= C[X]⊗ Cl(m)⊗Hq
DR(G).

It follows that the complex (E•,q1 , d1) is the BRST complex for H•BRST,χ(m,C[X])

tensorized with Hq
DR(G). Hence

Ep,q2
∼= Hp

BRST,χ(m,C[X])⊗Hq
DR(G).(65)

We can therefore represent classes in Ep,q2 as tensor products ω1 ⊗ ω2 of a cocyle

ω1 in C[X]⊗ Cl(m) representing a class in Hp
BRST,χ(m,C[X]) and a cocycle ω2 in

Λqg∗ ⊂ C[T ∗G] ⊗ Cl(g) representing a class in Hq
DR(G) = Hq(g,C). Applying

the differential adQ1 to this class, we find that it is identically equal to zero.
Therefore all the classes in E2 survive. Moreover, all of the elements of E2 in the
decomposition (65) lifts canonically to the cohomology H•(C, adQ1), and thus, we
get that

H•(C, adQ1) ∼= H•BRST,χ(m,C[X])⊗H•DR(G).(66)
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Similarly, to compute H•(C, adQ2) one can use the spectral sequence (E′r, d
′
r)

such that d′0 = ad Q̄2,m and d′1 = ad Q̄2,g. We have

E′•,q1 = Hq(C, ad Q̄2,m) = C[X]⊗ Cl(g)⊗Hp
BRST,χ(m,C[T ∗G])

∼= δq,0C[X]⊗ Cl(g)⊗ C[S̃f ]

It follows that the complex (E′•,q1 , d1) is the BRST complex for the operationX◦S̃f .
Hence

E′p,q2
∼= δq,0C[X ◦ S̃f ]⊗Hp

DR(G).

We conclude that the spectral sequence collapses at E2 = E∞, and we get that

H•(C, adQ2) ∼= C[X ◦ S̃f ]⊗H•DR(G).(67)

Finally (64), (66) and (67) give that

Hi
BRST,χ(m,C[X]) ∼= δi,0C[X ◦ S̃f ].

�

Let I be an ad g-invariant graded ideal of C[g∗]. Then I is a Poisson ideal, so
that C[g∗]/I is a Poisson algebra. Set

Ṽ (I) := Spec(C[g∗]/I), V (I) := Specm(C[g∗]/I).(68)

Thus, V (I) is the zero locus of I in g∗. The action of G on g∗ restricts to a

Hamiltonian action on Ṽ (I).

Corollary 3.42. Let I be an ad g-invariant graded ideal of C[g∗].

(1) DSf (Ṽ (I)) 6= 0 if and only if V (I) ⊃ G.f .

(2) The Poisson algebra C[DSf (Ṽ (I))] is finite-dimensional if V (I) = G.f .

Proof. By applying Theorem 3.41, we get that

DSf (Ṽ (I)) = Ṽ (I)×g∗ Sf ,

which is isomorphic to V (I) ∩Sf ⊂ Sf as topological spaces.

(1) Since it is stable under the C∗-acton on Sf , DSf (Ṽ (I)) is nonzero if and
only it contains the point {f}. As V (I) is G-invariant and closed, this is equivalent
to that V (I) ⊃ G.f .

(2) Clearly, C[DSf (Ṽ (I))] is finite-dimensional if and only if dimDSf (Ṽ (I)) =
0, which is equivalent to that V (I) ∩ Sf = {f}. On the other hand we have

G.f ∩Sf = {f} by the trasversality of Sf to G-orbits. �

3.4.6. BRST reduction of Poisson modules. The above results can be
generalized to Poisson modules.

Let R be a Poisson algebra. A Poisson R-module is a R-module N in the usual
associative sense equipped with a bilinear map

R×N → N, (r, n) 7→ ad r(n) = {r, n},
which makes N a Lie algebra module over R satisfying

{r1, r2n} = {r1, r2}n+ r2{r1, n}, {r1r2, n} = r1{r2, n}+ r2{r1, n}
for r1, r2 ∈ R, n ∈ N .

Let R -PMod denote the category of Poisson modules over R.
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Lemma 3.43. For any Lie algebra g, a Poisson module over C[g∗] is the same as
a C[g∗]-module N in the usual associative sense equipped with a Lie algebra module
structure g→ EndN , x 7→ ad(x), such that

ad(x)(fn) = {x, f}.n+ f. ad(x)(n)

for x ∈ g, f ∈ C[g∗], n ∈ N .

Let G be any connected affine algebraic group, g = Lie(G), χ a one-point orbit
in g∗. Recall the differential graded algebra (C(g), ad Q̄) defined in §3.4.1.

For N ∈ C[g∗] -Pmod, N ⊗ Cl is naturally a Poisson module over C(g) =
C[g∗] ⊗ Cl(g). (The notation of Poisson modules natural extends to the Poisson
superalgebras modules.) Thus, (N ⊗ Cl(g), ad Q̄) is a differential graded Poisson
module over the differential graded Poisson module (C(g), ad Q̄). In particular its
cohomology

H•BRST,χ(g, N) := H•(N ⊗ Cl, ad Q̄)

is a Poisson module over H•(C(g), ad Q̄), and thus over H0(C(g), ad Q̄). So we get
a functor

C[g∗] -Pmod→ H0(C(g), ad Q̄) -PMod, N 7→ H0
BRST,χ(g, N).

More generally, let R be a Poisson algebra equipped with a Poisson algebra
homomorphism µ∗ : C[g∗]→ R. Then for a Poisson R-module M , H0

BRST,χ(g,M)

is a Poisson module over H0
BRST,χ(g, R). Thus we et a functor

R -Pmod→ H0(C(g), ad Q̄) -PMod, N 7→ H0
BRST,χ(g, N).

3.4.7. Results for Poisson modules. Let g = Lie(G) be simple.
Let HC(g) be the full subcategory of the category of Poisson C[g∗]-modules on

which the Lie algebra g-action is integrable, that is, locally finite.
If X is an affine Poisson scheme equipped with a Hamiltonian G-action then

C[X] is an object of HC(g).
For M,N ∈ HC(g), define

M ◦N := H0
BRST (g,M ⊗N),

where g acts on M ⊗ N diagonally. Then M ⊗ N is a Poisson module over the
trivial Poisson algebra C[g∗ ◦ g∗] = C[g∗]G.

The proof of the following assertion is similar to that of Proposition 3.37.

Proposition 3.44. For M ∈ HC(g),

T ∗G ◦M ∼= M

as a Poisson module over C[T ∗G ◦ g∗] = C[g∗].

For M ∈ HC(g), define

DSf (M) = H0
BRST,χ(m,M),

which is a Poisson module over C[Sf ].
The following assertion can be proved in the same way as Theorem 3.41.
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Theorem 3.45. For M ∈ HC(g), we have Hi
BRST,χ(m,M) = 0 for i 6= 0.

Therefore, the functor

HC(g)→ C[Sf ] -PMod, M 7→ DSf (M),

is exact. We have

DSf (M) ∼= C[S̃f ] ◦M

as a Poisson module over C[Sf ] = C[S̃f ◦ g∗].

Corollary 3.46. Let I be an ad g-invariant graded ideal of C[g∗] such that
V (I) = G.f Then

dimDSf (Ṽ (I)) = multG.f Ṽ (I),

where the integer multG.f Ṽ (I) is defined in the below proof.

Proof. There is a filtration

C[g∗]/I = M0 ⊃M1 ⊃ · · · ⊃Mr = 0

of C[g∗]-modules such that Mi/Mi+1 = C[g∗]/pi, where pi is a prime ideal in C[g∗].

The integer multG.f Ṽ (I) is by definition the number of indexes i such that pi

coincides with the prime ideal corresponding to G.f . As V (pi) ⊂ V (I) = G.f ,

DSf (Mi) =

{
C if V (pi) = G.f ,

0 otherwise.

The assertion follows from the exactness of DSf (?). �

3.4.8. Quantized BRST cohomology. We shall now quantize the above
construction essentially following [Kostant-Sternberg87].

Again, let G be any connected affine algebraic group, g = Lie(G), and let
χ : g→ C be a character.

Let {Ui(g)} be the PBW filtration of the universal enveloping algebra U(g) of
g. The PBW theorem gives isomorphisms of Poisson algebras (see Example 3.16):

grU(g) =
⊕
i>0

Ui(g)/Ui−1(g) ∼= C[g∗].

Set

C(g) = U(g)⊗ Cl(g).

It is naturally a C-superalgebra, where U(g) is considered as a purely even subsu-
peralgebra. The filtrations of U(g) and Cl(g) induce a PBW filtration of C(g),

Cp(g) =
∑
i+j6p

Ui(g)⊗ Clj(g),

and we have

grC(g) ∼= C(g)

as Poisson superalgebras. Therefore, C(g) is a quantization of C(g).
Define a Z-grading C(g) =

⊕
n∈Z C

n(g) by setting deg u⊗ 1 = 1 for u ∈ U(g),
deg 1⊗ f = 1 for f ∈ g∗, deg 1⊗ x = −1 for x ∈ g. Then

Cn(g) = U(g)⊗ (
⊕
j−i=n

∧i(g)⊗ ∧j(g∗)).
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Lemma 3.47. The following map defines a Lie algebra homomorphism:

θχ : g −→ C(g)

x 7−→ (x− χ(x))⊗ 1 + 1⊗ ρ(x)

Lemma 3.48 ([Beilinson-Drinfeld96, Lemma 7.13.7]). There exists a unique
element Q ∈ C1(g) such that

[Q, 1⊗ x] = θχ(x) for all x ∈ g.

We have Q2 = 0.

Proof. The proof is similar to that of Lemma 3.27. In fact the element Q is
explicitly given by the same formula as Q̄:

Q =
∑
i

(xi − χ(xi))⊗ x∗i − 1⊗ 1

2

∑
i,j,k

cki,jx
∗
i x
∗
jxk

�

Since Q is odd, Lemma 3.48 implies that

(adQ)2 = 0.

Thus, (C(g), adQ) is a differential graded algebra, and its cohomology

H•BRST,χ(g, U(g)) := H•(C(g), adQ)

is a graded superalgebra.
More generally, let A be a U(g)-algebra. Then A ⊗ Cl(g) is naturally a C(g)-

algebra, and (A⊗Cl(g), adQ) is naturally a differential graded algebra, where the
image of Q is also denote by Q. Therefore, its cohomology

H•BRST,χ(g, A) := H•(A⊗ Cl(g), adQ)(69)

inherits a graded Poisson superalgebra structure fromA⊗Cl(g). We writeH•BRST (g, A)
for H•BRST,χ(g, A) if χ = 0.

3.4.9. Kazhdan filtration. In order to discuss the quantization of the BRST
reduction, we need to modify the PBW filtration of C(g) when the character χ of
g is nonzero. We assume that there is a grading

g =
⊕
j∈ 1

2Z

gj(70)

of g (compatible with the Lie algebra structure) such that such that χ(gj) = 0
unless j = 1. (If χ = 0, we can choose the trivial grading.) The grading (70)
extends to C(g) = U(g)⊗Cl(g) by setting deg x = j, deg x∗ = −j for x, x∗ ∈ Cl(g)
if x ∈ gj . Here and after, we omit the tensor product sign. Let

C(g) =
⊕
j∈ 1

2Z

C(g)[j]

be the corresponding grading.
Put Ci(g)[j] = Ci(g) ∩ C(g)[j]. Note that gj0(= gj0 ⊗ C) ⊂ C1(g)[j0]. Define

KpC(g) =
∑
i−j6p

Ci(g)[j]
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for p ∈ Z (so that gj0 ⊂ K0C(g)). Then K•C(g) defines an increasing, exhaustive,
separated filtration of C(g) such that

KpC(g) ·KqC(g) ⊂ Kp+qC(g), [KpC(g),KqC(g)] ⊂ Kp+q−1C(g),

and grK C(g) =
⊕

pKpC(g)/Kp−1C(g) is isomorphic to C(g) as Poisson superal-
gebras. Moreover,

adQ.KpC(g) ⊂ KpC(g),

and the associated graded complex (grK C(g), adQ) is identical to (C(g), ad Q̄).
Let K•U(g) and K•Cl(g) be the restrictions of K•C(g) to U(g) and Cl(g),

respectively, so that grK U(g) ∼= C[g∗], grK Cl(g) ∼= C̄l[g∗].

3.4.10. Quantized BRST reduction. Let G be any connected affine alge-
braic group, g = Lie(G), χ ∈ g∗ a one-point G-orbit.

Let X = Spec(R) be an affine, Hamiltonian Poisson G-scheme, and µX : X →
g∗ the moment map.

We wish to quantized the BRST reduction

X  X//BRST,χG = Spec(H0
BRST,χ(g,C[X])).

A quantization of the Hamiltonian G-scheme X is an almost commutative fil-
tered U(g)-algebra (A,F•A) equipped with an action of G such that

(1) grF A
∼= C[X] as Poisson algebra,

(2) g(a.b) = (ga).(gb) for g ∈ G, a, b ∈ A,
(3) the action of g obtained by differentiating the action of G coincides with

the adjoint action of g,
(4) if we denote by µ̃∗ the the natural algebra homomorphism U(g) → A,

µ̃∗(Up(g)) = FpA ∩ µ̃∗(U(g)), and the induced homomorphism C[g∗] =
grU(g)→ grF A = C[X] coincides with µ∗X .

Let (A,F•A) be a quantization of the Hamiltonian G-scheme X, χ ∈ g∗. Let
g =

⊕
j∈ 1

2
gj the grading of g such that χ(gj) = 0 unless j = 1. A compatible

grading on A is the grading A =
⊕

j∈ 1
2Z
A[j] such that µ̃∗(gj) ⊂ A[j] and FpA =⊕

j∈ 1
2Z
FpA[j], where FpA[j] = A[j]∩FpA. With such a grading we can define the

Kazudan filtration K•A on A by

KpA =
∑
i−j6p

FiA(g)[j]

We have grK A
∼= C[X].

Note that by definition the image of the left ideal A
∑
x∈g(µ̃∗(x) − χ(x)) of

A in grK A = C[X] coincides with the defining ideal
∑
x∈g(µ∗X(x) − χ(x))C[X] of

µ−1
X (χ) in X.

We have a natural algebra homomorphism C(g) → A ⊗ Cl(g), and so, (A ⊗
Cl(g), adQ) is a differential graded (super)algebra. Set

H•BRST,χ(g, A) := H•(A⊗ Cl(g), adQ).

Note that the filtrations K•A, K•Cl induce a filtration K•(A⊗Cl(g)) on A⊗Cl(g)
that is compatible with the action of adQ, and (grK(A⊗ Cl(g)), adQ) is identical
to the complex (C[X]⊗ C̄l(g), ad Q̄).

Let K•H
•
BRST,χ(g, A) be the filtration of H•BRST,χ(g, A) induced by K•(A ⊗

Cl(g)), and grK H
•
BRST,χ(g, A) the associated graded.
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Theorem 3.49. Assume that the condition (2) of Theorem 3.28 is verified,
that is, there exists a subscheme S of µ−1

X (χ) such that the action map gives the

isomorphism G×S
'−→ µ−1

X (χ).
Under the above setting, there is an isomorphism of Poisson algebras

grK H
•
BRST,χ(g, A) ∼= H•BRST,χ(g,C[X]) = C[X//BRST,χG]⊗H•DR(G).

In particular, H0
BRST,χ(g, A) is a quantization of C[X//BRST,χG].

Proof. Consider the spectral sequence Er ⇒ H•BRST,χ(g, A) such that E1 =

H•(grK(A⊗Cl(g)), adQ) = H•BRST,χ(g,C[X]). By Theorem 3.28, H•BRST,χ(g,C[X]) =

C[S ] ⊗ H•DR(G). We can therefore represent classes in Ep,q1 as tensor products
ω1 ⊗ ω2 of a cocyle ω1 in C[X] ⊗ Λp(g) representing a class in H0

BRST,χ(g,C[X])

and a cocycle ω2 ∈ Λq ⊂ Cl(g) representing a class in Hq
DR(G) = Hq(g,C). Ap-

plying the differential adQ to this class, we find that it is identically equal to zero.
It follows that the spectral sequence collapses at E1 = E∞. �

3.4.11. Finite W -algebras. We will apply the above construction for (g∗, µ, χ),
where µ is the moment map (52), χ = (f |·) ∈ m∗.

Clearly U(g) with the PBW filtration is a quantization of the Hamiltonian G-
scheme g∗. By restricting to the M-action, we may regard U(g) as a quantization
of the Hamiltonian M-scheme g∗. The Dynkin grading (50) satisfies the condition
of §3.4.9, as well as its restriction to m. So we have the corresponding Kazhdan
filtrations K•U(m) and K•U(g).

By Theorem 3.49,

Hi
BRST,χ(m, U(g)) = 0 for i 6= 0,(71)

and

U(g, f) := H0
BRST,χ(m, U(g))

is a quantization of C[Sf ]. The algebra U(g, f) is is called the finite W-algebra
associated with f .

3.4.12. Definition via Whittaker models. Let χ = (f |·) ∈ g∗. It extends
to a representation

χ : U(m) −→ C
and we denote by Cχ the corresponding left U(m)-module. The right multiplication
by an element of m induces a right U(m)-module on U(g). Denote by Iχ the left
ideal of U(g) generated by the elements x− χ(x), for x ∈ m,

Iχ :=
∑
x∈m

U(g)(x− χ(x)),

and set

Qχ := U(g)⊗U(m) Cχ ∼= U(g)/Iχ.

It is an U(g)-module called a generalized Gelfand-Graev module.
The adjoint action of n in g uniquely extends to an action of n in U(g) and the

ideal Iχ is n-stable. Thus Qχ is endowed with an n-module structure.

Definition 3.50. The algebra

Qm
χ = {ū ∈ Qχ | [y, u] ∈ Iχ for any y ∈ m},
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where ū denotes the coset u+Iχ of u ∈ U(g), is called the finite W-algebra associated
with f .

We refer the above definition of U(g, f) as the Whittaker model realization of
U(g, f).

Remark 3.51. The algebra Qm
χ is actually the space of Whittaker vectors of

Qχ,

Qm
χ = Wh(Qχ) = {u ∈ Qχ | xu = χ(x)u for any x ∈ m}.

Example 3.52. Assume e = 0. Then g0 = g, m = 0, Qχ = U(g) and U(g, f) =
U(g).

The next result was obtained by Kostant ([Kostant78]) for the regular case.
For the general case, see [DeSole-Kac06] or [Arakawa07]. The proof of Arakawa
[Arakawa07] only concerns the regular case, but can be easily adapted to the
general case. We follow here his proof.

Proposition 3.53. We have

U(g, f) ∼= EndU(g)(Qχ)op ∼= Qm
χ

where the symbol “op” means that we consider the ring EndU(g)(Qχ) with “reversed”
composition operation u.v := v ◦ u.

Proof. As in the case of C(g), C(g) is also bigraded, so we can also write
adQ = d+ + d− such that d+(Cij) ⊂ Ci+1,j , d−(Cij) ⊂ Ci,j+1 and get a spectral
sequence

Er =⇒ H•(C(g), adQ)

such that

Ep,q2 = Hp(Hq(C(g), d−), d+) ∼= δq,0H
p(n, U(g)⊗U(n) Cχ)

∼= δp,0δq,0H
0(m, U(g)⊗U(m) Cχ) ∼= EndU(g)(U(g)⊗U(m) Cχ)op,

where Cχ is the one-dimensional representation of m as in §3.4.12. Thus we get the
Whittaker model isomorphism

U(g, f) = H0(C(g), adQ) ∼= Qm
χ
∼= EndU(g)(U(g)⊗U(m) Cχ)op,

whence the statement by Proposition 3.53. �

Let Z(g) be the center of U(g). The restriction to Z(g) of the representation
U(g)→ EndC(Qχ) is injective. So we get an inclusion map,

Z(g) ↪→ U(g, f).

By Theorem 3.35, the above map is surjective onto the center Z(U(g, f)) of U(g, f)
so that we get an algebra isomorphism

Z(g) ∼= Z(U(g, f)).

According to a result of Kostant, if e is regular then U(g, f) is isomorphic to Z(g),
which is known to be a polynomial algebra in rank of g variables. In particular,
U(g, f) is commutative in this case.
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Remark 3.54. The finite W-algebra Qm
χ (∼= U(g, f)) a priori depends on the

Lagrangian subspace L ⊂ g 1
2
. But by [Gan-Ginzburg02], the algebra Qm

χ does

not depend, up to isomorphism, on the choice of the Lagrangian subspace L in g 1
2
.

In fact, Gan and Ginzburg proved the following stronger fact:

Qm
χ
∼= Qn

χ := {ū ∈ Qχ | [y, u] ∈ Iχ for any y ∈ n}

for any isotropic subspace L ⊂ g 1
2
, where n = nχ,L is as in §3.2.1. Further-

more, according to the main result of [Brundan-Goodwin05], the algebra U(g, f)
does not depend, up to isomorphism, on the choice of the good grading adapted
to f ([Elashvili-Kac05]). Dynkin gradings are typical example of good grad-
ing. More generally, for (optimal) admissible gradings, the result is due to Sakada
([Sadaka16]).

3.4.13. Equivariant finite W -algebras. We can also apply the above con-
struction to quantize the equivariant Slodowy slices. Consider the ring DG of the
(global) differential operators on G. We have

DG = U(g)⊗ C[G]

as vector spaces, the natural maps

C[G] ↪→ DG, µ̃L : U(g)→ DG

are embeddings of algebras, and we have

[x, f ] = xL(f) (x ∈ g, f ∈ C[g∗])

The algebra DG is almost commutative by the standard filtration G•DG define
by GpDG = Up(g)⊗ C[G], and we have grGDG

∼= C[T ∗G].
The embedding µ̃L : U(g) → DG quantizes the comorphism µ∗L : C[g∗] →

C[T ∗G] of moment map µL (see (58)). This map is induced by the Lie algebra
homomorphism g→X (G), x 7→ xL, where X (G) is the Lie algebra of the vector
fields on G and

(xLf)(g) =
d

dt
f(g exp (tx))|t=0.

Similarly, the Lie algebra homomorphism g→X (G), x 7→ xR, where

(xRf)(g) =
d

dt
f(exp (−tx)g)|t=0,

induces the algebra homomorphism

µ̃R : U(g)→ DG,

which quantizes the moment map µR : T ∗G → g∗. By definition, the two actions
µ̃L(x), µ̃R(y) commute each other.

Thus, DG is a quantization of the Hamiltonian G-scheme T ∗G (with respect
to both actions).

The grading

DG =
⊕
j∈ 1

2Z

DG[j], DG[j] = {∇ ∈ DD | [µ̃L(h),∇] = 2j∇}

is compatible with the grading (50), Here recall that (e, h, f) is an sl2-triple of g.
Thus, we have the corresponding Kazhdan filtration K•DG.
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By Theorem 3.49, we have Hi
BRST,χ(m,DG) = 0 for i 6= 0, and

Ũ(g, f) := H0
BRST,χ(m,DG)

is a quantization of the equivariant Slodowy slice Sf , that is, the Kazudan filtration

on DG induces the filtration K•Ũ(g, f) and we have grK Ũ(g, f) ∼= C[S̃f ]. The

algebra Ũ(g, f) is called the equivariant finite W -algebra ([Los10]).

Exercise 3.55. Show that Ũ(g, f) is a simple algebra.

In the definition of Ũ(g, f), the BRST reduction is taken with respect to, say,

the action µ̃L. So Ũ(g, f) is a G-module with respect to the action g 7→ gR, and
µ̃R gives the algebra homomorphism

µ̃R : U(g)→ Ũ(g, f), u 7→ µ̃R(u).

The adjoint action of g on Ũ(g, f) is the same as the action pf g obtained by

differentiating G-action. Thus, Ũ(g, f) is a quantization of the Hamiltonian G-

scheme S̃f .

Proposition 3.56. We have an algebra isomorphism

U(g, f)
'−→ Ũ(g, f)G = Ũ(g, f)ad g.

Proof. The map µ̃L induces the algebra homomorphism U(g, f) → Ũ(g, f),

and the image is contained in Ũ(g, f)G. Moreover this is an isomorphism since it
induces an isomorphism

grU(g, f) = C[Sf ]
'−→ C[S̃f ]G ∼= (gr Ũ(g, f))G = gr Ũ(g, f)g

by Proposition 3.33. In the above, the last equality is true since g is simple and G
connected. �

Remark 3.57. The algebra Ũ(g, f) is the twisted differential operators (tdo)
[Hotta-Takeuchi-Tanisaki] that quantizes the twisted contangent bundle G×M

(χ+m⊥). Thus, the finite W -algebra can be defined as the G-invariant subalgebra
of this tdo.

3.4.14. Quantized Moore-Tachikawa operation. A Harish-Chandra U(g)-
algebra is a U(g)-algebra A equipped with an action of G such that (ga).(gb) = g(ab)
for g ∈ G, a, b ∈ A, and the g-action on A obtained by differentiating the action
of G coincides with the adjoint action of g. A quantization A of a Hamiltonian
G-scheme X is a Harish-Chandra U(g)-algebra.

Let A, B be Harish-Chandra U(g)-algebras. We define an algebra A ◦B by

A ◦B := H0
BRST (g, A⊗B),

where A⊗B is considered as a diagonal g-module.

Exercise 3.58. Show that U(g) ◦ U(g) ∼= U(g)G = Z(g), the center of U(g).

Proposition 3.59. DG ◦A ∼= A for any Harish-Chandra U(g)-algebra A.

Proof. From Exercise 3.60 below, it follows that it is enough to show that
H0
BRST (g,DG) = C. But this is easy to see. �
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Exercise 3.60. Let A be a Harish-Chandra U(g)-algebra, and let ρ∗ : A →
C[G] ⊗ A be the comodule map, so that ρ∗(a) =

∑
i fi ⊗ ai if ga =

∑
i fi(g)ai,

fi ∈ C[G], ai ∈ A, for all g ∈ G.

(1) Check that ρ∗ is an algebra homomorphism.
(2) Define the algebra homomorphism φ : C[G] ⊗ A → C[G] ⊗ A as the

composition

C[G]⊗A 1⊗ρ∗−→ C[G]⊗ C[G]⊗A m∗⊗1−→ C[G]⊗A,
where m : G × G → G is the multiplication map. Show that φ is an
isomorphism such that

(gL ⊗ g) ◦ φ = φ ◦ (gL ⊗ 1), (gR ⊗ 1) ◦ φ = φ ◦ (gR ⊗ g)

where (gL)(f)(g1) = f(g−1g1), (gR)(f)(g1) = f(g1g).
(3) Define the algebra homomorphism

Φ: DG ⊗A→ DG ⊗A
by

Φ((µ̃R(u)f)⊗ a) = (µ̃R(u)⊗ 1)φ−1(f ⊗ a)

for u ∈ U(g), f ∈ C[G], a ∈ A. Show that Φ is an isomorphism such that

(gL ⊗ g) ◦ Φ = Φ ◦ (gL ⊗ 1), (gR ⊗ 1) ◦ Φ = Φ ◦ (gR ⊗ g).

3.4.15. Drinfeld-Sokolov reduction in the algebra setting. For a Harish-
Chandra U(g)-algebra A, define the algebra DSf (A) by

DSf (A) := H0
BRST,χ(m, A).

If A is a quantization of a Hamiltonian G-scheme X, one can define the Kazhdan
filtration K•A using the grading A =

⊕
j A[j], A[j] = {a ∈ A | [h, a] = 2ja}. This

induces a filtration K•DSf (A) of DSf (A).
Theorem 3.41 gives the following.

Theorem 3.61. Let A be a quantization of a Hamiltonian G-scheme X. Then
Hi
BRST,χ(m, A) = 0 for i 6= 0, and

DSf (A) ∼= Ũ(g, f) ◦A.
Moreover, we have the Poisson algebra isomorphism

grK DSf (A) ∼= C[DSf (X)] = C[X ×g∗ Sf ].

3.4.16. Drinfeld-Sokolov reduction for modules. Let HC(g) be the cat-
egory of Harish-Chandra bimodules, that is, the full subcategory of the cagegory
of U(g)-bimodules M consisting of objects M on which the adjoint action of g is
integrable, that is, locally finite.

A good filtration of M ∈ HC(g) is an increasing, separated, exhaustive filtration
F•M of M such that Ui(g)FpMUj(g) ⊂ Fp+i+jM , [Ui(g), FjM ] ⊂ Fi+j−1M , and
the associated graded grF M =

⊕
p FpM/Fp−1M is finitely generated as a C[g∗]-

module. Note that grF M ∈ HC(g).
A good filtration exists if M is finitely generated.
For M,N ∈ HC(g), M ⊗ N ⊗ Cl(g) is naturally a module over C(g) ⊗ Cl(g),

where U(g) acts on M ⊗N diagonally. So we can define

H•BRST (g,M ⊗N) = H•(M ⊗N ⊗ Cl(g), adQ)
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Let

M ◦N := H0
BRST (g,M ⊗N).

Note that if M and N are bimodules over Harish-Chandra U(g)-algebras A and B
respectively, then M ◦ N is naturally a bimodule over A ◦ B. In particular it is a
module over U(g) ◦ U(g) = Z(g).

Proposition 3.62. For any M ∈ HC(g) we have

DG ◦M ∼= M

as a bimodule over DG ◦ U(g) = U(g).

For M ∈ HC(g), M ⊗ Cl(m) is naturally module over C(m) = U(m) ⊗ Cl(m),
and so we can define the cohomology H•BRST,χ(m,M). Define

DSf (M) := H0
BRST,χ(m,M),

which is a bimodule over DSf (U(g) = U(g, f).
Let M ∈ HC(g) be finitely generated, and let F•M a good filtration of M .

Then we can define the corresponding Kazhdan filtration K•M by

KpM =
∑
i−j6p

FiM [j],

where FiM [j] = FiM ∩M [j], with M [j] = {m ∈ M | [h,m] = 2jm}. Then K•M
is also good, and grKM ∈ HC(g). It induces a filtration K•DSf (M) of DSf (M),
and grK DSf (M) is naturally a Poisson module over grK U(g, f) = C[Sf ].

The following assertion follows from Theorem 3.45.

Theorem 3.63. For M ∈ HC(g), we have Hi
BRST,χ(m,M) = 0 for i 6= 0.

Therefore, the functor

HC(g)→ U(g, f) -biMod, M 7→ DSf (M),

is exact. We have

DSf (M) ∼= Ũ(g, f) ◦M

as a bimodule over Ũ(g, f) ◦ U(g) = U(g, f). Moreover if M ∈ HC(g) is finitely
generated and K•M is a good Kazudan filtration then

grK DSf (M) ∼= DSf (grKM)

as a Poisson module over C[Sf ].

3.4.17. Primitive ideals and representation theory of finite W -algebras.
Let I be a two-sided ideal of U(g). The PBW filtration on U(g) induces a filtra-
tion on I, so that gr I becomes a graded Poisson ideal in C[g∗]. Thus, U(g)/I is a

quantization of the Hamiltonian G-scheme Ṽ (gr I) = SpecC[g∗]/gr I.
The variety

V (gr I) = SpecmC[g∗]/gr I = (Ṽ (gr I))red ⊂ g∗

is usually referred to as the associated variety of I.
Consider the exact sequence 0 → I → U(g) → U(g)/I → 0 in HC(g). By

Theorem 3.63, applying to the exact functor DSf (?) we obtain the exact sequence

0→ DSf (I)→ U(g, f)→ DSf (U(g)/I)→ 0.
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Following Losev [Losev11], we set

I† := DSf (I),

which is a two-sided ideal of U(g, f), so that

DSf (U(g)/I) = U(g, f)/I†.

By Theorem 3.63,

grK DSf (U(g)/I) ∼= DSf (grK U(g)/I) = C[Ṽ (gr I)×g∗ Sf ].

Recall that a proper two-sided ideal I of U(g) is called primitive if it is the
annihilator of a simple left U(g)-module. There are two important results on prim-
itive ideals of U(g). The first result is the Duflo Theorem [Duflo77], stating that
any primitive ideal in U(g) is the annihilator AnnU(g)Lg(λ) of some simple highest
weight module Lg(λ), λ ∈ h∗.

The second result is the Irreducibility Theorem. Identifying g∗ with g through
( | ), we shall often view associated varieties of ideals of U(g) as subsets of g. The
Irreducibility Theorem says that the associated variety V (gr I) of a primitive ideal
I in U(g) is irreducible, specifically, it is the closure O of some nilpotent orbit O
in g. The latter theorem was first partially proved (by a case-by-case argument) in
[Borho-Brylinski82], and in a more conceptual way in [Kashiwara-Tanisaki84]
and [Joseph85] (independently), using many earlier deep results due to Joseph,
Gabber, Lusztig, Vogan and others.

It is possible that different primitive ideals share the same associated variety.
In addition, not all nilpotent orbit closures appear as associated variety of some
primitive ideal of U(g).

Given a nilpotent orbit O in g, we denote by PrimOU(g) the set of all primitive

ideal of U(g) such that V (gr I) = O.
The following assertion follows immediately from Theorem 3.63 and Corol-

lary 3.46.

Theorem 3.64 ([Los10]). Let I ∈ PrimOU(g). Then

(1) DSf (U(g)/I) = U(g, f)/I† is nonzero if and only if G.f ⊂ O.

(2) DSf (U(g)/I) is finite-dimensional if and only if O = G.f . Moreover, if

this is the case, dimDSf (U(g)/I)) = multG.f Ṽ (gr I).

In fact, the following much stronger result is known by I. Losev.

Theorem 3.65 ([Losev11]). Let I ∈ PrimG.fU(g). Then DSf (U(g)/I) =
U(g, f)/I† is a (finite-dimensional) semisimple algebra.

3.4.18. Skryabin equivalence. A g-module E is called a Whittaker module
if for all x ∈ m, x − χ(x) acts on E locally nilpotently. A Whittaker vector in a
Whittaker g-module E is a vector v ∈ E which satisfies (x − χ(x)v = 0 for any
x ∈ m, i.e., xv = χ(x)v for any x ∈ m.

Let Wh(g) be the category of finitely generated Whittaker g-modules and set
for E an object of this category,

Wh(E) := {v ∈ E | (x− χ(x))v = 0 for any x ∈ m}.
Observe that Wh(E) = 0 implies that E = 0. Let U(g, f) -Mod be the category of
finitely generated U(g, f)-modules and introduce the Whittaker functor:

Wh: Wh(g) −→ U(g, f) -Mod, E 7−→Wh(E)
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with Wh(ψ)(x) = ψ(x) for E,F ∈ Ob(Wh(g)), ψ ∈ HomWh(g)(E,F ) and x ∈
Wh(E). Given a Whittaker g-module E, Wh(E) is indeed naturally a U(g, f)-
module by setting

ȳ.v = y.v, v ∈Wh(E), ȳ ∈ U(g, f) = (U(g)/Iχ)n.

We define another functor by:

Qχ ⊗U(g,f) − : U(g, f) -Mod −→Wh(g), V 7−→ Qχ ⊗U(g,f) V

with

Qχ ⊗U(g,f) (ϕ)(q ⊗ v) = q ⊗ ϕ(v)

for V,W ∈ Ob(U(g, f) -Mod), ϕ ∈ HomU(g,f) -Mod(V,W ), q ∈ Qχ and v ∈ V . For
V ∈ U(g, f) -Mod, Qχ ⊗U(g,f) V is a Whittaker g-module by setting

y.(q ⊗ v) = (y.q)⊗ v, y ∈ U(g), q ∈ Qχ = U(g)/Iχ, v ∈ V.

Theorem 3.66 ([Premet02, Appendix], [Gan-Ginzburg02, Theorem 6.1]).
The functor Qχ⊗U(g,f)− : U(g, f) -Mod −→Wh(g) is an equivalence of categories,
with Wh: Wh(g) −→ U(g, f) -Mod as inverse.

Corollary 3.67. Let I be a two-sided ideal of U(g). Then Wh: Wh(g)
'−→

U(g, f) -Mod restricts to the equivalence

Wh(g)I
'−→ U(g, f)/I† -Mod,

where Wh(g)I is the full subcategory of Wh(g) consisting of objects M that is an-
nihilated by I.

There is a ramification of the Skryabin’s equivalence. It is an equivalence
between the category O (see [Brundan-Goodwin-Kleshchev08]) for a finite W-
algebra and the category of generalized Whittaker U(g)-modules. This was conjec-
tured in [Brundan-Goodwin-Kleshchev08] and proved by Losev [Losev12].

3.4.19. Classification of finite-dimensional representation of finite W -
algebras and primitive ideals. By Theorem 3.65, any I ∈ PrimG.fU(g) gives
rise to an irreducible finite-dimensional representation of U(g, f). Conversely, let
E be a finite-dimensional irreducible representation of U(g, f). Then, by The-
orem 3.66, Qχ ⊗U(g,f) E is simple, and thus, I = AnnU(g)(Qχ ⊗U(g,f) E) is a
primitive ideal of U(g). Moreover, I ∈ PrimG.fU(g) by [?]. In fact, E is a
DSf (U(g)/I) = U(g, f)/I†-module ([Losev10b, Ginzburg09]). In other words,
the map

E 7→ AnnU(g,f)(Qχ ⊗U(g,f E)

from the set of isomorphism classes of finite dimensional irreducible U(g, f)-modules
to the set PrimG.fU(g) is surjective. Moreover, any fiber of this map is a sin-
gle C(e)-fibers, where C(e) = Q/Q◦ is the component group of the stabilizer
Q = ZG(e, h, f) of the sl2-triple (e, h, f). This was partially proved by Losev in
[Losev12], and then by Losev and Ostrik [Losev-Ostrik14].
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3.4.20. Multiplicity free primitive ideals and one-dimensional repre-
sentations of finite W -algebras. A primitive ideal I of U(g) is called multiplicity

free if multO Ṽ (gr I) = 1, where O is the nilpotent orbit such that V (gr I) = O. A

multiplicity free primitive ideal I is completely prime, that is, U(g)/I is a domain.
By Theorem 3.65, if I is a multiplicity free primitive ideal such that V (gr I) =

G.f , then DSf (U(g)/I) = U(g, f)/I† is one-dimensional. In particular, U(g, f)
admits a one-dimensional representation. Conversely, it is known that if E is a
one-dimensional representation then AnnU(g)(Qχ ⊗U(g,f) E) is multiplicity free.

Theorem 3.68. Any finite W-algebra admits a one-dimensional representation
(equivalently, a two-sided ideal of codimension 1).

3.4.21. The Joseph ideal. If g is not of type A, it is known [Joseph76,
Gan-Savin04] that there exists a unique completely prime ideal, that is, the graded
ideal is prime, in U(g) whose associated variety is Omin.

Definition 3.69. This ideal is denoted by J0 and referred to as the Joseph
ideal of U(g).

For g of type A, the completely prime primitive ideals I of U(g) with V (gr I) =
Omin form a single family parametrized by the elements of C ([Joseph76, ?]).

In [Joseph76], Joseph has also computed the infinitesimal character of J0,
that is, the algebra homomorphism Z(g) → C through which the centre Z(g)
acts on the primitive quotient U(g)/J0. In fact, Joseph has described the set of
λ ∈ h∗ such that such that J0 = AnnU(g)(Lg(λ)) (see [Joseph76, Table p.15] or
[Arakawa-Moreau15, Table 1]).

Let us recall how to get the infinitesimal character of Lg(λ) (or of AnnU(g)(Lg(λ)))
from the knowledge of λ ∈ h∗.

Identify SpecZ(g) with the set of all homomorphisms Z(g) → C. Such mor-
phisms are called infinitesimal characters. Consider the projection map from U(g)
to U(h) = S(h) with respect to the decomposition

U(g) = S(h)⊕ (n−U(g) + U(g)n+).

It is not a morphism of algebras in general, but its restriction to U(g)h = {u ∈
U(g) | (adx)u = 0 for all x ∈ h} is. In particular, we get a morphism

p : Z(g)→ C[h∗]

since S(h) ∼= C[h∗], usually refers to as the Harish-Chandra morphism. Its comor-
phism gives a map

χ : h∗ → Spec(Z(g)), λ 7→ χλ,

where χλ(z) = p(z)(λ+ ρ) for z ∈ Z(g). An important consequence of the Harish-
Chandra Theorem is that the map χ induces a bijection

h∗/W
'−→ Spec(Z(g)).

Here the Weyl group W acts on h∗ with respect to the twisted action of W:

w ◦ λ = w.(λ+ ρ)− ρ, w ∈W, λ ∈ h∗,

where · is the usual action of W on h∗.
Returning to our subject, the infinitesimal character associated with the irre-

ducible representation Lg(λ) is χλ. In particular, χλ = χµ if and only if λ and µ
are in the same W-orbit with respect to the twisted action of W.
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Outside type A the orbit Omin is rigid, that is, forms a single sheet in g∗ ∼= g
(see §B.0.5). Hence J0 cannot be obtained by parabolic induction from a primitive
ideal of a proper Levi subalgebra of g.

Different realizations of J0 can be found in the literature for various types of
g. Joseph’s original proof of the uniqueness of J0 was incomplete. This leads Gan
and Savin [Gan-Savin04] to give another description of the Joseph ideal J0. Their
argument relies on some invariant theory and earlier results of Garfinkle. Gan and
Savin description was very useful in the recent work [Arakawa-Moreau15] as it
will explained in §4.6.2.

Let us briefly explain their description.
Suppose that g is not of type A. According to Kostant, J0 is generated by the

g-submodule Lg(0)⊕W in S2(g), where W is such that, as g-modules,

S2(g) = Lg(2θ)⊕Lg(0)⊕W.

Note that the above decomposition of S2(g) still holds in type A ([Garfinkle82,
Chapter IV, Proposition 2]).

Also, note that Lg(0) = CΩ where Ω =
∑
i xix

i is the Casimir element in S(g),
with {xi}i is a basis of g, and {xi}i its dual basis with respect to ( | ).

Lemma 3.70. Suppose that g is not of type A. The ideal JW in S(g) generated
by W contains Ω2, and hence,

√
JW = J0, where J0 is the prime ideal of S(g)

corresponding to the minimal nilpotent orbit closure Omin.

Proof. By the proof of [Gan-Savin04, Theorem 3.1] JW contains g ·Ω, and
the assertion follows. �

The structure of W was determined by Garfinkle [Garfinkle82]. Consider the
sl2-triple (eθ, hθ, fθ) of g where fθ = e−θ is a θ-root vector so that it lies in Omin.
Set

gj = {x ∈ g | [hθ, x] = 2jx}.

Then (cf. Example 3.7)

g = g−1⊕ g−1/2⊕ g0⊕ g1/2⊕ g1,

g−1 = Cfθ, g1 = Ceθ, g0 = Chθ ⊕ g\, g\ = {x ∈ g0 | (hθ|x) = 0}.

The subalgebra g\ is a reductive subalgebra of g whose simple roots are the simple
roots of g perpendicular to θ. Write

[g\, g\] =
⊕
i>1

gi

as a direct sum of simple summands, and let θi be the highest root of gi.
If g is neither of type Ar nor Cr,

W =
⊕
i>1

Lg(θ + θi).(72)

If g is of type Cr, then g\ is simple of type Cr−1, so that there is a unique θ1,
and we have

W = Lg(θ + θ1)⊕Lg(
1

2
(θ + θ1)).
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By [Garfinkle82, Gan-Savin04] J0 is generated by W and Ω− c0, where W
is identified with a g-submodule of U(g) by the g-module isomorphism S(g) ∼= U(g)
given by the symmetrization map, and c0 is the eigenvalue of Ω for the infinitesimal
character that Joseph obtained. We have

grJ0 = J0 =
√
JW

and this shows that J0 is indeed completely prime.
Let JW be the two-sided ideal of U(g) generated by W .

Proposition 3.71. We have the algebra isomorphism

U(g)/JW ∼= C× U(g)/J0.

Proof. By the proof of [Gan-Savin04, Theorem 3.1], JW contains (Ω−c0)g.
Hence it contains (Ω− c0)Ω. Since c0 6= 0, we have the isomorphism of algebras

U(g)/JW
'−→ U(g)/〈JW ,Ω〉 × U(g)/〈JW ,Ω− c0〉.

As we have explained above, 〈JW ,Ω−c0〉 = J0. Also, since JW contains (Ω−c0)g,
〈JW ,Ω〉 contains g. Therefore U(g)/〈JW ,Ω〉 = C as required. �

3.4.22. Classical Miura map. Assume that f is even6 (cf. Example 3.6)
or, equivalently, that the grading g = ⊕igi is even, so that L = g 1

2
= 0. Then

m =
⊕

j>0 gj .

Let m− =
⊕

j<0 gj be the opposed Lie subalgebra to m. We have

g = m− ⊕ g0 ⊕m.(73)

Note that m⊥ = g0 ⊕m is a parabolic subalgebra of g (containing the Borel subal-
gebra b = h⊕ n+). Set m⊥− = m− ⊕ g0.

Let {xi}16i6m be a basis of m, and extend it to a basis {xi}16i6n of g. Let
cki,j be the structure constants with respect to this basis. Consider the linear map
θ0 : m → C(m) of Lemma 3.47 with respect to the Lie algebra m (i.e., χ = 0 and
g = m in this lemma). Extend it to a linear map θ0 : g→ C(g,m) := U(g)⊗Cl(m)
by setting

θ0(xi) = xi ⊗ 1 + 1⊗
∑

16j,k6m

cki,jxkx
∗
j .

We already know that the restriction of θ0 to m is a Lie algebra homomorphism
and

[θ0(x), 1⊗ y] = 1⊗ [x, y] for x, y ∈ m.

Although θ0 is not a Lie algebra homomorphism, we have the following.

Lemma 3.72. The restriction of θ0 to m⊥− is a Lie algebra homomorphism. We

have [θ0(x), 1 ⊗ y∗] = 1 ⊗ ad∗(x)(y) for x ∈ m⊥−, y ∈ m∗, where ad∗ denote the

coadjoint action and m∗ is identified with (g/m⊥−)∗.

Recall that U(g, f) = H0(C(g,m), adQ). Let C(g,m)+ denote the subalge-
bra of C(g,m) generated by θ0(m) and ∧(m) ⊂ Cl, and let C(g,m)− denote the
subalgebra generated by θ0(m⊥−) and ∧(m∗) ⊂ Cl.

6In the setting of good gradings, one can always find a good grading for f which is even, so
the assumption is not restrictive.
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Lemma 3.73. The multiplication map gives a linear isomorphism

C(g,m)− ⊗ C(g,m)+
'−→ C(g,m).

Lemma 3.74. The subspaces C(g,m))− and C(g,m)+ are subcomplexes of (C(g,m), adQ).
Hence C(g,m) ∼= C(g,m)− ⊗ C(g,m)+ as complexes.

Proof. The fact that C(g,m)− is subcomplex is obvious (see Lemma 3.48).
The fact that C(g,m)+ is a subcomplex follows from the following formulas.

[Q, θ0(xi)] =
∑

m+16j6n,16k6m

cjk,iθ0(xj)(1⊗ x∗k)− 1⊗
∑

16j,k6m

cki,jχ(xk)x∗j

[Q, 1⊗ x∗i ] = −1⊗ 1

2

∑
16j,k6m

cij,kx
∗
jx
∗
k.

�

Proposition 3.75. H•(C(g,m)−, adQ) ∼= H•(C(g,m), adQ).

Proof. By Lemma 3.74 and Kunneth’s Theorem,

Hp(C(g,m), adQ) ∼=
⊕
i+j=p

Hi(C(g,m)−, adQ)⊗Hj(C(g,m)+, adQ).

On the other hand, we have ad(Q)(1 ⊗ xi) = θχ(xi) = θ0(xi) − χ(xi) for i =
1, . . . ,m. Hence C(g,m)− is isomorphic to the tensor product of complexes of the
form C[θχ(xi)]⊗∧(xi) with the differential θχ(xi)⊗x∗i , where x∗i is the contraction
with xi. Each of these complexes has one-dimensional zeroth cohomology and
zero first cohomology. Therefore Hi(C(g,m)+, adQ) = δi,0C. This completes the
proof. �

Note that the cohomological gradation takes only non-negative values on C(g,m)−.
Hence by Proposition 3.75 we may identify U(g, f) = H0(C(g,m), adQ) with the
subalgebra H0(C(g,m)−, adQ) = {c ∈ C(g,m)0

− | (adQ)c = 0} of C(g,m)−.
Consider the decomposition

C(g,m)− =
⊕
j60

C(g,m)−,j , C(g,m)−,j = {c ∈ C(g,m)0
− | [θ0(h), c] = 2jc}.

Note that C(g,m)−,0 is generated by θ0(g0) and is isomorphic to U(g0). The pro-
jection

C(g,m)− → C(g,m)−,0 ∼= U(g0)

is an algebra homomorphism, and hence, its restriction

Υ : U(g, f) = H0(C(g,m)−, adQ)→ U(g0)

is also an algebra homomorphism.

Proposition 3.76. The map Υ is an embedding.

Let K•C(g,m)± be the filtration of C(g,m)± induced by the Kazhdan filtration
of C(g,m). We have the isomorphism

C[g∗]⊗ Cl(m) = grK C(g,m) ∼= grK C(g,m)− ⊗ grK C(g,m)+

as complexes. Similarly as above, we have Hi(grK C(g,m)−, ad Q̄) = δi,0C, and

H0(C(g,m), ad Q̄) ∼= H0(grK C(g,m)−, ad Q̄).(74)
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Proof of Proposition 3.76. The filtration K•U(g0) of U(g0) ∼= C(g,m)−,0
induced by the Kazhdan filtration coincides with the usual PBW filtration. By (74)
and Theorem 3.30, the induced map

H0(grK C(g,m)−, adQ)→ grK U(g0)

can be identified with the restriction map

Ῡ : C[Sf ] = C[f + m⊥]M → C[f + g0].(75)

So it is sufficient to show that Ῡ is injective.
If f ∈ C[f + m⊥]M is in the kernel, f(g.x) = 0 for all g ∈M and x ∈ f + g0.

Hence it is enough to show that the image of the the action map

M× (f + g0)→ f + m⊥, (g, x) 7→ g.x,(76)

is Zariski dense in f + m⊥.
The differential of this morphism at (1, x) ∈M× (f + g0) is given by

m× g0 → m⊥, (y, z) 7→ [y, x] + z.

This is an isomorphism if x ∈ f+(g0)ss,reg, where (g0)ss,reg = {x ∈ (g0)ss | dim gx0 =
r}, with (g0)ss the set of semisimple elements of g0. Indeed, if x ∈ (g0)ss,reg then
gx = gx0 is a Cartan subalgebra of g and gx ∩ m = {0}. Hence (76) is a dominant
morphism as required, see e.g. [Tauvel-Yu, Theorem 16.5.7]. �

Remark 3.77. In the case where f is regular, the fact that Ῡ is injective is
well-known. Indeed, in this case g0 is the Cartan subalgebra h and, under the
identifications C[Sf ] ∼= C[g]G, C[f + h] ∼= C[h], the map Ῡ is identified with the

Chevalley restriction map C[g]G
'−→ C[h]W, where W is the Weyl group associated

with (g, h).
It is also possible to extend to the case f is not even, for instance, using the

construction of Kac, Roan and Wakimoto [Kac-Roan-Wakimoto03].
The advantage of the above proof is that it applies to a general finite W-algebra

([Lynch79]), and also, it generalizes to the affine setting, see §??.

The map Υ is called the classical Miura map.



PART 4

Geometry of jet schemes, Poisson vertex algebras
and associated varieties of vertex algebras

4.1. Jet schemes and arc spaces

In this section, we present some general facts on jet schemes and arc spaces.
Our main references on the topic are [Mustata01, Ein-Mustata09, Ishii11].

4.1.1. Definitions. Denote by Sch the category of schemes of finite type over
C. Let X be an object of this category, and m ∈ Z>0.

Definition 4.1. An m-jet of X is a morphism

SpecC[t]/(tm+1) −→ X.

The set of all m-jets of X carries the structure of a scheme Jm(X), called the m-th
jet scheme of X. It is a scheme of finite type over C characterized by the following
functorial property: for every scheme Z over C, we have

HomSch(Z, Jm(X)) = HomSch(Z ×SpecC SpecC[t]/(tm+1), X).

The C-points of Jm(X) are thus the C[t]/(tm+1)-points of X. From Defini-
tion 4.1, we have for example that J0(X) ' X and that J1(X) ' TX where TX
denotes the total tangent bundle of X.

The canonical projection C[t]/(tm+1)→ C[t]/(tn+1), m > n, induces a trunca-
tion morphism πX,m,n : Jm(X)→ Jn(X). The canonical injection C ↪→ C[t]/(tm+1)
induces a morphism ιX,m : X → Jm(X), and we have πX,m ◦ ιX,m,0 = idX . Hence
ιX,m is injective and πX,m,0 is surjective.

Define the (formal) disc as

D := SpecC[[t]].

The projections πX,m,n yield a projective system {Jm(X), πX,m,n}m>n of schemes.

Definition 4.2. Denote by J∞(X) its projective limit in the category of
schemes,

J∞(X) = lim←− Jm(X).

It is called the arc space, or the infinite jet scheme of X.

Thus elements of J∞(X) are the morphisms

γ : D → C[[t]],

and for every scheme Z over C,

HomSch(Z, Jm(X)) = HomSch(Z×̂SpecCD,X),

73
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where Z×̂D is the completion of Z×D with respect to the subscheme Z×{0}. In
other words, the contravariant functor

Sch→ Set, Z 7→ HomSch(Z×̂D,X)

is represented by the scheme J∞(X). The reason why we need the completion Z×̂D
in the definition is that, for A an algebra, A⊗C[[t]] $ A[[t]] = A⊗̂C[[t]] in general.

We denote by πX,∞ the canonical projection:

πX,∞ : J∞(X)→ X.

4.1.2. The affine case. In the case where X is affine, we have the following
explicit description of J∞(X). (We describe similarly Jm(X).)

The quite uncommon notations below will be justified next subsection.
Let N ∈ Z>0 and X ⊂ CN be an affine subscheme defined by an ideal I =

〈f1, . . . , fr〉 of C[x1, . . . , xN ]. Thus

X = Spec C[x1, . . . , xN ]/I.

For f ∈ C[x1, . . . , xN ], we extend f as a map from C[[t]]N to C[[t]] via base ex-
tension. Then giving a morphism γ : D → X is equivalent to giving a morphism
γ∗ : C[x1, . . . , xN ]/I → C[[t]], or to giving

γ∗(xi) =
∑
j>0

γi(−j−1)t
j , i = 1, . . . , N,

such that for any k = 1, . . . , r,

fk(γ∗(x1), . . . , γ∗(xN )) = 0 in C[[t]].

For any f ∈ C[x1, . . . , xN ], there exist functions f (j), j > 0, which only depend on
f , in the variables γ = (γ1

(−j−1), . . . , γ
N
(−j−1))j>0 such that

f
(
γ∗(x1), . . . , γ∗(xN )

)
=
∑
j>0

f (j)

j!
(γ) tj .(77)

Regarding the coordinates xi as functions over CN , we set:

xi(−j−1) := (xi)(j), that is, xi(−j−1)(γ) = j!γi(−j−1),

for i = 1, . . . , N .
The jet scheme J∞(X) is then the closed subscheme in SpecC[xi(−j−1) ; i =

1, . . . , N, j > 0] defined by the ideal generated by the polynomials f
(j)
k , for k =

1, . . . , r and j > 0, that is,

J∞(X) ∼= SpecC[xi(−j−1) ; i = 1, . . . , N, j > 0]/〈f (j)
k ; k = 1, . . . , r, j > 0〉.

In particular, if X is an N -dimensional vector space, then

J∞(X) ∼= SpecC[xi(−j−1) ; i = 1, . . . , N, j > 0],

and for m ∈ Z>0, the projection J∞(X) → Jm(X) corresponds to the projection
onto the first (m+ 1)N coordinates.

One can also define the functions f
(j)
k using a derivation.
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Lemma 4.3. Define the derivation T of C[xi(−j−1) ; i = 1, . . . , N, j > 0] by

Txi(−j) = jxi(−j−1), j > 0.

Then f
(j)
k = T jfk for k = 1, . . . , r and j > 0. Here we identify xi with xi(−1).

With the above lemma, we conclude that for the affine scheme X = SpecR,
with R = C[x1, x2, · · · , xN ]/〈f1, f2, · · · , fr〉, its arc space J∞X is the affine scheme
Spec(J∞(R)), where

J∞(R) :=
C[xi(−j) ; i = 1, 2, · · · , N, j > 0]

〈T jfi ; i = 1, . . . , r, j > 0〉
and T is as defined in the lemma.

The derivation T acts on the above quotient ring J∞(R). Hence for an affine
scheme X = SpecR, the coordinate ring J∞(R) = C[J∞(X)] of its arc space J∞(X)
is a differential algebra, hence is a commutative vertex algebra by Theorem 2.4.

Remark 4.4. The differential algebra (J∞(R), T ) is universal in the following
sense. We have a C-algebra homomorphism j : R → J∞(R) such that if (A, ∂) is
another differential algebra, and if f : R → A is a C-algebra homomorphism, then
there is a unique differential algebra homomorphism h : J∞(R) → A making the
following diagram commutative.

R
j

//

f
!!

(J∞(R), T )

h
yy

(A, ∂)

(The map h is a differential algebra homomorphism means that it is a C-algebra
homomorphism such that ∂(h(u)) = h(T (u)) for all u ∈ J∞(R).)

Lemma 4.5 ([Ein-Mustata09]). Let m ∈ Z>0 ∪ {∞}. Then for every open

subset U of X, Jm(U) = π−1
X,m(U).

Then for a general scheme Y of finite type with an affine open covering {Ui}i∈I ,
its arc space J∞(Y ) is obtained by glueing J∞(Ui) (see [Ein-Mustata09, Ishii11]).
In particular, the structure sheaf OJ∞(Y ) is a sheaf of commutative vertex algebras.

The natural projection πX,∞ : J∞(X)→ X corresponds to the embedding R ↪→
J∞(R), xi → xi(−1) in the case where X = SpecR is affine. In terms of arcs,

πX,∞(α) = α(0) for α ∈ HomSch(D,X), where 0 is the unique closed point of the
formal disc D.

4.1.3. Basic properties. The map from a scheme to its jet schemes and arc
space is functorial. If f : X → Y is a morphism of schemes, then we naturally obtain
a morphism Jmf : Jm(X)→ Jm(Y ) making the following diagram commutative,

Jm(X)
Jmf //

πX,m,0

��

Jm(Y )

πY,m,0

��

X
f

// Y
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In terms of arcs, it means that Jmf(α) = f ◦ α for α ∈ Jm(X). This also holds for
m =∞.

We have also the following for m ∈ Z>0 ∪ {∞} and for every schemes X,Y ,

Jm(X × Y ) ∼= Jm(X)× Jm(Y ).(78)

Indeed, for any scheme Z in Sch,

Hom(Z, Jm(X × Y )) = Hom(Z ×SpecC C[t]/(tm+1), X × Y )

∼= Hom(Z ×SpecC C[t]/(tm+1), X)×Hom(Z ×SpecC C[t]/(tm+1), Y )

= Hom(Z, Jm(X))×Hom(Z, Jm(Y ))

∼= Hom(Z, Jm(X)× Jm(Y )).

For m = ∞, just replace C[t]/(tm+1) with C[[t]] and take the completion in the
product Z×̂SpecC[[t]] = Z×̂D.

If A is a group scheme over C, then Jm(A) is also a group scheme over C.
Moreover, by (78), if A acts on X, then Jm(A) acts on Jm(X).

Example 4.6. Consider the algebra

g∞ := g[[t]] = g⊗C C[[t]] ∼= J∞(g).

It is naturally a Lie algebra, with Lie bracket:

[xtm, ytn)] = [x, y]tm+n, x, y ∈ g, m, n ∈ Z>0.

The arc space J∞(G) of the algebraic group G is naturally a proalgebraic group.
Regarding J∞(G) as the set of C[[t]]-points of G, we have J∞(G) = G[[t]]. As Lie
algebras, we have

g∞ ∼= Lie(J∞(G)).

The adjoint action of G on g induces an action of J∞(G) on g∞, and the coadjoint
action of G on g∗ induces an action of J∞(G) on J∞(g∗), and so on C[J∞(g∗)].

We refer to [Mustata01, Appendix] for the following result.

Lemma 4.7. For f ∈ C[g]G, the polynomials T jf = f (j), j > 0, are elements
of C[g∞]J∞(G). In particular, the arc space J∞(N ) of the nilpotent cone is the
subscheme of g∞ defined by the equations T jPi, i = 1 . . . , r and j > 0, if P1, . . . , Pr
are homogeneous generators of C[g]G, that is,

J∞(N ) = SpecC[g∞]/(T jPi ; i = 1 . . . , r, j > 0).

4.1.4. Geometrical results. So far, we have stated basic properties common
for both jet schemes Jm(X) and the arc space J∞(X) . For the geometry, arc spaces
behave rather differently. The main reason is that C[[t]] is a domain, contrary to
C[t]/(tm+1). Thereby the geometry of are spaces is somehow simpler.

However, although Jm(X) is of finite type if X is, this is not anymore true for
J∞(X), and its coordinate ring C[J∞(X)] is not noetherian in general.

Lemma 4.8. Denote by Xred the reduced scheme of X. The natural morphism

Xred → X induces an isomorphism J∞Xred
'−→ J∞X of topological spaces.

Proof. We may assume that X = SpecR. An arc α of X corresponds to a ring
homomorphism α∗ : R → C[[t]]. Since C[[t]] is an integral domain, it decomposes

as α∗ : R→ R/
√

0→ C[[t]]. Thus, α is an arc of Xred. �
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Similarly, if X = X1 ∪ . . . ∪Xr, where all Xi are closed in X, then

J∞(X) = J∞(X1) ∪ . . . ∪ J∞(Xr).

(Note that Lemma 4.8 is false for the schemes Jm(X).)
If X is a point, then J∞(X) is also a point, since Hom(D,X) = Hom(C,C[[t]])

consists of only one element. Thus, Lemma 4.8 implies the following.

Corollary 4.9. If X is zero-dimensional then J∞(X) is also zero-dimensional.

Theorem 4.10 ([Kolchin73]). The scheme J∞(X) is irreducible if X is irre-
ducible.

Theorem 4.10 is false for the jet schemes Jm(X): see for instance [Moreau-Yu16]
for counter-examples in the setting of nilpotent orbit closures. We refer to loc. cit.,
and reference therein, for more about existing relations between the geometry of
the jet schemes Jm(X), m ∈ Z>0, and the singularities of X.

The following lemma will be used in Part 5.

Lemma 4.11. Let Y be irreducible, and let f : X → Y be a morphism that
restricts to a bijection between some open subsets U ⊂ X and V ⊂ Y . Then
J∞f : J∞(X)→ J∞(Y ) is dominant.

Proof. The map J∞f restricts to the isomorphism J∞(U)
'−→ J∞(V ), and

the open subset J∞(V ) is dense in J∞(Y ) since J∞(Y ) is irreducible. �

4.2. Poisson vertex algebras

Let V be a commutative vertex algebra (cf. §2.2.1), or equivalently, a differential
algebra. Recall that this means: a(n) = 0 in End(V ) for all n > 0.

4.2.1. Definition. The commutative vertex algebra V is called a Poisson ver-
tex algebras if it is equipped with a bilinear maps

V × V → V [λ], (a, b) 7→ {aλb} =
∑
n>0

λn

n!
a(n)b, a(n) ∈ EndV,

also called the λ-bracket, satisfying the following axioms:

{(Ta)λb} = −λ{aλb}, {aλ(Tb)} = (λ+ T ){aλb},(79)

{bλa} = −{a−λ−T b},(80)

{aλ{bµc}} − {bµ{aλc}} = {{aλb}λ+µc},(81)

{aλ(bc)} = {aλb}c+ {aλc}b, {(ab)λc} = {aλ+T c}→b+ {bλ+T c}→a,(82)

where the arrow means that λ+T should be moved to the right, that is, {aλ+T c}→b =∑
n>0(a(n)c)

(λ+T )n

n! b.
Here, by abuse of notations, we have set

a−(z) =
∑
n>0

a(n)z
−n−1

so that the a(n), n > 0, are “new” operators, the “old” ones given by the field a(z)
being zero for n > 0 since V is commutative.

The first equation in (82) says that a(n), n > 0, is a derivation of the ring V .
(Do not confuse a(n) ∈ Der(V ), n > 0, with the multiplication a(n) as a vertex
algebra, which should be zero for a commutative vertex algebra.)
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Note that (79), (80), (81) are the same as (33), (34), (35), and (82) is the same
as (36) and (37) without the third terms. In particular, by (81), we have

[a(m), b(n)] =
∑
i>0

(
m
i

)
(a(i)b)(m+n−i), m, n ∈ Z>0.(83)

4.2.2. Poisson vertex structure on arc spaces.

Theorem 4.12 ([Arakawa12, Proposition 2.3.1]). Let X be an affine Poisson
scheme, that is, X = SpecR for some Poisson algebra R. Then there is a unique
Poisson vertex algebra structure on J∞(R) = C[J∞(X)] such that

{aλb} = {a, b} for a, b ∈ R ⊂ J∞(R),

where { , } is the Poisson bracket on R. In other words,

a(n)b =

{
{a, b} if n = 0

0 if n > 0,

for a, b ∈ R.

Proof. The uniqueness is clear by (33) since J∞(R) is generated by R as a
differential algebra. We leave it to the reader to check the well-definedness. Since
J∞(R) is generated by R, the formula {aλb} = {a, b} for a, b ∈ R is sufficient to
define the λ-bracket on J∞(R) by formulas (79), whence the existence. �

Remark 4.13. More generally, let X be a Poisson scheme which is not nec-
essarily affine. Then the structure sheaf OJ∞(X) carries a unique Poisson vertex
algebra structure such that

{fλg} = {f, g}
for f, g ∈ OX ⊂ OJ∞(X), see [Arakawa-Kuwabara-Malikov, Lemma 2.1.3.1].

Example 4.14. Recall that the affine space g∗ is a Poisson variety by the
Kirillov-Kostant Poisson structure (see Example 3.17). If {x1, . . . , xN} is a basis of
g, then

C[g∗] = C[x1, . . . , xN ].

Thus

J∞(g∗) = SpecC[xi(−n) ; i = 1, . . . , N, n > 1].(84)

So we may identify C[J∞(g∗)] with the symmetric algebra S(g[t−1]t−1) via

x(−n) 7−→ xt−n, x ∈ g, n > 1.

For x ∈ g, identify x with x(−1)|0〉 = (xt−1)|0〉, where we denote by |0〉 the unit

element in S(g[t−1]t−1). Then (83) gives that

(85) [x(m), y(n)] = (x(0)y)m+n = {x, y}(m+n) = [x, y](m+n),

for x, y ∈ g ∼= (g∗)∗ ⊂ C[g∗] ⊂ C[J∞(g∗)] and m,n ∈ Z≥0. So the Lie algebra
J∞(g) = g[[t]] acts on C[J∞(g∗)]. This action coincides with that obtained by
differentiating the action of J∞(G) = G[[t]] on J∞(g∗) induced by the coadjoint
action of G (see Example 4.6). In other words, the Poisson vertex algebra structure
of C[J∞(g∗)] comes from the J∞(G)-action on J∞(g∗).
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4.2.3. Canonical filtration and Poisson vertex structure. Our second
basic example of Poisson vertex algebras comes from the graded vertex algebra
associated with the canonical filtration, that is, the Li filtration (see §2.4.1).

Set

grFV =
⊕
p>0

F pV/F p+1V,

where {F pV }p is the Li filtration. Recall that σp : F pV 7→ F pV/F p+1V , for p > 0,
denotes the canonical quotient map.

We have already seen that grFV is a commutative vertex algebras. We can
now specify Proposition 2.15 and the relations (47) in Definition 2.16.

Proposition 4.15 ([Li05]). The space grFV is a Poisson vertex algebra by

σp(a) · σq(b) := σp+q(a(−1)b),

Tσp(a) := σp+1(Ta),

σp(a)(n)σq(b) := σp+q−n(a(n)b),

for a ∈ F pV , b ∈ F qV , n > 0.

Proposition 4.16 ([Zhu96, Li05]). The restriction of the Poisson structure
gives to the Zhu’s C2-algebra RV a Poisson algebra structure, that is, RV is a
Poisson algebra by

ā · b̄ := a(−1)b, {ā, b̄} = a(0)b,

where ā = σ0(a).

Proof. It is straightforward from Proposition 4.15. �

Remember that we always assume that a vertex algebra V is finitely strongly
generated (see §2.4.1).

Note that if φ : V →W is a homomorphism of vertex algebras1, φ respects the
canonical filtration, that is, φ(F pV ) ⊂ F pW . Hence it induces a homomorphism
grFV → grFW of Poisson vertex algebra homomorphism which we denote by grFφ.

4.3. Associated variety of a vertex algebra

4.3.1. Associated variety and singular support.

Definition 4.17. Define the associated scheme X̃V and the associated variety
XV of a vertex algebra V as

X̃V := SpecRV , XV := SpecmRV = (X̃V )red.

It was shown in [Li05, Lemma 4.2] that grFV is generated by the subring RV
as a differential algebra. Thus, we have a surjection J∞(RV )→ grFV of differential
algebras by Remark 4.4 since RV generates J∞(RV ) as a differential algebra either.

This is in fact a homomorphism of Poisson vertex algebras.

Theorem 4.18 ([Li05, Lemma 4.2], [Arakawa12, Proposition 2.5.1]). The
identity map RV → RV induces a surjective Poisson vertex algebra homomorphism

J∞(RV ) = C[J∞(X̃V )]� grFV.

1i.e., φ preserves the λ-bracket, φ sends the vacuum vector of V to that of W , and the
translation operators with respect to V and W commute with φ.
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Definition 4.19. Define the singular support of a vertex algebra V as

SS(V ) := Spec(grFV ) ⊂ J∞(X̃V ).

Theorem 4.20. We have dimSS(V ) = 0 if and only if dimXV = 0.

Proof. The “only if” part is obvious since πX̃V ,∞(SS(V )) = X̃V . The “if”
part follows from Corollary 4.9. �

Recall that V is called lisse (or C2-cofinite) if RV = V/C2(V ) is finite dimen-
sional. Thus we get:

Lemma 4.21. The vertex algebra V is lisse if and only if dimXV = 0, that is,
if and only if dimSS(V ) = 0.

Remark 4.22. Suppose that V is Z>0-graded by some Hamiltonian H, i.e.,
V =

⊕
i>0 Vi with Vi = {x ∈ V | Hx = ix}, and that V0 = C|0〉. Then grFV and

RV are equipped with the induced grading:

grFV =
⊕
i>0

(grFV )i, (grFV )0 = C,

RV =
⊕
i>0

(RV )i, (RV )0 = C.

So the following conditions are equivalent:

(1) V is lisse,
(2) XV = {point},
(3) the image of any vector a ∈ Vi for i > 1 in grFV is nilpotent,
(4) the image of any vector a ∈ Vi for i > 1 in RV is nilpotent.

Thus, lisse vertex algebras can be regarded as a generalization of finite-dimensional
algebras.

Remark 4.23. Suppose that the Poisson structure of RV is trivial. Then the
Poisson vertex algebra structure of J∞(RV ) is trivial, and so is that of grFV by
Theorem 4.18. This happens if and only if

(F pV )(n)(F
qV ) ⊂ F p+q−n+1V for all n > 0.

If this is the case, one can give grFV yet another Poisson vertex algebra structure
by setting

σp(a)(n)σq(b) := σp+q−n+1(a(n)b) for n > 0.(86)

(We can repeat this procedure if this Poisson vertex algebra structure is again
trivial).

4.3.2. Comparison with weight-depending filtration. Let V be a vertex
algebra that is Z-graded by some Hamiltonian H (see §2.2.4):

V =
⊕
∆∈Z

V∆ where V∆ := {v ∈ V | Hv = ∆v}.

Then there is another natural filtration of V defined as follows [Li04].
Let GpV be the subspace of V spanned by the vectors

a1
(−n1−1)a

2
(−n2−1) · · · a

r
(−nr−1)|0〉
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with ai ∈ V homogeneous, ∆a1 + · · · + ∆ar 6 p. Then G•V defines an increasing
filtration of V :

0 = G−1V ⊂ G0V ⊂ . . . G1V ⊂ . . . , V =
⋃
p

GpV.

Moreover we have

TGpV ⊂ GpV,
(Gp)(n)GqV ⊂ Gp+qV for n ∈ Z,
(Gp)(n)GqV ⊂ Gp+q−1V for n ∈ Z>0,

It follows that grG V =
⊕
GpV/Gp−1V is naturally a Poisson vertex algebras.

It is not too difficult to see the following.

Lemma 4.24 ([Arakawa12, Proposition 2.6.1]). We have

F pV∆ = G∆−pV∆,

where F pV∆ = V∆ ∩ F pV , GpV∆ = V∆ ∩GpV . Therefore

grFV ∼= grGV

as Poisson vertex algebras.

Proposition 4.25 ([Arakawa12, Corollary 2.6.2]). A vertex algebra V is
finitely strongly generated if and only if RV is finitely generated as a ring.

If the images of some vectors a1, . . . , ar ∈ V in RV generate RV , we say that
V is strongly generated by a1, . . . , ar.

Proof. Suppose that a1, . . . , ar are strong generators of V . By Lemma 4.24,
C2(V ) = F 1V is spanned by the vectors ai1(−n1−1) . . . a

is
(−ns−1)|0〉 with s > 1 and

n1 + · · · + ns > 1. Thus {ā1, . . . , ār} generates RV , where āi is the image of ai in
RV .

Conversely, suppose that {ā1, . . . , ār} generates RV . Then by Theorem 4.18,
{ā1, . . . , ār} generates grFV as a differential algebra. Since grFV ∼= V as C-vector
spaces by the assumption that F •V is separated, it follows that {a1, . . . , ar} strongly
generates V . �

Remark 4.26. In fact a stronger fact is known: V is spanned by the above
vectors with r > 0, n1 > n2 > n3 > . . . > 1, see [Gaberdiel-Neitzke03], [Li05,
Theorem 4.7].

4.3.3. Universal affine vertex algebras. Consider the universal affine ver-
tex algebra V κ(a) defined by (38) as in §2.2.2.

Recall that the space V κ(a) is naturally graded: V κ(a) =
⊕

∆∈Z>0
V κ(a)∆,

where the grading is defined by setting deg xtn = −n, deg |0〉 = 0 and |0〉 = 1⊗ 1.
Thus,

V κ(a)∆ = {v ∈ V κ(a) | Dv = −∆v}.
We have V κ(a)0 = C|0〉. We identify a with V κ(a)1 via the linear isomorphism
defined by x 7→ xt−1|0〉.

We have F 1V κ(a) = a[t−1]t−2V κ(a), and a Poisson algebra isomorphism

C[a∗]
'−→ RV κ(a) = V κ(a)/a[t−1]t−2V κ(a)

x1 . . . xr 7−→ x1t−1 . . . xrt−1|0〉 (xi ∈ a).
(87)
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Thus

XV κ(a) = a∗.

We have the isomorphism

C[J∞(a∗)] ∼= grV κ(a).(88)

Indeed, the graded dimensions of both sides coincide. Moreover,

GpV
κ(a) = Up(a[t−1]t−1)|0〉,

where {Up(a[t−1]t−1)}p is the PBW filtration of U(a[t−1]t−1), and we have the
isomorphisms

grU(a[t−1]t−1) ∼= S(a[t−1]t−1) ∼= C[J∞(a∗)].

As a consequence of (88), we get

SS(V κ(a)) = J∞(a∗).

4.3.4. Simple affine vertex algebras. Let Vk(g) be the unique simple graded
quotient of the universal affine vertex algebra V k(g) = V κ(g), with κ = k( | ), k ∈ C,
as in §2.3.2. Remind that, as a ĝ-module, Vk(g) ∼= L(kD), where D is the weight
of the basic representation of ĝ.

Theorem 4.27. The vertex algebra Vk(g) is lisse if and only if Vk(g) is inte-
grable as a ĝ-module, which is true if and only if k ∈ Z>0.

Lemma 4.28. Let (R, ∂) be a differential algebra over Q, I a differential ideal

of R, i.e., I is an ideal of R such that ∂I ⊂ I. Then ∂
√
I ⊂
√
I.

Proof. Let a ∈
√
I, so that am ∈ I for some m ∈ Z>0. Since I is ∂-invariant,

we have ∂mam ∈ I. But

∂mam =
∑

06i6m

(
m

i

)
am−i(∂a)i ≡ m!(∂a)m (mod

√
I).

Hence (∂a)m ∈
√
I, and therefore, ∂a ∈

√
I. �

Proof of the “if” part of Theorem 4.27. Suppose that Vk(g) is integrable.
This condition is equivalent to that k ∈ Z>0 and the maximal submodule Nk(g)
of V k(g) is generated by the singular vector (eθt

−1)k+1|0〉 ([Kac1]). The exact
sequence 0→ Nk(g)→ V k(g)→ Vk(g)→ 0 induces the exact sequence

0→ Ik → RV k(g) → RVk(g) → 0,

where Ik is the image of Nk in RV k(g) = C[g∗], and so, RVk(g) = C[g∗]/Ik. The

image of the singular vector in Ik is given by ek+1
θ . Therefore, eθ ∈

√
Ik. On the

other hand, by Lemma 4.28,
√
Ik is preserved by the adjoint action of g. Since g is

simple, g ⊂
√
Ik. This proves that XVk(g) = {0} as required. �

The proof of the “only if” part follows from [Dong-Li-Mason06]. We will
give a different proof using W-algebras in Remark ??.

In view of Theorem 4.27, one may regard the lisse condition as a generalization
of the integrability condition to an arbitrary vertex algebra.
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4.3.5. Virasoro vertex alegbras. Let Virc be the universal Virasoro vertex
algebra with central charge c as in §2.2.3. Any V ir-module with central c (i.e., the
central element C of V ir acts as a multiplication by c) on which L(z) is a field can
be considered as a Virc-module.

Exercise 4.29. Show that

RVirc
∼= C[x],

with the trivial Poisson structure, where x is the image of L−2|0〉.

For the sequel, we let Nc be the unique maximal submodule of Virc, and Virc =
Virc/Nc the unique quotient.

4.4. Computation of Zhu’s algebras

Recall that we have a well-defined algebra homomorphism (cf. Lemma 2.20)

ηV : RV � gr Zhu(V )

between the Zhu’s C2-algebra RV and the Zhu algebra Zhu(V ) (cf. Section 2.5).

4.4.1. PBW basis. We say that a vertex algebra V admits a PBW basis if
RV is a polynomial algebra and if the map C[J∞(XV )]� grFV is an isomorphism.

Theorem 4.30. If V admits a PBW basis, then ηV : RV � gr ZhuV is an
isomorphism.

Proof. We have gr Zhu(V ) = V/ gr(V ◦ V ), where gr(V ◦ V ) is the associated
graded space of V ◦ V with respect to the filtration induced by the filtration V6p.
We wish to show that gr(V ◦ V ) = F 1V . Since a ◦ b ≡ a(−2)b (mod F6∆a+∆b

V ), it
is sufficient to show that a ◦ b 6= 0 implies that a(−2)b 6= 0.

Suppose that a(−2)b = (Ta)(−1)b = 0. Since V admits a PBW basis, grF V has
no zero divisors, whence Ta = 0. Also, from the PBW property we find that Ta = 0
implies that a = c|0〉 for some constant c ∈ C. Thus, a is a constant multiple of
|0〉, in which case a ◦ b = 0. �

4.4.2. Universal affine vertex algebras. The universal affine vertex alge-
bra V k(g) (see §4.3.3) admits a PBW basis. Therefore

ηV k(g) : RV k(g) = C[g∗]
'−→ gr ZhuV k(g).

On the other hand, from Lemma 2.19 one finds that

U(g) −→ Zhu(V k(g))

g 3 x 7−→ x̄ = x(−1)|0〉
(89)

gives a well-defined algebra homomorphism. This map respects the filtration on
both sides, where the filtration in the left side is the PBW filtration. Hence it
induces a map between their associated graded algebras, which is identical to ηV k(g).

Therefore (89) is an isomorphism, that is to say, V k(g) is a chiralization of U(g).

Exercise 4.31. Extend Theorem 4.30 to the case where g is a Lie superalgebra.
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Theorem 2.18 gives the following in this example. The top degree component
of the irreducible highest weight representation L(λ) of ĝ with highest weight λ is
Lg(λ̄), where λ̄ is the restriction of λ to the Cartan subalgebra h of g.

Let Nk = Nk(g) be the maximal ideal of V k(g) as in §4.3.4 so that

Vk(g) = V k(g)/Nk.

We have the exact sequence Zhu(Nk)→ U(g)→ Zhu(Vk(g))→ 0 since the functor
Zhu(?) is right exact and thus Zhu(Vk(g)) is the quotient of U(g) by the image Ik
of Zhu(Nk) in U(g):

Zhu(Vk(g)) = U(g)/Ik.

Hence when the homomorphism ηVk(g) of Lemma 2.20 is an isomorphism, the
associated variety XVk(g) can be viewed as an analog of the associated variety of
primitive ideals. However, we will see in Section 4.6 that there are substantial
differences.

In the case where k is a nonnegative integer, we have seen (§4.3.4) that Nk is
just the submodule of V k(g) generated by (eθt

−1)k+1|0〉. In general, it is a hard
problem to compute Nk and Ik. We will see next section some examples where it
is possible.

One way to achieve this is to use singular vectors. Recall that a singular vector
of g of a g-module M is a vector v ∈ M such that n+.v = 0, that is, ei.v = 0 for
i = 1, . . . , r. A singular vector of ĝ of a ĝ-module M is a vector v ∈ M such that
n̂+.v = 0, that is, ei.v = 0 for i = 1, . . . , r, and (fθt).v = 0. In particular, regarding
V k(g) as a ĝ-module, a vector v ∈ V k(g) is singular if and only if n̂+.v = 0.

Lemma 4.32. We have a g-module embedding

σd : Sd(g) ↪→ V k(g)d, x1 . . . xd 7→
1

d!

∑
σ∈Sd

(xσ(1)t
−1) . . . (xσ(d)t

−1)|0〉,

where S(g) =
⊕

d S
d(g) is the usual grading of Sd(g).

Let v be a singular vector for g in Sd(g). Then σd(v) is a singular vector of
V k(g) if and only if (fθt)σd(v) = 0.

4.4.3. Free fermions. Let n be a finite-dimensional vector space. The Clif-

ford affinization Ĉl of n is the Clifford algebra (see Appendix A) associated with
n[t, t−1]⊕ n∗[t, t−1] and its symmetric bilinear form defined by

〈xtm|ftn〉 = δm+n,0f(x), 〈xtm|ytn〉 = 0 = 〈ftm|gtn〉
for x, y ∈ n, f, g ∈ n∗, m,n ∈ Z.

Let {xi}16i6s be a basis of n, {x∗i }16i6s its dual basis. We write ψi,m for

xit
m ∈ Ĉl and ψ∗i,m for x∗i t

m ∈ Ĉl, so that Ĉl is the associative superalgebra with

• odd generators: ψi,m, ψ
∗
i,m,m ∈ Z, i = {1, . . . , s},

• relations: [ψi,m, ψj,n] = [ψ∗i,m, ψ
∗
j,n] = 0, [ψi,m, ψj,n] = δi,jδm+n,0.

Define the charged fermion Fock space associated with n as

Fn := Ĉl/(
∑
m>0

16i6s

Ĉlψi,m +
∑
k>1

16j6s

Ĉlψ∗j,k).

It is an irreducible Ĉl-module, and as C-vector spaces we have

Fn
∼= ∧(n∗[t−1])⊗ ∧(n[t−1]t−1).
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There is a unique vertex (super)algebra structure on Fn such that the image
of 1 is the vacuum |0〉 and

Y (ψi,−1|0〉, z) = ψi(z) :=
∑
n∈Z

ψi,nz
−n−1,

Y (ψ∗i,0|0〉, z) = ψ∗i (z) :=
∑
n∈Z

ψ∗i,nz
−n.

We have F 1Fn = n∗[t−1]t−1Fn + n[t−1]t−2Fn, and it follows that there is an iso-
morphism

Cl
'−→ RFn

,

xi 7−→ ψi,−1|0〉,
x∗i 7−→ ψ∗i,0|0〉

as Poisson superalgebras. Thus,

XFn
= T ∗(Πn),

where Πn is the space n considered as a purely odd affine space. Its arc space
J∞(T ∗(Πn)) is also regarded as a purely odd affine space, such that C[J∞(T ∗(Πn))] =
∧(n∗[t−1]) ⊗ ∧(n[t−1]t−1). The map C[J∞(XFn

)] → grFn is an isomorphism and
Fn admits a PBW basis. Therefore we have the isomorphism

ηFn
: RFn

= Cl
'−→ Zhu(Fn)

by Exercise 4.31. On the other hand the map

Cl → Zhu(Fn)

xi 7→ ψi,−1|0〉,
x∗i 7→ ψ∗i,0|0〉

gives an algebra homomorphism that respects the filtration. Hence we have

Zhu(Fn) ∼= Cl.

That is, Fn is a chiralization of Cl.

4.5. Poisson vertex modules and their associated variety

4.5.1. Poisson vertex modules.

Definition 4.33. A Poisson vertex module over a Poisson vertex algebra V is
a V -module M in the usual sense of vertex V -module, equipped with a linear map

V 7→ (EndM)[[z−1]]z−1, a 7→ YM− (a, z) =
∑
n>0

aM(n)z
−n−1,
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satisfying

aM(n)m = 0 for n� 0,(90)

(Ta)M(n) = −naM(n−1),(91)

aM(n)(bv) = (aM(n)b)v + b(aM(n)v),(92)

[aM(m), b
M
(n)] =

∑
i>0

(
m
i

)
(a(i)b)

M
(m+n−i),(93)

(ab)M(n) =

∞∑
i=0

(a(−i−1)b
M
(n+i) + b(−i−1)a

M
(n+i))(94)

for all a, b ∈ V , m,n > 0, v ∈M .

A Poisson vertex algebra V is naturally a Poisson vertex module over itself.

Example 4.34. Let M be a Poisson vertex module over C[J∞(g∗)]. Then by
(93), the assignment

xtn 7→ xM(n), x ∈ g ∼= (g∗)∗ ⊂ C[g∗] ⊂ C[J∞(g∗)], n > 0,

defines a J∞(g) = g[[t]]-module structure on M . In fact, a Poisson vertex module
over C[J∞(g∗)] is the same as a C[J∞(g∗)]-module M in the usual associative sense
equipped with an action of the Lie algebra J∞(g) such that (xtn)m = 0 for n� 0,
x ∈ g, m ∈M , and

(xtn) · (am) = (x(n)a) ·m+ a(xtn) ·m

for x ∈ g, n > 0, a ∈ C[J∞(g∗)], m ∈M .

Below we often write a(n) for aM(n).

The proofs of the following assertions are straightforward. (We refer to §3.4.6
for the definition of Poisson modules.)

Lemma 4.35. Let R be a Poisson algebra, E a Poisson module over R. There
is a unique Poisson vertex J∞(R)-module structure on J∞(R)⊗R E such that

a(n)(b⊗m) = (a(n)b)⊗m+ δn,0b⊗ {a,m}

for n > 0, a ∈ R ⊂ J∞(R), b ∈ J∞(R), m ∈ E (Recall that J∞(R) = C[J∞(SpecR)].)

Lemma 4.36. Let R be a Poisson algebra, M a Poisson vertex module over
J∞(R). Suppose that there exists a R-submodule E of M (in the usual commutative
sense) such that a(n)E = 0 for n > 0, a ∈ R, and that M is generated by E (in the
usual commutative sense). Then there exists a surjective homomorphism

J∞(R)⊗R E �M

of Poisson vertex modules.

4.5.2. Canonical filtration of modules over vertex algebras. Let V be
a vertex algebra graded by a Hamiltonian H. A compatible filtration of a V -module
M is a decreasing filtration

M = Γ0M ⊃ Γ1M ⊃ · · ·
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such that

a(n)Γ
qM ⊂ Γp+q−n−1M for a ∈ F pV, ∀n ∈ Z,

a(n)Γ
qM ⊂ Γp+q−nM for a ∈ F pV, n > 0,

H.ΓpM ⊂ ΓpM for all p > 0,⋂
p

ΓpM = 0.

For a compatible filtration Γ•M , the associated graded space

grΓM =
⊕
p>0

ΓpM/Γp+1M

is naturally a graded vertex Poison module over the graded vertex Poisson algebra
grFV , and hence, it is a graded vertex Poison module over J∞(RV ) = C[X̃V ] by
Theorem 4.18.

The vertex Poisson J∞(RV )-module structure of grΓM restricts to a Poisson
RV -module structure of M/Γ1M = Γ0M/Γ1M , and a(n)(M/Γ1M) = 0 for a ∈
RV ⊂ J∞(RV ), n > 0. It follows that there is a homomorphism

J∞(RV )⊗RV (M/Γ1M)→ grΓM, a⊗ m̄ 7→ am̄,

of vertex Poisson modules by Lemma 4.36.
Suppose that V is positively graded and so is a V -module M . We denote by

F •M the Li filtration [Li05] of M , which is defined by

F pM = spanC{a1
(−n1−1) . . . a

r
(−nr−1)m | a

i ∈ V, m ∈M, n1 + · · ·+ nr > p}.

It is a compatible filtration of M , and in fact, it is the finest compatible filtration
of M , that is, F pM ⊂ ΓpM for all p for any compatible filtration Γ•M of M . The
subspace F 1M is spanned by the vectors a(−2)m with a ∈ V , m ∈ M , which is
often denoted by C2(M) in the literature. Set

M = M/F 1M(= M/C2(M)),(95)

which is a Poisson module over RV = V . By [Li05, Proposition 4.12], the vertex
Poisson module homomorphism

J∞(RV )⊗RV M → grFM

is surjective.
Let {ai ; i ∈ I} be elements of V such that their images generate RV in the

usual commutative sense, and let U be a subspace of M such that M = U +F 1M .
The surjectivity of the above map is equivalent to that

F pM(96)

= spanC{a
i1
(−n1−1) . . . a

ir
(−nr−1)m | m ∈ U, ni > 0, n1 + · · ·+ nr > p, i1, . . . , ir ∈ I}.

Lemma 4.37. Let V be a vertex algebra, M a V -module. The Poisson vertex
algebra module structure of grFM restricts to the Poisson module structure of M :=
M/F 1M over RV , that is, M is a Poisson RV -module by

ā · m̄ = a(−1)m, ad(ā)(m̄) = a(0)m, ā ∈ RV , m ∈M.

A V -module M is called finitely strongly generated if M is finitely generated as
a RV -module in the usual associative sense.
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4.5.3. Associated varieties of modules over affine vertex algebras.
Recall that a ĝ-module M of level k is called smooth if x(z) is a field on M for
x ∈ g, that is, (xtn)m = 0 for n � 0, x ∈ g, m ∈ M , and that a V k(g)-module is
the same as a smooth ĝ-module of level k (cf. §2.3.2).

For a V = V k(g)-module M , or equivalently, a smooth ĝ-module of level k, we
have

M = M/g[t−1]t−2M,

and the Poisson C[g∗]-module structure is given by

x · m̄ = (xt−1)m, ad(x)m = xm, x ∈ g, m ∈M.

For a g-module E, let

V kE := U(ĝ)⊗U(g[t]⊕CK⊕D) E,

where E is considered as a g[t]⊕CK ⊕CD-module on which g[t]⊕CD acts trivially
and K acts as multiplication by k. Then

V kE
∼= C[g∗]⊗ E,

where the Poisson C[g∗]-module structure is given by

f · g ⊗ v = (fg)⊗ v, adx(f ⊗ v) = {x, f} ⊗ v + f ⊗ xv,

for f, g ∈ C[g∗], v ∈ V .
Recall that Ok denotes the category O of ĝ of level k (cf. §1.5.2). Let KLk

be the full subcateogory of Ok consisting of modules M such that Md is finite-
dimensional for all d ∈ C, where

Md = {m ∈M | Dm = dm}.

Note that V kE is an object of KLk for a finite dimensional representation E of g.
Thus, V k(g) = V kC and its simple quotient Vk(g) are also objects of KLk.

Both Ok and KLk can be regarded as full subcategories of the category of
V k(g)-modules.

Lemma 4.38. For M ∈ KLk the following conditions are equivalent:

(1) M is finitely strongly generated as a V k(g)-module,
(2) M is finitely generated as a g[t−1]t−1-module,
(3) M is finitely generated as a ĝ-module.

Definition 4.39. For a finitely strongly generated V k(g)-module M , define its
associated variety XM by

XM = suppRV (M)

= {p ∈ SpecRV ; p ⊃ AnnRV (M)} ⊂ XV ,

equipped with the reduced scheme structure.

Example 4.40. We have XV kE
= g∗ for a finite dimensional representation E

of g.
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4.5.4. Frenkel-Zhu’s bimodules. Recall that for a graded vertex algebra V ,
its Zhu’s algebra is defined by Zhu(V ) = V/V ◦ V . There is a similar construction
for modules due to Frenkel and Zhu [Frenkel-Zhu92]. For a V -module M , set

Zhu(M) = M/V ◦M,

where V ◦M is the subspace of M spanned by the vectors

a ◦m =
∑
i>0

(
∆a

i

)
a(i−2)m

for a ∈ V∆a
, ∆a ∈ Z, and m ∈M .

Proposition 4.41 ([Frenkel-Zhu92]). Zhu(M) is a bimodule over Zhu(V ) by
the multiplications

a ∗m =
∑
i>0

(
∆a

i

)
a(i−1)m, m ∗ a =

∑
i>0

(
∆a − 1

i

)
a(i−1)m

for a ∈ V∆a
, ∆a ∈ Z, and m ∈M .

Thus, we have a right exact functor

V -Mod→ Zhu(V ) -biMod, M 7→ Zhu(M),

where Zhu(V ) -biMod is the category of bimodules over Zhu(V ).

Lemma 4.42. Let M =
⊕

d∈h+Z>0
Md be a positive energy representation of

a Z>0-graded vertex algebra V . Define an increasing filtration {Zhup(M)}p on
Zhu(V ) by

Zhup(M) = im(

h+p⊕
d=h

Mp → Zhu(M)).

(1) We have

Zhup(V ) · Zhuq(M) · Zhur(V ) ⊂ Zhup+q+r(M),

[Zhup(V ),Zhuq(M)] ⊂ Zhup+q−1(M).

Therefore gr Zhu(M) =
⊕

p Zhup(M)/Zhup−1(M) is a Poisson gr Zhu(V )-
module, and hence is a Poisson RV -module through the homomorphism
ηV : RV � gr Zhu(V ).

(2) There is a natural surjective homomorphism

ηM : M̄(= M/F 1M)→ gr Zhu(M)

of Poisson RV -modules. This is an isomorphism if grM is free over grV .

Example 4.43. Let M = V kE . Since grV kE is free over C[J∞(g∗)], we have the
isomorphism

ηV kE : V kE = E ⊗ C[g∗]
'−→ gr Zhu(V kE ).

On the other hand, there is a U(g)-bimodule homomorphism

E ⊗ U(g)→ Zhu(V kE ),

v ⊗ x1 . . . xr 7→ (1⊗ v) ∗ (x1t
−1) ∗ · · · ∗ (xrt

−1) + V k(g) ◦ V kE
(97)
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which respects the filtration. Here the U(g)-bimodule structure of U(g)⊗E is given
by

x(v ⊗ u) = (xv)⊗ u+ v ⊗ xu, (v ⊗ u)x = v ⊗ (ux),

and the filtration of U(g) ⊗ E is given by {Ui(g) ⊗ E}. Since the induced homo-
morphism between associated graded spaces (97) coincides with ηV kE , (97) is an

isomorphism.

Recall that HC is the category of Harish-Chandra bimodules (cf. §3.4.16).

Lemma 4.44. For M ∈ KLk, we have Zhu(M) ∈ HC. If M is finitely gener-
ated, then so is Zhu(M).

4.6. Advanced results, open problems

In previous sections, we were mostly interested in algebraic properties of the
Poisson algebra RV . We study in this section more geometrical aspects. Recall
that the associated variety of a vertex algebra V is the Poisson variety

XV := Specm(RV ).

As a Poisson variety, XV is a finite disjoint union of smooth analytic Pois-
son manifolds, and it is stratified by its symplectic leaves (see §3.3.3). The case
where the associated variety XV has finitely many symplectic leaves is particularly
interesting.

We present below various examples, mostly coming from simple affine vertex
algebras, and also non-trivial counter-examples. Other examples coming from W-
algebras will be added in Part 5.

Recall that we have XV k(g) = g∗, and therefore the associated variety XVk(g)

is a Poisson subscheme of g∗ which is G-invariant and conic. Thus, identifying g
with g∗ through ( | ), the symplectic leaves of XVk(g) are exactly the adjoint orbits
of G in XVk(g), and XVk(g) has finitely many symplectic leaves if and only if XVk(g)

is contained in the nilpotent cone N of g.

4.6.1. Associated variety of admissible representations. Assume that k
is an admissible level (see Definition 1.20), that is, Vk(g) = L(kD) is an admissible
representation of ĝ.

Recall that, according to the Irreducibility Theorem (cf. §3.4.17), the associated
variety of a primitive ideal is contained in the nilpotent cone, and more specifically,
it is the closure of some nilpotent orbit. Theorem 4.46 below says that we have a
similar result for the associated variety of the admissible representation L(kD).

The following fact was conjectured by Feigin and Frenkel and proved for the
case that g = sl2 by Feigin and Malikov [Feigin-Malikov97].

Theorem 4.45 ([Arakawa15a]). If k is admissible then SS(Vk(g)) ⊂ J∞(N )
or, equivalently, the associated variety XVk(g) is contained in N .

In fact, the following stronger result holds.

Theorem 4.46 ([Arakawa15a]). Assume that k is admissible. Then

XVk(g) = Oq,
where Oq is a nilpotent orbit which only depends on q, with q as in Proposition 1.19
(see Tables 2–10 of [Arakawa15a]).
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Remark 4.47. For g = sln, Theorem 4.46 gives the following. Let k be admis-
sible, and let q ∈ Z>0 be the denominator of k, that is, k+h∨ = p/q, with p ∈ Z>0

and (p, q) = 1. Then

XVk(g) = {x ∈ g | (adx)2q = 0} = Oq,

where Oq is the nilpotent orbit corresponding to the partition{
(n) if q > n,

(q, q, . . . , q, s) (0 6 s 6 n− 1) if q < n.

Remind that h∨ = n for g = sln.

Remark 4.48. In the classical cases, one can verify that all nilpotent orbit clo-
sures Oq appearing in Theorem 4.46 are all normal (see [Arakawa-Moreau16b,
§5.1]). Hence their intersection with Slodowy slices are always irreducible by
Lemma B.5. To verify this, we use the combinatorial method developed by Kraft
and Procesi to determine whether a given nilpotent orbit closure is normal (cf. B.0.6).

In the exceptional cases, the nilpotent orbit closure of dimension 8 in G2 is
not normal and appears as associated variety of some simple affine vertex alge-
bra of admissible level. Nevertheless, all nilpotent orbit closures Oq appearing in
Theorem 4.46 in the exceptional cases are unibranch (cf. §B.0.6). Hence their in-
tersection with Slodowy slices are always irreducible too (see the comments be-
fore Lemma B.5). Moreover, except for the nilpotent orbit of dimension 8 in
G2, all nilpotent orbit closures are (conjecturally for the types E7 and E8) nor-
mal. To see this, just compare Tables 2–10 of [Arakawa15a] and Table 3 of
[Arakawa-Moreau16b].

4.6.2. Deligne series and the Joseph ideal. There was actually a “strong
Feigin-Frenkel conjecture” stating that k is admissible if and only if XVk(g) ⊂ N
(provided that k is not critical, that is, k 6= −h∨ in which case it is known that
XVk(g) = N ). Such a statement would be interesting because it would give a
geometrical description of the admissible representations L(kD).

This stronger conjecture is actually wrong, as shown the following.

Theorem 4.49 ([Arakawa-Moreau15]). Assume that g belongs to the Deligne
exceptional series [Deligne96],

A1 ⊂ A2 ⊂ G2 ⊂ D4 ⊂ F4 ⊂ E6 ⊂ E7 ⊂ E8,

and that k = −h
∨

6
− 1. Then

XVk(g) = Omin.

Note that the level k = −h∨/6 − 1 is not admissible for the types D4, E6,
E7, E8. Theorem 4.49 provides the first known examples of associated varieties
contained in the nilpotent cone corresponding to non-admissible levels.

The proof of this result is closely related to the Joseph ideal and its description
by Gan and Savin (§3.4.21).

Sketch of proof of Theorem 4.49. Let W =
⊕

iWi be the decomposi-
tion of W into irreducible submodules, and let wi be a highest weight vector of
Wi.
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Lemma 4.50. Assume that g belongs to the Deligne exceptional series outside
the types A and G2. For any i, σ2(wi) is a singular vector of V k(g) if and only if

k = −h
∨

6
− 1.

Proof (for the types E6 and E7). Assume that g has type E6 or E7. The
proof is very similar for types D4 and E8 (only some technical changes) and we refer
to [Perše07] for the type F4.

By (72), W = W1 = Lg(θ+θ1). Moreover, according to [Garfinkle82, Chapter
IV, Proposition 11],

w1 = eθeθ1 −
h∨
6 +1∑
j=1

eβj+θ1eδj+θ1 ,

where (βj , δj) runs through the pairs of positive roots such that

βj + δj = θ − θ1.

The number of such pairs turns out to be equal to h∨/6 + 1.
Choose a Chevalley basis {hi}i ∪ {eα, fα}α of g so that the conditions of

[Garfinkle82, Chapter IV, Definition 6] are fulfilled, that is

∀ j, [eδj , [eβj , eθ1 ]] = eθ, [eβj , eθ1 ] = eβj+θ1 , [eδj , eθ1 ] = eδj+θ1 .(98)

We conclude thanks to the following exercise.

Exercise 4.51. Verify that σ2(w1) is a singular vector of V k(g) if and only if
k = −h∨/6− 1.

�

For g of type A1, A2, G2, F4, the number −h∨/6 − 1 is admissible, and the
theorem is a special case of Theorem 4.46.

Assume that g is of type D4, E6, E7, or E8 and set k = −h∨/6− 1.
Let N be the submodule of V k(g) generated by σ2(wi) for all i and let

Ṽk(g) := V k(g)/N.

Claim 4.1 ([Arakawa-Moreau15, Proof of Theorem 3.1]). Ṽk(g) = Vk(g),

that is, Ṽk(g) is simple.

The exact sequence 0→ N → V k(g)→ Ṽk(g)→ 0 induces an exact sequence

N/g[t−1]t−2N → V k(g)/g[t−1]t−2V k(g)→ Ṽk(g)/g[t−1]t−2Ṽk(g)→ 0.

Under the isomorphism V k(g)/g[t−1]t−2V k(g) ∼= S(g), the image of N/g[t−1]t−2N
in V k(g)/g[t−1]t−2V k(g) is identified with the ideal J of S(g) generated by wi for

all i. Hence J ⊂ JW ⊂
√
J . Therefore by Lemma 3.70,

√
J =

√
JW = J0

as required, by Claim 4.1. Remember that J0 is the defining ideal of Omin. �

As a consequence of the above results (specifically, Lemma 3.70, Lemma 4.50
and Claim 4.1), we obtain the following result. Recall that JW is the two-sided
ideal of U(g) generated by W .
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Theorem 4.52. Assume that g belongs to the Deligne exceptional series outside

the type A and that k = −h
∨

6
− 1. Then Vk(g) is a chiralization of U(g)/JW , that

is,

Zhu(Vk(g)) ∼= U(g)/JW = C× U(g)/J0.

In particular (see §4.4.2), since J0 is maximal, the irreducible highest weight rep-
resentation L(λ) of ĝ is a Vk(g)-module if and only if

λ̄ = 0 or AnnU(g) Lg(λ̄) = J0,

and such λ are described by Joseph (see Table 1 of [Arakawa-Moreau15]).

Theorem 4.49 produces “new” (that is, not coming from admissible levels)
examples of level k such that XVk(g) is contained in the nilpotent cone. In par-
ticular, such associated varieties have only finitely many symplectic leaves. Such
vertex algebras are called quasi-lisse (cf. [Arakawa-Kawasetsu16]). It is shown
in [Arakawa-Kawasetsu16] that the normalized character of an ordinary module
over a quasi-lisse vertex operator algebra has a modular invariance property, in the
sense that it satisfies a modular linear differential equation.

We will see that Theorem 4.49 also produces “new” examples of lisse simple W-
algebras. There are actually other such examples in type Dr, r > 5, and in type Br,
r > 3; see [Arakawa-Moreau15, Arakawa-Moreau16a, Arakawa-Moreau16b];
(see Part 5 for more details about all this).

4.6.3. Sheets as associated variety. In all the above examples, XVk(g) is a
closure of a some nilpotent orbit O ⊂ N , or XVk(g) = g∗. The later happens if k is

generic, that is, k 6∈ Q in which case Vk(g) = V k(g). Therefore it is natural to ask
whether there are cases when XVk(g) 6⊂ N and XVk(g) is a proper subvariety of g∗.

It is known that sheets (see §B.0.5) appear in the representation theory of fi-
nite dimensional Lie algebras (cf. e.g., [Borho-Brylinski82, Borho-Brylinski85,
Borho-Brylinski89], and more recently of finite W-algebras [Premet-Topley14,
Premet14]. Next result is that sheets also appear as associated varieties of some
affine vertex algebras.

Theorem 4.53 ([Arakawa-Moreau16a]). (1) For n > 4,

X̃V−1(sln)
∼= Smin

as schemes, where Smin is the unique sheet containing Omin. Moreover,
as schemes,

SS(V−1(sln) = J∞(Smin).

(2) For m > 2,

X̃V−m(sl2m)
∼= S0

as schemes, where S0 is the unique sheet containing the nilpotent orbit
O(2m). Moreover, as schemes,

S(V−m(sl2m) = J∞(S0).

(3) Let r be an odd integer. Then

XV2−r(so2r) = SI ∪ SII ,
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where SI and SII are the unique sheets containing the nilpotent orbits
OI(2m) and OI(2m) respectively. Note they are distinct and of the same

dimension. In particular the associated variety XV2−r(so2r) is reducible.

By the Irreducibility Theorem, associated varieties of primitive ideals are irre-
ducible and contained in the nilpotent cone. Theorem 4.53 shows that this is not
anymore the case for affine vertex algebras.

4.6.4. Conjectures, open problems. In view of the above results (and other
results, particularly, on associated varieties of simple affine W-algebras: see Part 5),
we formulate a conjecture (cf. [Arakawa-Moreau16a, Conjecture 1]).

Conjecture 2. Let V= ⊕d>0Vd be a simple, finitely strongly generated, posi-
tively graded conformal vertex operator algebra such that V0 = C.

(1) XV is equidimensional.
(2) Assume that XV has finitely many symplectic leaves, that is, V is quasi-

lisse. Then XV is irreducible. In particular, XVk(g) is irreducible if
XVk(g) ⊂ N .

We also have the following conjecture.

Conjecture 3. For any vertex algebra V as in Conjecture 2, we have, as
schemes, SS(V ) = J∞(X̃V ).

Conjecture 3 is also non trivial stated for the corresponding reduced schemes.
In this setting, the following result is useful (and was applied for instance in The-
orem 4.53).

Proposition 4.54 ([Arakawa-Moreau16a]). Let V be a quotient of the ver-
tex algebra V k(g). Suppose that XV = G.C∗x for some x ∈ g. Then

SS(V )red = J∞(XV ) = J∞(G.C∗x) = J∞(G.C∗x).

For example, the closures of nilpotent orbits satisfy the conditions of Proposi-
tion 4.54, and also Dixmier sheets of rank one (cf. §B.0.5).

To conclude this section, note that there are other known examples of associated
varieties with finitely many symplectic leaves: apart from the above examples, it
is the case when V is the (generalized) Drinfeld-Sokolov reduction (see Part 5) of
the above affine vertex algebras provided that it is nonzero ([Arakawa15a]). This
is also expected to happen for the vertex algebras obtained from four dimensional
N = 2 superconformal field theories ([BLL+]), where the associated variety is
expected to coincide with the spectrum of the chiral ring of the Higgs branch of the
four dimensional theory. Of course, it also happens when the associated variety of
V is a point, that is, when V is lisse.



PART 5

Affine W-algebras, rationality of W-algebras, and
chiral differential operators on groups
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APPENDIX A

Superalgebras and Clifford algebras

A superspace is a C-vector space E equipped with a Z2-grading, E = E0̄⊕E1̄.
Elements in E0̄ are called even, elements of E1̄ are called odd. We denote by
|v| ∈ {0̄, 1̄} the parity of homogeneous elements v ∈ E. A morphism of superspaces
is a linear map preserving Z2-gradings. It is itself a superspace by:

Hom(E,F )0̄ = Hom(E0̄, F 0̄)⊕Hom(E1̄, F 1̄),

Hom(E,F )1̄ = Hom(E0̄, F 1̄)⊕Hom(E1̄, F 0̄).

The category of superspaces is a tensor category. Then one may define superal-
gebras, Lie superalgebras, Poisson superalgebras, etc. as the algebra objects, Lie
algebra objects, Poisson algebra objects etc. in this tensor category.

For example, a Lie superalgebra is a superspace A together with a bracket
[ , ] : A×A→ A such that for all homogeneous elements a, b ∈ A,

[a, b] = −(−1)|a||b|[b, a],

[a, [b, c]] = {{a, b}, c}+ (−1)|a||b|[a, [b, c]].

Note that any superalgebra A is naturally a Lie superalgebra by setting for all
homogeneous elements a, b ∈ A,

[a, b] = ab− (−1)|a||b|ba.

It is supercommutative if [A,A] = 0.
A superspace A is a Poisson superalgebra if it is equipped with a bracket

{ , } : A×A→ A such that (A, { , }) is a Lie superalgebra and for any a ∈ A, the
operator {a, ·} : A→ A is a superderivation: for all homogeneous elements a, b ∈ A,

{a, bc} = {a, b}a+ (−1)|a||b|b{a, c},

Let E be a C-vector space. The exterior algebra ∧E is the quotient of the tensor
algebra T (E) =

⊕
k∈Z T (E)k, with T k(E) = E⊗· · ·⊗E the k-fold tensor product,

by the two-sided ideal I(E) generated by elements of the form v ⊗w +w ⊗ v with
v, w ∈ E. The product in ∧E is usually denoted by v ∧ w. Since I(E) is graded,
the exterior algebra inherits a grading

∧(E) =
⊕
k∈Z
∧k(E).

Clearly, ∧0(E) = C and ∧1(E) = E. We may thus think of ∧E as the associative
algebra linearly generated by E, subject to the relations v∧w+w∧ v = 0. We will
regard ∧(E) as a graded superalgebra, where the Z2-grading is the mod 2 reduction
of the Z-grading. Since

[u1, u2] = u2 ∧ u2 + (−1)k1k2u2 ∧ u2 = 0

97
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for u1 ∈ ∧k1(E) and u2 ∈ ∧k2(E), we see that ∧E is supercommutative.
Assume that E is endowed with a symmetric bilinear form B : E × E → E

(possibly degenerate).

Definition A.1. The Clifford algebra1 Cl(E,B) is the quotient of T (E) by
the two-sided ideal I (E,B) generated by all elements of the form

v ⊗ w + w ⊗ v −B(v, w)1, v, w ∈ E.
Clearly, Cl(E, 0) = ∧V .

The inclusions C→ T (E) and E → T (E) descend to inclusions C→ Cl(E,B)
and E → Cl(E,B) respectively. We will always view E as a subspace of Cl(E,B).

Let us view T (E) =
⊕

k∈Z T
k(E) as a filtered superalgebra, with the Z2-grading

and filtration inherited from the Z-grading. Since the elements v ⊗ w + w ⊗ v −
B(v, w)1 are even, of filtration degree 2, the ideal I (E,B) is a filtered super sub-
space of T (E), and hence Cl(E,B) inherits the structure of a filtered superalgebra.
The Z2-grading and filtration on Cl(E,B) are defined by the condition that the
generators v ∈ E are odd, of filtration degree 1. In the decomposition

Cl(E,B) = Cl(E,B)0̄ ⊕ Cl(E,B)1̄

the two summands are spanned by products v1 . . . vk with k even, respectively
odd. We will always regard Cl(E,B) as a filtered superalgebra. Then the defining
relations for the Clifford algebra become

[v, w] = vw + wv = B(v, w), v, w ∈ E.
The quantization map, given by the anti-symmetrization:

q : ∧ (E)→ Cl(E,B), v1 ∧ . . . ∧ vk 7→
∑
σ∈Sk

sgn(σ)vσ1 . . . vσk,

with Sk the permutation group of order k, is an isomorphism of superspaces. Its
inverse is called the symbol map.

Proposition A.2. The symbol map σ : Cl(E,B) → ∧(E) induces an isomor-
phism of graded superalgebras,

grCl(E,B)
'−→ ∧(E).

Since ∧(E) is supercommutative, grCl(E,B) inherits a Poisson superalgebra
structure2, and the symbol map is an isomorphism of graded Poisson superalgebras.
The Poisson bracket on ∧(E) can be described by:

{v, w} = B(v, w), v, w ∈ E = ∧1(E).

For more about Clifford algebras, we refer to the recent book of Eckhard Mein-
renken (it also adsresses Weil algebras and quantized Weil algebras) [Meinrenken].

1In [Meinrenken], there is a factor 2. For some reasons, we prefer here a different

normalization.
2The arguments are similar to the case of almost commutative algebras; see §3.3.1.



APPENDIX B

Some advanced results on the geometry of
nilpotent orbit closures

In this appendix, we present some deeper aspects of the geometry of nilpotent
orbit closures.

Let g = Lie(G) be a simple Lie algebra as in Part 3.

B.0.5. Jordan classes, sheets and induced nilpotent orbits. Most of
results presented in this section come from [Borho-Kraft79, Borho81]. Our
main reference for basics about Jordan classes and sheets is [Tauvel-Yu, §39].

For a a subalgebra of g, denote by z(a) its center. For Y a subset of g, denote
by Y reg the set of y ∈ Y for which gy has the minimal dimension. In particular, if
l is a Levi subalgebra of g, then

z(l)reg := {y ∈ g | z(gy) = z(l)},

and z(l)reg is a dense open subset of z(l). For x ∈ g, denote by xs and xn the
semisimple and the nilpotent components of x respectively.

The Jordan class of x is

J(x) := G.(z(gxs)reg + xn).

It is a G-invariant, irreducible, and locally closed subset of g. To a Jordan class
J , we associate its datum which is the pair (l,Ol) defined as follows. Pick x ∈ J .
Then l is the Levi subalgebra gxs and Ol is the nilpotent orbit in l of xn. The
pair (l,Ol) does not depend on x ∈ J up to G-conjugacy, and there is a one-to-one
correspondence between the set of pairs (l,Ol) as above, up to G-conjugacy, and
the set of Jordan classes.

A sheet is an irreducible component of the subsets

g(m) = {x ∈ g | dim gx = m}, m ∈ Z>0.

It is a finite disjoint union of Jordan classes. So a sheet S contains a unique dense
open Jordan class J and we can define the datum of S as the datum (l,Ol) of the
Jordan class J . We have

S = J and S = (J)reg.

A sheet is called Dixmier if it contains a semisimple element of g. A sheet S with
datum (l,Ol) is Dixmier if and only if Ol = {0}. We shall simply denote by Sl the
Dixmier sheet with datum (l, {0}).

Let l be a proper Levi subalgebra of g, and p a parabolic subalgebra of g with
Levi decomposition p = l ⊕ m so that m is the nilpotent radical of p. Let P, L
and M be the connected closed subgroups of G whose Lie algebra are p, l and m
respectively. Then P = LM.
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The following definitions and results on induced nilpotent orbits are mostly ex-
tracted from [R74] and [Lusztig-Spaltenstein79]. We refer to [Collingwood-McGovern,
Chapter 7] for a recent survey.

Theorem B.1. Let Ol be a nilpotent orbit of l. There exists a unique nilpotent
orbit Og in g whose intersection with Ol + m is a dense open subset of Ol + m.
Moreover, the intersection of Og with Ol + m consists of a single P-orbit and
codimg(Og) = codiml(Ol).

The nilpotent orbit Og only depends on l, a nd not on the choice of a parabolic
subalgebra p containing it. The nilpotent orbit Og is called the induced nilpotent
orbit o f g from Ol, and it is denoted by Indg

l (Ol). A nilpotent orbit which is not
induced in a proper way from another one is called rigid. In sln, only the zero orbit
is rigid, and all nilpotent orbits are Richardson, that is, induced from 0 in some
Levi subalgebra.

Remark B.2. The induction property is transitive in the following sense: if l1
and l2 are two Levi subalgebras of g with l1 ⊂ l2, then

Indg
l2

(Indl2
l1

(Ol1)) = Indg
l1

(Ol1).

A Jordan class with datum (l,Ol) is a sheet if and only if Ol is rigid in l. So we
get a one-to-one correspondence between the set of pairs (l,Ol), up to G-conjugacy,
with l a Levi subalgebra of g and Ol a rigid nilpotent orbit of l, and the set of
sheets.

Each sheet contains a unique nilpotent orbit. Namely, if S is a sheet with
datum (l,Ol) then the induced nilpotent orbit Indg

l (Ol) of g from Ol in l is the
unique nilpotent orbit contained in S. Note that a nilpotent orbit O is itself a sheet
if and only if O is rigid. For instance, outside the type A, the minimal nilpotent
orbit Omin is always a sheet.

Example B.3. The Levi subalgebras of sln, and so the (Diximer) sheets, are
parametrized by compositions of n. More precisely, if λ ∈P(n), then the (Dixmier)
sheet associated with λ is the unique sheet containing Otλ where tλ is the dual
partition of λ.

Contrary to the sln case, it may happen in the son case that a given nilpotent
orbit belongs to different sheets, and not all sheets are Dixmier.

The rank of a sheet S with datum (l,Ol) is by definition

rank(S) := dim S− dim Indg
l (Ol) = dim z(l).

If S = Sl is Dixmier, then Ol = 0 and we have

S = G.[p, p]⊥ = G.(z(l) + m) and S = (G.[p, p]⊥)reg.

where p = l⊕m is a parabolic subalgebra of g with Levi factor l and nilradical m.
Let h be a Cartan subalgebra of g. For S a sheet with datum (l,Ol), one can

assume without loss of generality that h is a Cartan subalgebra of l. In particular,
z(l) ⊂ h.

The following lemma shows that Dixmier sheets of rank one are are easy to
understand.
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Lemma B.4. Let Sl be a Dixmier sheet of rank one, that is, z(l) = Cλ with
λ ∈ h \ {0}. Then

Sl = G.C∗λ = G.(Cλ+ m) = G.C∗λ ∪ Indg
l (0),

and

Sl = G.C∗λ ∪ Indg
l (0).

Let P be the connected parabolic subgroup of G with Lie algebra p = l⊕m.
The G-action on Y := G/(P, P ), where (P, P ) is the commutator-subgroup of P ,
induces an algebra homomorphism

ψY : U(g)→ DY
from U(g) to the algebra DY of global differential operators on Y . Let

JY := kerψY

be the kernel of this homomorphism. It is a two-sided ideal of U(g). It has been
shown by Borho and Brylinski [Borho-Brylinski82, Corollary 3.11 and Theo-
rem4.6] that

√
grJY is the defining ideal of the Dixmier sheet closure determined

by P , that is, Sl. Furthermore,

JY =
⋂

λ∈z(l)∗
AnnU(g)⊗U(p) Cλ.

Here, for λ ∈ p∗, Cλ stands for the one-dimensional representation of p correspond-
ing to λ, and we extend a linear form λ ∈ z(l)∗ to p∗ by setting λ(x) = 0 for
x ∈ [l, l] ⊕ m. Identifying g with g∗ through ( | ), z(l)∗ identifies with z(l). In
particular, if z(l) = Cλ for some nonzero semisimple element λ ∈ g, we get

JY =
⋂
t∈C

AnnU(g)⊗U(p) Ctλ.

In fact

JY =
⋂
t∈Z

AnnU(g)⊗U(p) Ctλ.(99)

for any Zariski dense subset Z of C ([Borho-Jantzen77]).

B.0.6. Branching and nilpotent Slodowy slices. We collect in this para-
graph some results about branchings and nilpotent Slodowy slices. We refer to
[EGA61, Chap. III, §4.3] for the definition of unibranchness, and to [Kraft-Procesi82]
or [Fu-et-al15] for further details on branchings and nilpotent Slodowy slices.

Consider two varieties X,Y and two points x ∈ X, y ∈ Y . The singularity of
X at x is called smoothly equivalent to the singularity of Y at y if there is a variety
Z, a point z ∈ Z and two maps

Z
ϕ
//

ψ

��

X

Y

such that ϕ(z) = x, ψ(z) = y, and ϕ and ψ are smooth in z ([Hesselink76]). This
clearly defines an equivalence relation between pointed varieties (X,x). We denote
the equivalence class of (X,x) by Sing(X,x).
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Various geometric properties of X at x only depends on the equivalence class
Sing(X,x), for example: smoothness, normality, seminormality (cf. [Kraft-Procesi82,
§16.1]), unibranchness, Cohen-Macaulay, rational singularities.

Assume that the algebraic group G acts regularly on the variety X. Then
Sing(X,x) = Sing(X,x′) if x and x′ belongs to the same G-orbit O. In this case,
we denote the equivalence class also by Sing(X,O).

A cross section (or transverse slice) at the point x ∈ X is defined to be a locally
closed subvariety S ⊂ X such that x ∈ S and the map

G× S −→ X, (g, s) 7−→ g.s,

is smooth at the point (1, x). We have Sing(S, x) = Sing(X,x).
In the case where X is the closure of some nilpotent G-orbit of g, there is a

natural choice of a cross section. Let O,O′ be two nonzero nilpotent orbits of g
and pick f ∈ O′ that we embed f into an sl2-triple (e, h, f) of g. The Slodowy slice
Sf
∼= f + ge is a transverse slice of g at f (cf. Theorem 3.12). The variety

SO,f := O ∩Sf

is then a transverse slice of O at f , which we call, following the terminology of
[Fu-et-al15], a nilpotent Slodowy slice.

Note that SO,f = {f} if and only if O = G.f . Moreover, since the C∗-action of

ρ̃ on Sf is contracting to f and stabilizes Sf,O, SO,f = ∅ if and only if G.f 6⊆ O.

Hence we can assume that O′ ⊆ O, that is, O′ 6 O for the Chevalley order on
nilpotent orbits. The variety SO,f is equidimensional, and

dim SO,f = codim(O′,O).

Since any two sl2-triples containing f are conjugate by an element of the
isotropy group of f in G, the isomorphism type of SO,f is independent of the
choice of such sl2-triples. Moreover, the isomorphism type of SO,f is independent

of the choice of f ∈ O′. By focussing on SO,f , we reduce the study of Sing(O,O′)
to the study of the singularity of SO,f at f .

The variety SO,f is not always irreducible. We are now interested in sufficient
conditions for that SO,f is irreducible.

Let X be an irreducible algebraic variety, and x ∈ X. We say that X is
unibranch at x if the normalization π : (X̃, x)→ (X,x) of (X,x) is locally a home-
omorphism at x [Fu-et-al15, §2.4]. Otherwise, we say that X has branches at x
and the number of branches of X at x is the number of connected components of
π−1(x) [Beynon-Spaltenstein84, §5,(E)].

As it is explained in [Fu-et-al15, Section 2.4], the number of irreducible com-
ponents of SO,f is equal to the number of branches of O at f .

If an irreducible algebraic variety X is normal, then it is obviously unibranch
at any point x ∈ X. Hence we obtain the following result.

Lemma B.5. Let O,O′ be nilpotent orbits of g, with O′ 6 O and f ∈ O′. If O
is normal, then SO,f is irreducible.

The converse is not true. For instance, there is no branching in type G2

but one knowns that the nilpotent orbit Ã1 of G2 of dimension 8 is not normal
[Levasseur-Smith88].

The number of branches of O at f , and so the number of irreducible compo-
nents of SO,f , can be determined from the tables of Green functions in [Shoji80,
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Beynon-Spaltenstein84], as discussed in [Beynon-Spaltenstein84, Section 5,(E)-
(F)]. See Table 2 of [Arakawa-Moreau16b] for the complete list of the nilpotent
orbits O which have branchings in types F4, E6, E7 and E8 (there is no branching in
type G2), and Table 3 of [Arakawa-Moreau16b] for the (conjectural) list a non-
normal nilpotent orbit closures in the exceptional types. These results are extracted
from [Levasseur-Smith88, Kraft89, Broer98a, Broer98b, Sommers03]. The
list is known to be exhaustive for the types G2, F4 and E6. It is only conjecturally
exhaustive for the types E7 and E8.

The normality question of nilpotent orbit closures in the classical types is now
completely answered ([Kraft-Procesi79, Kraft-Procesi79, Sommers05]). Note
that, by [Kraft-Procesi79], if g = sln, then all nilpotent orbit closures are normal.
In all the other types, there is at least one non-normal nilpotent closure.

Let O be a nilpotent orbit of g. Recall that the singular locus of O is O \ O.
This was shown by Namikawa [Namikawa04] using results of Kaledin and Pa-
nyushev [Kaledin06, Panyushev91]; see [Henderson15, Section 2] for a re-
cent review. This result also follows from Kraft and Procesi’s work in the classi-
cal types [Kraft-Procesi81, Kraft-Procesi82], and from the main theorem of
[Fu-et-al15] in the exceptional types.

Theorem B.6 ([Kraft-Procesi82, Theorem 1]). Let O be a nilpotent orbit in
on or spn.

(1) O is normal if and only if it is unibranch.
(2) O is normal if and only if it is normal in codimension 2.

In particular, O is normal if it does not contain a nilpotent orbit O′ 6 O of
codimension 2. Theorem B.6 does not hold if g = so2n and if O = O1,λ, with λ

very even. To determine the equivalence class Sing(Oε,λ,Oε,η), for ε ∈ {−1, 1} and
η < λ, there is a combinatorial method developed in [Kraft-Procesi82]. We refer
to [Arakawa-Moreau16b, Section 4] for more details about this.

Kraft and Procesi method together with Theorem B.6 allow to deal with al-
most all nilpotent orbits, with exceptions for the very even nilpotent orbits in
type son. For these orbits, the normality question was partially answered in
[Kraft-Procesi82, Theorem 17.3], the remaining cases were dealt with in [Sommers05].
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of ŝl2 at a rational level. In Operads: Proceedings of Renaissance Conferences (Hartford,
CT/Luminy, 1995), volume 202 of Contemp. Math., pages 357–405, Providence, RI, 1997.

Amer. Math. Soc
[Frenkel] Edward Frenkel. Langlands correspondence for loop groups, volume 103 of Cambridge

Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2007.

[Frenkel-BenZvi] Edward Frenkel and David Ben-Zvi. Vertex algebras and algebraic curves. Math-
ematical Surveys and Monographs, 88. American Mathematical Society, Providence, RI, 2001.

[Frenkel-Kac-Wakimoto92] Edward Frenkel, Victor Kac, and Minoru Wakimoto. Characters and

fusion rules for W -algebras via quantized Drinfel′d-Sokolov reduction. Comm. Math. Phys.,
147(2):295–328, 1992.

[Frenkel-Malikov97] Igor Frenkel and Fyodor Malikov. Kazhdan-Lusztig tensoring and Harish-
Chandra categories. preprint, 1997. arXiv:q-alg/9703010.

[Frenkel-Zhu92] Igor B. Frenkel and Yongchang Zhu. Vertex operator algebras associated to rep-

resentations of affine and Virasoro algebras. Duke Math. J., 66(1):123–168, 1992.

[Fu-et-al15] Baohua Fu, Daniel Juteau, Paul Levy and Eric Sommers. Generic singularities of
nilpotent orbit closures. arXiv:1502.05770[math.RT], to appear in Adv. Math..

[Gaberdiel-Neitzke03] Matthias R. Gaberdiel and Andrew Neitzke. Rationality, quasirationality
and finite W -algebras. Comm. Math. Phys., 238(1-2):305–331, 2003.

[Gan-Ginzburg02] Wee Liang Gan and Victor Ginzburg. Quantization of Slodowy slices. Int.

Math. Res. Not. 243–255, 2002.
[Gan-Savin04] Wee Teck Gan and Gordan Savin. Uniqueness of Joseph ideal. Math. Res. Lett.,

11(5-6):589–597, 2004.

[Garfinkle82] Devra Garfinkle. A new construction of the Joseph ideal. PhD thesis, MIT, 1982.



108 BIBLIOGRAPHY
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