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Abstract. We show that sheet closures appear as associated varieties of affine

vertex algebras. We also provide examples of associated varieties that are
union of distinct sheet closures, which in particular shows that the associated

varieties of vertex algebras need not to be irreducible. Further, we give new

examples of non-admissible affine vertex algebras whose associated variety is
contained in the nilpotent cone. We also prove some conjectures from our

previous paper and give new examples of lisse affine W -algebras.

1. Introduction

It is known [Li05] that every vertex algebra V is canonically filtered and therefore
it can be considered as a quantization of its associated graded Poisson vertex algebra
grV . The generating subring RV of grV is called the Zhu’s C2-algebra of V [Z96]
and has the structure of a Poisson algebra. Its spectrum

X̃V = SpecRV

is called the associated scheme of V and the corresponding reduced scheme XV =
SpecmRV is called the associated variety of V ([Ar12, Ar16b]). Since it is Poisson,

the coordinate ring of its arc space J∞X̃ has a natural structure of a Poisson vertex
algebra ([Ar12]), and there is a natural surjective homomorphism C[J∞X̃V ]→ grV ,
which is in many cases an isomorphism. We have [Ar12] dim Spec(grV ) = 0 if and
only if dimXV = 0, and in this case V is called lisse or C2-cofinite.

In the case that V is the simple affine vertex algebra Vk(g) associated with a
finite-dimensional simple Lie algebra g at level k ∈ C, XV is a Poisson subscheme of
g∗ which is G-invariant and conic, where G is the adjoint group of g. Note that on
the contrary to the associated variety of a primitive ideal of U(g), the variety XVk(g)

is not necessarily contained in the nilpotent cone N of g. In fact, XVk(g) = g∗ for
a generic k. On the other hand XVk(g) = {0} if and only if Vk(g) is integrable,
that is, k is a non-negative integer. Except for a few cases, the description of XV

is fairly open even for V = Vk(g), although this problem seems to be significant in
connection with four dimensional superconformal field theory ([BLL+15]).

In [Ar15a], the first named author showed that XVk(g) is the closure of some
nilpotent orbit of g∗ in the case that Vk(g) is admissible [KW89].

In the previous article [AM15], we showed that XVk(g) is the minimal nilpotent
orbit closure in the case that g belongs to the Deligne exceptional series [De96] and
k = −h∨/6 − 1, where h∨ is the dual Coxeter number of g. Note that the level
k = −h∨/6− 1 is not admissible for types D4, E6, E7, E8.

2010 Mathematics Subject Classification. 17B67, 17B69, 81R10.
Key words and phrases. sheet, nilpotent orbit, associated variety, affine Kac-Moody algebra,

affine vertex algebra, affine W -algebra.
1



2 TOMOYUKI ARAKAWA AND ANNE MOREAU

In all the above cases XVk(g) is a closure of a nilpotent orbit O ⊂ N , or
(XVk(g))red = g∗. Therefore it is natural to ask the following.

Question 1. Are there cases when XVk(g) 6⊂ N and XVk(g) is a proper subvariety
of g∗? For example, are there cases when XVk(g) is the closure of a non-nilpotent
Jordan class (cf. §2)?

Identify g with g∗ through a non-degenerate bilinear form of g.
Given m ∈ N, let g(m) be the set of elements x ∈ g such that dim gx = m, with

gx the centralizer of x in g. A subset S ⊂ g is called a sheet of g if it is an irreducible
component of one of the locally closed sets g(m). It is G-invariant and conic and
by [ImH05], and it is smooth if g is classical. The sheet closures are the closures
of certain Jordan classes and they are parameterized by the G-conjugacy classes
of pairs (l,Ol) where l is a Levi subalgebra of g and Ol is a rigid nilpotent orbit
of l, i.e., which cannot be properly induced in the sense of Lusztig-Spaltenstein
[BK79, Bo81] (see also [TY05, §39]). The pair (l,Ol) is called the datum of the
corresponding sheet. When Ol is zero, the sheet is called Dixmier, meaning that
it contains a semisimple element [Di75, Di76]. We will denote by Sl the sheet with
datum (l, {0}). We refer to §2 for more details about this topic.

It is known that sheets appear in the representation theory of finite-dimensional
Lie algebras, see, e.g., [BB82, BB85, BB89], and more recently of finite W -algebras,
[PT14, Pr14].

Since the sheet closures are G-invariant, conic algebraic varieties which are not
necessarily contained in N , one may expect that there are simple affine vertex
algebras whose associated variety is the closure of some sheet. This is indeed the
case.

Theorem 1.1. (1) For n > 4,

X̃V−1(sln)
∼= Sl1

as schemes, where l1 is the standard Levi subalgebra of sln generated by all
simple roots except α1. Moreover V−1(sln) is a quantization of the infinite
jet scheme J∞Sl1 of Sl1 , that is,

grV−1(sln) ∼= C[J∞Sl1 ]

as Poisson vertex algebras.
(2) For m > 2,

X̃V−m(sl2m)
∼= Sl0

as schemes, where l0 is the standard Levi subalgebra of sl2m generated by all
simple roots except αm. Moreover, V−m(sl2m) is a quantization of J∞Sl0 ,
that is,

grV−m(sl2m) ∼= C[J∞Sl0 ]

as Poisson vertex algebras.

Further, we show that the Zhu’s algebras of the above vertex algebras are natu-
rally embedded into the algebra of global differential operators on Y = G/(P, P ),
where P is the connected parabolic subgroup of G corresponding to a parabolic
subalgebra p having the above Levi subalgebra–l1 in case (1) and l0 in case (2)– as
Levi factor, see Theorem 7.14 and Theorem 8.13.
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The vertex algebra V−1(sln) has appeared in the work of Adamović and Perše
[AP14], where they studied the fusion rules and the complete reducibility of V−1(sln)-
modules. It would be very interesting to know whether the vertex algebra V−m(sl2m)
has similar properties.

Now recall that the associated variety of primitive ideals of U(g) is irreducible
[Jo85]. Hence it is also natural to ask the following question.

Question 2. Is XVk(g) always irreducible?

Theorem 1.2. Let r be an odd integer, and let lI and lII be the Levi subalgebras
of g = so2r generated by the simple roots α1, . . . , αr−2, αr and α1, . . . , αr−2, αr−1

respectively. They are non G-conjugate and

XV2−r(so2r) = SlI ∪ SlII .
In particular the associated variety XV2−r(so2r) is reducible.

We conjecture that XVk(g) is always equidimensional, and that XVk(g) is irre-
ducible provided that XVk(g) ⊂ N , see Conjecture 1.

The vertex algebra V2−r(so2r) has been studied by Perše [Pe13] for all r, and
by Adamović and Perše [AP14] for odd r. The proof of Theorem 1.2 uses the fact
proved in [AP14] that, for odd r, V2−r(so2r) has infinitely many simple objects in
the category O.

Remarkably, it turned out that the structure of the vertex algebra V2−r(so2r)
substantially differs depending on the parity of r.

Theorem 1.3. Let r be an even integer such that r > 6. Then

Omin $ XV2−r(so2r) ⊂ O(2r−2,14),

where Omin is the minimal nilpotent orbit of so2r and O(2r−2,14) is the nilpotent

orbit of so2r associated with the partition (2r−2, 14) of 2r.
In particular, XV2−r(so2r) is contained in N , and hence, there are only finitely

many simple V2−r(g)-modules in the category O.

The above theorem gives new examples of non-admissible affine vertex algebras
whose associated varieties are contained in the nilpotent cone (cf. [AM15]). In fact
we conjecture1 that XV2−r(so2r) = O(2r−2,14). This conjecture is confirmed for r = 6,

see Theorem 9.6. Notice that for r = 4, XV−2(so8) = Omin = O(22,14) by [AM15].
So the conjecture also holds for r = 4.

Our proof of the above stated results is based on the analysis of singular vectors
of degree 2 [AM15] and the theory of W -algebras [KRW03, KW04, Ar05, Gi09,
Ar11, Ar15a]. This method works for some other types as well, in particular in
types B and C, which will be studied in our subsequent paper.

We also take the opportunity of this note to clarify some points of [AM15] that
are related to the present work. Let us state here the main results.

By [Ar15a, Theorem 4.23] (cf. Theorem 6.1) we know that theW -algebraWk(g, f)
associated with (g, f) at level k ([KRW03]) is lisse if XVk(g) = G.f . For a minimal
nilpotent element f ∈ Omin, the converse is also true provided that k 6∈ Z>0.

Theorem 1.4. Suppose that k 6∈ Z>0, and let f ∈ Omin. Then the minimal

W -algebra Wk(g, f) is lisse if and only if (XVk(g))red = Omin.

1This conjecture is now confirmed in our paper arXiv:1608.03142.
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We also positively answer some conjectures of [AM15]. In particular, we show
the following.

Theorem 1.5. Let g of type G2. Then Wk(g, fθ) is lisse if and only if k is admis-
sible with denominator 3, or an integer equal to or greater than −1.

Thus, we obtain a new family of lisse minimal W -algebras Wk(G2, fθ), for k =
−1, 0, 1, 2, 3 . . . .

Theorem 1.6. Suppose that g is not of type A. Then Conjecture 2 of [AM15]
holds. That is,

XVk(g) = Omin
if and only if the one of the following conditions holds:

(1) g is of type Cr (r > 2), F4, and k is admissible with denominator 2.
(2) g is of type G2, and k is admissible with denominator 3, or k = −1.
(3) g is of type D4, E6, E7, E8 and k is an integer such that

−h
∨

6
− 1 6 k 6 −1.

(4) g is of type Dr with r > 5, and k = −2,−1.

The rest of the paper is organized as follows. In §2 we recollect some results
concerning sheets that will be needed later and give a description of Dixmier sheets
of rank one. In §3, we use Slodowy slices and Ginzburg’s results on finiteW -algebras
to state useful lemmas. In §4 we state results and conjectures on the associated
variety of a vertex algebra. In §5 we recall some fundamental results on Zhu’s
algebras of vertex algebras. In §6 we recall and state some fundamental results on
W -algebras. In §7 we study level −1 affine vertex algebras of type An−1, n > 4,
and prove Theorem 1.1 (1). In §8 we study level −m affine vertex algebras of type
A2m−1, m > 2, and prove Theorem 1.1 (2). In §9 we study level 2− r affine vertex
algebars of type D2r, r > 5, and prove Theorem 1.2 and Theorem 1.3. In §10, we
prove Theorem 1.4, Theorem 1.5 and Theorem 1.6 and some other results related
to our previous work [AM15]. In particular we obtain a new family of lisse minimal
W -algebras.

Notations. As a rule, for U a g-submodule of S(g), we shall denote by IU the
ideal of S(g) generated by U , and for I an ideal in S(g) ∼= C[g∗], we shall denote
by V (I) the zero locus of I in g∗.

Let
ĝ = g[t, t−1]⊕CK ⊕CD

be the affine Kac-Moody Lie algebra associated with g and the inner product ( | ) =

1/2h∨× Killing form (see §4). For λ ∈ h∗ (resp. ĥ∗), Lg(λ) (resp. L(λ)) denotes
the irreducible highest weight representation of g (resp. ĝ) with highest weight λ

where h is a Cartan subalgebra of g and ĥ = h⊕ CK ⊕CD.
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2. Jordan classes and sheets

Most of results presented in this section come from [BK79, Bo81] or [Kat82].
Our main reference for basics about Jordan classes and sheets is [TY05, §39].

Let g be a simple Lie algebra over C and ( | ) = 1/2h∨× Killing form, as in the
introduction. We often identify g with g∗ via ( | ).

For a a subalgebra of g, denote by z(a) its center. For Y a subset of g, denote
by Y reg the set of y ∈ Y for which gy has the minimal dimension with gy the
centralizer of y in g. In particular, if l is a Levi subalgebra of g, then

z(l)reg := {y ∈ g | z(gy) = z(l)},

and z(l)reg is a dense open subset of z(l). For x ∈ g, denote by xs and xn the
semisimple and the nilpotent components of x respectively.

The Jordan class of x is

JG(x) := G.(z(gxs)reg + xn).

It is a G-invariant, irreducible, and locally closed subset of g. To a Jordan class
J , we associate its datum which is the pair (l,Ol) defined as follows. Pick x ∈ J .
Then l is the Levi subalgebra gxs and Ol is the nilpotent orbit in l of xn. The
pair (l,Ol) does not depend on x ∈ J up to G-conjugacy, and there is a one-to-one
correspondence between the set of pairs (l,Ol) as above, up to G-conjugacy, and
the set of Jordan classes.

A sheet is an irreducible component of the subsets

g(m) = {x ∈ g | dim gx = m}, m ∈ N.

It is a finite disjoint union of Jordan classes. So a sheet S contains a unique dense
open Jordan class J and we can define the datum of S as the datum (l,Ol) of the
Jordan class J . We have

S = J and S = (J)reg.

A sheet is called Dixmier if it contains a semisimple element of g. A sheet S with
datum (l,Ol) is Dixmier if and only if Ol = {0}. We shall simply denote by Sl the
Dixmier sheet with datum (l, {0}).

A nilpotent orbit is called rigid if it cannot be properly induced in the sense of
Lusztig-Spaltenstein. A Jordan class with datum (l,Ol) is a sheet if and only if Ol

is rigid in l. So we get a one-to-one correspondence between the set of pairs (l,Ol),
up to G-conjugacy, with l a Levi subalgebra of g and Ol a rigid nilpotent orbit of
l, and the set of sheets.

Each sheet contains a unique nilpotent orbit. Namely, if S is a sheet with datum
(l,Ol) then the induced nilpotent orbit Indg

l (Ol) of g from Ol in l is the unique
nilpotent orbit contained in S. Note that a nilpotent orbit O is itself a sheet if and
only if O is rigid. For instance, outside the type A, the minimal nilpotent orbit
Omin is always a sheet.



6 TOMOYUKI ARAKAWA AND ANNE MOREAU

The rank of a sheet S with datum (l,Ol) is by definition

rank(S) := dim S− dim Indg
l (Ol) = dim z(l).

If S = Sl is Dixmier, then Ol = 0 and we have

S = G.[p, p]⊥ = G.(z(l) + pu) and S = (G.[p, p]⊥)reg.

where p = l⊕ pu is a parabolic subalgebra of g with Levi factor l and nilradical pu
(cf. [TY05, Proposition 39.2.4]).

Let h be a Cartan subalgebra of g. For S a sheet with datum (l,Ol), one can
assume without loss of generality that h is a Cartan subalgebra of l. In particular,
z(l) ⊂ h.

Lemma 2.1. (1) Let Sl be a Dixmier sheet of rank one, that is, z(l) = Cλ with
λ ∈ h \ {0}. Then

Sl = G.C∗λ = G.(Cλ+ pu) = G.C∗λ ∪ Indg
l (0),

and

Sl = G.C∗λ ∪ Indg
l (0).

(2) Let Sl1 , . . . ,Sln be Dixmier sheets of rank one, that is, z(li) = Cλi with
λi ∈ h \ {0}, such that dim Indg

li
(0) = dim Indg

lj
(0) for all i, j. Let X be a

G-invariant, conic, Zariski closed subset of g∗ such that

X ∩ h =

n⋃
i=1

Cλi, X ∩N ⊂
n⋃
i=1

Indg
li

(0).

Then X =
⋃n
i=1 Sli .

Part (1) of the lemma is probably well-known. We give a proof for the conve-
nience of the reader.

Proof. (1) The equalities Sl = G.C∗λ = G.(Cλ + pu) are clear by [TY05, Corol-

laries 39.1.7 and 39.2.4]. Let us prove that Sl = G.C∗λ ∪ Indg
l (0). The inclusion

G.C∗λ ∪ Indg
l (0) ⊂ Sl is known [TY05, Proposition 39.3.5] (and its proof). So it

suffices to prove that Cλ+ pu ⊂ G.C∗λ ∪ Indg
l (0) since S is G-invariant.

Let x = cλ+ y ∈ Cλ+ pu with c ∈ C and y ∈ pu. Assume that c ∈ C∗. Then xs
and cλ are G-conjugate. Since x ∈ Sl, dim gx > dim gλ. But dim gx > dim gλ if and
only if xn = 0 since gx = (gxs)xn . Hence x is G-conjugate to cλ, and so x ∈ G.C∗λ.

If c = 0, then x ∈ pu and so x is nilpotent. But (Cλ+ pu)∩N ⊂ Sl ∩N = Indg
l (0),

whence the statement.
It remains to prove that Sl = G.C∗λ ∪ Indg

l (0). We have Sl = (G.(Cλ+ pu))reg,
and the inclusion G.C∗λ ∪ Indg

l (0) ⊂ Sl is clear. So it suffices to prove that (Cλ+

pu)reg ⊂ G.C∗λ ∪ Indg
l (0) since Sl and Sl are G-invariant. The above argument

shows that for x ∈ (Cλ + pu)reg \ pu, x ∈ G.C∗λ. And if x ∈ (pu)reg, then
x ∈ (pu)reg ∩N ⊂ Sl ∩N = Indg

l (0), whence the statement.

(2) The inclusion
⋃
i Sli ⊂ X is clear. Conversely, let x ∈ X. If x is nilpotent,

then x ∈
⋃
i Sli by the assumption. Assume that x is not nilpotent, that is xs 6= 0.

Since X is G-stable, we can assume that xs ∈ h. If xn = 0 then xs ∈ X ∩ h ⊂⋃n
i=1 Sli by hypothesis.
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Assume that xn 6= 0 and let (e, h, f) be an sl2-triple of g with e = xn. We can
assume that h ∈ h so that [h, xs] = 0. Let γ : C∗ → G be the one-parameter
subgroup generated by h. Since X is G-invariant, for any t ∈ C∗, the element

γ(t).x = xs + t2xn

belongs to X. Since X is closed, we deduce that xs ∈ X. So, by the assumption,
xs = cλi for some i and c ∈ C∗. Therefore, because X is a cone, we can assume
that xs = λi. Thus li = gxs and xn ∈ li.

For any t ∈ C∗, the element

t2γ(t−1).x = t2(λi + t−2xn) = t2λi + xn

belongs to X. This shows that C∗λi + xn ⊂ X. Then

G.(C∗λi + xn) = G.(z(li)
reg + xn) = JG(x) ⊂ X,

whence JG(x) ⊂ X because X is closed.
Let Oli,xn be the nilpotent orbit of xn in li. One knows that Indg

li
(Oli,xn) ⊂

JG(x) [Bo81]. So Indg
li

(Oli,xn) ⊂ X, and the assumption gives that Indg
li

(Oli,xn) ⊂⋃
j Indg

lj
(0). In particular,

dim Indg
li

(Oli,xn) = dim Indg
lj

(0)

for any j (this makes sense by our assumption on the Levi subalgebras lj), whence
codimli(Oli,xn) = codimlj (0) = codimli(0) = dim li by the properties of induced

nilpotent orbits. So Oli,xn = {0}, that is xn = 0, and x = λi ∈ Sli . �

Let P be the connected parabolic subgroup of G with Lie algebra p = l⊕ pu.
The G-action on

Y := G/(P, P ),

where (P, P ) is the commutator-subgroup of P , induces an algebra homomorphism

ψY : U(g)→ DY
from U(g) to the algebra DY of global differential operators on Y . Let

JY := kerψY

be the kernel of this homomorphism. It is a two-sided ideal of U(g). It has
been shown by Borho and Brylinski [BB82, Corollary 3.11 and Theorem 4.6] that√

grJY is the defining ideal of the Dixmier sheet closure determined by P , that

is, Sl. Furthermore,

JY =
⋂

λ∈z(l)∗
AnnU(g)⊗U(p) Cλ.

Here, for λ ∈ p∗, Cλ stands for the one-dimensional representation of p correspond-
ing to λ, and we extend a linear form λ ∈ z(l)∗ to p∗ by setting λ(x) = 0 for
x ∈ [l, l] ⊕ pu. Identifying g with g∗ through ( | ), z(l)∗ identifies with z(l). In
particular, if z(l) = Cλ for some nonzero semisimple element λ ∈ g, we get

JY =
⋂
t∈C

AnnU(g)⊗U(p) Ctλ.

In fact

JY =
⋂
t∈Z

AnnU(g)⊗U(p) Ctλ.(1)
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for any Zariski dense subset Z of C ([BJ77]).

In this paper, we shall consider sheets in Lie algebras of classical types Ar and
Dr. Let us introduce more specific notations. Let n ∈ N∗, and denote by P(n) the
set of partitions of n. As a rule, we write an element λ of P(n) as a decreasing
sequence λ = (λ1, . . . , λs) omitting the zeroes.

Case sln. According to [CMa93, Theorem 5.1.1], nilpotent orbits of sln are
parametrized by P(n). For λ ∈P(n), we denote by Oλ the corresponding nilpo-
tent orbit of sln. In sln, all sheets are Dixmier and each nilpotent orbit is contained
in exactly one sheet. The Levi subalgebras of sln, and so the (Diximer) sheets,
are parametrized by compositions of n. More precisely, if λ ∈ P(n), then the
(Dixmier) sheet associated with λ is the unique sheet containing Otλ where tλ is
the dual partition of λ.

Case son. Set

P1(n) := {λ ∈P(n) ; number of parts of each even number is even}.

According to [CMa93, Theorem 5.1.2 and Theorem 5.1.4], nilpotent orbits of son are
parametrized by P1(n), with the exception that each very even partition λ ∈P1(n)
(i.e., λ has only even parts) corresponds to two nilpotent orbits. For λ ∈ P1(n),
not very even, we denote by Oλ the corresponding nilpotent orbit of son. For very
even λ ∈P1(n), we denote by OIλ and OIIλ the two corresponding nilpotent orbits
of son. In fact, their union form a single On-orbit.

Contrary to the sln case, it may happen in the son case that a given nilpotent
orbit belongs to different sheets, and not all sheets are Dixmier.

3. Some useful lemmas

Let f be a nilpotent element of g that we embed into an sl2-triple (e, h, f) of g
and let

Sf := χ+ (gf )∗

be the Slodowy slice associated with (e, h, f) where

χ := (f | · ) ∈ g∗.

Denote by g(h, i) the i-eigenspace of ad(h) for i ∈ Z. Choose a Lagrangian subspace
L ⊂ g(h, 1) and set

m := L⊕
⊕
i>2

g(h, i), Jχ :=
∑
x∈m

C[g∗](x− χ(x)).

Let M be the unipotent subgroup of G corresponding to m.
Let

µ : g∗ → m∗

be the moment map for the M -action, which is just a restriction map. By [GG02],
the adjoint action map gives the isomorphism

M ×Sf
∼−→ µ−1(χ),

and thus,

Sf
∼= µ−1(χ)/M.
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In particular,

C[Sf ] ∼= C[µ−1(χ)]M = (C[g∗]/Jχ)
M
.

Let HC be the category of finitely generated (C[g∗], G)-modules, that is, the cat-
egory of finitely generated C[g∗]-modules K equipped with the G-module structure
such that g.(f.m) = (g(f)).g.m for g ∈ G, f ∈ C[g∗], m ∈ K.

Theorem 3.1 ([Gi09], see also [Ar15b]). (1) The functor

Hf : HC → C[Sf ] -mod, K 7→ (K/JχK)M ,

is exact.
(2) For any K ∈ HC, suppC[Sf ]Hf (K) = (suppC[g∗]K) ∩Sf .

Lemma 3.2. Let K ∈ HC. Then G.f ⊂ suppC[g∗]K if and only if K 6= JχK.

Proof. Since Sf admits a C∗-action contracting to f , Theorem 3.1(2) implies that

G.f ⊂ suppC[g∗]K if and only if Hf (K) 6= 0. However Hf (K) 6= 0 if and only if

K/JχK 6= 0 by [Gi09, Proposition 3.3.6]. �

Let I be an ad g-invariant ideal of C[g∗], so that C[g∗]/I ∈ HC. Applying
Lemma 3.2 to K = C[g∗]/I we obtain the following assertion.

Lemma 3.3. Let I be an ad g-invariant ideal of C[g∗]. Then G.f 6⊂ V (I) if and
only if

C[g∗] = I + Jχ

where V (I) is the zero locus of I in g∗.

Let l be a Levi subalgebra of g and h a Cartan subalgebra of g contained in l.
Thus z(l) ⊂ h. Let p be a parabolic subalgebra of g with Levi factor l and nilradical
pu. Assume that e ∈ (pu)reg and h ∈ h. Identifying g with g∗ through ( | ), we get

Sf
∼= f + ge,

and by [Kat82, Lemma 3.2] (see also [Bu11, Proposition 3.2]), we have

Sl = G.(f + z(l)).

Note that we have the following decomposition:

g(h, 0) = [f, g(h, 2)]⊕ (g(h, 0) ∩ ge),

and since ad(f) induces a bijection from g(h, 2) to [f, g(h, 2)], for any x ∈ g(h, 0)
there is a well-defined element η(x) ∈ g(h, 2) such that

x− [f, η(x)] ∈ g(h, 0) ∩ ge.

Lemma 3.4. Assume that z(l) is generated by a nonzero element λ of h and that
g(h, i) = 0 for i > 2.

(1) The set {exp(ad η(tλ))(f + tλ) | t ∈ C} is an irreducible component of
Sl∩Sf . Moreover, if g is classical, then Sl∩Sf is irreducible and Sl∩Sf =

Sl ∩Sf = {exp(ad η(tλ))(f + tλ) | t ∈ C}.
(2) If g is classical then, as schemes, Sl ∩Sf

∼= SpecC[z]. Here we endow Sl
with its natural structure of irreducible reduced scheme.
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Proof. (1) The first assertion results from [ImH05, Lemma 2.9] and the proof of
[Bu11, Lemma 3.4] (which is a reformulation of [Kat82, Lemma 3.2 and Lemma 5.1]).
In the case that g is classical, Sl ∩Sf is irreducible (see [ImH05, Theorem 5.2 and
Theorem 6.2]) and so Sl ∩ Sf = {exp(ad η(tλ))(f + tλ) | t ∈ C}. On the other
hand, by Lemma 2.1(1),

Sl = G.C∗λ = G.C∗λ ∪G.f

and

Sl = G.C∗λ ∪G.f.

So, Sl ∩ Sf = {exp(ad η(tλ))(f + tλ) | t ∈ C} since G.f ∩ Sf = {f} and f ∈
{exp(ad η(tλ))(f + tλ) | t ∈ C}. In particular, Sl ∩Sf is an irreducible variety of
dimension one.

(2) According to [Gi09, Corollary 1.3.8(1)], Sl ∩Sf is a reduced complete inter-

section in Sl since Sl is reduced, whence Sl∩Sf
∼= SpecC[z] as a scheme by (1). �

Remark 3.5. Assume that g is classical. Define a one-parameter subgroup γ̃ : C∗ →
G by:

∀ t ∈ C∗, ∀x ∈ g, γ̃(t).x := t2γ(t).x

where γ(t) is the one-parameter of G generated by ad(h). In the notation of
Lemma 3.4, the sets Sl and Sf are both stabilized by γ̃(t), and we have:

Sl ∩Sf = Sl ∩Sf = {γ̃(t).µ | t ∈ C∗},

for any nonzero semisimple µ in Sl ∩Sf , for example

µ = exp(ad η(z))(f + λ).

Let Ω be the Casimir element of g and denote by IΩ the ideal of C[g∗] generated
by Ω.

Lemma 3.6. Assume that g is classical. Let I be a homogeneous ad g-invariant
ideal of C[g∗], Sl a Dixmier sheet of rank one, p a parabolic subalgebra of g with Levi
factor l and nilradical pu. Let (e, f, h) be an sl2-triple of g such that e ∈ (pu)reg.
Further, assume that the following conditions are satisfied:

(1) g(h, i) = 0 for i > 2,
(2) suppC[g∗](C[g∗]/I) = Sl,
(3) I + IΩ is the defining ideal of G.f ,
(4) Hf (C[g∗]/I) ∼= C[z] as algebras,
(5) Ω(λ) 6= 0,

Then I is prime, that is, I =
√
I.

Condition (2) implies that
√
I is defining ideal of Sl since Sl is irreducible. In

particular,
√
I is prime. Also, condition (3) means that I + IΩ is prime. Note that

conditions (2) and (3) imply that
√
I ⊂ I + IΩ.

since G.f ⊂ Sl.
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Proof. Set J :=
√
I. Then J/I ∈ HC. Since the sequence

0→ J/I → C[g∗]/I → C[g∗]/J → 0

is exact, we get an exact sequence

0→ Hf (J/I)→ Hf (C[g∗]/I)→ Hf (C[g∗]/J)→ 0

by Theorem 3.1 (1). Furthermore by Theorem 3.1 (2),

SpecHf (C[g∗]/J) = Spec(C[g∗]/J) ∩Sf = SpecC[z].

The last equality comes from Lemma 3.4 (2) since J is the defining ideal of Sl.
Hence by condition (4), we get

Hf (J/I) = 0.

By [Gi09, Proposition 3.3.6], Hf (J/I) 6= 0 if and only if suppC[g∗](J/I) ⊃ G.f .

However, suppC[g∗](J/I) ⊂ suppC[g∗](C[g∗]/I) = Sl and any G-invariant closed

cone of Sl which strictly contains G.f contains G.f . Therefore,

suppC[g∗](J/I) ⊂ G.f

since suppC[g∗](J/I) is a G-invariant closed cone of g. In particular, suppC[g∗](J/I)
is contained in the nilpotent cone N . Since Ω is a nonzero homogeneous element
in the defining ideal of N , we deduce that Ω acts nilpotently on J/I. Hence for n
sufficiently large,

ΩnJ/I = 0.(2)

We can now achieve the proof of the lemma. We have to show that J ⊂ I. Let
a ∈ J . Since J ⊂ I + IΩ, for some b1 ∈ I and f1 ∈ C[g∗], we have

a = b1 + Ωf1.

Since J is prime and Ω 6∈ J by condition (5), f1 ∈ J . Applying what foregoes to
the element f1 of J , we get that for some b2 ∈ I and f2 ∈ J ,

a = b1 + Ω(b2 + Ωf2) = c2 + Ω2f2,

with c2 := b1 + Ωb2 ∈ I. A rapid induction shows that for any n ∈ Z>0, there exist
cn ∈ I and fn ∈ J such that

a = cn + Ωnfn.

But cn + Ωnfn ∈ I for n big enough by (2), whence a ∈ I. �

4. Associated variety and singular support of affine vertex algebras

Let

ĝ = g[t, t−1]⊕CK ⊕CD
be the affine Kac-Moody Lie algebra associated with g and ( | ), with the commu-
tation relations

[x(m), y(n)] = [x, y](m+ n) +m(x|y)δm+n,0K, [D,x(m)] = mx(m), [K, ĝ] = 0,

for m,n ∈ Z and x, y ∈ g, where x(m) = x⊗ tm. For k ∈ C, set

V k(g) = U(ĝ)⊗U(g[t]⊕CK⊕CD)Ck,

where Ck is the one-dimensional representation of g[t]⊕CK⊕CD on which g[t]⊕CD
acts trivially and K acts as multiplication by k. The space V k(g) is naturally a
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vertex algebra, and it is called the universal affine vertex algebra associated with g
at level k. By the PBW theorem, V k(g) ∼= U(g[t−1]t−1) as C-vector spaces.

The vertex algebra V k(g) is naturally graded:

V k(g) =
⊕
d∈Z>0

V k(g)d, V k(g)d = {a ∈ V k(g) | Da = −da},

Let Vk(g) be the unique simple graded quotient of V k(g). As a ĝ-module, Vk(g) is
isomorphic to the irreducible highest weight representation of ĝ with highest weight
kΛ0, where Λ0 is the dual element of K.

A V k(g)-module is the same as a smooth ĝ-module of level k.
As in the introduction, let XV be the associated variety [Ar12] of a vertex algebra

V , which is the maximum spectrum of the Zhu’s C2-algebra

RV := V/C2(V )

of V . In the case that V is a quotient of V k(g), V/C2(V ) = V/g[t−1]t−2V and we
have a surjective Poisson algebra homomorphism

C[g∗] = S(g)� RV = V/g[t−1]t−2V, x 7→ x(−1) + g[t−1]t−2V,

where x(−1) denotes the image of x(−1) in the quotient V . Then XV is just the
zero locus of the kernel of the above map in g∗. It is G-invariant and conic.

Conjecture 1. Let V= ⊕d>0Vd be a simple, finitely strongly generated (i.e., RV
is finitely generated), positively graded conformal vertex operator algebra such that
V0 = C.

(1) XV is equidimensional.
(2) Assume that XV has finitely many symplectic leaves. Then XV is irre-

ducible. In particular XVk(g) is irreducible if XVk(g) ⊂ N .

For a scheme X of finite type, let JmX be the m-th jet scheme of X, and J∞X
the infinite jet scheme of X (or the arc space of X). Recall that the scheme JmX
is determined by its functor of points: for every C-algebra A, there is a bijection

Hom(SpecA, JmX) ∼= Hom(SpecA[t]/(tm+1), X).

If m > n, we have a natural morphism JmX → JnX. This yields a projective
system {JmX} of schemes, and the infinite jet scheme J∞X is the projective limit
lim←− JmX in the category of schemes. Let πm : JmX → X, m > 0, and π∞ : J∞X →
X be the natural morphisms.

If X is an affine Poisson scheme then its coordinate ring C[J∞X] is naturally a
Poisson vertex algebra ([Ar12]).

Let V = F 0V ⊃ F 1V ⊃ . . . be the canonical decreasing filtration of the
vertex algebra V defined by Li [Li05]. The associated graded algebra grV =⊕

p>0 F
pV/F p+1V is naturally a Poisson vertex algebra. In particular, it has the

structure of a commutative algebra. We have F 1V = C2(V ) by definition, and
by restricting the Poisson vertex algebra structure of grV we obtain the Poisson
structure of RV = V/F 1V ⊂ grV . There is a surjection

C[J∞XV ]→ grV

of Poisson vertex algebras ([Li05, Ar12]). By definition [Ar12], the singular support
of V is the subscheme

SS(V ) = Spec(grV )
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of J∞XV .

Theorem 4.1. Let V be a quotient of the vertex algebra V k(g). Suppose that
XV = G.C∗x for some x ∈ g. Then

SS(V )red = J∞XV = J∞G.C∗x = J∞G.C∗x.

Proof. By [Ar12, Lemma 3.3.1], X̃V = π∞(SS(V )). We know that SS(V ) ⊂
J∞X̃V , so that SS(V )red ⊂ J∞XV . Let us prove the other inclusion.

Set X = XV and U = G.C∗x. Since U is an irreducible open dense subset of X,

π−1
m (U) = JmU for any m > 0 [EM09, Lemma 2.3], and π−1

m (U) = π−1
m (Xreg) is an

irreducible component of JmX. Hence

J∞X = π−1
∞ (U) = J∞U

because J∞X is irreducible [Ko73] and closed. Therefore, it is enough to prove that
SS(V )red contains J∞U since SS(V )red is closed.

The map

µ : G× (C∗x)→ G.C∗x, (g, tx) 7→ g.(tx)

is a submersion at each point, so it is smooth (cf. [Ha76, Ch. III, Proposition 10.4]).
Hence by [EM09, Remark 2.10], we get that the induced map

µ∞ : J∞G× J∞C∗x→ J∞G.C∗x

is surjective and formally smooth, and so

µ∞(J∞G× J∞C∗.x) ∼= J∞G.C∗x.

Since SS(V )red is J∞G-invariant and J∞C∗-invariant, we deduce that J∞G.C∗x =
J∞U is contained in SS(V )red. �

The closures of nilpotent orbits satisfy the conditions of Theorem 4.1, and also
Dixmier sheets of rank one by Lemma 2.1 (1).

Corollary 4.2. Let V be a quotient of the affine vertex algebra V k(g).

(1) Suppose that XV = O for some nilpotent orbit O of g. Then

SS(V )red = J∞O = J∞O.

(2) Suppose that XV = S for some Dixmier sheet S of g of rank one. Then

SS(V )red = J∞S = J∞S.

See [Ar15a] and [AM15] for examples of affine vertex algebras Vk(g) satisfying
the condition of Corollary 4.2 (1).

5. Zhu’s algebra of affine Vertex algebras

For a Z>0-graded vertex algebra V =
⊕

d Vd, let A(V ) be the Zhu’s algebra of
V ,

A(V ) = V/V ◦ V,

where V ◦ V is the C-span of the vectors

a ◦ b :=
∑
i>0

(
∆
i

)
a(i−2)b
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for a ∈ V∆, ∆ ∈ Z>0, b ∈ V , and V → (EndV )[[z, z−1]], a 7→
∑
n∈Z a(n)z

−n−1,
denotes the state-field correspondence. The space A(V ) is a unital associative
algebra with respect to the multiplication defined by

a ∗ b :=
∑
i>0

(
∆
i

)
a(i−1)b

for a ∈ V∆, ∆ ∈ Z>0, b ∈ V .
Let M =

⊕
d>d0

Md, Md0 6= 0, be a positive energy representation of V . Then

A(V ) naturally acts on its top weight space Mtop := Md0 , and the correspondence
M 7→Mtop defines a bijection between isomorphism classes of simple positive energy
representations of V and simple A(V )-modules ([Z96]).

The vertex algebra V is called a chiralization of an algebra A if A(V ) ∼= A.
For instance, consider the universal affine vertex algebra V k(g). The Zhu’s al-

gebra A(V k(g)) is naturally isomorphic to U(g) ([FZ92], see also [Ar16a, Lemma
2.3]), and hence, V k(g) is a chiralization of U(g).

Let Ĵk be the unique maximal ideal of V k(g), so that

Vk(g) = V k(g)/Ĵk.

We have an exact sequence A(Ĵk)→ U(g)→ A(Vk(g))→ 0 since the functor A(?)

is right exact and thus A(Vk(g)) is the quotient of U(g) by the image Ik of A(Ĵk)
in U(g):

A(Vk(g)) = U(g)/Ik.

Fix a triangular decomposition g = n−⊕ h⊕ n+ of g. Then ĥ = h⊕CK⊕CD is

a Cartan subalgebra of ĝ. A weight λ ∈ ĥ∗ is called of level k if λ(K) = k. The
top degree component of L(λ) is Lg(λ̄), where λ̄ is the restriction of λ to h. Hence,
by Zhu’s Theorem, the level k representation L(λ) is a Vk(g)-module if and only if
IkLg(λ̄) = 0.

Set U(g)h := {u ∈ U(g) | [h, u] = 0 for all h ∈ h} and let

Υ: U(g)h → U(h)

be the Harish-Chandra projection map which is the restriction of the projection
map U(g) = U(h)⊕ (n−U(g) +U(g)n+)→ U(h) to U(g)h. It is known that Υ is an
algebra homomorphism. For a two-sided ideal I of U(g), the characteristic variety
of I (without ρ-shift) is defined as

V(I) = {λ ∈ h∗ | p(λ) = 0 for all p ∈ Υ(Ih)}
where Ih = I ∩ U(g)h, cf. [Jo77]. Identifying g∗ with g through ( | ), and thus h∗

with h, we view V(I) as a subset of h.

Proposition 5.1 ([Ar16a, Proposition 2.5]). For a level k weight λ ∈ ĥ∗, L(λ) is
a Vk(g)-module if and only if λ̄ ∈ V(Ik).

The Zhu’s algebra A(V ) is related with the Zhu’s C2 algebra RV as follows. The
grading of V induces a filtration of A(V ) and the associated graded algebra grA(V )
is naturally a Poisson algebra ([Z96]). There is a natural surjective homomorphism

ηV : RV � grA(V )

of Poisson algebras ([DSK06, Proposition 2.17(c)], [ALY14, Proposition 3.3]). In
particular, Spec(grA(V )) is a subscheme of XV .
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For V = Vk(g) this means the following. We have

V (gr Ik) ⊂ XVk(g),

where V (gr Ik) is the zero locus of gr Ik ⊂ C[g∗] in g∗.
The map ηVk(g) is not necessarily an isomorphism. However, conjecturally [Ar15b]

we have V (gr Ik) = XVk(g).

6. Affine W -algebras

For a nilpotent element f of g, let Wk(g, f) be the W -algebra associated with
(g, f) at level k, defined by the generalized quantized Drinfeld-Sokolov reduction
[FF90, KRW03]:

Wk(g, f) = H
∞
2 +0

f (V k(g)).

Here H
∞
2 +0

f (M) is the corresponding BRST cohomology with coefficients in a ĝ-
module M .

Let (e, f, h) be an sl2-triple associated with f . The W -algebra Wk(g, f) is con-
formal provided that k 6= −h∨, which we assume in this paper, and the central
charge cf (k) of Wk(g, f) is given by

cf (k) = dim g(h, 0)− 1

2
dim g(h, 1)− 12

∣∣∣∣ ρ√
k + h∨

−
√
k + h∨

h

2

∣∣∣∣2 ,
where ρ is the half sum of the positive roots of g. We have

Wk(g, f) =
⊕

∆∈ 1
2Z>0

Wk(g, f)∆,

Wk(g, f)0 = C, Wk(g, f)1/2 = 0, Wk(g, f)1
∼= g\,

where g\ is the centralizer in g of the sl2-triple (e, f, h).
We have [DSK06, Ar15a] a natural isomorphism RWk(g,f)

∼= C[Sf ] of Poisson
algebras, so that

X̃Wk(g,f) = Sf .

Let Wk(g, f) be the unique simple quotient of Wk(g, f). Then XWk(g,f) is a C∗-
invariant, Poisson subvariety of Sf . Since it is C∗-invariant, Wk(g, f) is lisse if and
only if XWk(g,f) = {f}.

Let Ok be the category O of ĝ at level k. We have a functor

Ok →Wk(g, f) -Mod, M 7→ H
∞
2 +0

f (M),

where Wk(g, f) -Mod denotes the category of Wk(g, f)-modules.
Let KLk be the full subcategory of Ok consisting of objects M on which g acts

locally finitely. Note that V k(g) and Vk(g) are objects of KLk.

Theorem 6.1 ([Ar15a], k, f arbitrary). (1) H
∞
2 +i

f (M) = 0 for all i 6= 0, M ∈
KLk. In particular, the functor KLk → Wk(g, f) -Mod, M 7→ H

∞
2 +0

f (M),
is exact.

(2) For any quotient V of V k(g) we have

R
H
∞
2

+0

f (V )
∼= Hf (RV ),
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where Hf (RV ) is defined in Theorem 3.1. Hence, X̃
H
∞
2

+0

f (V )
is isomorphic

to the scheme theoretic intersection X̃V ×g∗ Sf .

(3) H
∞
2 +0

f (V ) 6= 0 if and only if G.f ⊂ XV .

(4) H
∞
2 +0

f (V ) is lisse if XV = G.f .

Let fθ be a root vector of the highest root θ of g, which is a minimal nilpotent
element so that f ∈ Omin where Omin is the minimal nilpotent orbit of g.

Theorem 6.2 ([Ar05], f = fθ). (1) H
∞
2 +i

fθ
(M) = 0 for all i 6= 0, M ∈ Ok. In

particular, the functor Ok →Wk(g, f) -Mod, M 7→ H
∞
2 +0

f (M), is exact.

(2) H
∞
2 +0

fθ
(L(λ)) 6= 0 if and only if λ(α∨0 ) 6∈ N>0. If this is the case, H

∞
2 +0

fθ
(L(λ))

is a simple Wk(g, f)-module, where α∨0 = −θ∨ +K.

Recall that f is a short nilpotent element if

g = g(h,−2)⊕ g(h, 0)⊕ g(h, 2).

If this is the case, we have 1
2h ∈ P

∨, where P∨ is the coroot lattice of g, and 1
2h

defines an element of the extended affine Weyl group W̃ = W n P∨ of ĝ, which we
denote by t 1

2h
. Here W is the Weyl group of g. Let t̃ 1

2h
be a Tits lifting of t 1

2h
to

an automorphism of ĝ.
Set

Dh = D +
1

2
h,

and put Md,h = {m ∈ M | Dhm = dm} for a ĝ-module M . The operator Dh

extends to the grading operator of Wk(g, f) ([KRW03, Ar05]).
The subalgebra t̃ 1

2h
(g) acts on each homogeneous component Md,h because

[Dh, t 1
2h

(g)] = 0. Note that t̃ 1
2h

(g) is the subalgebra of ĝ generated by root vectors

of roots t 1
2h

(α) = α − 1
2α(h)δ, α ∈ ∆, where δ ∈ ĥ∗ is the dual element of D. In

particular, t̃ 1
2h

(g) contains

l := g(h, 0)

as a Levi subalgebra.
We regard Md,h as a g-module through the isomorphism t̃ 1

2h
(g) ∼= g.

Since α(Dh) > 0 for all positive roots α of ĝ by the assumption that f is short,
we have

L(λ) =
⊕

d6λ(Dh)

L(λ)d,h.

Let Ol
k be the full subcategory of category Ok of ĝ consisting of objects on which

l acts locally finitely.

Theorem 6.3. Let f be a short nilpotent element as above.

(1) H
∞
2 +i

f (M) = 0 for all i 6= 0, M ∈ Ol
k. In particular, the functor Ol

k →
Wk(g, f) -Mod, M 7→ H

∞
2 +0

f (M), is exact.
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(2) Let L(λ) ∈ Ol
k. Then H

∞
2 +0

f (L(λ)) 6= 0 if and only if DimL(λ)λ(Dh),h =

1/2 dimG.f(= dim g(h, 2)), where DimM is the Gelfand-Kirillov dimen-

sion of the g-module M . If this is the case, H
∞
2 +0

f (L(λ)) is almost ir-

reducible over Wk(g, f), that is, any nonzero submodule of H
∞
2 +0

f (L(λ))

intersects its top weight component non-trivially (cf. [Ar11]).

(3) Suppose that g is of type A. Then, for L(λ) ∈ Ol
k, H

∞
2 +0

f (L(λ)) is zero or
irreducible.

Proof. The above theorem is just a restatement of main results of [Ar11] since the

functor Ol
k → Wk(g, f) -Mod, M 7→ H

∞
2 +0

f (M), is identical to the “−”-reduction

functor HBRST
0 (?) studied in [Ar11] (in the case of short nilpotent elements). �

7. Level −1 affine vertex algebra of type An−1, n > 4

We assume in this section that g = sln with n > 4.
Let

∆ = {εi − εj | i, j = 1, . . . , n, i 6= j}
be the root system of g. Fix the set of positive roots ∆+ = {εi − εj | i, j =
1, . . . , n, i < j}. Then the simple roots are αi = εi − εi+1 for i = 1, . . . , n− 1. The
highest root is θ = ε1 − εn = α1 + · · ·+ αn−1. Denote by (ei, hi, fi) the Chevalley
generators of g, and fix the root vectors eα, fα, α ∈ ∆+ as follows.

eεi−εj = ei,j and fεi−εj = ej,i for i < j,

where ei,j is the standard elementary matrix associated with the coefficient (i, j).
For α ∈ ∆+, denote by hα = [eα, fα] the corresponding coroot. In particular,

hi = ei,i − ei+1,i+1 for i = 1, . . . , n− 1.

Let g = n− ⊕ h⊕ n+ be the corresponding triangular decomposition. Denote by
$1, . . . , $n−1 the fundamental weights of g,

$i := (ε1 + · · ·+ εi)−
i

n
(ε1 + · · ·+ εn).

Identify g with g∗ through ( | ). Thus, the fundamental weights are viewed as
elements of g.

Let θ1 be the highest root of the root system generated by the simple roots
perpendicular to θ, i.e.,

θ1 = α2 + . . .+ αn−2 = ε2 − εn−1,

Set

β := α1 + · · ·+ αn−2 = ε1 − εn−2, γ := α2 + · · ·+ αn−1 = ε2 − εn,
and put

v1 = eθeθ1 − eβeγ ∈ S2(g),

where Sd(g) denotes the component of degree d in S(g) for d > 0. Then v1 is a
singular vector with respect to the adjoint action of g and generates an irreducible
finite-dimensional representation W1 of g in S2(g) isomorphic to Lg(θ + θ1).

Recall that we have a g-module embedding [AM15, Lemma 4.1],

σd : Sd(g) ↪→ V k(g)d, x1 . . . xd 7→
1

d!

∑
σ∈Sd

xσ(1)(−1) . . . xσ(d)(−1).(3)
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We will denote simply by σ this embedding for d = 2.

Proposition 7.1 ([Ad03]). For l > 0, The vector σ(v1)l+1 is a singular vector of
V k(g) if and only if k = l − 1.

Theorem 7.2. The vecor σ(v1) generates the maximal submodule of V −1(g), that
is, V−1(g) = V −1(g)/U(ĝ)σ(v1).

Set

Ṽ−1(g) = V −1(g)/U(ĝ)σ(v1).

To prove Theorem 7.2, we shall use the minimal W -algebra Wk(g, fθ).
Let g\ be the centralizer in g of the sl2-triple (eθ, hθ, fθ). Then

g\ = g0⊕ g1,

where g0 is the one-dimensional center of g\ and g1 = [g\, g\]. Note that g0 =
C(h1 − hn−1) and g1 = 〈eαi , fαi | i = 2, . . . , n− 2〉 ∼= sln−2.

There is an embedding, [KW04], [AM15, §7],

V k
\
0(g0)⊗ V k

\
1(g1) ↪→Wk(g, fθ)

of vertex algebras, where k]0 = k + n/2 and k\1 = k + 1. Note that V
k\0
0 (g0) is

isomorphic to the rank one Heisenberg vertex algebra M(1) provided that k\0 6= 0.

For k = −1, we have k\1 = 0 and Vk\1
(g1) = V k

\
1(g)/U(ĝ1)eθ1(−1)1 = C.

By Theorem 6.2 the exact sequence 0 → U(ĝ)σ(v1) → V −1(g) → Ṽ−1(g) → 0
induces an exact sequence

0→ H
∞
2 +0

fθ
(U(ĝ)σ(v1))→W−1(g, fθ)→ H

∞
2 +0

fθ
(Ṽ−1(g))→ 0.(4)

Lemma 7.3. The image of σ(v1) in W−1(g, fθ) coincides with the image of the
singular vector eθ1(−1)1 of V 0(g1) ⊂ W−1(g, fθ).

Proof. Since it is singular, σ(v1) defines a singular vector of Wk(g, fθ). Its image
in RWk(g,fθ) is the image of v1 in C[Sfθ ] = (C[g∗]/Jχ)M , where χ = (fθ| · ), see §3.

Since v1 ≡ eθ1 (mod Jχ), we have σ(v1) ≡ eθ1(−1)1 (mod C2(Wk(g, fθ))). Then
σ(v1) and eθ1(−1)1 must coincide since they both have the same weight and are
singular vectors with respect to the action of ĝ1. �

Theorem 7.4. We have H
∞
2 +0

fθ
(Ṽ−1(g)) ∼= M(1), the rank one Heisenberg ver-

tex algebra. In particular H
∞
2 +0

fθ
(Ṽ−1(g)) is simple, and hence, isomorphic to

W−1(g, fθ).

Proof. By Theorem 6.2, H
∞
2 +0

fθ
(V−1(g)) is isomorphic to W−1(g, fθ). Since V−1(g)

is a quotient of Ṽ−1(g),W−1(g, fθ) is a quotient of H
∞
2 +0

fθ
(Ṽ−1(g)) by the exactness

result of Theorem 6.2. In particular, H
∞
2 +0

fθ
(Ṽ−1(g)) is nonzero.

Recall that Wk(g, fθ) is generated by fields J{a}(z), a ∈ g\, G{v}(z), v ∈ g−1/2,

and L(z) described in [KW04, Theorem 5.1]. Since V 0(g1)/U(ĝ1)eθ1(−1)1 = C,

Lemma 7.3 implies that J{a}(z), a ∈ g1, are all zero in H
∞
2 +0

fθ
(Ṽ−1(g)). Then,

since [J
{a}
λ G{v}] = G[a,v] and g−1/2 is a direct sum of non-trivial irreducible finite-

dimensional representations of g1, it follows that G(v)(z) = 0 for all v ∈ g−1/2.
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Finally, [KW04, Theorem 5.1 (e)] implies that L coincides with the conformal vector

of V
n−2
2 (g1) ∼= M(1) in H

∞
2 +0

fθ
(Ṽ−1(g)). We conclude that H

∞
2 +0

fθ
(Ṽ−1(g)) is

generated by J{a}(z), a ∈ g0, which proves the assertion. �

Proof of Theorem 7.2. Suppose that Ṽ−1(g) is not simple. Then there is at least
one singular vector v of weight, say µ. Then

µ ≡ s$1 − Λ0 or s$l − Λ0 for some s ∈ N (mod Cδ)

by [AP08, Proposition 5.5]. Let M be the submodule of Ṽ−1(g) generated by

v. Since M is a Ṽ−1(g)-module, H
∞
2 +0

fθ
(M) is a module over H

∞
2 +0

fθ
(Ṽ−1(g)) =

M(1). Because µ(α∨0 ) < 0, Theorem 6.2 implies that the image of v in H
∞
2 +0

fθ
(M)

is nonzero, and thus, it generates the irreducible highest weight representation

M(1, µ(h1−hn−1)√
2(n−2)

) of M(1) with highest weight µ(h1−hn−1)√
2(n−2)

. Now the exactness of

the functor H
∞
2 +0

fθ
(?) shows that H

∞
2 +0

fθ
(M) is a submodule of H

∞
2 +0

fθ
(Ṽ−1(g)) =

M(1), and therefore, so is M(1, µ(h1−hn−1)√
2(n−2)

). But this contradicts the simplicity of

M(1). �

By Theorem 7.2, we have

RV−1(g) = C[g∗]/IW1
, so X̃V−1(g) = Spec(C[g∗]/IW1

).(5)

Corollary 7.5. We have Hf (C[g∗]/IW1
) = C[z].

Proof. By Theorem 6.1(2), we know that R
H
∞
2

+0

fθ
(V−1(g))

= Hf (RV−1(g)). The

assertion follows since R
H
∞
2

+0

fθ
(V−1(g))

= RM(1)
∼= C[z] by Theorem 7.4. �

As in Theorem 1.1, let l1 be the standard Levi subalgebra of sln generated by
all simple roots except α1, that is,

l1 = h + 〈eαi , fαi | i 6= 1〉.

The center of l1 is generated by $1. Thus, the Dixmier sheet closure Sl1 is given
by

Sl1 = G.C∗$1,

see §2. The unique nilpotent orbit contained in Sl1 is Indg
l1

(0) = Omin, that is, the
G-orbit of fθ.

Lemma 7.6. We have V (IW1
) ∩N ⊂ Omin.

Proof. First of all, we observe that O(22,1n−4) it the smallest nilpotent orbit of g

which dominates Omin = O(2,1n−2). By this, it means that if λ � (2, 1n−2) then

λ < (22, 1n−4) where < is the Chevalley order on the set P(n). Therefore, it is
enough to show that V (IW1

) does not contain O(22,1n−4).
Let f ∈ O(22,1n−4) that we embed into an sl2-triple (e, h, f) of g. Denote by

g(h, i) the i-eigenspace of ad(h) for i ∈ Z and by ∆+(h, i) the set of positive roots
α ∈ ∆+ such that eα ∈ g(h, i). We have f =

∑
α∈∆+(h,2) cαfα with cα ∈ C. We
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call the set of α ∈ ∆+(h, 2) such that cα 6= 0 the support of f . Choose a Lagrangian
subspace L ⊂ g(h, 1) and set

m := L⊕
⊕
i>2

g(h, i), Jχ :=
∑
x∈m

C[g∗](x− χ(x)),

with χ = (f |·) ∈ g∗, as in §3. By Lemma 3.3, it is sufficient to show that

C[g∗] = IW1
+ Jχ.

To see this, we shall use the vector

v1 = eθeθ1 − eβeγ ∈ IW1
.

If n > 4, the weighted Dynkin diagram of the nilpotent orbit G.f is

e0 e1 e0 p p p e0 e1 e0
So we can assume that h = $2 +$n−2 and we can choose for f the element fβ+fγ .
We see that θ, θ1, β and γ all belong to ∆+(h, 2). Since β and γ are in the support
of f , but not θ and θ1, for some nonzero complex number c, we have

eθeθ1 − eβeγ = c (mod Jχ).

So v1 = c (mod Jχ) and IW1
+ Jχ = C[g∗], whence C[g∗]/(IW1

+ Jχ) = 0.
For n = 4, the weighted Dynkin diagram of the nilpotent orbit G.f is

e0 e2 e0
and we conclude similarly. �

Lemma 7.7. Let λ be a nonzero semisimple element of g. Then, λ ∈ V (IW1
) if

and only if λ ∈ G.C∗$1.

Proof. Set for i, j ∈ {1, . . . , n− 2}, with j − i > 2,

pi,j := hihj ,

and for i ∈ {2, . . . , n− 2},
qi := hi(hi−1 + hi + hi+1).

According to [AP08], the zero weight space of W1 is generated by the elements pi,j
and qi. Clearly, pi,j($1) = 0 for j− i > 2 and qi($1) = 0 for any i ∈ {2, . . . , n−2}.
So $1 ∈ V (IW1

), and whence G.C∗$1 ⊂ V (IW1
) since V (IW1

) is a G-invariant
cone. This proves the converse implication.

For the first implication, let λ be a nonzero semisimple element of g, and assume
that λ ∈ V (IW1

). Since V (IW1
) is G-invariant, we can assume that λ ∈ h. Then

write
λ =

∑
i=1

λi$i, λi ∈ C.

Since pi,j(λ) = qi(λ) = 0 for all i, j, we get

λiλj = 0, i, j ∈ {1, . . . , n− 2}, j − i > 2,(6)

λi(λi−1 + λi + λi+1) = 0, i = 2, . . . , n− 2.(7)

Since λ is nonzero, λk 6= 0 for some k ∈ {1, . . . , n− 1}.
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If k 6∈ {1, n− 1}, then by (6), λj = 0 for |j−k| > 2. So by (7), either λk−1+λk =
0 or λk + λk+1 = 0 since λk−1λk+1 = 0 by (6).

If k = 1, then by (6), λj = 0 for j > 3. So by (7), λ2(λ1 + λ2) = 0.
If k = n− 1, then by (6), λj = 0 for j 6 n−3. So by (7), λn−2(λn−2+λn−1) = 0.

We deduce that

λ ∈ C∗$1 ∪ C∗$n−1 ∪
⋃

16j6n−2

C∗($i −$i+1)

=
⋃

16j6n−1

C∗(ε1 + · · ·+ εi−1 − (n− 1)εi + εi+1 + · · ·+ εn)

All the above weights are conjugate to t$1 for some t ∈ C∗ under the Weyl group
of (g, h) which is the group of permutations of {ε1, . . . , εn}, whence the expected
implication. �

The following assertion follows immediately from Lemma 2.1, Lemma 7.6 and
Lemma 7.7.

Proposition 7.8. We have V (IW1
) = Sl1 .

Remark 7.9. The zero locus of the Casimir element Ω in V (IW1
) is Omin. Indeed,

by Lemma 2.1 the zeros locus of Ω in Sl1 is contained in the nilpotent cone since
Ω($1) 6= 0. The statement follows since Omin has codimension one in Sl1 .

As a consequence, the zero locus of the ideal generated by CΩ⊕W1 ⊂ S2(g) is
Omin. This latter fact is known by [Ga82] using a different approach.

Proposition 7.10. The ideal IW1
is prime, and therefore it is the defining ideal of

Sl1 .

Proof. We apply Lemma 3.6 to the ideal I := IW1
. First of all, l1 and (eθ, hθ, fθ)

satisfy the conditions of Lemma 3.4 since z(l1) = C$1 and g(hθ, i) = 0 for i > 2.
It remains to verify that the conditions (1),(2),(3),(4) of Lemma 3.6 are satisfied.

Condition (1) is satisfied by Proposition 7.8. According to [Ga82, Corollary 2 and
Theorem 1, Chap. V], the ideal I+IΩ is the defining ideal of Omin. So condition (2)
is satisfied. The condition (3) is satisfied too, by Corollary 7.5. At last, because
Ω($1) 6= 0, condition (4) is satisfied. In conclusion, by Lemma 3.6, I = IW1

is
prime. �

Proof of Theorem 1.1 (1). The first statement follows immediately from (4) and
Proposition 7.10. The second statement follows from the inclusions

J∞Sl1 = SS(V−1(g))red ⊂ SS(V−1(g)) ⊂ J∞XV−1(g) = J∞Sl1 ,

where the first equality follows from Corollary 4.2. �

Remark 7.11. Let Vk(g) -Modg[t] be the full subcategory of the category of Vk(g)-

modules consisting of objects that belong to KLk. Since H
∞
2 +0

fθ
(V−1(g)) ∼= M(1),

we have a functor

V−1(g) -Modg[t] →M(1) -Mod, M 7→ H
∞
2 +0

fθ
(M),

where M(1) -Mod denotes the category of the modules over the Heisenberg vertex
algebra M(1). The proof of Theorem 1.1 (1) and [AP14, Theorem 6.2] imply that
this is a fusion functor.
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Let p = l1⊕pu be a parabolic subalgebra of g with nilradical pu. It is a maximal
parabolic subalgebra of g. Let P be the connected parabolic subgroup of G with
Lie algebra p. Set

Y := G/(P, P ).

As explained in §2, we have V (grJY ) = Sl1 , where JY = kerψY and ψY is the
algebra homomorphism U(g)→ DY .

The variety Y is a quasi-affine variety, isomorphic to Cn\{0}. It follows that
the natural embedding Y = Cn\{0} ↪→ Cn induces an isomorphism DCn

∼→ DY . In
this realization, the map ψY is described as follows.

ψY : U(g)→ DCn = 〈z1, . . . , zn,
∂

∂z1
, . . .

∂

∂zn
〉,

ei,j 7→ −zj
∂

∂zi
(i 6= j),

hi 7→ −zi
∂

∂zi
+ zi+1

∂

∂zi+1
.

where ei,j is as before the standard elementary matrix element and hi = ei,i −
ei+1,i+1.

This has the following chiralization: Let DchCn be the βγ-system of rank n, gen-
erated by fields β1(z), . . . , βn(z), γ1(z), . . . , γn(z), satisfying OPE

γi(z)βj(w) ∼ δij
z − w

, γi(z)γj(w) ∼ 0, βi(z)βj(w) ∼ 0,

see e.g. [Kac98]. We have

RDchCn
∼= C[T ∗Cn], A(DchCn) ∼= DCn ,

where DCn denotes the Weyl algebra of rank n, which is identified with the algebra
of differential operators on the affine space Cn. In particular, DchCn is a chiralization
of DCn .

Lemma 7.12. The following gives a vertex algebra homomorphism.

ψ̂Y : V −1(g)→ DchCn ,
ei,j(z) 7→ − : βj(z)γi(z) : (i 6= j),

hi(z) 7→ − : βi(z)γi(z) : + : βi+1(z)γi+1(z) : .

Note that the map ψ̂Y induces an algebra homomorphism U(g) = A(V −1(g))→
A(DchCn) = DCn , which is identical to ψY .

Theorem 7.13 ([AP14]). The map ψ̂Y factors through the vertex algebra embed-
ding

V−1(g) ↪→ DchCn .

By Theorem 7.13, ψ̂Y induces a homomorphism

A(V−1(g))→ A(DchCn) = DCn .(8)

Theorem 7.14. (1) The ideal gr JY ⊂ C[g∗] is prime and hence it is the

defining ideal of Sl1 .
(2) The natural homomorphism RV−1(g) → grA(V−1(g)) is an isomorphism.
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(3) The map ψ̂Y induces an embedding

A(V−1(g)) ↪→ DCn .

Proof. We have

A(V−1(g)) = U(g)/JW1
,

where JW1 is the two-sided ideal of U(g) generated by W1. By (8), we have the

inclusion JW1
⊂ JY = kerψY . Also, grJW1

⊃ IW1
by definition, and

√
JY = IW1

by Proposition 7.10. Thus,

IW1 ⊂ gr JW1 ⊂ gr JY ⊂
√

gr JY = IW1 .

It follows that all the above inclusions are equalities:

IW1 = gr JW1 = gr JY =
√

gr JY .

The statements (1), (2) and (3) follow from the third, the first and the second
equality, respectively. �

Remark 7.15. Adamović and Perše [AP14] showed that DchCn decomposes into a
direct sum of simple highest weight representations of V−1(g). From their results,
it is possible to obtain an explicit character formula of V−1(g) as in [KW01]. In
view of Theorem 1.1, this gives the Hilbert series of J∞Sl1 .

8. Level −m affine vertex algebra of type A2m−1

Set

v0 :=

2m−1∑
i=1

m− i
m

hieθ +

2m−2∑
i=1

e1,i+1ei+1,2m ∈ S2(g).

Then v0 is a singular vector and generates a finite-dimensional irreducible repre-
sentation W0 of g in S2(g) isomorphic to Lg(θ). We have

σ(v0)

=

2m−1∑
i=1

m− i
m

hi(−1)eθ(−1) +

2m−2∑
i=1

e1,i+1(−1)ei+1,2m(−1)− (m− 1)eθ(−2),

where σ = σ2 is defined in §7, equality (3).

Lemma 8.1. The vector σ(v0) is a singular vector of Vk(g) if and only if k = −m.

Proof. The verifications are identical to [Pe08, Lemma 4.2] and we omit the details2.
�

Theorem 8.2. The singular vector σ(v0) generates the maximal submodule of
V −m(g), that is, V−m(g) = V −m(g)/U(ĝ)σ(v0).

2In [Pe08], the author only deals with slr+1 for even r in order to have an admissible level

k = − 1
2

(r + 1). Note that there is a change of sign because our Chevalley basis slightly differs

from that of [Pe08].
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Let (e, f, h) be the sl2-triple of g defined by

e =

m∑
i=1

ei,m+i, h =

m∑
i=1

ei,i −
m∑
i=1

em+i,m+i = 2$m,

f =

m∑
i=1

em+i,i ∈ g.

Then f is a nilpotent element of g corresponding to the partition (2m). We have

g = g(h,−2)⊕ g(h, 0)⊕ g(h, 2),

where g(h, 2) = spanC{ei,m+j | 1 6 i, j 6 m}, g(h,−2) = spanC{em+i,j | 1 6 i, j 6
m}, g(h, 0) = spanC{ei,j , em+i,m+j | 1 6 i, j 6 m} ∩ g. Thus, f is a short nilpotent
element.

Let g\ ⊂ g(h, 0) be the centralizer in g of (e, f, h). Then

g\ ∼= slm.

By [KW04, Theorem 2.1] we have a vertex algebra embedding

V k
\

(g\) ↪→Wk(g, f),

where

k\ = 2k + 2m,

which restricts to the isomorphism of spaces of weight 1

g\ ∼= V k
\

(g\)1
∼→Wk(g, f)1.

Since

g(h,−2) ∼= g\⊕C

as g\-modules, there exists [KW04] a g\-submodule E of Wk(g, f)2 such that
Wk(g, f) is generated by Wk(g, f)1

∼= g\, E and the conformal vector ωW ∈
Wk(g, f)2, provided that k 6= −2m.

Theorem 8.3. We have

H
∞
2 +0

f (Ṽ−m(g)) ∼= Vir1,

where Vir1 is the simple Virasoro vertex algebra of central charge 1.

Let eθ\ = e1,m + em+1,2m ∈ g\ be a root vector of the highest root θ\ of g\.

Lemma 8.4. The image of σ(v0) in W−m(g, f0) coincides with the image of the
singular vector eθ\(−1)1 of V 0(g\) up to nonzero constant multiplication.

Proof. Let w be the image of σ(v0) in W−m(g, f0). One finds that

w ≡ eθ\(−1)1 (mod C2(W−m(g, f0))),

and hence, it is nonzero and has the same weight as eθ\(−1)1. Since it is a singular
vector, w is singular vector for V 0(g\). The assertion follows since the corresponding
weight space is one-dimensional. �

Proposition 8.5. Let λ = s$m −mΛ0 with s ∈ Z>0. Then H
∞
2 +0

f (L(λ)) 6= 0.
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Proof. Since L(λ) belongs toOl0
k , it is sufficient to show that the Gelfand-Kirillov di-

mension of L(λ)λ(DW ),h is maximal by Theorem 6.3. Observe that L(λ)λ(DW ),h is an
irreducible highest weight representation of g with highest weight µ = −(m+s)$m.
It follows from Jantzen’s simplicity criterion [Ja77, Satz 4] (see also [Hu08, Theo-
rem 9.13]) that Lg(µ) is isomorphic to the generalized Verma module U(g)⊗U(p)Ll0(µ),
where p is a parabolic subalgebra of g with Levi subalgebra l0, and Ll0(µ) is the
irreducible finite-dimensional representation of l1 with highest weight µ. This com-
pletes the proof. �

Proof of Theorem 8.3. First, H
∞
2 +0

f (Ṽ−m(g)) 6= 0 since H
∞
2 +0

f (V−m(g)) 6= 0 by

Proposition 8.5. Second, the exact sequence 0 → N → V −m(g) → Ṽ−m(g) → 0,
where N = U(ĝ)σ(v0) ⊂ V −m(g), induces an exact sequence

0→ H
∞
2 +0

f (N)→W−m(g, f)→ H
∞
2 +0

f (Ṽ−m(g))→ 0.

By Lemma 8.4, the weight 1 subspaceW−m(g, f)1(∼= g\) is contained in H
∞
2 +0

f (N).

Hence, x(0)W−m(g, f) ⊂ H
∞
2 +0

f (N) for all x ∈ g\. This gives that E ⊂ H
∞
2 +0

f (N).

It follows that H
∞
2 +0(Ṽ−m(g)) is generated by the single element ωW . Since ωW has

central charge 1, there is a vertex algebra homomorphism Vir1 � H
∞
2 +0(Ṽ−m(g)).

The assertion follows as Vir1 is simple. �

Proof of Theorem 8.2. Suppose that Ṽk(g) is not simple. Then there exists at least

one singular weight vector, say v, which generates a proper submodule of Ṽk(g). As

A(Ṽk(g)) = U(g)/IW0 , Proposition 8.8 implies that the weight of v has the form

µ = s$m −mΛ0 with s ∈ N. Consider the submodule M of Ṽk(g) generated by v.

Since H
∞
2 +0

f (L(µ)) 6= 0 by Proposition 8.5, Theorem 6.3(1) implies that H
∞
2 +0

f (M)

is a nonzero submodule of H
∞
2 +0

f (Ṽk(g)). But by Theorem 8.3, H0
f0

(Ṽk(g)) ∼= Vir1

is simple. Contradiction. �

By Theorem 8.2, we have

RṼ−1(g) = C[g∗]/IW0
, and so, XṼ−1(g) = Spec(C[g∗]/IW0

).(9)

Thus we get the following assertion (see Corollary 7.5).

Corollary 8.6. We have Hf (C[g∗]/IW0
) = C[z].

As in Theorem 1.1, define the Levi subalgebra l0 of g by

l0 = h + 〈eαi , fαi | i 6= m〉.
The center of l0 is spanned by $m. Thus,

Sl0 = G.C∗$m,

see §2. We have Indg
l0

(0) = O(2m), and hence, O(2m) is the unique nilpotent orbit
contained in the Diximier sheet Sl0 .

Lemma 8.7. V (IW0) ∩N ⊂ O(2m).

Lemma 8.7 is proven in the same way as Lemma 7.6, and we omit the proof. Note
that here O(3,2m−2,1) it the smallest nilpotent orbit of g which dominates O(2m).

We now view W0 as a submodule of U(g) through the identification S(g) ∼= U(g)
given by the symmetrization map, and shall determine the characteristic variety
V(IW0

).
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Set for s ∈ {1, . . . , 2m− 1},

Λs := {(i1, . . . , i1) ∈ {1, . . . , 2m− 1}s | i1 < · · · < is and

s∑
k=1

(−1)kik = (−1)sm}.

For example, Λ1 = {m} and Λ2 = {1 6 i1 < i2 6 2m− 1 | − i1 + i2 = m}.

Proposition 8.8. The characteristic variety V(IW0
) of IW0

is the set

Ξ̂ :=
⋃

16s62m−1

⋃
(i1,...,is)∈Λs

{t$i1 +

s∑
j=2

(−1)j(−t+ cij )$ij ; t ∈ C}.

where for j ∈ {2, . . . , s},

cj := i1 + 2

j−1∑
k=2

(−1)k+1ik + (−1)j+1ij .

In particular, the only integral dominant weights which lie in V(IW0
) are those of

the form t$m with t ∈ Z>0.

Proof. Set for i ∈ {1, . . . , 2m− 1},
p̂i := hiq̂i,

where

q̂i :=

i−1∑
j=1

−j
m
hj +

m− i
m

hi +

2m−1∑
j=i+1

2m− j
m

hj +m− i.

According to [Pe08, Lemma 5.1], Υ(W h
0 ) is generated by p̂1, . . . , p̂2m−1. Indeed, this

part of Perše’s proof does not use the parity of the rank of sln and all computations
hold for n even.

We first verify that any λ ∈ Ξ̂ is a solution of the system of equations p̂1(λ) =
0, . . . , p̂r(λ) = 0. The verifications are left to the reader.

Conversely, let λ =
∑2m−1
i=1 λi$i ∈ h be such that p̂i(λ) = 0 for all i =

1, . . . , 2m− 1. Assume that λ 6= 0. Let us show that λ ∈ Ξ̂. Since λ 6= 0,
there exist integers i1, i2, . . . , is in {1, . . . , 2m− 1}, with i1 < i2 · · · < is, such that
λij 6= 0 if j ∈ {1, . . . , s} and λk = 0 for all k 6∈ {i1, . . . , i1}. Thus, q̂ij (λ) = 0 for all
j ∈ {1, . . . , s}.

Assume s = 1. Then

0 = q̂i1(λ) =
m− i1
m

λi1 +m− i1.

Either i1 = m and then λ = λm$m ∈ Ξ̂, or i1 6= m and then

λi1 = −m so λ = −m$i1 .

Since i1 6= m, either i1 > m or i1 < m. By symmetry, we can assume that i1 < m.
Indeed, if i1 > m, then 2m − i1 < m, but if p̂i(λ

′) = 0 for all i = 1, . . . , 2m− 1,
then λ′ := λ2m−i1$2m−i1 verifies p̂i(λ

′) = 0 for all i = 1, . . . , 2m− 1, too. Now one
can choose i2 ∈ {i1 + 1, . . . , 2m− 1} such that −i1 + i2 = m. Then

λ = λi1$i1 =λi1$i1 + (−λi1 + i1 − i2)$i2

∈
⋃

(i1,i2)∈Λ2

{t$i1 + (−t+ i1 − i2)$i2 ; t ∈ C} ⊂ Ξ̂

since λi1 = −m = i1 − i2 and ci2 = i1 − i2, and we are done.
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Assume now s > 2. Since λij 6= 0 for j = 1, . . . , s, we get q̂ij (λ) = 0 for
j = 1, . . . , s. Using the equations q̂i1(λ) − q̂i2(λ) = 0, . . . , q̂is(λ) − q̂is(λ) = 0, we
get

∀ j ∈ {1, . . . , s− 1}, λij+1 + λij − ij + ij+1 = 0.

By induction on j we obtain that

∀ j ∈ {2, . . . , s}, λij = (−1)j(−λi1 + cj)(10)

where cj is defined as in the proposition:

cj := i1 + 2

j−1∑
k=2

(−1)k+1ik + (−1)j+1ij , j = 2, . . . , s.

Using the equations q̂is(λ) = 0 and (10), we get

0 =

(
1

m

s∑
k=1

(−1)kik − (−1)s

)
λi1(11)

− 1

m

s∑
k=2

(−1)kikck +
m− is
m

(−1)scs +m− is.

Either

1

m

s∑
k=1

(−1)kik − (−1)s = 0, that is,

s∑
k=1

(−1)kik = (−1)sm

and then λ ∈ Ξ̂, or
s∑

k=1

(−1)kik 6= (−1)sm

and then λi1 is entirely determined by the equation (11), and so is λi2 , . . . , λis
by (10).

Claim 8.1. Set i0 := 0. There exist l ∈ {1, . . . , s} and j ∈ {1, . . . , 2m − 1} \
{i1, . . . , is} such that il−1 < j < il and

s+1∑
k=1

(−1)ki′k = (−1)s+1m

where i′k = ik for k = 1, . . . , l − 1, i′l = j and i′k+1 = ik for k = l, . . . , s.

Proof. First of all, we observe that the sequence (1, 2, . . . , 2m − 1) always belongs
to Λ2m−1. Hence, if

∑s
k=1(−1)kik 6= (−1)sm, then there exist l ∈ {1, . . . , s} and

j ∈ {1, . . . , 2m − 1} \ {i1, . . . , is} such that il−1 < j < il. We prove the statement
by induction on s. The claim is known for s = 1. Let us prove it prove for s = 2.
There are two cases:

a) First case: −i1 + i2 < m. Then set

j := m− i1 + i2.

Possibly replacing i1, i2 by 2m − i2, 2m − i2, we can assume that i1 < m.
Hence j > i2. In addition, j < 2m since −i1 + i2 < m. So j suits the
conditions of the claim.
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b) Second case: −i1 + i2 > m. Then i2 > m, i1 < m and we set:

j := −m+ i1 + i2.

We have i1 < j < i2 and j suits the conditions of the claim.

Assume now that s > 2 and that the claim is true for all strictly smaller integers.
We assume that s is even. The case where s is odd is dealt similarly. There are
two cases:

a) First case:
∑s
k=1(−1)kik < m. Either

m+

s−1∑
k=1

(−1)kik > 0,

and then the integer

j := m+

s∑
k=1

(−1)kik > is

suits the conditions of the claims. Or m +
∑s−1
k=1(−1)kik 6 0, that is

is−1 > r+1
1 +

∑s−2
k=1(−1)kik. Since is−1 < 2m − δ, with δ := is − is−1, we

get
s−2∑
k=1

(−1)kik < m− δ.

Apply the induction hypothesis to the sequence i1, . . . , is−1 and 2m−2δ−1,
which is an odd integer. Then there exists j ∈ {1, . . . , 2m − 2δ − 1} \
{i1, . . . , is−2} such that

∑s−1
k=1(−1)ki′k = −(m − δ) where the sequence

i′1, . . . , i
′
s−1 is defined as in the claim with respect to i1, . . . , is−2 and j.

We easily verify that j < is1 , and we have

s−1∑
k=1

(−1)ki′k + is−1 − is = −(m− δ)− δ = −m.

So j suits the conditions of the claim.
b) Second case:

∑s
k=1(−1)kik > m. Then

∑s−2
k=1(−1)kik − is−1 + is > m,

that is,
∑s−2
k=1(−1)kik > m− δ with δ := is − is−1. Applying the induction

hypothesis to the sequence i1, . . . , is−1 and 2m− 2δ − 1, we conclude as in
case a).

We illustrate in figures 1 and 2 the construction of j. In Figure 1, the positive
integer−

∑s
k=1(−1)kik corresponds to the sum of the lengths of the thick lines while

the positive integer 2m+
∑s
k=1(−1)kik corresponds to the sum of the lengths of

the thin lines. In Figure 2, the positive integer
∑s
k=1(−1)kik corresponds to the

sum of the lengths of the thick lines while the positive integer 2m−
∑s
k=1(−1)kik

corresponds to the sum of the lengths of the thin lines.
�

Let j and i′1, . . . , i
′
s+1 be as in Claim 8.1. Possibly replacing the sequence

i1, . . . , is by 2m− is − 1, . . . , 2m− is − 1 we can assume that l 6= 1, that is, j 6= i1.
Set

λi′l := 0
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| | | | | | | | |
i1 i2 i3 i4 i5

0 1 2 3 4 5 6 7 8

| | | | | | | | |
i1 i2 i3 j i4 i5

0 1 2 3 4 5 6 7 8

Figure 1. Construction of j for m = 4, s = 5 and (i1, i2, i3, i4, i5) = (1, 3, 4, 6, 7)

| | | | | | | | |
i1 i2 i3 i4

0 1 2 3 4 5 6 7 8

| | | | | | | | |
i1 i2 i3 i4 j

0 1 2 3 4 5 6 7 8

Figure 2. Construction of j for m = 4, s = 4 and (i1, i2, i3, i4) = (1, 3, 5, 6)

so that

λ =

s∑
k=1

λik$ik =

s+1∑
k=1

λi′k$i′k
.

where for j = 1, . . . , l − 1, λi′k := λik and for k = l, . . . , s, λi′k+1
:= λik . Then one

can verify that for all k ∈ {1, . . . , s+ 1},

(−1)k(−λi′1 + ci′k) = λi′k .

The verifications are left to the reader. This proves that λ ∈ Ξ̂ since (i′1, . . . , i
′
s+1) ∈

Λs+1. �

Lemma 8.9. Let λ be a nonzero semisimple element of g which lies in V (IW0
).

Then λ ∈ G.C∗$m.

Proof. Set S(g)h := {x ∈ S(g) | [h, x] = 0 for all h ∈ h} and let

Ψ: S(g)h → S(h)

be the Chevalley projection map which is the restriction of the projection map
S(g) = S(h) ⊕ (n− + n+)S(g) → S(h) to S(g)h. It is known that Ψ is an algebra
homomorphism. We have

V (IW0) ∩ h∗ = {λ ∈ h | p(λ) = 0 for all p ∈ Ψ(IW0 ∩ S(g)h)} ⊂ h∗ ∼= h.

Since V (IW0
) is G-invariant, it is enough to prove the lemma for nonzero elements

λ ∈ V (IW0
) ∩ h∗.

It follows from the proof of Proposition 8.8 that V (IW0
)∩ h∗ is the zero locus in

h of p1, . . . , p2m−1 where for i ∈ {1, . . . , 2m− 1},

pi := hi

i−1∑
j=1

−j
m
hj +

m− i
m

hi +

2m−1∑
j=i+1

2m− j
m

hj

 .
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Then it also follows from the proof of Proposition 8.8 that the zero locus in h of
p1, . . . , p2m−1 is the set

Ξ :=
⋃

16s62m−1

⋃
(i1,...,is)∈Λs

C(

s∑
j=1

(−1)j$ij ).

Let λ ∈ Ξ. We can assume that λ =
∑s
j=1(−1)j$ij for s ∈ {1, . . . , 2m− 1} and

(i1, . . . , is) ∈ Λs. We have to show that λ is conjugate to $m under the Weyl group
W (g, h) of (g, h) which is the group of permutations of {ε1, . . . , ε2m}. Observe that

$m =
1

2
(

m∑
i=1

εi −
2m∑

i=m+1

εi).

So it suffices to show that λ can be written as

λ =

2m∑
i=1

σiεi

with σi ∈ {− 1
2 ,

1
2} for all i ∈ {1, . . . , 2m} and

card({i | σi =
1

2
}) = card({i | σi = −1

2
}) = m.

If s is even, we have

λ =

s∑
j=1

(−1)j$ij =

s/2∑
j=1

(εi2j−1+1 + · · ·+ εi2j )−
∑s
j=1(−1)jij

2m
(ε1 + · · ·+ ε2m)

=

s/2∑
j=1

(εi2j−1+1 + · · ·+ εi2j )−
1

2
(ε1 + · · ·+ ε2m)

=
1

2
(−(ε1 + · · ·+ εi1) +

(s−2)/2∑
j=1

(εi2j−1+1 + · · ·+ εi2j )− (εi2j+1 + · · ·+ εi2j+1
)

+ (εis−1
+ · · ·+ εis)− (εis+1 + · · ·+ ε2m)).

since (i1, . . . , is) ∈ Λs. We are done because
∑s
j=1(−1)jij = m.

If s is odd, we have

λ =

s∑
j=1

(−1)j$ij =

(s−1)/2∑
j=1

(εi2j−1+1 + · · ·+ εi2j )− (ε1 + · · ·+ εis)−
∑s
j=1(−1)jij

2m
(ε1 + · · ·+ ε2m)

=− (ε1 + · · ·+ εi1)−
(s−1)/2∑
j=1

(εi2j+1 + · · ·+ εi2j+1
) +

1

2
(ε1 + · · ·+ ε2m)

=
1

2
(−(ε1 + · · ·+ εi1) +

(s−1)/2∑
j=1

(εi2j−1+1 + · · ·+ εi2j )− (εi2j+1 + · · ·+ εi2j+1
)

+ (εis+1 + · · ·+ ε2m)).

since (i1, . . . , is) ∈ Λs. We are done because
∑s
j=1(−1)jij = −m. �

The following assertion follows immediately from Lemma 2.1, Lemma 8.7, and
Lemma 8.9.
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Proposition 8.10. We have V (IW0
) = Sl0 .

Proposition 8.11. The ideal IW0 is prime, and therefore, it is the defining ideal
of Sl0 .

Proof. We apply Lemma 3.6 to the ideal I := IW0
. First of all, l0 and (e, h, f)

satisfy the conditions of Lemma 3.4 for f ∈ O(2m). Indeed, z(l0) = C$m and
g(h, i) = 0 for i > 2. It remains to verify that the conditions (1),(2),(3),(4) of
Lemma 3.6 are satisfied.

Condition (1) is satisfied by Proposition 8.10 (2). Let us show that the ideal
I + IΩ is the defining ideal of O(2m). According to Proposition 8.10, the zero locus

of I+IΩ in g is O(2m) since Ω($m) 6= 0. On the other hand, by [We02, Theorem 1],

the defining ideal I0 of Oλ0 is generated by the entries of the matrix X2 as functions
of X ∈ sl2m(C). In particular, I0 is generated by homogeneous elements of degree
2. Assume that I+IΩ is strictly contained in I0. A contradiction is expected. Since
I0 ) I + IΩ, it results from the decomposition

S2(g) = Lg(2θ)⊕W0⊕Lg(0)⊕W1

then either I0 contains a nonzero element of Lg(2θ), or I0 contains an element of
W1. Since I0 is g-invariant, either I0 contains Lg(2θ) or I0 contains W1. The zero
locus in g of the ideal generated by Lg(2θ) is {0} since Lg(2θ) is generated as a
g-module by (eθ)

2. In addition, by Remark 7.9, the zero locus in g of the ideal
generated by W1 and Ω is Omin. Hence in both cases we go to a contradiction
since O(2m) strictly contains Omin and {0}. So I + IΩ = I0 is prime. Finally,
condition (2) is satisfied.

Condition (3) is satisfied too, by Corollary 8.6.
At last, because Ω($m) 6= 0, condition (4) is satisfied. In conclusion, by

Lemma 3.6, I = IW0
is prime. �

Proof of Theorem 1.1 (2). The first statement follows from (9) and Proposition 8.11.
The second statement follows from the inclusions

J∞Sl0 = SS(V−m(g))red ⊂ SS(V−m(g)) ⊂ J∞XV−m(g) = J∞Sl0 .

�

Remark 8.12. If n is odd, then the level −n/2 is admissible for ŝln, and we have

XV−n/2(sln) = O(2(n−1)/2,1)

by [Ar15a].

Let p = l0 ⊕ pu be a parabolic subalgebra of g, and let P be the connected
parabolic subgroup of G with Lie algebra p. Let ψY be the algebra homomorphism
U(g) → DY as in §2, where Y := G/(P, P ). Recall that V (grJY ) = Sl0 , where
JY = kerψY .

Theorem 8.13. (1) The ideal gr JY ⊂ C[g∗] is prime and hence it is the

defining ideal of Sl0 .
(2) The natural homomorphism RV−m(g) → grA(V−m(g)) is an isomorphism.
(3) The map ψY induces an embedding

A(V−m(g)) ↪→ DY .
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Proof. We have

A(V−m(g)) = U(g)/JW0
,

where JW0
is the two-sided ideal of U(g) generated by W0.

Recall that

JY =
⋂
t∈Z

AnnU(g)⊗U(p) Ct$m

for any Zariski dense subset Z of C, see §2, equation (1). On the other hand, for
a generic point t of C we have Lg(t$m) ∼= U(g) ⊗U(p) Ct$m , and thus, JW0

⊂
AnnLg(t$m) by Proposition 5.1 and Proposition 8.8. Therefore JW0 ⊂ JY . This
gives

IW0 ⊂ grJW0 ⊂ grJY ⊂
√

grJY .

Since
√

grJY = IW0 , all inclusions above are equality. �

Since H
∞
2 +0

f (V−m(g)) ∼= Vir1 by Theorem 8.3, we have a functor

V−m(g) -Modg[t] → Vir1 -Mod, M 7→ H
∞
2 +0

f (M),(12)

where Vir1 -Mod denotes the category of Vir1-modules. By Proposition 8.8, the

simple objects of V−m(g) -Modg[t] are L(t$m −mΛ0), t ∈ Z>0. From Theorem 6.3
it follows that

H
∞
2 +0

f (L(t$m −mΛ0)) ∼= L(1,
t(t+m+ 1)

4
),

where L(c, h) denotes the irreducible highest weight representation of the Virasoro
algebra of central charge c and lowest weight h.

Question 3. Is the functor (12) fusion?

9. Level −(r − 2) affine vertex algebra of type Dr, r > 5

We assume in this section that g = so2r with r > 5. Let

∆ = {±εi ± εj , | 1 6 i < j 6 r}
be the root system of g and take

∆+ = {εi ± εj , | 1 6 i < j 6 r}
for the set of positive roots.

Denote by (ei, hi, fi) the Chevalley generators of g, and fix the root vectors
eα, fα, α ∈ ∆+ so that (hi, i = 1, . . . , r) ∪ (eα, fα, α ∈ ∆+) is a Chevalley basis
satisfying the conditions of [Ga82, Chapter IV, Definition 6]. For α ∈ ∆+, denote
by hα = [eα, fα] the corresponding coroot. Let g = n−⊕h⊕n+ be the corresponding
triangular decomposition.

The fundamental weights are:

$i = ε1 + · · ·+ εi (1 6 i 6 r − 2),

$r−1 =
1

2
(ε1 + · · ·+ εr−2 + εr−1 − εr), $r =

1

2
(ε1 + · · ·+ εr−2 + εr−1 + εr).

Let

w1 :=

r∑
i=2

eε1−εieε1+εi ∈ S2(g).
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Then w1 is a singular vector with respect to the adjoint action of g and generates
an irreducible finite-dimensional representation W1 of g in S2(g) isomorphic to
Lg(θ + θ1).

Proposition 9.1 ([Pe13, Theorem 3.1]). The vector σ(w1)n+1 is a singular vector
of V k(g) if and only if k = n− r + 2.

Let Ṽ2−r(g) = V 2−r(g)/U(ĝ)σ(w1). By definition, we have

XṼ2−r(g) = V (IW1).(13)

Let lI and lII be the standard Levi subalgebras of g generated by the simple roots
α1, . . . , αr−2, αr and α1, . . . , αr−2, αr−1, respectively. Note that lI and lII are not
G-conjugate [CMa93, Lemma 7.3.2]. Denote by SlI and SlII the corresponding
Diximier sheets.

If r is odd, then O(2r−1,12) is the unique nilpotent orbit contained in both SlI
and SlII . Indeed, O(2r−1,12) is the unique nilpotent orbit of g of dimension r2 =

dim lI = dim lII .
If r is even, possible changing the numbering, we can assume that OI(2r) is the

unique nilpotent orbit contained in SlI and that OII(2r) is the unique nilpotent orbit

contained in SlII . To see this, first observe that OI(2r) and OII(2r) are the unique

nilpotent orbits of g of dimension r2 = dim lI = dim lII . One knows that SlI
contains a unique nilpotent orbit; so it is either OI(2r), or OII(2r). Assume for instance

that it is OI(2r). The nilpotent orbits OI(2r) and OII(2r) are induced only from a zero

orbit in a Levi subalgebra of type lI or lII (see e.g. [CMa93, Corollary 7.3.4]). So
the only possible sheets containing OI(2r) and OII(2r) are SlI and SlII . This implies

that OII(2r) must be contained in SlII . If we had assumed that OII(2r) is contained in

SlI , we get in the same way that OI(2r) must be contained in SlII .

Lemma 9.2. (1) If r is odd, V (IW1
) ∩N ⊂ O(2r−1,12).

(2) If r is even, V (IW1
) ∩N ⊂ OI(2r) ∪OII(2r).

Proof. Let λ be the element of P1(2r) defined by

λ := (3, 2r−3, 13) if r is odd,

λ := (3, 2r−2, 1) if r is even.

We observe that Oλ it the smallest nilpotent orbit of g which dominates O(2r−1,12)

if r is odd, and both OI(2r) and OII(2r) if r is even. By this, it means that if for

µ ∈P1(2r), µ � (2r−1, 12) if r is odd, and µ � (2r) if r is even, then µ < λ where
< is the partial order on the set P1(n) induced by the Chevalley order. Therefore,
it is enough to show that V (IW2) do not contain Oλ.

Let f ∈ Oλ that we embed into an sl2-triple (e, h, f) of g. For i ∈ Z, denote by
g(h, i) the i-eigenspace of ad(h) and by ∆+(h, i) the set of positive roots α ∈ ∆+

such that eα ∈ g(h, i). Choose a Lagrangian subspace L ⊂ g(h, 1) and set

m := L⊕
⊕
i>2

g(h, i), Jχ :=
∑
x∈m

C[g∗](x− χ(x)),

with χ = (f |·) ∈ g∗, as in §3. By Lemma 3.3, it is sufficient to show that

C[g∗] = IW1
+ Jχ.
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To see this, we shall use the vector

w1 =

r∑
i=2

eε1−εieε1+εi .

Assume first that r is odd. It follows from [CMa93, Lemma 5.3.5] that the
weighted Dynkin diagram of the nilpotent orbit G.f is

e
��

0

e1 e0 e0 p p p e0 e��
@@

1

e@@
0

So we can choose for h the element

h = $1 +$r−2 = 2α1 +

r−2∑
j=2

(j + 1)αj +
r

r − 1
(αr−1 + αr).

We see from the above diagram that ε1 + εi ∈ ∆+(h, 3) for i ∈ {2, . . . , r − 2}, and

∆+(h, 2) = {ε1 ± εr−1, ε1 ± εr, εi + εj , 2 6 i < j < r − 2}.

We can choose e, f so that

e =
∑

α∈∆+(h,2)

aαeα and f =
∑

α∈∆+(h,2)

bαfα

with aα, bα ∈ C for all α ∈ ∆+(h, 2). Set for α ∈ ∆+(h, 2),

cα := aαbα.

From the relation [e, f ] = h, we obtain the equations:

cε1−εr−1
+ cε1+εr−1

+ cε1−εr + cε1+εr = 2(14)

cε1+εr−1
+ cε1−εr +

∑
26i<j<r−2

cεi+εj =
r − 1

2
(15)

cε1+εr−1 + cε1+εr +
∑

26i<j<r−2

cεi+εj =
r − 1

2
(16)

cε1−εr−1
+ cε1+εr−1

+ cε1−εr + cε1+εr + 2
∑

26i<j<r−2

cεi+εj = r − 1(17)

by considering the coefficients of h in α1, αr−1, αr and αr−2 respectively. By (15)
and (16) we get that

cε1−εr = cε1+εr .

Then by (17), (15) and (16) we get that

cε1−εr−1
= cε1+εr−1

.

So from (14), we obtain:

cε1−εr + cε1−εr−1 = 1.

In particular, cε1−εr 6= −cε1−εr−1
and cε1−εr−1

and cε1−εr cannot be both zero.
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Hence for some nonzero complex number c, we have

w1 =

r−2∑
i=2

eε1−εieε1+εi + eε1−εr−1
eε1+εr−1

+ eε1−εreε1+εr = c (mod Jχ)

and so IW2
+ Jχ = C[g∗].

Assume that r is even.
It follows from [CMa93, Lemma 5.3.5] that the weighted Dynkin diagram of the
nilpotent orbit G.f is

e
��

1

e1 e0 e0 p p p e0 e��
@@

0

e@@
1

So we can choose for h the element

h = $1 +$r−1 +$r = 2α1 +

r−2∑
j=2

(j + 1)αj +
r

2
(αr−1 + αr).

We see from the above diagram that ε1 + εi ∈ ∆+(h, 3) for i ∈ {2, . . . , r − 1}, and

∆+(h, 2) = {ε1 ± εr, εi + εj , 2 6 i < j 6 r − 1}.

We can choose e, f so that

e =
∑

α∈∆+(h,2)

aαeα and f =
∑

α∈∆+(h,2)

bαfα

with aα, bα ∈ C for all α ∈ ∆+(h, 2). Set for α ∈ ∆+(h, 2),

cα := aαbα.

From the relation [e, f ] = h, we obtain the equations:

cε1−εr + cε1+εr = 2(18)

cε1−εr +
∑

26i<j6r−1

cεi+εj =
r

2
(19)

cε1+εr +
∑

26i<j6r−1

cεi+εj =
r

2
(20)

by considering the coefficients of h in α1, αr−1, and αr respectively. By (19) and
(20) we get that cε1−εr = cε1+εr . So from (18), we get that

cε1−εr = cε1+εr = 1.

Hence for some nonzero complex number c, we have

w1 =

r−1∑
i=2

eε1−εieε1+εi + eε1−εreε1+εr = c (mod Jχ)

and so IW2 + Jχ = C[g∗]. �
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Lemma 9.3. Let λ be a nonzero semisimple element of g which belongs to V (IW1
).

Then λ ∈ G.C∗$r−1 or λ ∈ G.C∗$r.

Proof. Arguing as in the beginning of the proof of Lemma 8.9, we see that it is
enough to prove the lemma for a nonzero element λ in V (IW1

) ∩ h.

The image Υ(IhW1
) of IhW1

, viewed as an ideal of U(g), was determined by Perše
in the proof of [Pe13, Theorem 3.4]. From Perše’s proof, we easily deduce that
Ψ(IW1 ∩ S(g)h) is generated by the elements

pi := hi(hi + 2hi+1 + · · ·+ 2hr−2 + hr−1 + hr), i = 1, . . . , r,

and that

V (IW1) ∩ h =
⋃

{i1,...,ik}⊂{1,...,r−2}
i1<···<ik

(C

 k∑
j=1

(−1)k−j+1$ij +$r−1


∪ C

 k∑
j=1

(−1)k−j+1$ij +$r

).

Thus we are lead to show that for any nonempty sequence (i1, . . . , ik) in {1, . . . , r−
2}, with i1 < · · · < ik, the element

∑k
j=1(−1)k−j+1$ij + $r−1 (respectively∑k

j=1(−1)k−j+1$ij+$r) is either W (g, h)-conjugate to $r−1, or W (g, h)-conjugate

to $r. Here, W (g, h) ∼= Sr o (Z/2Z)r−1 denotes the Weyl group of (g, h) which is
the group of permutations and sign changes involving only even numbers of signs of
the set {ε1, . . . , εr}, see, e.g., [Hu72, §12.1]. (If the sequence is empty, the statement
is obvious.)

Let (i1, . . . , ik) in {1, . . . , r − 2}, with i1 < · · · < ik. We prove the statement for∑k
j=1(−1)k−j+1$ij +$r. Similar arguments holds for

∑k
j=1(−1)k−j+1$ij +$r−1.

If k is even, we have

k∑
j=1

(−1)k−j+1$ij =

k−1∑
j=1

($ij −$ij+1
) = −

k/2∑
j=1

(εi2j−1+1 + · · ·+ εi2j ).

Hence

k∑
j=1

(−1)k−j+1$ij +$r =
1

2
((ε1 + · · ·+ εi1)− (εi1 + · · ·+ εi2)

+ · · ·+ (εik−2
+ · · ·+ εik−1

)− (εik−1+1 + · · ·+ εik) + εik+1 + · · ·+ εir )),

and this element is W (g, h)-conjugate to $r of $r−1 depending on the parity of
(i2 − i1) + · · ·+ (ik − ik−1).
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If k is odd, then

k∑
j=1

(−1)k−j+1$ij = (−$i1 +$i2) + (−$i3 +$i4) + · · ·+ (−$ik−2
+$ik−1

)−$ik

=

(k−1)/2∑
j=1

(εi2j−1+1 + · · ·+ εi2j )− (ε1 + · · ·+ εik)

= −(ε1 + · · ·+ εi1)−
(k−1)/2∑
j=1

(εi2j+1 + · · ·+ εi2j+1)

and we conclude as in the case where k is even that
∑k
j=1(−1)k−j+1$ij + $r is

conjugate to $r of $r−1, depending here on the parity of i1 + (i3− i2) + · · ·+ (ik−
ik−1). �

The following assertion follows immediately from Lemma 2.1, Lemma 9.2 and
Lemma 9.3 .

Proposition 9.4. We have V (IW1
) = SlI ∪ SlII , and hence, XṼ2−r(g) = SlI ∪ SlII .

We are now in a position to prove Theorem 1.2.

Proof of Theorem 1.2. Since V2−r(g) is a quotient of Ṽ2−r(g),

XV2−r(g) ⊂ XṼ2−r(g) = SlI ∪ SlII(21)

by Proposition 9.4. On the other hand, by [AP14, Theorem 7.2], one knows that
V2−r(g) has infinitely many simple modules in the category O. This gives

XV2−r(g) 6⊂ N(22)

by [AM15, Corollary 5.3]. Therefore XVr−2(g) ∩ h 6= 0 as XVr−2(g) is closed and
G-invariant. Hence, by (21), either C$r−1 ⊂ XV2−r(g), or C$r ⊂ XV2−r(g). Thus,

SlI ⊂ XV2−r(g) or SlII ⊂ XV2−r(g). On the other hand V2−r(g) is invariant under
the Dynkin automorphism (cf. [Ar16a, Proof of Lemma 2.7]), and hence, so is
XV2−r(g). This completes the proof. �

We now wish to prove Theorem 1.3.

Theorem 9.5. Assume r is even, and let f ∈ OI(2r)∪O
II
(2r). Then H

∞
2 +0

f (V2−r(g)) =
0.

Proof. By symmetry, we may assume that the weighted Dynkin diagram of f is
given by e

��

0

e0 e0 e0 p p p e0 e��
@@

0

e@@
2

and h = 2$r. Set l = lII = g(h, 0).
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Since f is a short nilpotent element, it is sufficient to show that

dimV2−r(g)0,h <
1

2
dimOII(2r)

by Theorem 6.3. Observe that, as a g-module, V2−r(g)0,h is isomorphic to Lg((2−
r)$r), which is a quotient of the scalar generalized Verma module Ml((2 − r)$r).
Here

Ml(a$r) = U(g)⊗U(l⊕ g(h,2))Ca$r
for a ∈ C, where Ca$r is a one-dimensional representation of l⊕ g(h, 2) on which
[l, l]⊕ g(h, 2) acts trivially and hr ∈ z(l) acts as multiplication by a. By [Mat06,
Theorem 3.2.3 (2c)], one knows that there is an embedding Ml((−a−2r−2)$r) ↪→
Ml(a$r) for a ∈ Z, a > 2−r. In particular, Ml(−r$r) ⊂Ml((2−r)$r). Therefore,

DimV2−r(g)0,h = DimLg((2− r)$r) 6 Dim(Ml((2− r)$r)/Ml(−r$r))

< Dim(Ml((2− r)$r) =
1

2
dimOII(2r).

This completes the proof. �

Proof of Theorem 1.3. First, we have XV2−r(g) ⊂ SlI ∪ SlII by Proposition 9.4.

Suppose that XV2−r(g) $ N . Then it follows that XV2−r(g) = SlI ∪ SlII , see the

proof of Theorem 1.2. But we have OI(2r),O
II
(2r) 6⊂ XV2−r(g) by Theorem 6.1 and

Theorem 9.5. Since this is a contradiction we get that XV2−r(g) ⊂ N , and hence,

XV2−r(g) $ OI(2r), O
II
(2r).

We conclude that XV2−r(g) ⊂ O(2r−2,14) = OI(2r) ∩OII(2r).

On the other hand, Theorem 6.2 gives that H
∞
2 +0

fθ
(Vr−2(g)) = Wr−2(g, fθ),

which is not lisse by [AM15, Theorem 7.1] unless r = 4. Therefore, Omin $ XV2−r(g)

by Theorem 6.1.
The last assertion follows from [AM15, Corollary 5.3]. �

Conjecture 2. Let r be even. Then XV2−r(g) = O(2r−2,14). Therefore, the W -
algebra W2−r(g, f) is lisse for f ∈ O(2r−2,14).

Theorem 9.6. Conjecture 2 is true for r = 6.

Proof. For r = 6, Omin is the only nilpotent orbit that is strictly contained in
O(2r−2,14). �

10. On associated varieties and minimal W -algebras

We take the opportunity of this note to clarify some points of [AM15] that
are related to the present work. Assume that g is a simple finite-dimensional Lie
algebra.

Let f ∈ N and let Wk(g, f) be the affine W -algebra associated with (g, f) at
level k, and letWk(g, fθ) be its unique simple quotient as in §6. By Theorem 6.1, we
know thatWk(g, f) is lisse if XVk(g) = G.f . We now prove Theorem 1.4 which says
that for the minimal nilpotent element f = fθ, the converse is also true provided
that k 6∈ Z>0.
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Proof of Theorem 1.4. First, if k 6∈ Z>0, then Wk(g, fθ) = H
∞
2 +0(Vk(g)) by The-

orem 6.2. Assume that Wk(g, fθ) is lisse. Then by [Ar15a, Theorem 4.21 and
Proposition 4.22],

Omin ⊂ XVk(g) and dim(XVk(g) ∩Sfθ ) = 0.(23)

Let x be a closed point of X̃Vk(g). We need to show that x ∈ Omin. Since XVk(g)

is a G-invariant closed cone, it contains the G-invariant cone C(x) generated by x,

and its closure C(x). By [CMo10, Theorem 2.9], C(x) ∩ N is the closure of the
nilpotent orbit O induced from the nilpotent orbit of xn in gxs . By [Gi09, Corollary
1.3.8(iii)], the nilpotent orbit O is Omin or 0; otherwise, dim(O∩Smin) > 0 which
would contradict (23). If O = Omin then xs must be zero; otherwise, again by

[Gi09, Corollary 1.3.8(iii)], dim(C(x) ∩ Smin) > 0 which would contradict (23).
If O = 0, then xs = xn = 0 since codimg(0) = dim g is the codimension of the
nilpotent orbit of xn in gxs .

In both cases, x = xn and x ∈ C(x) ⊂ Omin, whence the statement. �

Remark 10.1. Let k ∈ Z>0. Then Wk(g, fθ) = H
∞
2 +0(L(s0 ◦ kΛ0)) where s0 is the

reflection corresponding to the simple root α0 = −θ + δ, see [Ar05]. Thus [Ar15a]

XWk(g,f) = XL(s0◦λ) ∩Sfθ ,

whereXL(λ) = suppC[g∗](L(λ)/C2(L(λ))), C2(L(λ)) = spanC{a(−2)v | a ∈ V k(g), v ∈
L(λ)}. Therefore the proof of Theorem 1.4 implies that, for k ∈ Z>0, Wk(g, fθ) is

lisse if and only if XL(s0◦λ) = Omin.

For a general f ∈ N , we have the following result.

Proposition 10.2. Let f ∈ N and k ∈ C. Assume that Wk(g, f) is lisse. Then
G.f is an irreducible component of XVk(g).

Proof. By hypothesis and [Ar15a, Theorem 4.21 and Proposition 4.22], we have

G.f ⊂ XVk(g) and dim(XVk(g) ∩Sf ) = 0.

Let Y be an irreducible component of XVk(g) which contains G.f . By [Gi09, Corol-
lary 1.3.8(iii)],

dim(Y ∩Sf ) = dimY − dimG.f

which forces Y = G.f , whence the statement. �

Let g\ be the centralizer in g of the sl2-triple (eθ, fθ, hθ), and let g] =
⊕

i>0 g
\
i

be the decomposition into the sum of its center g\0 and the simple summands g\i ,
i > 1. Then we have a vertex algebra embedding⊗

i>0

V k
\
i (g0) ↪→Wk(g, fθ),

where k\i is given in [AM15, Tables 3 and 4]. Let θi, i > 1, be the highest root of

g\i .

Lemma 10.3. Suppose that k\i ∈ Z>0 for some i > 1. Then the image of the

singular vector eθi(−1)k
\
i+11 of V k

\
i (g0) is a nonzero singular vector of Wk(g, fθ).

Proof. It is nonzero because its image in RWk(g,fθ) = C[Sfθ ] is nonzero. The rest
follows from the commutation relations described in [KW04, Theorem 5.1]. �
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Theorem 10.4. Suppose that g is not of type A. Then the following conditions
are equivalent:

(1) Wk(g, fθ) is lisse,

(2) k\i ∈ Z>0 for all i > 1.

Proof. We have already showed the implication (1) ⇒ (2) in our previous paper
[AM15]. Let us show the implication (2) ⇒ (1). Write RWk(g,fθ) = C[Sfθ ]/I for

some Poisson ideal I. Note that the radical
√
I is also a Poisson ideal of C[Sfθ ],

see e.g. [Ar12, Lemma 2.4.1]. We identify C[Sfθ ] with S(ge).

By assumption eθi(−1)k
\
i+11 is zero in the simple quotient Wk(g, fθ). Hence

eθi ∈
√
I for all i. Since the restriction of the Poisson bracket to S(gi) ⊂ S(ge) =

C[Sfθ ] coincides with the Kirillov-Kostant Poisson structure of g∗i , gi ⊂
√
I for all

i, because gi is simple (note that g0 = 0). Further, we have

{x, Ḡ{a}} = G{[x,a]} for a ∈ g−1/2

by [KW04, Theorem 5.1 (d)], where Ḡ{a} is the image ofG{a} in RWk(g,fθ) = C[Sfθ ].
Since g−1/2 is a direct sum of non-trivial representations of g\ by [KW04, Table 1],

we get that Ḡ{a} ∈
√
I for all a ∈ g−1/2. Finally, [KW04, Theorem 5.1 (e)] implies

that

{Ḡ{u}, Ḡ{v}} ≡ −2(k + h∨))(e|[u, v])L̄ (mod
√
I),

where L̄ is the image of L in RWk(g,fθ) = C[Sfθ ]. Thus, L̄ ∈
√
I, and we conclude

that all generators of S(ge) belong to
√
I. �

We are now in a position to prove Theorem 1.5 which was conjectured in [AM15],
and Theorem 1.6.

Proof of Theorem 1.5. By Theorem 10.4 and [AM15, Table 4], Wk(g, fθ) is lisse if
and only if 3k + 5 ∈ Z>0. �

Proof of Theorem 1.6. We know that XVk(g) = {0} if k ∈ Z>0 since Vk(g) is lisse in
this case. Thus, the assertion follows from Theorem 1.4, Theorem 1.5 and [AM15,
Theorem 7.1]. �

By Theorem 1.5, we have thus obtained a new family of lisse minimal W -algebras
Wk(G2, fθ), for k = −1, 0, 1, 2, 3 . . . .

Finally we remark that the following assertion follows from Remark 10.1 and
Theorem 10.4.

Theorem 10.5. We have XL(s0◦kΛ0) = Omin for k ∈ Z>0 if g is of type Dr, r > 4,
G2, F4, E6, E7 and E8.
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