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Abstract. Let g be a complex finite dimensional Lie algebra and G its adjoint
group. Following a suggestion of A. A. Kirillov, we investigate the dimension of
the subset of linear forms f ∈ g∗ whose coadjoint orbit has dimension 2m , for
m ∈ N . In this paper we focus on the reductive case. In this case the problem
reduces to the computation of the dimension of the sheets of g . These sheets
are known to be parameterized by the pairs (l,Ol), up to G -conjugacy class,
consisting of a Levi subalgebra l of g and a rigid nilpotent orbit Ol in l . By
using this parametrization, we provide the dimension of the above subsets for
any m .
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1. Introduction

1.1. Motivation. Let g be a finite dimensional Lie algebra over a field k . The
adjoint group G of g acts on g and on its dual g∗ via the adjoint and coadjoint
actions. The famous “method of orbits”, initiated by A. A. Kirillov 40 years ago
[14], consists in relating the unitary dual of G to the set g∗/G of coadjoint orbits
in g∗ . In this context, the understanding of the structure of the set g∗/G is crucial.
Let us adopt the algebraic geometry point of view. Let us consider the set g∗m of
elements f ∈ g∗ whose coadjoint orbit has dimension 2m . For f ∈ g∗ , denote by
Bf the skew-symmetric bilinear form on g× g defined by:

Bf (x, y) = f([x, y]), ∀x, y ∈ g.

As the kernel of Bf is the stabilizer of f in g for the coadjoint action, the dimension
of the coadjoint orbit of f is equal to the rank of Bf . From these observations,
we readily deduce the following lemma:

Lemma 1.1. The set g∗m is a quasi-affine algebraic variety.
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Proof. Note first that the rank of Bf is even since Bf is a skew-symmetric
bilinear form. The set Xm := {f ∈ g∗ , rk Bf ≤ 2m} is an algebraic subset
of g∗ defined by the condition that all the minors of order > 2m of the matrix
representing Bf vanish. As g∗m = Xm \Xm−1 , the lemma follows.

Then, we can show that the set g∗/G is a finite disjoint union of quasi-affine
algebraic varieties (see [15](§1.2) for a sketch of proof). We turn now to the study
of the varieties g∗m for m ∈ N . Following a suggestion of A. A. Kirillov, a first
approach is to investigate the dimension of these varieties. The index of g , as it
was defined by J. Dixmier, is the minimal codimension of the coadjoint orbits in
g∗ , that is

ind g := dim g−max
f∈g∗

(rk Bf ).

Thereby, the integers m for which g∗m is a nonempty set ranges from 0 to dg ,
where dg is the integer (dim g− ind g)/2. A linear form f is said to be regular if
dim g− rk Bf = ind g . Since the set of regular linear forms is an open dense subset
of g∗ , we get

dim g∗m = dim g∗ = dim g, for m = dg.

What about the smaller integers m? Our discussion shows that this question
heavily depends on the problem of computing the index. So far, the index was
studied only in very specific cases (see for instance [6], [19], [24], [7], [22], [16], [17]
and [11]). As a result, it would be too ambitious to get such integers, as well as the
dimension of the sets g∗m , for any m and any Lie algebra. In [15], A. A. Kirillov
approaches the case where g is the Lie algebra of the Lie group of upper triangular
matrices with ones on the diagonal over a field Fq of characteristic q . In this note,
we consider the case where g is a complex finite dimensional reductive Lie algebra.

1.2. Description of the paper. From now on, k = C and g is supposed to be
reductive. The Lie algebra g can be identified to g∗ through a nondegenerate G-
invariant bilinear form on g . In particular the index of g is equal to its rank rk g .
Moreover g∗m is identified to the subset g(m) of elements x ∈ g whose adjoint orbit
G.x has dimension 2m . The irreducible components of g(m) are, by definition,
the sheets of g . The notion of sheets was first introduced in [5] for determining
polarizable elements and was generalized in [3] and [2]. The study of sheets was
motivated by connections with primitive ideals in enveloping algebras. Obviously,
g is the finite union of its sheets. As a result, for our purpose, it suffices to
compute the dimension of all the sheets of g . Concerning the sheets, many results
are already known. To start with, by works of Borho [2], the sheets of g are
parameterized by the pairs (l,Ol), up to G-conjugacy class, consisting of a Levi
subalgebra l of g and a rigid nilpotent orbit Ol of l . Next, G. Kempken gave
in [13] a description of the rigid nilpotent orbits in the classical cases in terms of
their partitions. For the exceptional cases, we have explicit computations for the
rigid nilpotent orbits due to A. G. Elashvili. These computations are collected in
[20](Appendix of Chap. II) and a complete version was published later in [8]. Let
us mention besides that P. I. Katsylo gave in [12] a construction of a geometric
quotient for the sheets. An alternative proof is given in the Ph.D thesis of A. Im
Hof [10]. A. Im Hof also proves that the sheets of the classical Lie algebras are
smooth.
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In this note we give, for any simple Lie algebra, the dimension of its sheets.
This answers the initial problem and we obtain the dimension of all the varieties
g(m) . The reductive case easily deduces from the case where g is simple. Thanks
to the results recalled above, we have already at our disposal almost all the neces-
sary ingredients. The main work here is to obtain explicit formulas in the classical
case (see Theorems 3.3 and 3.13). On the other hand, this piece of work is a good
opportunity to put together the known information about the sheets.

In Section 2, we collect known results about G-Jordan classes, sheets, in-
duced nilpotent orbits and rigid nilpotent orbits and we describe the links between
these different notions. By a Veldkamp’s result [23], the set of non-regular elements
of g has codimension 3 in g . As a by-product, we will precise this result by show-
ing that g(dg−1) is equidimensional of codimension 3 (see Theorem 2.14). For the
smaller integers, there is no visible general rules, as our explicit computations will
show up. In particular, the subsets g(m) are not always equidimensional. For ex-
ample in F4 , the set g(20) has three irreducible components of dimensions 41, 41
and 42 (see Table 7). Likewise in so12 , the set g(26) has two irreducible compo-
nents of dimensions 54 and 55 (see Table 5).

Section 3 concerns the classical Lie algebras. We recall the characteriza-
tion of rigid nilpotent orbits in term of partitions, following [13]. Next, we give a
formula for the dimension of g(m) for any m ∈ N (Theorems 3.3 and 3.13). We
present in Tables 1, 3, 4 and 5 theses dimensions for sl6 , so7 , sp6 and so12 . Any
sheet contains a unique nilpotent orbit (see Proposition 2.11). However a nilpo-
tent orbit may belong to different sheets. The results of this section specify that,
in the classical case, the dimension of a sheet containing a given nilpotent orbit
does not depend on the choice of a sheet containing it (see Proposition 3.11). This
remarkable fact does not hold for the exceptional case anymore. For example in
E6 , the only nilpotent orbit of dimension 66 belongs to two sheets of dimensions
69 and 70 (see Table 8).

Section 4 is devoted to the exceptional case. We compute for each excep-
tional simple Lie algebra, the dimension of its sheets and then the dimension of
the varieties g(m) (cf. Tables 6 – 12 and 13 – 17). These Tables give in addition
the numbers of sheets in g(m) , for any m .

1.3. Additional notations. If a is a Lie subalgebra of g , we denote by zg(a)
the centralizer of a in g and by z(a) its center.

For x ∈ g , we denote by gx its centralizer in g . Thus dim G.x = dim g−gx

and x is regular if and only if dim gx = rk g .

For x ∈ g , we respectively denote by xs and xn the semisimple and nilpo-
tent components of x in g .

For any G-invariant subset Y of g we denote by Y reg the set of regular
elements of Y , that is those whose G-orbit has maximal dimension.
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Denote by Ng the set of the dimensions of the nilpotent orbits in g and
by Nrig

g the set of the dimensions of the rigid nilpotent orbits of g (The notion of
rigid nilpotent orbit is recalled in Section 2, §2.2).

Fix a Cartan subalgebra h of g . Let Π be a basis of the root system ∆
associated to the couple (g, h). Denote by ∆+ the positive root system corre-
sponding to Π. For α ∈ ∆, denote by gα the root subspace associated to α . For
S any subset of Π, we denote by ∆S the root subsystem of ∆ generated by S ,
and by ∆S

+ the intersection ∆+ ∩∆S . Set

lS := h⊕
⊕

α∈∆S

gα.

Thus lS is a Levi subalgebra of g and it is well-known (see for instance [4], Lemma
3.8.1) that every Levi subalgebra of g is G-conjugated to lS , for some S in Π.
We shall denote simply by NS and Nrig

S the sets NlS and Nrig
lS

respectively.

1.4. Acknowledgment. I would like to thank A. A. Kirillov for having provided
the motivation for this work. I am also very grateful to Karin Baur for her
many comments and suggestions. In particular, she brought the thesis of Andreas
Emanuel Im Hof to my attention.

2. Jordan Classes, sheets and induced nilpotent orbits

2.1. Jordan classes. The results of this subsection are mostly due to W. Borho
and H. Kraft [3]. We also refer to [21] for a review.

Definition 2.1. Let x, y ∈ g . We say that x and y are G-Jordan equivalent
if there exists g ∈ G such that: gys = g(gxs) , yn = g(xn). This defines an
equivalence relation on g . The equivalence class of x is denoted by JG(x) and
called the G-Jordan class of x in g .

The group G acts in a obvious way on the set of the pairs (l,Ol) consisting
of a Levi subalgebra l of g and a nilpotent orbit Ol of l . The following lemma is
proven for instance in [21](Propositions 39.1.5 and 39.2.9):

Lemma 2.2. Let JG(x) be a G-Jordan class. Then

i) JG(x) = G.(z(gxs)reg + xn),

ii) dim JG(x) = dim(G.x) + dim z(gxs).

Proposition 2.3. There is a 1-1 correspondence between G-Jordan classes and
the set of pairs (l,Ol), up to G-conjugacy, where l is a Levi subalgebra of g and
Ol a nilpotent orbit of l.

We recall here the proof of Proposition 2.3 to precise how the 1-1 corre-
spondence is obtained.

Proof. Let JG(x) be a G-Jordan class of g . Since xs is semisimple, the algebra
l := gxs is a Levi subalgebra of g which contains xn . Denote by O the nilpotent
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orbit of xn in l . Then, the G-orbit of the pair (l,O) only depends on JG(x) and
not on the choice of a representative in JG(x). This defines a first map.

Conversely, let l be a Levi subalgebra of g and let Ol be a nilpotent orbit
in l . Fix z ∈ zg(l)

reg , y ∈ Ol and set x = y + z . As z belongs to the center
of l , [z, y] = 0. This forces xs = z and xn = y . Then gxs = gz = l , because
z ∈ zg(l)

reg . Since JG(x) = G · (z(gxs)reg + xn) by Lemma 2.2, (i), the G-Jordan
class of x depends neither on the choices of z ∈ z(gxs)reg nor on the choice of
y ∈ Ol . Furthermore, it is clear that JG(x) only depends on the G-orbit of (l,Ol)
and not on the choice of one of its representatives. This provides the other map.
These two maps are clearly inverse each other, whence the 1-1 correspondence.

If J is a G-Jordan class associated via the previous correspondence to a
pair (l,Ol), where l is a Levi subalgebra of g and Ol a nilpotent orbit of l , we shall
say that J has data (l,Ol). It follows from the classification of Levi subalgebras
of g , as well as the one of nilpotent orbits in reductive Lie algebras, that there
are only finitely many G-Jordan classes. Therefore, g is a finite disjoint union of
its G-Jordan classes. By Lemma 2.2, a G-Jordan class is a G-stable irreducible
subset of g contained in g(m) , for some m ∈ N . Hence, we easily deduce (see
[21](Proposition 39.3.3)):

Proposition 2.4. Let X be a sheet of g. Then, there is an unique G-Jordan
class J such that J ⊂ X and X = J . Moreover, X =

(
J
)reg

.

Next, we intend to determine which G-Jordan classes are dense in a sheet,
what we will do in Subsection 2.3

2.2. Induced nilpotent orbits. We recall in this subsection some facts about
induced nilpotent orbits. We refer to [4](§7.1) for a survey on this topic.

Theorem 2.5. Let l be the reductive part of a parabolic Lie algebra p = l ⊕ n

of g with nilradical n. Then there is a unique nilpotent orbit Og in g meeting
Ol +n in an open dense subset. We have dimOg = dimOl +2 dim n and the orbit
Og is the unique nilpotent orbit in g of this dimension which meets Ol + n.

We say that the orbit Og is induced from Ol and we denote it by Indg
p(Ol).

If Ol = 0, we say that Og is a Richardson orbit. The nilpotent orbit Og does not
depend on the parabolic subalgebra p having l as Levi factor, see [4](Theorem
7.1.3). As a result, we can equally use the notation Indg

l (Ol) or Indg
p(Ol).

Proposition 2.6. Let p = l ⊕ n be the Levi decomposition of a parabolic
subalgebra in g and Ol a nilpotent orbit in l.

i) codiml(Ol) = codimg(Indg
l (Ol)).

ii) Let l1 and l2 be two Levi subalgebras of g with l1 ⊂ l2 . Then
Indg

l2
(Indl2

l1
(Ol1)) = Indg

l1
(Ol1).

2.3. Sheets. We list in this subsection the main steps useful to reach Theorem
2.10 [2](§4.4). Some of these intermediate results will be needed in the sequel. The
most of results we set out here are due to Borho and are presented in the thesis of
Andreas im Hof [10]. We omit here the proofs and refer to [2](§3.1, Satz a, §3.6,
§4.2 and §4.4).
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Proposition 2.7. Let J be a G-Jordan class with data (l,Ol). Then
(
J
)reg

contains a unique nilpotent orbit, which is Indg
l (Ol).

Corollary 2.8. Let J and J ′ be two G-Jordan classes with data (l,Ol) and
(l
′
,Ol′ ) respectively such that l contains l

′
. Then J is contained in J ′ if and only

if Ol is Indl
l
′ (Ol′ ) up to G-conjugacy class.

By a dimension argument, it follows from Proposition 2.6, (i), that not
every nilpotent orbit is induced from another. A nilpotent orbit in g which is not
induced from any proper Levi subalgebra is called rigid.

Corollary 2.9. A G-Jordan class with data (l,Ol) is dense in a sheet if and
only if Ol is rigid in l.

By combining Corollary 2.9 and Proposition 2.4, we obtain the expected
classification for the sheets of g :

Theorem 2.10. There is a 1-1 correspondence between the set of pairs (l,Ol),
up to G-conjugacy class, where l is a Levi subalgebra of g and Ol a rigid nilpotent
orbit in l, and the set of sheets of g.

We shall say, in compliance with §1, that a sheet X has data (l,Ol) if X
corresponds to a pair (l,Ol) via the correspondence established in Theorem 2.10.

2.4. Additional facts. Let X be a sheet of g(m) , for m ∈ N , with data (l,Ol)
and let JG(x) be the G-Jordan class with the same data (l,Ol). By Lemma 2.2,
we have:

l = gxs , dim JG(x) = dim G.x + dim zg(l).

In addition, by Propositions 2.4 and 2.7, JG(x) = X and Indg
l (Ol) is the unique

nilpotent orbit contained in X . Moreover, since Indg
l (Ol) is contained in X ⊆ g(m) ,

we have dim(Indg
l (Ol)) = dim G.x = 2m . To summarize, using in addition

Proposition 2.6, (i), we have obtain:

Proposition 2.11. Let X with data (l,Ol). Then Indg
l (Ol) is the unique

nilpotent orbit contained in X . Moreover:

dim X = dim(Indg
l (Ol)) + dim zg(l)

= dim g− dim l + dimOl + dim zg(l).

Recall that Ng denotes the set of the dimensions of the nilpotent orbits in g

(see Introduction, §1.3). Obviously, if 2m ∈ Ng , then g(m) is a nonempty set.
Proposition 2.11 says that the converse holds, too. Thereby, we can claim:

Proposition 2.12. The set g(m) is nonempty if and only if 2m ∈ Ng .

We conclude the section with general properties and remarks about the
sheets and the varieties g(m) .

Lemma 2.13. Suppose that the semisimple part of g has dimension strictly
bigger than 3. Then the subregular nilpotent orbit of g is not rigid.
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Proof. We adopt the notations of the Introduction, §1.3. For α ∈ Π, the
nilpotent orbit of g induced from the zero orbit in lS has dimension,

dim g− dim lS = dim g− rk g− 2,

by Proposition 2.6, (i). Hence the subregular nilpotent orbit is Indg
lS

(O0) since it
is the only nilpotent orbit of g of dimension dim g − rk g − 2. As g is different
from l by hypothesis, we deduce that the subregular nilpotent orbit is not rigid.

Recall that dg is the integer (dim g− ind g)/2.

Theorem 2.14. i) If m > dg , then g(m) is an empty set, and g(dg) is an
irreducible subset of g of dimension dim g.

(ii) The subset g(dg−1) is equidimensional of dimension dim g− 3.

Proof. i) has already been noticed in the Introduction.

iii) Let X be a sheet of g(dg−1) with data (l,Ol). By Proposition 2.6, (i),
the codimension in l of Ol is rk l + 2 = rk g + 2. Therefore, Ol is the subregular
nilpotent orbit of l . As Ol is a rigid nilpotent orbit of l , Lemma 2.13 implies that
the semisimple part of l has dimension 3. Then Ol is the zero orbit of l and X
has dimension

dim g− dim l + 0 + dim zg(l) = (dim g− rk g− 2) + (rk g− 1)

= dim g− 3,

by Proposition 2.11, since the center of l has dimension rk g− 1.

Remark 2.15. We cannot expect analogous results for the smaller integers.
Indeed, as noticed in Introduction, our computations will show that g(m) is
not always equidimensional (see examples in sl5 , so12 , F4 , E6 , E7 and E8 in
Tables 5, 6 – 12). This phenomenon arises from two problems. Firstly, dif-
ferent orbits can have the same dimension. Secondly, a nilpotent orbit can
be induced from a rigid nilpotent orbit in different ways. For example the
nilpotent orbit of dimension 44 in F4 is induced in two different ways (see Ta-
ble 7). But, if dim(Indl1(Ol1)) = dim(Indl2(Ol2)), there is no reason for that
dim zg(l1) = dim zg(l1), even if Indl1(Ol1) = Indl2(Ol2). Surprisingly, in the classi-
cal case, we will notice that if Indl1(Ol1) = Indl2(Ol2), then dim zg(l1) = dim zg(l1)
(see Theorem 3.11). But for all that, as the first problem still occurs, the varieties
g(m) are not equidimensional in general in the classical cases too, as the examples
of sl6 and so12 show.

Remark 2.16. The previous remark underlines the fact that a nilpotent orbit
may belong to different sheets. Again, this comes from the fact that a nilpotent
orbit can be induced from a rigid nilpotent orbit in different way. We will detail
specific examples of such situations in the sequel. In slN the situation is slightly
simpler since, in this case, there is a 1-1 correspondence between the the set of the
sheets and the set of the nilpotent orbits (see Section 3, §3.1).
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3. Computations in the classical cases

In this section, we investigate the varieties g(m) and the sheets in the case where
g is a classical simple Lie algebra. Because of the 1-1 correspondence established
in Theorem 2.10, we first need of a precise description of rigid nilpotent orbits.
Since Levi subalgebras of a simple exceptional Lie algebra may have simple factors
of classical type, this piece of work will serve as well Section 4 devoted to the
exceptional cases.

3.1. Type A.

In this paragraph, g is the algebra slN , for N ≥ 2. First of all, recall that
the set of the nilpotent orbits of g are in 1-1 correspondence with the set P(N)
of all the partitions of N . Here, by partition we mean a sequence d = [d1, . . . , dN ]
of nonnegative integers, possibly zero, with d1 ≥ · · · ≥ dN and d1 + · · ·+dN = N .
If d = [d1, . . . , dN ] ∈ P(N), we denote by Od the corresponding nilpotent orbit
of g . Let d = [d1, . . . , dN ] be in P(N). Set si = #{j | dj ≥ i} the dual partition
of d . Notice that d1 is the biggest integer j such that sj is different from zero.
Define now a subset Sd of Π as follows: the connected components Sd

1 , . . . , Sd
d1

of
Sd have the cardinalities s1 − 1, . . . , sd1 − 1 respectively. Then we denote by ld
the Levi subalgebra lSd in the notations of the Introduction, §1.3. The following
result, presented in [4](Theorem 7.2.3), is due to Kraft, Ozeki, Wakimoto:

Proposition 3.1. The partition associated to Indg
ld

(O0) is d. In particular,
every nonzero nilpotent orbit in g is Richardson and the unique rigid nilpotent
orbit is the zero orbit.

Let d be a partition of N . The following formula is very standard, see
[4](Corollary 6.1.4):

dimOd = 2m(d) , where m(d) := (N2 −
d1∑
i=1

s2
i )/2. (1)

Lemma 3.2. Let d be in P(N) and let X be a sheet with data (ld,O0). Then
dim X = 2m(d) + d1 − 1.

Proof. By Proposition 3.1 and Relation (1), dim(Indg
ld

(O0)) = 2m(d). In
addition, Proposition 2.11 gives: dim X = 2m(d) + d1 − 1, since the center of ld

has dimension: rk g−#Sd = N − 1−
d1∑
i=1

(si − 1) = d1 − 1.

Notice that we can also deduce (1) from Propositions 3.1 and 2.6, (i), since ld has

dimension:
d1∑
i=1

(s2
i − 1) + (d1 − 1) =

d1∑
i=1

s2
i − 1.

Theorem 3.3. For m ∈ N, we have: dim g(m) = max
d∈P(N)
m(d)=m

(2m + (d1 − 1)),

where, by convention, max
Ø

(2m + (d1 − 1)) = 0 and dim Ø = 0.
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Proof. Let m be in N and let X be a sheet of g(m) . This forces 2m ∈ Ng , by
Proposition 2.12. By Theorem 2.10 and Proposition 3.1, X has data (ld,O0), for
some d ∈ P(N). The assertion is now an easy consequence of Lemma 3.2.

We present in Table 1 the dimension of the sheets and the varieties g(m)

for N = 6. In this table we give for each d ∈ P(6) the dimension 2m(d) of Od

and the quantity d1 − 1. Next, we give the dimension of the sheets of g(m(d)) and
then, the dimension of g(m(d)) , according to Theorem 3.3. In Table 1, Xd denotes
the sheet whose data is (ld,O0), for d ∈ P(6). As two different orbits can have
the same dimension, we need to compute d1 − 1, for each d ∈ P(N) such that
m(d) = m to get the dimension of dim g(m) (e.g. there are two nilpotent orbits of
dimension 18).

2m ∈ Ng d ∈ P(6), m(d) = m d1 − 1, m(d) = m dim Xd, m(d) = m dim g(m)

30 [6] 5 35 35

28 [5, 1] 4 32 32

26 [4, 2] 3 29 29

24 [4, 12] / [32] 3 / 2 27 / 26 27

22 [3, 2, 1] 2 24 24

18 [3, 13] / [23] 2 / 1 20 / 19 20

16 [22, 12] 1 17 17

10 [2, 14] 1 11 11

0 [16] 0 0 0

Table 1: Dimensions of the sets g(m) for g = sl6 .

3.2. Types B,C,D.

Set ε = ±1 and consider a nondegenerate bilinear form 〈·, ·〉ε on CN such
that:

〈a, b〉ε = ε〈a, b〉ε, for all b, a ∈ CN .

If ε = −1 (resp. 1), then the form is 〈·, ·〉ε is symplectic (resp. symmetric).
Define:

I(〈·, ·〉ε) := {g ∈ GLN | 〈ga, gb〉ε = 〈a, b〉ε, for all a, b ∈ CN},
gε := {x ∈ slN | 〈xa, b〉ε = −〈a, xb〉ε, for all a, b ∈ CN}.

If ε = −1, then N = 2n and g−1 ' sp2n . If ε = 1, then g−1 ' soN . Thus
I(〈·, ·〉ε) is the isotropy group of the form 〈·, ·〉ε on CN , and gε is its Lie algebra.
Now, set:

Pε(N) := {[d1, . . . , dN ] ∈ P(N) , #{j | dj = i} is even for i s.t. (−1)i = ε}.

The following theorem is standard and due to Gerstanhaber [9], Springer
and Steinberg. We refer to [4](§5.1) for more details.

Theorem 3.4. Nilpotent I(〈·, ·〉ε)-orbits in gε are in 1-1 correspondence with
the partition Pε(N) of N , except that if ε = 1, and N = 2n, then very even par-
titions of N (those with only even parts, each having even multiplicity) correspond
to two orbits that we label with I and II .
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For the reader’s convenience, we will detail in the sequel some results of
Kempken [13] and Spaltenstein [20] presented in [4](§7.3) concerning induced
nilpotent orbits in the types B , C , D . We endow the set P(N) with the classical
order which corresponds to the classical order on the set of nilpotent orbits in slN .
To begin with, recall a result due to Gerstenhaber which generalizes the transpose
operation in the set P(N), see [4](Lemma 6.3.3):

Proposition 3.5. Let p = [p1, . . . , p2n+1] be a partition in P(2n + 1). Then
there is an unique largest partition pB in P1(2n+1) dominated by p. The partition
may be defined as follows. If p is not already in P1(2n+1), then at least one of its
even parts must occur with odd multiplicity; let q be the largest such part. Replace
the last occurrence of q in p by q − 1 and the first subsequent part r strictly less
than q − 1 by r + 1; we may have to add a 0 to p to find such an r . Repeat
this process until a partition in P1(2n+1) is obtained. Similarly, there are unique
largest partitions qC , qD in P−1(2n), P1(2n) dominated by any given partition
q of 2n + 1.

The partition pB is called the B -collapse of p . Similarly, the partitions qC and
qD are called the C- and D-collapses of q . Their definitions are the obvious
analogues of that of pB . Henceforth, we shall denote by T the type of gε , that is
to say B , C or D .

Let l be a Levi subalgebra of g . Then, there are integers i1, . . . , iS ≥ 0 and
R such that,

l ' gliS × · · · × gli1 ×m,

where m has the same type as gε and whose standard representation has dimension
R . After a possible renumbering, we can suppose that [i1, . . . , iS] belongs to P(S),
with 2S + R = N . Then we define:

PLevi
ε = {(i; R) ∈ P(S)× N≥0 | 2S + R = N, S ≥ 0 and R 6= 2, if ε = 1}.

Lemma 3.6. There is a 1-1 correspondence between G-conjugacy classes of
Levi subalgebras of g and elements of PLevi

ε .

If l corresponds to an element (i; R) of PLevi
ε , we shall say that l is of type (i; R).

Proposition 3.7. Let l = gll ×m be a maximal Levi subalgebra, where m has
the same type as gε (then 2l + r = N if r is the dimension of the standard
representation of m and l is of type (l; r)). Let Ol = O0×Of be a nilpotent orbit
in l whose component in the gll factor is the zero orbit and whose component Of

in the m factor has partition f . Then the partition of Indgε

l (Ol) is p, where the
partition p is obtained from f as follows:

We add 2 to the first l terms of f , obtaining a partition f̃ (extending by zero
if necessary in f ), and then take the T-collapse of f̃ . If the collapse is nontrivial

(ie f̃T 6= f̃)), it is obtained by subtracting 1 from the lth part of f̃ and adding 1
to its (l + 1)th part. If gε = so4n , r 6= 0 and the collapsed partition is very even,
then f is also very even and the induced orbit inherits the label I or II of Of ; if
r = 0, then the label of the induced orbit is the same as that of Ol if n is even but
differs from it if n is odd.
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Define P∗
ε (N) to be the set of all the partitions [d1, . . . , dN ] in Pε(N) such that

the following two conditions hold:

(i) 0 ≤ di+1 ≤ di ≤ di+1 + 1 for all i ,

(ii) #{j | dj = i} 6= 2 if ε(−1)i = −1.

We plan to show that P∗
ε (N) encodes rigid nilpotent orbits. Let d =

[d1, . . . , dN ] be in Pε(N). We wish to construct an element of P∗
ε (N) from d

“compatible with the induction operation”. Set i0 := 0, d(0) := d and g
′(0) := gε .

Step 1: if d ∈ P∗
ε (N), set d(1) := d = d(0) . Otherwise, there is j ∈ {1, . . . , N}

such that either dj ≥ dj+1 + 2, or dj−1 > dj = dj+1 > dj+2 with ε(−1)dj = −1
(where we set d0 = 0 and dj = 0, for all j > N , by convention). Denote by i1
the smallest integer j such that one of those two situations happens.

(a) In the first situation, set:

d(1) := [d1 − 2, . . . , di1 − 2, di1+1, . . . , dN ].

(b) In the second situation, set:

d(1) := [d1 − 2, . . . , di1−1 − 2, di1 − 1, di1+1 − 1, di1+2, . . . , dN ].

In both situations, d(1) is an element of Pε(N − 2i1) so that Od(1) is a
nilpotent orbit of m(1) , where m(1) is a classical simple Lie algebra of the same
type as gε whose standard representation has dimension N − 2i1 . Moreover, by
Proposition 3.7,

Od = Indgε

l(1)
(O0 ×Od(1)),

where l(1) is a Levi subalgebra of gε of type (i1; N − 2i1).

Step 2: suppose that i0, i1, . . . , ip−1 , d(0),d(1), . . . ,d(p−1) , m(0), m(1), . . . ,m(p−1)

and l(1), . . . , l(p−1) have been defined for some p ∈ {1, . . . , N} so that:

(c1) for all k ∈ {0, . . . , p−1} , Od(k) is a nilpotent orbit of m(k) , where m(k)

is a classical simple Lie algebra of same type as gε whose corresponding standard
representation has dimension N − 2i0 − 2i1 − · · · − 2ik ,

(c2) for all k ∈ {1, . . . , p− 1} , Od(k−1) = Indm(k−1)

l(k) (O0 ×Od(k)), where l(k)

is a Levi subalgebra of m(k−1) of type (ik; N − 2i0 − 2i1 − · · · − 2ik).

Then, we define ip , d(p) , l(p) and m(p) as in Step 1. More precisely, if
d(p−1) ∈ P∗

ε (N − 2i0 − 2i1 · · · − 2ip−1), we set d(p) := d(p−1) . Otherwise, there

is j ∈ {1, . . . , N − 2i0 − 2i1 · · · − 2ip−1} such that either d
(p−1)
j ≥ d

(p−1)
j+1 + 2, or

d
(p−1)
j−1 > d

(p−1)
j = d

(p−1)
j+1 > d

(p−1)
j+2 with d

(p−1)
j odd. Denote by ip the smallest integer

j such that one of those two situations happens.

(a) In the first situation, set:

d(p) := [d
(p−1)
1 − 2, . . . , d

(p−1)
ip

− 2, d
(p−1)
ip+1 , . . . , d

(p−1)
N−2i0−2i1···−2ip−1

].

(b) In the second situation, set:

d(p) := [d
(p−1)
1 − 2, . . . , d

(p−1)
ip−1 − 2, d

(p−1)
ip

− 1, d
(p−1)
ip+1 − 1, d

(p−1)
ip+2 , . . . , d

(p−1)
N−2i0−2i1···−2ip−1

].



682 Moreau

As before, in both cases, d(p) is an element of Pε(N − 2i0 − 2i1 · · · − 2ip)
so that Od(p) is a nilpotent orbit of m(p) , where m(p) is a classical simple Lie
algebra of the same type as gε whose standard representation has dimension
N − 2i0 − 2i1 · · · − 2ip . And, by Proposition 3.7,

Od(p−1) = Indm(p−1)

l(p) (O0 ×Od(p)),

where l(p) is a Levi subalgebra of m(p−1) of type (ip; N − 2i0 − 2i1 · · · − 2ip).
Then i0, i1, . . . , ip , d(0),d(1), . . . ,d(p) , m(0), m(1), . . . ,m(p) and l(1), . . . , l(p) satisfy
Conditions (c1) and (c2). The process clearly ends after a finite number of steps,
that is to say d(j) = d(j+1) , from some j ∈ N .

Definition 3.8. We denote by z(d) the smallest integer j such that d(j) =
d(j+1) . If a partition d′ is obtained from another partition d by a transformation
of type (a) or (b) as described in Step 1 or in Step 2 (in particular d 6= d′ ),
then we shall say that d′ is deduced from d by an elementary transformation. In
this case, it is clear that

z(d′) = z(d)− 1. (2)

What foregoes proves that Od is not rigid as soon as z(d) 6= 0. Using Proposition
3.7, we can easily prove that the converse holds, too. To summarize, we have
obtained:

Corollary 3.9. The nilpotent orbit corresponding to d ∈ Pε(N) is rigid if and
only if z(d) = 0.

As z(d) = 0 if and only if d ∈ P∗
ε (N), we deduce from Corollary 3.9 the

following result [4](Corollary 7.3.5):

Corollary 3.10. The nilpotent orbit corresponding to d ∈ Pε(N) is rigid if
and only if d ∈ Pε(N)∗ .

Let d = [d1, . . . , dN ] be in Pε(N). Put ri = #{j | dj = i} and si = #{j | dj ≥ i} .
Denote by m(d) the half dimension of Od . By standard results [4](Corollary
6.1.4), m(d) is given by the following formulas:

m(d) =


(2n2 + n− 1

2

∑
i

s2
i + 1

2

∑
i odd

ri)/2, if g = so2n+1

(2n2 + n− 1
2

∑
i

s2
i − 1

2

∑
i odd

ri)/2, if g = sp2n

(2n2 − n− 1
2

∑
i

s2
i + 1

2

∑
i odd

ri)/2, if g = so2n.

(3)

The construction preceding Definition 3.8 gives a method to compute the
number z(d), for d ∈ Pε(N). Then, according to Corollary 3.9, we list in Table 2
the rigid nilpotent orbits, together with their dimensions computed following (3),
for the types B2 , B3 , C3 , D4 , D5 , D6 and D7 . We list these cases since they
all appear as simple factors of Levi subalgebras in the exceptional Lie algebras.

Proposition 3.11. Let d = [d1, . . . , dN ] be in Pε(N). Suppose that Od =
Indgε

l (Ol), where l is a Levi subalgebra of gε and Ol a rigid nilpotent orbit in l.
Then dim zgε(l) = z(d).
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B2 C3 B3 D4 D5 D6 D7

[15] 0 [16] 0 [17] 0 [18] 0 [110] 0 [112] 0 [114] 0

[22, 1] 4 [2, 14] 6 [22, 13] 8 [22, 14] 10 [22, 16] 14 [22, 18] 18 [22, 110] 22

[3, 22, 1] 16 [3, 22, 13] 24 [24, 14] 28 [24, 16] 36

[3, 22, 15] 32 [3, 22, 17] 40

[3, 24, 1] 36 [3, 24, 13] 48

[33, 22, 1] 58

Table 2: Rigid nilpotent orbits with their dimensions in so5 , sp6 , so7 , so8 , so10 ,
so12 and so14

Remark 3.12. As noted on several occasions (see Remarks 2.15 and 2.16), a
given nilpotent orbit can belong to different sheets. Nevertheless, Proposition 3.11
assures that, in the classical case, the dimension of all sheets containing a given
nilpotent orbit have the same dimension. For example in so12 , we can readily
check that the nilpotent orbit O[32,16] is induced from two different ways: from
the zero orbit in a Levi subalgebra of type (2; 8) and from the zero orbit in a
Levi subalgebra of type (1; 10). The two corresponding sheets share the same
dimension 35 (cf Table 5). For exceptional Lie algebras the statement is no longer
true (see again the unique nilpotent orbit of dimension 66 in E6 in Table 8 for a
counterexample).

Proof. 1) If Od is rigid, then l = gε , and dim zgε(l) = 0. On the other hand,
z(d) = 0, according to Corollary 3.9.

2) We suppose that d 6∈ P∗
ε (N), or equivalently that Od is not rigid. Then

l is strictly contained in gε . By Lemma 3.6, l is G-conjugated to

gliS × · · · × gli1 ×m,

for 2i1 + · · · 2iS + R = N , i1 ≥ · · · ≥ iS , and m a Lie algebra of same type as
gε whose standard representation has dimension R . In other words, l has type
(i; R), with i = [i1, . . . , iS] ∈ P(S). Notice that the center of l has dimension S .
By Theorem 3.1,

Ol = O0 × · · · × O0 ×Of ,

where f is an element of P∗
ε (R) and where the component of Ol on the glik factor

is zero, for k = 1, . . . , S . Set i0 := 0 and m(0) = l̃(0) := m . For p = 1, . . . , S ,
denote by m(p) a Lie algebra of the same type as gε whose standard representation
has dimension

Rp := 2ip + · · ·+ 2i1 + 2i0 + R,

and by l̃(p) a Levi subalgebra of m(p) of type (ip; 2ip−1 + · · ·+ 2i1 + 2i0 + R). Set
l(S) := gε and, for p = 0, . . . , S − 1, denote by l(p) a Levi subalgebra of gε of type
([ip+1, . . . , iS]; 2ip + · · ·+ 2i1 + 2i0 + R) such that:

l = l(0) ⊆ · · · ⊆ l(S) = gε.

As defined, l(p) is G-conjugated to

gliS × · · · × glip+1
×m(p),
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for any p = 0, . . . , S − 1. Set d(0) := f and define d(p) , for p = 1, . . . , S , by
induction as follows; d(p) is the element of Pε(Rp) such that:

Od(p) = Indm(p)

l̃(p) (O0 ×Od(p−1)),

where O0 is the zero orbit in the glip factor. Check first that d(S) = d . By
Proposition 2.6, (ii), we can write:

Od = Indl(S)

l(S−1)(. . . (Indl(1)

l(0)(O0 × · · · × O0 ×Of )︸ ︷︷ ︸
S factors

))).

In addition, we easily see that

Indl(p)

l(p−1)(O0 × · · · × O0︸ ︷︷ ︸
S−p+1 factors

×Od(p−1)) ' O0 × · · · × O0︸ ︷︷ ︸
S−p factors

×Indm(p)

l̃(p) (O0 ×Od(p−1))

= O0 × · · · × O0︸ ︷︷ ︸
S−p factors

×Od(p) ,

for any p = 1, . . . , S , since the S − p first factors of l(p−1) and l(p) are the same.
Then, by induction, we obtain:

Od = Indl(S)

l(S−1)(. . . (Indl(1)

l(0)(O0 × · · · × O0 ×Of︸ ︷︷ ︸
S factors

))

= Indl(S)

l(S−1)(. . . Indl(2)

l(1)(O0 × · · · × O0︸ ︷︷ ︸
S−1 factors

×Od(1))

...

= Indl(S)

l(S−1)(O0 ×Od(S−1))

= Indm(S)

l̃(S) (O0 ×Od(S−1)),

since l(S) ' m(S) ' gε and l̃(S) ' l(S−1) . Now the definition of d(S) forces d = d(S) .

It remains to compute the number z(d(S)). By induction on p ∈ {0, . . . , S} ,
let us prove that z(d(p)) = p and that, for all i < ip+1 :

(i)′ 0 ≤ d
(p)
i+1 ≤ d

(p)
i ≤ d

(p)
i+1 + 1,

(ii)′ #{j | d
(p)
j = i} 6= 2, if ε(−1)i = −1.

Then we will deduce the expected result from the p = S case, since the center of
l has dimension S .
(p = 0): since Of is rigid in m , it follows from Corollary 3.9 that z(f) = z(d(0)) = 0
and that the conditions (i)′ and (ii)′ hold.
((p− 1) ⇒ p): suppose that, for all k ∈ {0, . . . , p − 1} , z(d(k)) = k and that
conditions (i)′ and (ii)′ holds for i < ik+1 , for some p ∈ {1, . . . , S} . We have to
first prove that z(d(p)) = p . By Relation (2), it suffices to prove that d(p−1) is
deduced from d(p) by an elementary transformation, since z(d(p−1)) = p − 1 by
the induction hypothesis. As l̃(p) is a maximal Levi subalgebra of m(p) , we can
apply Proposition 3.7 to

Od(p) = Indm(p)

l̃(p) (O0 ×Od(p−1)).
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With the notations of Proposition 3.7, we have:

d(p) = ˜(d(p−1))T.

By the induction hypothesis, for all i < ip , conditions (i)′ and (ii)′ hold for d(p−1) .
Consequently the smallest integer l such that one of the situations (a) or (b) of
Step 1 happens in d(p) is equal to ip , because l̃(p) is of type (ip; Rp − 2ip).

We distinguish two cases: either d̃(p−1)
T equals to d̃(p−1) or not. We easily

check that in both situations, d(p−1) is deduced from ˜(d(p−1))T by an elementary
transformation. Moreover, for all i < ip+1 , conditions (i)′ and (ii)′ hold for
d(p) because ip+1 ≤ ip . By induction, for all p = 1, . . . , S , z(d(p)) = p and
conditions (i)′ and (ii)′ hold, for all i < ip+1 . In particular, with p = S , we have:
z(d(S)) = z(d) = S = dim zg(l).

We are now in a position to compute the dimension of the varieties g
(m)
ε .

Recall that m(d) is given by the formulas (3). We adopt the same conventions as
in Theorem 3.3.

Theorem 3.13. Let m be in N. Then, dim g
(m)
ε = max

d∈Pε(N)
m(d)=m

(2m + z(d)).

Proof. Let m be in Ngε and let X be a sheet of g
(m)
ε with data (l,Ol). Let

d be the partition associated to Indgε

l (Ol). By Proposition 2.7, m = m(d). In
addition, by Proposition 3.11, dim zg(l) = z(d). Then the statement results from
Proposition 2.11.

In Tables 3, 4 and 5, we give for each d ∈ Pε(N), the integers 2m(d) and

z(d) and then the dimensions of the sets g
(m(d))
ε , in the cases where N = 3 with

ε = ±1 and N = 6 with ε = 1.

2m ∈ Ng d ∈ Pε(6), m(d) = m z(d), d ∈ Pε(6) dim g
(m)
ε

18 [7] 3 21

16 [5, 12] 2 18

14 [32, 1] 1 15

12 [3, 22] 1 13

10 [3, 14] 1 11

8 [22, 13] 0 8

0 [17] 0 0

Table 3: Dimensions of the sets g
(m)
ε for g = so7 .

4. Computations in the exceptional cases

We suppose in this section that g is a simple exceptional Lie algebra. We get now
ready to compute the dimensions of all the sheets of g . Let us use the notations
of Introduction, §1.3. For each pair (S, p), with S ⊂ Π and p ∈ NS , set

dS,p := dim g− rk g− 2#∆S
+ + p. (4)
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2m ∈ Ng d ∈ Pε(6), m(d) = m z(d), d ∈ Pε(6) dim g
(m)
ε

18 [6] 3 21

16 [4, 2] 2 18

14 [32] / [4, 12] 1 / 1 15

12 [23] 1 13

10 [22, 12] 1 11

6 [2, 14] 0 6

0 [16] 0 0

Table 4: Dimensions of the sets g
(m)
ε for g = sp6 .

By Proposition 2.6, (i), dS,p is the dimension of any nilpotent orbit induced by
a nilpotent orbit in lS of dimension p . Then, by Lemma 2.2, a G-Jordan class
whose data (lS,OS) satisfies dimOS = p , has dimension

dS,p + (rk g−#S), (5)

since dim zg(lS) = rk g − #S . Moreover, by Proposition 2.10, the expression (5)
corresponds to the dimension of a sheet of g(m) , where 2m = dS,p , if and only if
p ∈ Nrig

S . When all the simple factors of lS are of classical type, the set Nrig
S is

given by Table 2. For the exceptional types, the rigid nilpotent orbits are listed in
[20](Appendix of Chap. II), thanks to Elashvili’s computations. Using all this, we
present in Tables 6 – 12, the necessary data for each exceptional type to compute
the dimension of the sheets. More precisely, for each subset S ∈ Π, we give per
column:

I : the type of ∆S , that is the type of the Levi subalgebra lS ,

II : the cardinality of S ,

III : the cardinality of ∆S
+ ,

IV : the set Nrig
S ,

V : the set of the numbers dS,p , computed following (4), where p runs through
the column IV,

VI : the set of the numbers dS,p + (rk g−#S), where p runs through the column
IV,

Like that, column V gives the set Ng of all the dimensions of nilpotent orbits while
column VI gives the set of all the dimensions of the sheets of g , according to (5).
Next, we list the dimension of the sets g(m) in Tables 13 – 17. This piece of work
completes the exceptional case. We conclude by several remarks about the tables.

Remark 4.1. We might precise that our tables do not follow the usual no-
tations of Bala and Carter. Recall that there is a natural 1-1 correspondence
between nilpotent orbits of g and G-conjugacy classes of pairs (l, pl) where l is a
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2m ∈ Ng d ∈ Pε(6), m(d) = m z(d), d ∈ Pε(6) dim g
(m)
ε

60 [11, 1] 6 66

58 [9, 3] 5 63

56 [9, 13] / [7, 5] 4 / 4 60

54 [7, 3, 12] / [62] 4 / 3 58

52 [52, 12] / [7, 22, 1] 3 / 2 55

50 [5, 3, 22] 2 52

48 [43] /[42, 3, 1] 2 / 2 50

46 [42, 22] / [5, 3, 14] 2 / 2 48

44 [42, 14] / [5, 22, 13] / [34] 1 / 1 / 1 45

42 [33, 13] 1 43

40 [32, 22, 12] 1 41

36 [5, 17] / [3, 24, 1] 2 / 0 38

34 [32, 16] 1 35

32 [3, 22, 15] 0 32

30 [26] 1 31

28 [24, 14] 0 28

18 [22, 18] 0 18

0 [112] 0 0

Table 5: Dimensions of the sets g
(m)
ε for g = so12 .

Levi subalgebra of g and pl a distinguished parabolic subalgebra of the semisim-
ple part of l [4](Theorem 8.2.12). The Bala-Carter notation for nilpotent orbits
refer to the type of the corresponding Levi subalgebra via this correspondence.
In this note, we have considered an other approach. In [20](Appendix of Chap.
II), both approaches are presented in the tables. It is worth noting that isomor-
phic Levi subalgebras are not necessary G-conjugate. For instance there are two
non-conjugate Levi subalgebras of type A1 (and of type A2 ) in F4 . The one cor-

responding to a short root is usually denoted by Ã1 in the Bala-Carter notations.
Remark that IndF4

A1
(O0) = IndF4

Ã1
(O0) and IndF4

A2
(O0) 6= IndF4

Ã2
(O0), since there

are two nilpotent orbits of dimension 42 and only one of dimension 46 (see Table
7). For completeness, we take this phenomenal in our tables into account. We
refer to [20] or [4](§8.4) for more details about this. In fact, as we only need the
dimension of Levi subalgebras of g and of their center, we could disregard this
fact.
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I II III IV V : Ng VI : Dimensions of the sheets

( ∆S ) ( #S ) ( #∆S
+ ) ( N

rig
S

) ( dS,p, p ∈ N
rig
S

) ( dS,p + (rk g −#S), p ∈ N
rig
S

)

Ø 0 0 0 12 14

A1 , Ã1 1 1 0 , 0 10 , 10 11 , 11

G2 2 6 8 / 6 / 0 8 / 6 / 0 8 / 6 / 0

Table 6: Dimension of the sheets for g of type G2

I II III IV V VI

Ø 0 0 0 48 52

A1 , Ã1 1 1 0 , 0 46 , 46 49 , 49

A1 + Ã1 2 2 0 44 46

A2 , Ã2 2 3 0 , 0 42 , 42 44 , 44

A1 + Ã2 , Ã1 + A2 3 4 0 , 0 40 , 40 41 , 41

B2 2 4 4 / 0 44 / 40 46 / 42

B3 3 9 8 / 0 38 / 30 39 / 31

C3 3 9 6 / 0 36 / 30 37 /31

F4 4 24 36 / 34 / 28 36 / 34 / 28 36 / 34 / 28

22 / 16 / 0 22 / 16 / 0 22 / 16 / 0

Table 7: Dimension of the sheets for g of type F4
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I II III IV V VI

Ø 0 0 0 72 78

A1 1 1 0 70 75

2A1 2 2 0 68 72

3A1 3 3 0 66 69

A2 2 3 0 66 70

A2 + A1 3 4 0 64 67

A2 + 2A1 4 5 0 62 64

2A2 4 6 0 60 62

2A2 + A1 5 7 0 58 59

A3 3 6 0 60 63

A3 + A1 4 7 0 58 60

D4 4 12 16 / 10 / 0 64 / 58 / 48 66 / 60 / 50

A4 4 10 0 52 54

A4 + A1 5 11 0 50 51

A5 5 15 0 42 43

D5 5 20 24 / 14 / 0 56 / 46 / 32 57 / 47 / 33

E6 6 56 54 / 40 / 22 / 0 54 / 40 / 22 / 0 54 / 40 / 22 / 0

Table 8: Dimension of the sheets for g of type E6
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I II III IV V VI

Ø 0 0 0 126 133

A1 1 1 0 124 130

2A1 2 2 0 122 127

(3A1)′ , (3A1)′′ 3 3 0 , 0 120 , 120 124 , 124

4A1 4 4 0 118 121

A2 2 3 0 120 125

A2 + A1 3 4 0 118 122

A2 + 2A1 4 5 0 116 119

A2 + 3A1 5 6 0 114 116

2A2 4 6 0 114 117

2A2 + A1 5 7 0 112 114

A3 3 6 0 114 118

(A3 + A1)′ , (A3 + A1)′′ 4 7 0 , 0 112 , 112 115 , 115

A3 + 2A1 5 8 0 110 112

A3 + A2 5 9 0 108 110

Table 9: Dimension of the sheets for g of type E7 , 1/2
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I II III IV V VI

A3 + A2 + A1 6 10 0 106 107

A4 4 10 0 106 109

A4 + A1 5 11 0 104 106

A4 + A2 6 13 0 100 101

D4 4 12 16 / 10 / 0 118 / 112 / 102 121 / 115 / 105

D4 + A1 5 13 16 / 10 / 0 116 / 110 / 100 118 / 112 / 102

(A5)′ , (A5)′′ 5 15 0 , 0 96 , 96 98 , 98

A5 + A1 6 16 0 94 95

D5 5 20 24 / 14 / 0 110 / 100 / 86 112 / 102 / 88

D5 + A1 6 21 24 / 14 / 0 108 / 98 / 84 109 / 99 / 85

A6 6 21 0 84 85

D6 6 30 36 / 32 / 28 / 18 / 0 102 / 98 / 94 / 84 / 66 103 / 99 / 95 / 85 / 67

E6 6 36 54 / 40 / 22 / 0 108 / 94 / 76 / 54 109 / 95 / 77 / 55

E7 7 63 92 / 90 / 82 / 70 92 / 90 / 82 / 70 92 / 90 / 82 / 70

64 / 52 / 34 / 0 64 / 52 / 34 / 0 64 / 52 / 34 / 0

Table 10: Dimension of the sheets for g of type E7 , 2/2
-
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I II III IV V VI

Ø 0 0 0 240 248

A1 1 1 0 238 245

2A1 2 2 0 236 242

3A1 3 3 0 234 239

4A1 4 4 0 232 236

A2 2 3 0 234 240

A2 + A1 3 4 0 232 237

A2 + 2A1 4 5 0 230 234

A2 + 3A1 5 6 0 228 231

2A2 4 6 0 228 232

2A2 + A1 5 7 0 226 229

2A2 + 2A1 6 8 0 224 226

A3 3 6 0 228 233

A3 + A1 4 7 0 226 230

A3 + 2A1 5 8 0 224 227

A3 + A2 5 9 0 222 225

A3 + A2 + A1 6 10 0 220 222

2A3 6 12 0 216 218

A4 4 10 0 220 224

A4 + A1 5 11 0 218 221

A4 + 2A1 6 12 0 216 218

A4 + A2 6 13 0 214 216

Table 11: Dimension of the sheets for g of type E8 , 1/2
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I II III IV V VI

A4 + A2 + A1 7 14 0 212 213

A4 + A3 7 16 0 208 209

D4 4 12 16 / 10 / 0 232 / 226 / 216 236 / 230 / 220

D4 + A1 5 13 16 / 10 / 0 230 / 224 / 214 233 / 227 / 217

D4 + A2 6 15 16 / 10 / 0 226 / 220 / 210 228 / 222 / 212

A5 5 15 0 210 213

A5 + A1 6 16 0 208 210

D5 5 20 24 / 14 / 0 224 / 214 / 200 / 227 / 217 / 203

D5 + A1 6 21 24 / 14 / 0 222 / 212 / 198 224 / 214 / 200

D5 + A2 7 23 24 / 14 / 0 218 / 208 / 194 219 / 209 / 195

A6 6 21 0 198 200

A6 + A1 7 22 0 196 197

D6 6 30 36 / 32 / 28 216 / 212 / 208 218 / 214 / 210

18 / 0 198 / 180 200 / 182

E6 6 36 54 / 40 / 22 / 0 222 / 208 / 190 / 168 224 / 210 / 192 / 170

E6 + A1 7 37 54 / 40 / 22 / 0 220 / 206 / 188 / 166 221 / 207 / 189 / 167

A7 7 28 0 184 185

D7 7 42 58 / 48 / 40 214 / 204 / 196 215 / 205 / 197

36 / 22 / 0 192 / 178 / 156 193 / 179 / 157

E7 7 63 92 / 90 / 82 / 70 206 / 204 / 196 / 184 207 / 205 / 197 / 185

64 / 52 / 34 / 0 178 / 166 / 148 / 114 179 / 167 / 149 / 115

E8 8 120 202 / 200 / 188 / 182 202 / 200 / 188 / 182 202 / 200 / 188 / 182

176 / 172 / 168 / 164 176 / 172 / 168 / 64 176 / 172 / 168 / 164

162 / 154 / 146 / 136 162 / 154 / 146 / 136 162 / 154 / 146 / 136

128 / 112 / 92 / 58 / 0 128 / 112 / 92 / 58 / 0 128 / 112 / 92 / 58 / 0

Table 12: Dimension of the sheets for g of type E8 , 2/2

2m ∈ Ng 12 10 8 6 0

dim g(m) 14 11 8 6 0

Table 13: Dimensions of the subsets g(m) for g of type G2



694 Moreau

2m ∈ Ng 48 46 44 42 40 38 36 34 30 28 22 16 0

dim g(m) 52 49 46 44 42 39 37 34 31 28 22 16 0

Table 14: Dimensions of the subsets g(m) for g of type F4

2m ∈ Ng 72 70 68 66 64 62 60 58 56 54 52 50 48 46 42 40 32 22 0

dim g(m) 78 75 72 70 67 64 63 60 57 54 54 51 50 47 43 40 33 22 0

Table 15: Dimensions of the subsets g(m) for g of type E6

2m ∈ Ng 126 124 122 120 118 116 114 112 110 108 106 104 102 100 98

dim g(m) 133 130 127 125 122 119 118 115 112 110 109 106 105 102 99

2m ∈ Ng 96 94 92 90 86 84 82 76 70 66 64 54 52 34 0

dim g(m) 98 95 92 90 88 85 82 77 70 67 64 55 52 34 0

Table 16: Dimensions of the subsets g(m) for g of type E7

2m ∈ Ng 240 238 236 234 232 230 228 226 224 222 220 218 216 214 212 210 208

dim g(m) 248 245 242 240 237 234 233 230 227 225 224 221 220 217 214 213 210

2m ∈ Ng 206 204 202 200 198 196 194 192 190 188 184 182 180 178 176 172 168

dim g(m) 207 205 202 203 200 197 195 193 192 189 185 182 182 179 176 172 170

2m ∈ Ng 166 164 162 156 154 148 146 136 128 114 112 92 58 0

dim g(m) 167 164 162 157 154 149 146 136 128 115 112 92 58 0

Table 17: Dimensions of the subsets g(m) for g of type E8
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Remark 4.2. Since we consider in our tables the subtle circumstances about
G-conjugacy classes of Levi subalgebras which we discussed above (see Remark
4.1), our tables give also the exact number of sheets contained in each g(m) for
any m . For example, there are three sheets in g(20) for g of type F4 .

Remark 4.3. The computations made by Elashvili ([20](Appendix of Chap.
II) or [8]) give much more information than we actually need for our purpose. In
fact, if we are only interested in the dimensions of the sets g(m) , we can even avoid
to refer to those computations. To get exactly those of all the sheets, we have to be
a bit careful. Let us explain more precisely. We observe that the present method
“almost” allows to recover in a simpler way the dimensions of the rigid nilpotent
orbits in the exceptional types. Indeed, if for some m ∈ Ng , there is no pair
(S, p), with S ⊂ Π, S 6= Π, and p ∈ Nrig

S such that dS,p = m , then m is in Nrig
g .

Unfortunately, the converse is not true in general, since a non-rigid nilpotent orbit
can be induced in different ways. Nevertheless, when there is only one nilpotent
orbit of a given dimension m , we can decide if m belongs to Nrig

g or not. Whatever

the case, if we intend to compute the dimension g(m) , this approach is sufficient
because computing the dimension of a G-Jordan class possibly not dense in a sheet
does not affect the final result. In that case, the corresponding dimension is not
the dimension of a sheet and will not appear as a dimension of some g(m) . For
example, in G2 we do not need the precise Elashvili’s computations since there is
only one nilpotent orbit of a given dimension. In F4 , there are two critical cases
concerning the dimensions 30 and 42. Dimension 30 appear twice as dimension of
nontrivial induced nilpotent orbit (see Table 7), but we cannot deduce that these
two occurrences correspond to two different nilpotent orbits.
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Bulletin des Sciences Mathématiques, 2e Série, 99 (1975), 45–63.

[6] Dergachev V., and A. A. Kirillov, Index of Lie algebras of seaweed type, J.
of Lie Theory 10 (2000), 331–343.

[7] Dvorsky, A., Index of parabolic and seaweed subalgebras of son , Lin. Alg.
Appl. 374 (2003), 127–142.

[8] Elashvili, A. G., Sheets of the exceptional Lie algebras, in: “Issledovaniya
po algebre,” Tbilisi, 1985, (Russian), pp. 171–194.



696 Moreau

[9] Gerstenhaber, M., Dominance over the classical groups, Ann. of Math. 74
(1961), 532–569.

[10] Im Hof, A., “The Sheets of Classical Lie Algebra,” Thesis, Preprint avail-
able at http://aleph.unibas.ch, 2005.

[11] Joseph, A., On semi-invariants and index for biparabolic (seaweed) alge-
bras. I, J. of Algebra 305 (2006), 485–515.

[12] Katsylo, P. I., Sections of sheets in a reductive algebraic Lie algebra,
(Russian) Izv. Akad. Nauk SSSR, Ser. Mat. 46 (1982), 477–486.

[13] Kempken, G., Induced conjugacy classes in classical Lie-algebras, Abh.
Math. Sem. Univ. Hamburg 53 (1983), 53–83.

[14] Kirillov, A. A., Représentations unitaires des groupes de Lie nilpotents,
Uspehi Mat. Nauk. 17 (1962), 57–110.

[15] —, Two more variations on the triangular theme, in: “The orbit method in
geometry and physics,” Marseille, 2000, Birkhäuser Boston Inc., Boston,
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réelle, J. of Algebra 303 (2006), 382–406.

[18] Panyushev, D. I., Inductive formulas for the index of seaweed Lie algebras,
Moscow Math. J. 1 1 (2001), 221–241, 303.

[19] —, The index of a Lie algebra, the centralizer of a nilpotent element, and
the normalizer of the centralizer, Math. Proc. Camb. Phil. Soc. 134 (2003),
41–59.

[20] Spaltenstein, N., Classes unipotentes et sous-groupes de Borel, Springer-
Verlag, Berlin, 1982.

[21] Tauvel, P., and R. W. T. Yu, “Lie algebras and algebraic groups,” Mono-
graphs in Mathematics, Springer Berlin etc., 2005.
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