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Abstract. We consider a lifting of Joseph ideals for the minimal nilpotent

orbit closure to the setting of affine Kac-Moody algebras and find new examples

of affine vertex algebras whose associated varieties are minimal nilpotent orbit

closures. As an application we obtain a new family of lisse (C2-cofinite) W -

algebras that are not coming from admissible representations of affine Kac-

Moody algebras.

1. Introduction

Let g be a finite-dimensional simple Lie algebra over C, ( | ) be a normalized

invariant inner product, i.e., 1
2h∨×Killing form.

Let ĝ = g[t, t−1]⊕CK ⊕CD be the Kac-Moody Lie algebra associated with g

and ( | ), with the commutation relations

[x(m), y(n)] = [x, y](m+ n) +m(x|y)δm+n,0K,

[D,x(m)] = mx(m), [K, ĝ] = 0,

where x(m) = x⊗ tm. For k ∈ C, set

V k(g) = U(ĝ)⊗U(g[t]⊕CK⊕CD)Ck,

where Ck is the one-dimensional representation of g[t]⊕CK ⊕CD on which g[t]⊕D
acts trivially and K acts as multiplication by k. The space V k(g) is naturally a

vertex algebra, and it is called the universal affine vertex algebra associated with g

at level k. By the PBW theorem, V k(g) ∼= U(g[t−1]t−1) as C-vector spaces.

Let Vk(g) be the unique simple graded quotient of V k(g). As a ĝ-module, Vk(g) is

isomorphic to the irreducible highest weight representation of ĝ with highest weight

kΛ0, where Λ0 is the dual element of K.

Let XV be the associated variety [Ar12] of a vertex algebra V , which is the

maximum spectrum of Zhu’s C2-algebra,

RV := V/C2(V ).

In the case V is a quotient of V k(g), V/C2(V ) = V/g[t−1]t−2V and we have a

surjective Poisson algebra homomorphism

C[g∗] = S(g)� V/g[t−1]t−2V, x 7→ x(−1) + g[t−1]t−2V,
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where x(−1) denotes the image of x(−1) in the quotient V . Then XV is just the

zero locus of the kernel of the above map in g∗. It is G-invariant and conic, where

G is the adjoint group of g. Note that on the contrary to the associated variety

of a primitive ideal of U(g), the variety XVk(g) is not necessarily contained in the

nilpotent cone N of g. In fact, XVk(g) = g∗ for a generic k since Vk(g) = V k(g) in

this case.

A conjecture of Feigin and Frenkel, proved in [Ar15a], states that XVk(g) ⊂ N
if Vk(g) is admissible [KW89]. In fact it is also believed that the converse is true,

that is, XVk(g) ⊂ N only if Vk(g) is admissible, so that the condition XVk(g) ⊂ N
gives a geometric characterization of admissible affine vertex algebras. One of the

aims of this paper is to provide a counterexample of this fact, that is, there exist

non-admissible affine vertex algebras Vk(g) such that XVk(g) ⊂ N .

Let (eθ, hθ, fθ) be the sl2-triple associated with the highest positive root θ of g.

Let Omin = G.fθ be the unique minimal non-trivial nilpotent orbit of g which is of

dimension 2h∨ − 2, [W99], where h∨ is the dual Coxeter number of g.

Consider the Deligne exceptional series

A1 ⊂ A2 ⊂ G2 ⊂ D4 ⊂ F4 ⊂ E6 ⊂ E7 ⊂ E8

discussed in [D96, DG02].

Theorem 1.1. (1) Assume that g belongs to the Deligne exceptional series and

that

k = −h
∨

6
− 1.

Then XVk(g) = Omin.
(2) Assume that g is of type D4, E6, E7, E8 and that k is an integer such that

−h
∨

6
− 1 6 k 6 −1.

Then XVk(g) = Omin.

(3) Assume that g is of type Dl, l > 5. Then XVk(g) = Omin for k = −2,−1.

Note that for g of type A1, A2, G2, F4, the rational number −h∨/6 − 1 is

admissible. However for types D4, E6, E7, E8, the number −h∨/6− 1 is a negative

integer which is certainly non-admissible ([KW08, Proposition 1.2]).

A consequence of the fact XVk(g) ⊂ N is that Vk(g) has only finitely many simple

modules in the category O (cf. Corollary 5.3), as in case Vk(g) is admissible [Ad94,

AM95, Ad97, Pe07a, Pe07b, AL11, Ar16]. If g belongs to the Deligne exceptional

series outside the type A and k = −h∨/6−1, it is possible to derive the classification

of simple Vk(g)-modules that belong to O from Joseph’s result [J98] in the following

manner.

If g is not of type A, it is known [J76, GS04] that there exists a unique completely

prime ideal J0 in U(g), called the Joseph ideal, whose associated variety is Omin,

that is, Omin is the zero locus in g∗ of grJ0. As a by-product, we obtain a lifting

to the Joseph ideal in the following sense. For a Z>0-graded vertex algebra V , let

A(V ) be its Zhu’s algebra [Z96]. Such a vertex algebra V is called a chiralization
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of an algebra A if A(V ) ∼= A. We claim that if g belongs to the Deligne exceptional

series outside the type A and if k = −h∨/6 − 1, then Vk(g) is a chiralization of

C⊕ U(g)/J0. Namely,

A(Vk(g)) ∼= U(g)/JW ∼= C× U(g)/J0,

for some ideal JW (cf. Proposition 2.2 and Theorem 3.1). Hence the classification

of simple highest weight U(g)/J0-modules obtained in [J98] gives the classification

of simple highest weight Vk(g)-modules thanks to Zhu’s theorem [Z96], which for

types G2, D4, F4 reproves the earlier results obtained in [AL11] and [Pe07b, Pe13].

Another consequence of the fact XVk(g) ⊂ N is that the D-module on the moduli

stack of G-bundles on a curve obtained from Vk(g) by the Harish-Chandra local-

ization [BD, FBZ04] has its micro-local support inside the global nilpotent cone. It

would be very interesting to consider the associated modular functor (cf. [FM97]),

or the corresponding conformal field theory (cf. [CR12, CR13]). We hope to come

back to this point in our future work.

In physics literature the affine vertex algebras in Theorem 1.1 (1) have been

studied in the work [BLL+15] of Beem, Lemos, Liendo, Peelaers, Rastelli and van

Rees in connection with four dimensional superconformal field theory. The asso-

ciated varieties of these vertex algebras seem to describe the Higgs branch of the

corresponding four dimensional theory. We also hope to come back to this point in

our future work.

Theorem 1.1, or its proof, has the following important application:

Let Wk(g, fθ) be the W -algebra associated with (g, fθ) at level k [KRW03], which

is a conformal vertex algebra with central charge

c(k) =
k dim g

k + h∨
− 6k + h∨ − 4

provided that k 6= −h∨. Note that if g belongs to the Deligne exceptional series,

c(k) = −6(k + h∨/6 + 1)((h∨/6 + 1)k − (h∨ − 4)h∨/6)

(k + h∨)(h∨/6 + 1)
,

so that c(k) = 0 for k = −h∨/6− 1.

Denote by Wk(g, fθ) the unique simple quotient of Wk(g, fθ). Since XWk(g,fθ)

is naturally isomorphic to the Slodowy slice Smin at fθ ([DSK06, Ar15a]), with

Smin := fθ + geθ , geθ = {x ∈ g | [x, eθ] = 0},

the variety XWk(g,fθ) is a C∗-invariant, Poisson subvariety of Smin.

It is known [DSK06] that the (Ramond twisted) Zhu’s algebra of Wk(g, fθ) is

naturally isomorphic to the finite W -algebra U(g, fθ) associated with (g, fθ) intro-

duced by Premet [Pr02].

Premet [Pr07] has shown that the Joseph ideal is closely connected with one-

dimensional representations of U(g, fθ). The chiralization of U(g)/JW explained

above is closely related with one-dimensional representations of Wk(g, fθ) as well.

The significant difference in the affine setting is that Wk(g, fθ) does not necessarily

admit one-dimensional representations. In fact Wk(g, fθ), g 6= sl2, admits one-

dimensional representations if and only if Wk(g, fθ) = C, and this happens if and
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only if g belongs to the Deligne exceptional series and k = −h∨/6 − 1, or g is of

type Cl and k = −1/2 (cf. Theorem 7.2).

Note that the trivial vertex algebra C is certainly a lisse vertex algebra. Here,

recall that a vertex algebra V is called lisse, or C2-cofinite, if dimXV = 0. Lisse

vertex algebras may be regarded as an analogue of finite-dimensional algebras. One

of remarkable properties of a lisse vertex algebra V is the modular invariance of

characters of modules [Z96, M04]. Further, if it is non-trivial and also rational, it is

known [H08] that under some mild assumptions the category of V -modules forms a

modular tensor category, which for instance yields an invariant of 3-manifolds, see

[BK01].

In [Ar15a], in order to approach the Kac-Wakimoto conjecture [KW08] on the

rationality of exceptional W -algebras, the first named author showed that each ad-

missible affine vertex algebra produces exactly one lisse simple W -algebra. More

precisely, the associated variety of an admissible affine vertex algebra Vk(g) is iso-

morphic to O for some nilpotent orbit O of g, and if we take the nilpotent element

f from this orbit O, then Wk(g, f) is lisse. Until very recently it has been widely

believed that these W -algebras are all the lisse W -algebras, cf. [KW08]. However,

it turned out that there are a lot more.

Theorem 1.2. (1) Let g be of type D4, E6, E7, E8. For any integer k that is

equal to or greater than −h∨/6−1, the simple W -algebra Wk(g, fθ) is lisse.

(2) Let g be of type Dl with l > 5. For any integer k that is equal to or greater

than −2, the simple W -algebra Wk(g, fθ) is lisse.

In the case that k = −h∨/6, the first statement of Theorem 1.2 is a recent result

of Kawasetsu [K15]. Kawasetsu actually proved that W−h∨/6(g, fθ) is rational

and C2-cofinite if g belongs to the Deligne exceptional series, providing a first

(surprising) example of rational and C2-cofinite W -algebras that are not coming

from admissible representations of ĝ. Our present work is motivated by his result.

It would be very interesting to know whether the lisse W -algebras appearing in

Theorem 1.2 are rational or not. We hope to come back to this point in future

work.
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2. Minimal nilpotent orbit closures and Joseph ideals

Let J0 be the prime ideal of S(g) corresponding to the minimal nilpotent orbit

closure Omin in g∗.

Suppose that g is not of type A. According to Kostant, J0 is generated by a

g-submodule Lg(0)⊕W in S2(g), such that

S2(g) = Lg(2θ)⊕Lg(0)⊕W,

where Lg(λ) is the irreducible representation of g with highest weight λ and θ is

the highest root of g.

Note that the above decomposition of S2(g) still holds in type A, [G82, Chapter

IV, Proposition 2],

Also, note that Lg(0) = CΩ where Ω is the Casimir element in S(g).

Lemma 2.1. Suppose that g is not of type A. The ideal JW in S(g) generated by

W contains Ω2, and hence,
√
JW = J0.

Proof. By the proof of [GS04, Theorem 3.1] JW contains g · Ω, and the assertion

follows. �

The structure of W was determined by Garfinkle [G82]. Set

g(j) = {x ∈ g | [hθ, x] = 2jx}.

Then

g = g(−1)⊕ g(−1/2)⊕ g(0)⊕ g(1/2)⊕ g(1),

g(−1) = Cfθ, g(1) = Ceθ, g(0) = Chθ ⊕ g\, g\ = {x ∈ g(0) | (hθ|x) = 0}.

The subalgebra g\ is a reductive subalgebra of g whose simple roots are the simple

roots of g perpendicular to θ. Write

[g\, g\] =
⊕
i>1

gi

as a direct sum of simple summands, and let θi be the highest root of gi.

If g is neither of type Al nor Cl,

W =
⊕
i>1

Lg(θ + θi).

If g is of type Cl, then g\ is simple of type Cl−1, so that there is a unique θ1,

and we have

W = Lg(θ + θ1)⊕Lg(
1

2
(θ + θ1)).

If g is not of type A, it is known [J76, GS04] that there exists a unique completely

prime ideal J0 in U(g), called the Joseph ideal, whose associated variety is Omin.

It is known that J0 is maximal and primitive. By [G82, GS04] J0 is generated
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by W and Ω − c0, where W is identified with a g-submodule of U(g) by the g-

module isomorphism S(g) ∼= U(g) and c0 is the eigenvalue of Ω for the infinitesimal

character that Joseph obtained in [J76, Table p.15]. We have

grJ0 = J0 =
√
JW

and this shows that J0 is indeed completely prime.

Let JW be the two-sided ideal of U(g) generated by W .

Proposition 2.2. We have an algebra isomorphism

U(g)/JW ∼= C× U(g)/J0.

Proof. By the proof of [GS04, Theorem 3.1], JW contains (Ω − c0)g. Hence it

contains (Ω− c0)Ω. Since c0 6= 0, we have an isomorphism of algebras

U(g)/JW ∼→ U(g)/〈JW ,Ω〉 × U(g)/〈JW ,Ω− c0〉.

As we have explained above, 〈JW ,Ω−c0〉 = J0. Also, since JW contains (Ω−c0)g,

〈JW ,Ω〉 contains g. Therefore U(g)/〈JW ,Ω〉 = C as required. �

3. A lifting of Joseph ideals

For a Z>0-graded vertex algebra V =
⊕

d Vd, let A(V ) be Zhu’s algebra of V :

A(V ) = V/V ◦ V,

where V ◦ V is the C-span of the vectors

a ◦ b :=
∑
i>0

(
∆

i

)
a(i−2)b

for a ∈ V∆, ∆ ∈ Z>0, b ∈ V , and V → (EndV )[[z, z−1]], a 7→
∑
n∈Z a(n)z

−n−1,

denotes the state-field correspondence. The space A(V ) is a unital associative

algebra with respect to the multiplication defined by

a ∗ b :=
∑
i>0

(
∆

i

)
a(i−1)b

for a ∈ V∆, ∆ ∈ Z>0, b ∈ V . More generally, for a V -module M , a bimodule A(M)

over A(V ) is defined similarly ([FZ92]).

Zhu’s algebra A(V ) naturally acts on the top degree component Mtop of a Z>0-

graded V -module M , and M 7→ Mtop gives [Z96] a one-to-one correspondence

between simple graded V -modules and simple A(V )-modules.

The vertex algebra V is called a chiralization of an algebra A if A(V ) ∼= A.

For instance, consider the universal affine vertex algebra V k(g). A V k(g)-module

is the same as a smooth ĝ′-module of level k, where ĝ′ = [ĝ, ĝ] = g[t, t−1]⊕CK.

Zhu’s algebra A(V k(g)) is naturally isomorphic to U(g) ([FZ92], see also [Ar16,

Lemma 2.3]), and hence, V k(g) is a chiralization of U(g). The top degree component

of the irreducible highest weight representation L(λ) of ĝ with highest weight λ is

Lg(λ̄), where λ̄ is the restriction of λ to the Cartan subalgebra of g.
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Let Ĵk be the unique maximal ideal of V k(g), so that

Vk(g) = V k(g)/Ĵk.

We have the exact sequence A(Ĵk)→ U(g)→ A(Vk(g))→ 0 since the functor A(?)

is right exact and thus A(Vk(g)) is the quotient of U(g) by the the image Ik of

A(Ĵk) in U(g):

A(Vk(g)) = U(g)/Ik.

One may ask whether Ik coincides with the Joseph ideal J0 for some k ∈ C,

so that Vk(g) is a chiralization of U(g)/J0. But this can never happen. Indeed,

U(g)/J0 does not admit finite dimensional representations while C is always an

A(Vk(g))-module as Vk(g) is a module over itself and Vk(g)top = C. However, by

Proposition 2.2, it makes sense to ask the same question for the ideal JW .

Theorem 3.1. Assume that g belongs to the Deligne exceptional series outside the

type A and that k = −h∨/6− 1. Then Vk(g) is a chiralization of U(g)/JW , that is,

A(Vk(g)) ∼= U(g)/JW ∼= C× U(g)/J0.

In particular, since J0 is maximal, the irreducible highest weight representation

L(λ) of ĝ is a Vk(g)-module if and only if

λ̄ = 0 or AnnU(g) Lg(λ̄) = J0.

According to [J98, 4.3], the weights µ such that AnnU(g)Lg(µ) = J0 are

w ◦ (λ0 − ρ) := w(λ0)− ρ, w ∈W0,

where the weight λ0 and the subset W0 of the Weyl group W of g are described

in Table 1. Here we adopt the standard Bourbaki numbering for the simple roots

{α1, . . . , α1} of g, and we denote by $1, . . . , $l the corresponding fundamental

weights.

−h
∨

6
− 1 λ0 W0

G2 − 5
3

$1 +
1
3
$2 {1, s2}

D4 −2 $1 +$3 +$4 {1, s1, s3, s4}

F4 − 5
2

1
2
$1 +

1
2
$2 +$3 +$4 {1, s1, s2}

E6 −3 $1 +$2 +$3 +$5 +$6 {1, s2, s3, s1s3, s5, s6s5}

E7 −4 $1 +$2 +$3 +$5 +$6 +$7 {1, s2, s3, s1s3, s5, s6s5, s7s6s5}

E8 −6 $1 +$2 +$3 +$5 +$6 +$7 +$8 {1, s2, s3, s1s3, s5, s6s5, s7s6s5, s8s7s6s5}

Table 1. −h∨/6− 1, λ0 and W0

Note that the last statement of Theorem 3.1 reproves the earlier results [AL11,

Proposition 3.6 (1)] for type G2, [Pe13, Theorem 4.3] for type D4 and [Pe07b,

Theorem 6.4] for type F4.
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For types G2 and F4, the level k = −h∨/6 − 1 is admissible, that is, kΛ0 is an

admissible weight [KW89] for ĝ. Using [Ar16, Proposition 3.3] one finds that

{kΛ0, w ◦ (λ0 − ρ) + kΛ0 | w ∈W0}

is exactly the set of admissible weights of level k whose integral Weyl group is

isomorphic to that of kΛ0, which agrees with [Ar16, Main Theorem].

Theorem 3.1 will be proven at the end of Section 4.

4. Singular vectors of affine vertex algebra of degree 2

By the PBW theorem, we have V k(g) ∼= U(g[t−1]t−1) as C-vector spaces. Below

we often identify V k(g) with U(g[t−1]t−1).

The vertex algebra V k(g) is naturally graded:

V k(g) =
⊕
d∈Z>0

V k(g)d, V k(g)d = {v ∈ V k(g) | Dv = −dv}.

Note that each homogeneous component V k(g)d is a finite-dimensional g-submodule

of V k(g).

Lemma 4.1. We have a g-module embedding

σd : Sd(g) ↪→ V k(g)d, x1 . . . xd 7→
1

d!

∑
σ∈Sd

xσ(1)(−1) . . . xσ(d)(−1).

Let v be a singular vector in Sd(g). Then σd(v) is a singular vector of V k(g) if

and only if fθ(1)σd(v) = 0. For d = 2, we will simply denote by σ the embedding

σd.

Let W =
⊕

iWi be the decomposition of W into irreducible submodules, and

let wi be a highest weight vector of Wi.

Theorem 4.2. (1) Assume that g belongs to the Deligne exceptional series

outside the type A.

(a) For any i, σ(wi) is a singular vector of V k(g) if and only if

k = −h∨/6− 1.

(b) Assume that g is not of type G2. For each n ∈ Z>0 and each i,

σ(wi)
n+1 is a singular vector of V k(g) if and only if

k = n− h∨/6− 1.

(2) Let g be of type Bl, l > 3, so that W = W1⊕W2 where W1
∼= Lg(θ+ θ1) =

Lg(2$1) and W2
∼= Lg(θ + θ2) = Lg($4) if l > 5 (and W2

∼= Lg(θ + θ2) =

Lg(2$l) if l = 3, 4).

(a) ([Pe07a]) For each n ∈ Z>0, σ(w1)n+1 is a singular vector of V k(g) if

and only if

k = n− l + 3/2.
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(b) For each n ∈ Z>0, σ(w2)n+1 is a singular vector of V k(g) if and only

if

k = n− 2.

(3) ([Ad94]) Let g be of type Cl, l > 2, so that W = W1 ⊕W2 where W1
∼=

Lg(θ+θ1) = Lg(2$2) and W2
∼= Lg( 1

2θ+θ1) = Lg($2). For each n ∈ Z>0,

σ(w1)n+1 is a singular vector of V k(g) if and only if

k = n− 1/2.

(4) Let g of type Dl, l > 5, so that W = W1⊕W2 where W1
∼= Lg(θ + θ1) =

Lg(2$1) and W2
∼= Lg(θ + θ2) = Lg($4) if l > 6 (and W2

∼= Lg(θ + θ2) =

Lg($4 +$5) if l = 5).

(a) ([Pe13]) For each n ∈ Z>0, σ(w1)n+1 is a singular vector of V k(g) if

and only if

k = n− l + 2.

(b) For each n ∈ Z>0, σ(w2)n+1 is a singular vector of V k(g) if and only

if

k = n− 2.

Note that (1) for D4 is also a particular case of [Pe13], that (1) (a) for G2 was

proved in [AL11], and that (1) for F4 was proved in [Pe07b].

Proof. (1) Assume that g is of type D4, E6, E7, E8. Then it is enough to prove

(b).

For E6, E7, E8, W = W1. For D4, W = W1 ⊕W2 ⊕W3. Using the Dynkin

automorphism, we can assume that i = 1, and that W1 = Lg(2$1).

For types E6 and E7, g is of depth one, [G82, Chapter IV, Definition 1], and

(θ − θ1)/2 is not a root.

Then we apply [G82, Chapter IV, Proposition 11] to construct a singular vector

w1 for W1. Table 2 describes the pairs of positives roots (βj , δj) such that

βj + δj = θ − θ1.

The number of such pairs turns out to be equal to h∨/6+1. In this table, a positive

root γ is represented by (k1, . . . , kl) if γ =
∑l
j=1 kjαj .

Choose a Chevalley basis {hi}i ∪ {eα, fα}α of g so that the conditions of [G82,

Chapter IV, Definition 6] are fulfilled, that is

∀ j, [eδj , [eβj , eθ1 ]] = eθ, [eβj , eθ1 ] = eβj+θ1 , [eδj , eθ1 ] = eδj+θ1 .(1)

Then set

w1 := eθeθ1 −
h∨
6 +1∑
k=1

eβj+θ1eδj+θ1 ,
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so that

σ(w1) =
1

2
(eθ(−1)eθ1(−1) + eθ1(−1)eθ(−1)

−
h∨
6 +1∑
k=1

(eβj+θ1(−1)eδj+θ1(−1) + eδj+θ1(−1)eβj+θ1(−1))).

We observe using the relations (1) that for each j,

[[fθ, eβj+θ1 ], eδj+θ1 ] = [[fθ, eδj+θ1 ], eβj+θ1 ] = −eθ1 .(2)

By (2), we get:

fθ(1).σ(w1) = ([fθ, eθ](0) + k +
h∨

6
+ 1)eθ1(−1)

−
h∨
6 +1∑
k=1

(eβj+θ1(−1)[fθ, eδj+θ1 ](0) + eδj+θ1(−1)[fθ, eβj+θ1 ](0)).

Observe that

[fθ, eθ](0).σ(w1) = −2σ(w1)

since 〈θ + θ1, θ
∨〉 = 〈θ, θ∨〉 = 2, and that

[fθ, eδj+θ1 ](0).σ(w1) = [fθ, eβj+θ1 ](0).σ(w1) = 0

since −θ + δj + θ1, −θ + βj + θ1 are perpendicular to θ + θ1, the weight of σ(w1),

for each j. In addition, since βj + 2θ1, δj + 2θ1 are not roots, [eθ1(−1), σ(w1)] = 0.

So, for any n ∈ Z>0 we get,

fθ(1).σ(w1)n+1

= σ(w1)n(k +
h∨

6
+ 1)eθ1(−1) +

n∑
j=1

(σ(w1)n−j([fθ, eθ](0) + k +
h∨

6
+ 1).σ(w1)jeθ1(−1))

=

n∑
j=0

(−2j + k +
h∨

6
+ 1)σ(w1)neθ1(−1) = (n+ 1)(−n+ k +

h∨

6
+ 1)σ(w1)neθ1(−1).

Hence σ(w1)n+1 is a singular vector of V k(g) for k = n− h∨/6− 1.

Assume that g has type E8. Then g is not of depth one and we follow the

construction of [G82, Chapter IV, §4]. According to [G82, Chapter IV, §4], there is

a positive root α such that the algebra g̃ generated by eα, e2, . . . , e8, fα, f2, . . . , f8

has type D8, where ei, fi, i = 1, . . . , 8 are the generators of a Chevalley basis of g

corresponding to the simple roots α1, . . . , α8 in the Bourbaki numbering. Moreover,

we have that α = θ1. Then we apply the construction of [G82, Chapter IV, §1] to

the algebra g̃ which is of depth one. One can choose our Chevalley basis {hi}i ∪
{eα, fα}α of g so that the conditions of [G82, Chapter IV, Definition 6] are fulfilled

for g̃. Note that the highest root of g̃ is θ, that is, the same as for g.

Then we apply as in cases E6, E7 the construction of [G82, Chapter IV, Propo-

sition 11]. Table 2 describes the pairs of positives roots (βj , δj) such that

βj + δj = θ − θ1.

The number of such pairs is h∨/6 + 1 too.
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Then we set

w1 := eθeθ1 −
h∨
6 +1∑
k=1

eβj+θ1eδj+θ1 .

We verify as for the types E6, E7 that σ(w1)n+1 is a singular vector of V k(g) for

k = n− h∨/6− 1.

Type D4 E6 E7 E8

h∨/6 + 1 2 3 4 6

θ (1211) (122321) (2234321) (23465432)

θ1 (1000) (101111) (0112221) (22343210)

(βj , δj), (0100), (0111) (010000), (011210) (1000000), (1122100) (00000001), (01122221)

βj + δj = θ − θ1 (0101), (0110) (010100), (011110) (1010000), (1112100) (00000011), (01122211)

(010110), (010100) (1011000), (1111100) (00000111), (01122111)

(1011100), (1111000) (00001111), (01121111)

(00011111), (01111111)

(01011111), (00111111)

Table 2. Data for D4, E6, E7, E8

(2) (b) and (4) (b) Assume that g is of type Bl, l > 3, or of type Dl, l > 5. Then

in both cases, θ2 is the highest root of the root system generated by α3, . . . , αl,

(θ−θ2)/2 is not a root and there are precisely two pairs (βj , δj) such that βj +δj =

θ − θ2. Namely, these pairs are:

(β1, δ1) = (α2, α1 + α2 + α3) and (β2, δ2) = (α2 + α3, α1 + α2).

According to [G82, Chapter IV,Proposition 11],

w2 := eθeθ2 −
2∑
k=1

eβj+θ2eδj+θ2

is a singular vector for g. Moreover, all bracket relations (1) and (2) hold as in

case (1)1, with θ2 in place of θ1. Hence we get,

fθ(1).σ(w2)n+1 = (−n+ k + 2)σ(w2)neθ2(−1).

The statement follows. �

Remark 4.3. If g is of type Cl, l > 3, we can construct a singular vector for V k(g)

of weight 1
2 (θ + θ1) with k = −(l + 6)/2 as follows.

Set

θ0 := (θ + θ1)/2 = α1 + 2(α2 + · · ·+ αl−1) + αl.

For j ∈ {2, . . . , l}, set

βj := α1 + α2 + · · ·+ αj−1, δj := α2 + · · ·+ αj−1 + 2(αj + · · ·+ αl−1) + αl.

1For B3, a factor 2 appears in some brackets but this does not affect the final result.
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For j ∈ {3, . . . , l}, set

β′j := α2 + · · ·+ αj−1, δ′j := α1 + · · ·+ αj−1 + 2(αj + · · ·+ αl−1) + αl.

Then

∀ j ∈ {3, . . . , l}, βj + δj = β′j + δ′j = θ0 =
1

2
(θ + θ1) and β2 + δ2 = θ0.

We can choose a Chevalley basis of g such that the vector

v2 := eθ(−1)e−α1
(−1)− 1

2
h1(−1)eθ0(−1) + eθ0(−2)

−eβ2(−1)eδ2(−1)− 1

2

l∑
j=3

(eβj (−1)eδj (−1)− eβ′j (−1)eδ′j (−1))

is singular for V k(g) with k = −(l + 6)/2. The verifications are left to the reader.

This remark will be not used in the sequel.

Proof of Theorem 3.1. Let g, k be as in Theorem. Then σ(wi) is a singular vector

of V k(g) for all i by Theorem 4.2. Let N be the submodule of V k(g) generated by

σ(wi) for all i, and set Ṽk(g) = V k(g)/N . By construction the image of A(N) in

U(g) is JW . Hence

A(Ṽk(g)) = U(g)/JW .

It remains to show that Ṽk(g) = Vk(g), that is, Ṽk(g) is simple. (In the case that

k is admissible, that is, if g is of type G2, F4, this follows from [KW88]. Also, this

has been proved in [Pe13] in the case that g is of type D4.)

Suppose that Ṽk(g) is not simple, or equivalently, Ṽk(g) is reducible as a ĝ-

module. Then there is at least one non-zero weight singular vector, say, v. Let

µ be the weight of v, and let M be a submodule of Ṽk(g) generated by v. Since

Mtop = Lg(µ̄), Lg(µ̄) is a module over A(Ṽk(g)) = U(g)/JW = C⊕U(g)/J0. On

the other hand Lg(µ̄) is finite-dimensional since it is a submodule of V k(g)d for

some d. This implies that Lg(µ̄) cannot be a U(g)/J0-module. Therefore µ̄ = 0.

This implies that v coincides with the highest weight vector of Ṽk(g) up to nonzero

multiplication, which is a contradiction. �

5. Proof of Theorem 1.1

Let g be of type Dl, l > 4, E6, E7, or E8.

For n ∈ Z>0, set

kn =

{
n− h∨/6− 1 if g is of type D4, E6, E7, E8,

n− 2 if g is of type Dl, l > 5.
(3)

Let N be the submodule of V k(g) generated by σ(wi)
n+1 for all i for type D4, E6,

E7, E8, and by σ(w1)n+l−3 and σ(w2)n+1 for type Dl, l > 5, and let

Ṽkn(g) := V kn(g)/N.

Conjecture 1. Ṽkn(g) = Vkn(g), that is, Ṽkn(g) is simple, if kn < 0.
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We have proven Conjecture 1 in the case that n = 0 in type D4, E6, E7, E8 in

the proof of Theorem 3.1.

Remark 5.1. If kn > 0, Ṽkn(g) is obviously not simple as the maximal submodule

of V kn(g) is generated by eθ(−1)kn+1.

Proposition 5.2. For each n > 0, we have XṼkn (g) = Omin.

Proof. Set k = kn. The exact sequence 0 → N → V k(g) → Ṽk(g) → 0 induces an

exact sequence

N/g[t−1]t−2N → V k(g)/g[t−1]t−2V k(g)→ Ṽk(g)/g[t−1]t−2Ṽk(g)→ 0.

Under the isomorphism V k(g)/g[t−1]t−2V k(g) ∼= S(g), the image of N/g[t−1]t−2N

in V k(g)/g[t−1]t−2V k(g) is identified with the ideal J of S(g) generated by some

powers of wi for all i. Hence J ⊂ JW ⊂
√
J . Therefore,

√
J =

√
JW = J0

by Lemma 2.1 as required. �

Proof of Theorem 1.1. For g of type A1, A2, G2, F4, the number −h∨/6− 1 is ad-

missible, and the statement (1) of the theorem is a special case of [Ar15a, Theorem

5.14]. So let us assume that g is of type Dl, l > 4, E6, E7, or E8 as above. Since

Vkn(g) is a quotient of Ṽkn(g), Proposition 5.2 implies that

XVkn (g) ⊂ Omin = Omin ∪ {0}.

Therefore XVkn (g) is either {0} or Omin. The assertion follows since XVk(g) = {0}
if and only if k ∈ Z>0 by [Ar15a, Proposition 4.25] (see also Theorem 6.1 (2) and

(3) (a)). �

The following assertion was proved in [Pe13] in the case that g is of type D4 and

k = −2.

Corollary 5.3. Let g, k be as in Theorem 1.1. Then Vk(g) has only finitely many

simple modules in the category O.

Proof. By [DSK06, Proposition 2.17(c)], [ALY14, Proposition 3.3] there is a surjec-

tion

RVk(g) � grA(Vk(g))

of Poisson algebras, where grA(Vk(g)) is the associated graded algebra of A(V k(g))

with respect to Zhu’s filtration [Z96]. Hence Specm(grA(Vk(g))) ⊂ XVk(g) ⊂ N . It

follows that the center Z(g) of U(g) acts finitely on A(Vk(g)) and therefore there are

only finitely many possible central characters of simple modules of A(Vk(g)). �

Remark 5.4. Let g, f be as in Theorem 1.1. As in the same way as [Ar15b, Theorem

9.5], one finds that XVk(g) = Specm(grA(Vk(g))), which gives another evidence for

[Ar15b, Conjecture 1].
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Conjecture 2. We have

XVk(g) = Omin

if and only if

(1) g is of type A1, and k is a rational admissible number that is not an integer,

or k = −2.

(2) g is of type A2, Cl (l > 2), F4, and k is admissible with denominator 2.

(3) g is of type G2, and k is admissible with denominator 3, or k = −1.

(4) g is of type D4, E6, E7, E8 and k is an integer such that

−h
∨

6
− 1 6 k 6 −1.

(5) g is of type Dl with l > 5, and k = −2,−1.

One can easily verify Conjecture 2 for type A1. Note that the “if” part of

Conjecture 2 follows from Theorem 1.1 and [Ar15a, Theorem 5.14].

6. Proof of Theorem 1.2

Let H
∞
2 +•
fθ

(M) denote the BRST cohomology associated with the quantized

Drinfeld-Sokolov reduction corresponding to fθ ([KRW03]), so that

Wk(g, fθ) = H
∞
2 +0

fθ
(V k(g)).

The correspondence M 7→ H
∞
2 +0

fθ
(M) gives a functor Ok →Wk(g, fθ) -Mod, where

Ok is the category O of ĝ of level k and Wk(g, fθ) -Mod is the category of Wk(g, fθ)-

modules.

Recall that Wk(g, fθ) is the unique simple quotient of Wk(g, fθ).

Theorem 6.1. (1) ([Ar05, Main Theorem]) The functor Ok →Wk(g, fθ) -Mod,

M 7→ H
∞
2 +0

fθ
(M), is exact.

(2) ([Ar05, Main Theorem]) We have H
∞
2 +0

fθ
(L(λ)) = 0 if λ(α∨0 ) ∈ Z>0, where

α∨0 = K − θ. Otherwise H
∞
2 +0

fθ
(L(λ)) is an irreducible highest weight rep-

resentation of Wk(g, fθ). In particular,

H
∞
2 +0

fθ
(Vk(g)) ∼=

{
Wk(g, fθ) if k 6∈ Z>0,

0 if k ∈ Z>0.

(3) ([Ar15a, Theorem 4.21]) For any quotient V of V k(g) we have

X
H
∞
2

+0

fθ
(V )

= XV ∩ Smin.

Hence

(a) ([Ar15a, Proposition 4.22]) H
∞
2 +0

fθ
(V ) 6= 0 if and only if Omin ⊂ XV .

(b) ([Ar15a, Theorem 4.23]) H
∞
2 +0

fθ
(V ) is a lisse vertex algebra if XV =

Omin.
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Remark 6.2. By [KW04, Theorem 6.3], the image H
∞
2 +0

fθ
(M(λ)) of the Verma

module M(λ) of ĝ with highest weight λ is isomorphic to a Verma module of

Wk(g, fθ). Moreover, all the Verma modules of Wk(g, fθ) appear in this way. By

Theorem 6.1 (1), (2), H
∞
2 +0

fθ
(L(λ)) is the unique simple quotient of H

∞
2 +0

fθ
(M(λ))

provided λ(α∨0 ) 6∈ Z>0. From this, one sees that all the irreducible highest weight

representations of Wk(g, fθ) appear as H
∞
2 +0

fθ
(L(λ)) for some λ, see [Ar05] for the

details.

Let k be non-critical, that is, k + h∨ 6= 0. By [KW04, Theorem 6.3], one finds

that H
∞
2 +0

fθ
(M(λ)) ∼= H

∞
2 +0

fθ
(M(µ)) if and only if µ = s0 ◦ λ, where s0 is the

reflection corresponding to α0. It follows that H
∞
2 +0

fθ
(L(λ)) and H

∞
2 +0

fθ
(L(µ)) are

nonzero and isomorphic if and only if λ(α∨0 ), µ(α∨0 ) 6∈ Z>0 and µ = s0 ◦ λ.

Proof of Theorem 1.2. Let k = kn with n > 0 as in §5. We have shown that

XṼk(g) = Omin in Proposition 5.2. Hence the vertex algebra H
∞
2 +0

fθ
(Ṽk(g)) is

nonzero and lisse by Theorem 6.1 (3). Note that both Wk(g, fθ) and H
∞
2 +0

fθ
(Ṽk(g))

are quotients of Wk(g, fθ). Indeed, H
∞
2 +0

fθ
(Ṽk(g)) is a quotient of Wk(g, fθ) =

H
∞
2 +0

fθ
(V k(g)) by Theorem 6.1 (1) since Ṽk(g) is a quotient of V k(g). Because it

is a unique simple quotient of Wk(g, fθ), Wk(g, fθ) is a quotient of H
∞
2 +0

fθ
(Ṽk(g)),

which is lisse as we have just proved. Therefore Wk(g, fθ) is lisse as well. �

Conjecture 3. Let g and k be as in Theorem 1.2. Then H
∞
2 +0

fθ
(Ṽk(g)) ∼= Wk(g, fθ),

where Ṽk(g) is defined above.

Remark 6.3. Let g and k be as in Theorem 1.2. Then Wk(g, fθ) 6∼= H
∞
2 +0

fθ
(L(λ))

for any irreducible admissible representation L(λ) of ĝ. Indeed, if k 6 −1 (resp. if

k > −1), L(kΛ0) = Vk(g) (resp. L(s0◦kΛ0)) is the unique irreducible highest weight

representation of ĝ such that Wk(g, fθ) ∼= H
∞
2 +0

fθ
(L(λ)), see Remark 6.2. But kΛ0

(resp. s0 ◦ kΛ0) is not an admissible weight since it is not regular dominant.

7. Classification of lisse minimal W -algebras

Theorem 7.1. (1) Wk(sp2l, fθ), l > 2, is lisse if and only if k is admissible

with denominator 2, that is, k = p/2 and p is an odd number equal to or

greater than −1.

(2) Wk(so7, fθ) is lisse if and only if k is admissible with denominator 2, that

is, k = p/2 and p is an odd integer equal to or greater than −3.

(3) Wk(so2l+1, fθ), l > 4, is never lisse.

(4) Wk(so2l, fθ), l > 2, is lisse if and only if k is an integer equal to or greater

than −2.

(5) Wk(F4, fθ) is lisse if and only if k is admissible with denominator 2, that

is, k = p/2 and p is an odd number equal to or greater than −5.

(6) Wk(E6, fθ) is lisse if and only if k is an integer equal to or greater than

−3.

(7) Wk(E7, fθ) is lisse if and only if k is an integer equal to or greater than

−4.
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(8) Wk(E8, fθ) is lisse if and only if k is an integer equal to or greater than

−6.

If Wk(g, fθ) = C, then it is obviously lisse. Hence it is natural to ask when

Wk(g, fθ) = C. It turns out not every W -algebra admits one-dimensional represen-

tations.

Theorem 7.2. Suppose g is not of type A1. The following are equivalent:

(1) Wk(g, fθ) admits a (non-twisted or Ramond-twisted) one-dimensional rep-

resentation,

(2) Wk(g, fθ) = C,

(3) (a) g belongs to the Deligne exceptional series and k = −h∨/6− 1, or

(b) g = sp2l, l > 2, and k = −1/2.

Remark 7.3. If g = sl2, then fθ = freg is regular, Wk(g, fθ) = Wk(sl2, freg) is the

simple Virasoro vertex algebra provided that k 6= −2, and the results are well-

known2. Namely,

- Wk(sl2, freg) is lisse if and only if either k + 2 = p/q, with p, q ∈ Z>0,

(p, q) = 1 and p, q > 2, or k + 2 = 0 (cf. [Ar12]),

- Wk(sl2, freg) = C if and only if either k + 2 = 2/3, or k + 2 = 3/2, or

k + 2 = 0.

The rest of this section is devoted to the proof of Theorem 7.1 and Theorem 7.2.

Let g0 be the center of the reductive Lie algebra g\, so that

g\ =
⊕
i>0

gi.

Define an invariant bilinear form on gi, i > 0, by

(x|y)\i := (k +
h∨

2
)(x|y)− 1

4

(
trg(0)(adx ad y)

)
,

where ( | ) is the normalized inner product of g as before. Then there exists a

polynomial k\i of k of degree 1 such that

( | )\i = k\i ( | )i,

where ( | )i is the normalized inner product of gi, that is, (θi|θi) = 2.

By [KW04, Theorem 5.1], we have an embedding⊗
i>0

V k
\
i (gi) ↪→Wk(g, fθ)

of vertex algebras.

Lemma 7.4. (1) Suppose that Wk(g, fθ) is lisse. Then the value of k\i for all

i > 1 must be a nonnegative integer.

(2) Suppose that Wk(g, fθ) admits a (non-twisted or Ramond-twisted) one-

dimensional representation. Then the value of k\i for all i > 0 must be

zero.

2Note that Wr−2(sl2, freg) ∼= W1/r−2(sl2, freg) for any r ∈ C∗.
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Proof. (1) By [DM06], if a lisse vertex algebra V contains a quotient of an affine

vertex algebra as a vertex subalgebra, this quotient must be integrable. With

V = Wk(g, fθ), we deduce that the simple quotient Vk\i
(gi) must be integrable for

any i > 1, that is, k\i is a nonnegative integer for any i > 1.

(2) If Wk(g, fθ) admits a (non-twisted or Ramond-twisted) one-dimensional

representation, by restriction we obtain that V k
\
i (gi), for i > 0, admits a one-

dimensional representation. Hence k\i = 0 for all i > 0. �

Lemma 7.5. The reductive Lie algebras g\ =
⊕

i>0 gi and the polynomials k\i are

described in the below Tables 3 and 4.

sl3 sll+1, l > 3 sp2l, l > 2 so7 so8 son, n > 9

g\ g0, g0 ⊕ g1 g1, g1 ⊕ g2,
⊕3
i=1 gi, g1 ⊕ g2,

g0 ∼= C g0 ∼= C, g1 ∼= sll−1 g1 ∼= sp2l−2 g1 ∼= g2 ∼= sl2 gi ∼= sl2, g1 ∼= sl2, g2 ∼= son−4

k
\
i k

\
0 = k + 3

2
k
\
0 = k + l+1

2
, k

\
1 = k + 1

2
k
\
1 = k + 3

2
, k

\
i = k + 2, k

\
1 = k + n

2
− 2,

k
\
1 = k + 1 k

\
2 = 2k + 4 i ∈ {1, 2, 3} k

\
2 = k + 2

Table 3. g\ =
⊕

i>0 gi and k\i for the classical types

G2 F4 E6 E7 E8

g\ sl2 sp6 sl6 so12 E7

k
\
1 3k + 5 k + 5

2
k + 3 k + 4 k + 6

Table 4. g\ =
⊕

i>0 gi and k\i for the exceptional types

Proof. The verifications are easy and left to the reader. �

Proof of Theorem 7.1. The “if” part of Theorem 7.1 has been already proven in

Theorem 1.2 and [Ar15a, Theorem 5.18], and the “only if” part follows from Lem-

mas 7.4 and 7.5. �

Remark 7.6. For g = sp2l it is possible to show the following.

A(V−1/2(g)) ∼= U(g)/JW1
∼= C× (Lg($1)∗ ⊗C Lg($1))× U(g)/J0,

where JW1
is the ideal generated by W1 := Lg(θ + θ1) ⊂ W . This implies that J0

is generated by JW1
and Ω− c0.

Conjecture 4. (1) Wk(sl3, fθ) is lisse if and only if k is admissible with denom-

inator 2, that is, k = p/2 and p is an odd integer equal or greater than

−3.

(2) Wk(sln, fθ), n > 4, is never lisse.

(3) Wk(G2, fθ) is lisse if and only if k is admissible with denominator 3, or an

integer equal to or greater than −1.
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The “if” part of Conjecture 4 follows from [Ar15a, Theorem 5.18].

Proof of Theoren 7.2. Clearly (2) implies (1). The direction (1)⇒ (3) follows from

Lemmas 7.4 and 7.5.

Let us show (3) implies (2).

The A2 case follows from [Ar13].

Assume that g is of type Dl, E6, E7, or E8. Note that k = k0 in (3). Let N be

the submodule of V k(g) generated by vi = σ(wi), for all i, and set Ṽk(g) = V k(g)/N

as in Section 5. By Theorem 6.1 (1) we have an exact sequence

0→ H
∞
2 +0

fθ
(N)→ H

∞
2 +0

fθ
(V k(g))→ H

∞
2 +0

fθ
(Ṽk(g))→ 0

of Wk(g, fθ)-modules. The image v̄i of vi ∈ N in H
∞
2 +0

fθ
(V k(g)) = Wk(g, fθ) is

nonzero, since its image in RWk(g,fθ) = C[Smin] is nonzero and coincides with eθi
under the identification C[Smin] = S(gfθ ), where eθi is the highest root vector of

gi. By weight consideration one finds that v̄i coincides with eθi(−1) ∈ V k
\
i (gi) ⊂

Wk(g, fθ) up to non-zero constant multiplication.

Since Wk(g, fθ)1 = g\ =
⊕

i>1 gi, the whole weight one space Wk(g, fθ)1 is

included in the image of H
∞
2 +0

fθ
(N). Then from the commutation relations of

Wk(g, fθ) described in [KW04, Theorem 5.1] it follows that all the generators Gv,

v ∈ g1/2, defined in [KW04], and the conformal vector are also in the image of

H
∞
2 +0

fθ
(N). Therefore H

∞
2 +0

fθ
(Ṽk(g)) must be trivial, and hence, so is its simple

quotient Wk(g, fθ).

Assume that g is of type Cl, G2 or F4, so that g\ is simple and k is admissible,

and hence the maximal submodule Nk of V k(g) is generated by a singular vector

v. By Theorem 6.1 (1), (2) we have the exact sequence

0→ H
∞
2 +0

fθ
(N)→Wk(g, fθ)→Wk(g, fθ)→ 0.

Also, by [KW04, Theorem 6.3.1] H
∞
2 +0

fθ
(N) is generated by the image v̄ of v. Since

the image of H
∞
2 +0

fθ
(N) in Wk(g, fθ) is nonzero as Wk(g, fθ) is lisse [Ar15a], the im-

age of v̄ in Wk(g, fθ) is nonzero. Hence, as in the same manner as above, by weight

consideration it follows that W1(g, fθ)1 is included in the image of H
∞
2 +0

fθ
(N), which

gives that Wk(g, fθ) = C as required. �
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