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Abstract. — This note corresponds to my lecture series at ETH Zürich on
spring 2008 about the following result of Mustaţă [27]

“The m-order jet scheme of a locally complete intersection X is irreducible
if and only if X has rational singularities.”

The main technic used to prove this result is motivic integration, as devel-
oped by Konstevitch, Denef and Loeser and Batyrev. The course starts with
an introduction to Kontsevich’s theory of motivic integration. Then, we give a
description of the proof of Mustaţă’s result. At last, we present applications of
motivic integration theory and Mustaţă’s result to Lie theory. More precisely,
we will detail the following two applications:
∗ Jet schemes of the nilpotent cone of a reductive Lie algebra, following

David Eisenbud and Edward Frenkel [27](Appendix).
∗ Nilpotent bicone of a reductive Lie algebra, joint with Jean-Yves Char-

bonnel [7].
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INTRODUCTION

Motivic integration was introduced by M. Kontevich in a lecture at Orsay
in 1995 [17]. It is an integration theory on the arc space J∞(X) of a smooth
complex variety X. The points of this space corresponds to “formal arcs”
on X and can be thought as an infinitesimal curve centered at a point of X.
Likewise, the points of the m-order jet scheme Jm(X) of X can be viewed as
a m-order infinitesimal curve centered at a point of X.

The starting point of these lecture series is the following result of Mircea
Mustaţă [27], conjectured by David Eisenbud and Edward Frenkel, who in-
tended to apply it to the case where X is the nilpotent cone of a reductive Lie
algebra:

Theorem 1 (Mustaţă, 2001). — Let X be a complex algebraic variety. If
X is locally a complete intersection variety, then Jm(X) is irreducible for any
m ≥ 1 if and only if X has rational singularities, where Jm(X) is the m-order
jet scheme of X.

Close relationships between the geometry of arc spaces and the singularities
of X were conjectured by Nash in 1995. Thus, Mustaţă’s result is a nice
illustration of Nash’s predictions. The main technic used in the proof of
Theorem 1 is motivic integration as developed by Kontsevich, Denef and
Loeser, and Batyrev. The basic idea is that the Hodge realization of the
motivic measure gives information we need about the jet schemes Jm(X). In
the appendix of [27], David Eisenbud and Edward Frenkel apply Theorem 1
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to the nilpotent cone of a reductive Lie algebra to extend Kostant’s results
in the setting of jet schemes. In addition, Jean-Yves Charbonnel and myself
have recently studied the nilpotent bicone using Mustaţă’s theorem and the
main ideas of its proof. For all of these various reasons, the presentation of
the Mustaţă’s result is a great opportunity to get onto various aspects during
these courses:

∗ Part 1 is an introduction to the motivic integration theory.

∗ Part 2 concerns Theorem 1 and its proof. We tempt to explain how
motivic integration appears in the proof.

∗ In Part 3, we present various applications of Mustaţă’s theorem to
reductive Lie algebras. We start by a review of known results concerning the
nilpotent cone. Then, we detail two applications. The first one concerns jet
schemes of the nilpotent cone (following the appendix of [27]). The second
one concerns the nilpotent bicone: in [7], we use Mustaţă’s theorem (and
technics from motivic integration as developed in its proof) to prove that
the nilpotent bicone is a complete intersection. This in particular answers
positively a conjecture of H. Kraft and N. Wallach [19]. The study of the
nilpotent bicone was originally the reason why Michel Duflo brought [27] to
our attention few years ago.

PART I
MOTIVIC INTEGRATION

We present in this part a short introduction to motivic integration theory.
The theory for smooth varieties id due to M. Kontsevich [17] and was gener-
alized latter by J. Denef and .F. Loeser [10]. For the sake of the simplicity
we deal from Subsection with smooth varieties. But most of results can be
extended to singular varieties according to [10]. We refer to [10], [25], [9], [5]
for more explanations about this part.

1. Introduction

1.1. Short historic. — Motivic integration was initially introduced by M.
Kontsevich [17] to prove the following result, conjectured by Batyrev:
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Theorem 1.1 (Konstevich). — Birationally equivalent Calabi-Yau vari-
eties have the same Hodge numbers.

Here, by Calabi-Yau variety, we mean a normal projective variety X of
dimension n whose canonical divisor KX is equivalent to 0. Using p-adic
integration, Batyrev proved that birationally equivalent Calabi-Yau varieties
have the same Betti numbers hi := dimH i(−,C) [2]. This lead Kontsevitch
to invent motivic integration to prove Theorem 1.1. So we should not be
so surprise to observe some similarities between the construction of motivic
integrals and p-adic integration.

Approach of the Kontsevitch’s proof. — Let us give the main idea of the proof
to motivate the future construction of motivic integrals. The main idea is to
assign to any variety X a volume [X] with value in a suitable ring M̂C which
encodes information we need about the varieties.

X // [X] ∈ M̂C ///o/o/o ”encodes the Hodge numbers”

The definition of the ring M̂C is quite subtle and we explain it latter. It
is now enough to prove that birationally equivalent Calabi-Yau varieties have
the same volume. This is achieved via a suitable motivic integral and using
the transformation rule of motivic integrals. More explicitly, if γ : Y −→ X is
a proper birational map, the class [X] in M̂C can be expressed as a motivic
integral which only depends on Y and the discrepancy divisor

Wγ := KY − γ∗KX

of γ. To conclude the proof, let X1 and X2 be two birationally equivalent
Calabi-Yau varieties. The birational map can be resolved by an Hironaka hut:

Y
f1

~~}}
}}

}}
}} f2

ÃÃA
AA

AA
AA

A

X1
//_______ X2

By the Calabi-Yau assumption, the canonical divisor KXi is equivalent to
zero, for i = 1, 2, and the divisors Wγ1 and Wγ2 are numerically equivalent.
By the transformation rules, [X1] is an expression depending only on Y and
Wγ1 = Wγ2 . The same goes for X2, whence [X1] = [X2], as expected.

To use a volume associated to a variety to study its properties is the stan-
dard idea of motivic integration. Indeed, in certain ”favourable” situations —
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that we will precise later — the integral so obtained can be explicitly com-
puted while we get information from the volume associated to the variety. For
instance, to prove Theorem 1, we will apply this principle to the jet schemes
Jm(X) (see Part 2).

1.2. Setting of the theory. — We suppose that the ground field is C (we
can replace C by any field k algebraically closed and of characteristic 0). We
fix a complex algebraic variety X (= separated and reduced scheme, of finite
type over C) of dimension d.

Since we attend to define a notion of ”integration”, we need to introduce
the different blocks of the theory (as in any theory of integration):

(1) A domain of integration: the space of formal arcs J∞(X) over X.
(2) An algebra of measurable sets of J∞(X): algebra containing the ”cylin-

ders”.
(3) The value ring of the measure: M̂C, a ring constructed from the

Grothendieck ring of varieties.
(4) A measure defined from the algebra (2) with values in the ring (3).
(5) An interesting class of measurable/integrable functions: order function-

als associated to a divisor .
(6) A change of variables formula: the transformation rule.

The important point is the construction of the value ring M̂C of the measure.
Contrary to classical integration theory, the values of the measure will not lie
in R or C. Instead they lies in a huge ring, constructed from the Grothendieck
ring of varieties by a process of localization and completion. This ingenious
construction is the feature key of the theory. In order to explain and motivate
this construction, we start with the domain of integration.

We give in the following table the corresponding different blocks of the
theory in the Lebesgues integration theory and the p-adic integration theory:

Lebesgues p-adic Motivic

Space RN (Qp)N J∞(AN )

Values of measure Z ⊆ Q ⊆ R Z ⊆ Z[p−1] =: Zp ⊆ Qp K0(VarC) ⊆MC ⊆ cMC
Cubes around point a {x ∈ R , ‖x− a‖ ≤ 1/m} {x ∈ Zp , ‖x− a‖ ≤ 1/m} {γ ∈ J∞(AN ) , ‖x− a‖ ≤ 1/m}

Volume of cube (2/m)N q−mN L−(m+1)N

Transformation rule Q-analytic isomorphism/Jacobian Diffeomorphism/Jacobian Birational map/Discrepancy

In this table, the norm ‖ · ‖ on J∞(AN ) is defined as follows:

‖γ‖ ≤ 1
m

⇐⇒ ∀i, γi ∈ (tm)C[[t]]

if γ = (γ1, . . . , γN ) is a N -tuple of power series in J∞(AN ). We refer to [24]
for a quick review concerning p-adic integration.
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2. The space of arcs J∞(X)

2.1. Definitions. — Arc spaces were first introduced by Nash [28] who
conjectured interesting relationships between the geometry of the arc spaces
and the singularities of X. Recent works of Mustaţă support his predictions
by showing that the arc spaces contain information about singularities (see
Theorem 1).

Let us give some defintions. An m-order jet of X over x ∈ X is an m-order
infinitesimal curve in X, that is a morphism

OX,x −→ C[t]/tm+1 .

The subset Jm(X) of m-order jets has a natural structure of scheme and the
C-valued points of Jm(X) are in natural bijection with the C[t]/tm+1-valued
point of X. In particular, there are canonical isomorphisms J0(X) ' X,
J1(X) ' TX, where TX is the total tangent space of X.

For instance, suppose that X is contained in an affine space X ⊆ AN ,
X = Spec(R), where R = C[x1, . . . , xN ]/(f1, . . . , fr).

[In fact, by [27](Proposition 1.1), the construction of jet schemes is compatible
with open immersions. As a consequence, in order to describe Jm(X), we can
restrict ourselves to the affine case]

In this case, X is an affine variety defined by the equations fi(x) = 0,
i = 1, . . . , r, where x = (x1, . . . , xN ). Then Jm(X) is defined by the equations

fi(x0 + x1t + · · ·+ xmtm) ≡ 0 mod tm+1 ,

where xi ∈ AN . Therefore, we have an immersion
Jm(X) Â Ä // A(m+1)N

and Jm(X) is defined by (m + 1)r equations. In particular, the dimension of
Jm(X) is at least (N − r)(m + 1).

By truncation, we have canonical morphisms

πm,n : Jm(X) −→ Jn(X) ,

for m ≥ n. In general, the morphisms πm,n are not necessarily surjective.
When X is smooth, πm,n is a locally trivial fibration with fiber Ad(m−n) (see
Example 2.1 and Proposition 2.2). These morphisms induce a projective sys-
tem (Jm(X), πl,m). The space of the arcs is by definition the projective limit
of the system (Jm(X), πl,m):

J∞(X) := proj lim
m

Jm(X)

The subset J∞(X) has a natural structure of scheme. The C-valued points of
J∞(X) are in natural bijection with the C[[t]]-valued point of X. Thus, an
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arc on X is roughly an ”infinitesimal curve” on it. Again by truncation, there
are canonical morphisms:

π∞,m : J∞(X) −→ Jm(X) ,

for m ≥ 0.
Suppose that X ⊆ AN is defined by r equations fi(x) = 0, for i = 1, . . . , r,

then, J∞(X) is the set of formal series γ = x0 + x1t + x2t
2 + · · ·+, with

coefficients xi in AN , satisfying

fi(x0 + x1t + x2t
2 + · · · ) = 0 ,

where xi ∈ AN . For any arc γ on X, i.e. an element γ ∈ J∞(X), we call
π∞,0(γ) the origin of γ.

Example 2.1. — Let Y = SpecC[x1, . . . , xN ] = AN be an affine space. We
can view the elements xi as elements of C[Jn(Y )] and C[J∞(Y )]. Define a
function x

(α)
i , 0,≤ α ≤ m, on Jm(Y ), for m ≥ 0 by the formula

x
(α)
i (y(t)) := xi(∂α

t (y(t))|t=0
) ,

for y(t) = y0 + y1t + · · ·ymtm ∈ Jm(Y ). Then we see that

Jm(Y ) ' SpecC[x(0)
1 , . . . , x

(0)
N , . . . , x

(m)
1 , . . . , x

(m)
N ] ' AN(m+1) .

Example 2.1 is almost a ”general” situation for smooth varieties. More
precisely, the smooth case is described by the following proposition:

Proposition 2.2 ([5](Proposition 2.3)). — Let Y be a smooth scheme of
dimension N . Then Jm(Y ) is locally an ANm- bundle over Y . In particular
Jm(Y ) is smooth of dimension N(m + 1). In the same way, Jm+1(Y ) is an
AN - bundle over Jm(Y ).

We will give additional properties about jet schemes next part in the proof
of Theorem 1.

2.2. The cylinder sets and stable sets. — We introduce now a particu-
larly interesting class of subsets in J∞(X).

Definition 2.3. — A subset C ⊂ J∞(X) of the space of arcs is called cylin-
der set if C = π−1∞,m(Bm), for m ≥ 0, and Bm a constructible subset of Jm(X).

As a constructible subset is a finite, disjoint union of locally closed subvari-
eties, it is quite clear the the collection of all the cylinder sets forms an algebra
of sets, that we denote by B̃X

[this will not be exactly the ”right” algebra, that we will call then BX .]
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For instance J∞(X) = π−1
∞,0(X) is a cylinder set, as well as any finite unions

and complement (and hence finite intersection) of cylinders sets.

We would like that cylinder sets are measurable for the motivic measure
that we are going to define. With this definition, it will be not easy to define
a measure in such way that this measure is independent of m. The stable sets
turns out to be a more judicious choice of subsets class.

Recall that f : S −→ B is a piecewise trivial fibration with fiber constant
fiber F if we can write B =

⊔
Bi as a finite union of locally closed subsets Bi

such that over each Bi, we have f−1(Bi) ∼= Bi × F and f is given by the first
projection onto Bi.

Definition 2.4. — A subset A ⊆ J∞(X) is called stable if
(1) for m À 0, Am := π∞,m(A) is a constructible subset of Jm(X),
(2) A = π−1∞,m(Am), for m À 0, and,
(3) πn+1,n : An+1 −→ An is a piecewise trivial fibration over π∞,n(A) with

fiber Ad, for n ≥ m.

The stable sets are cylinders, but the converse is not true in general. By
Proposition 2.2, if X is smooth, then cylinders are stable. Then in smooth
case, the condition (3) is superfluous and the two notions coincide. But in
general way, (3) is absolutely crucial. In fact, the main technical part to
define motivic measure on singular spaces — what did Denef and Loeser in
[10] — is to show that the class of stable sets can be enlarged to an algebra
of measurable subsets which contains cylinders. In particular J∞(X) will be
measurable.

To avoid these technical part, we assume until the end of this part that Y
is a smooth variety over C of dimension N . In most of cases we can even
suppose that Y = AN . For instance, in Part 3, we will consider the case where
Y is a complex finite dimensional reductive Lie algebra g. We will reserve the
term X for subvarieties, eventually singular, of Y . In Part 3 we will consider
the case where X is the nilpotent cone or the principal cone of g.

2.3. The order functions FX associated to a closed subvariety. —
We consider an interesting class of functions defined on J∞(Y ) with values in
Z≥0 ∪ {∞}: the order functional associated to a divisor (and more generally
to any closed variety). We would like to define an algebra BY on J∞(Y ) with
respect to which these functionals are measurable.

For X ⊆ Y a subvariety of Y defined by an ideal IX , we associate the
function

FX : J∞(Y ) −→ Z≥0 ∪ {∞}
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which maps an arc γ ∈ J∞(Y ) to the order of vanishing of γ along Y , i.e
the biggest integer e such that the ideal γ(IX) of C[[t]] is contained in the
ideal (te). In the same way, we can define a function, that we denote by the
same symbol FX , from Jm(Y ) to Z≥0 ∪ {∞}. The function FX is called order
function (with respect, or associated to, X).

Example 2.5. — Suppose that Y = AN and X ⊆ Y is defined by equations
fi(z) = 0, for i = 1, . . . , r. Let γ = z0 +z1t+z2t

2 + · · · ∈ J∞(Y ). Then FX(γ)
is the biggest integer e such that

fi(γ) = fi(z0 + z1t + z2t
2 + · · · ) ≡ 0 mod te ,

for any i = 1, . . . , r.

Clear that, for γ ∈ J∞(Y ) and m ≥ 0, we have the following interpretation
in terms of jets:

1) FX(γ) 6= 0 ⇐⇒ π∞,0(γ) ∈ X,
2) FX(γ) ≥ m + 1 ⇐⇒ π∞,m(γ) ∈ Jm(X),
3) FX(γ) = ∞ ⇐⇒ γ ∈ J∞(X).

The following proposition is consequently straightforward, since

F−1
X (s) = π−1

∞,s−1(Js−1(X)) \ π−1
∞,s(Js(X)) .

Proposition 2.6. — The subset F−1
X (s) is a cylinder.

A very interesting case is when X is an effective divisor D of Y . Let x ∈ Y
and g a local defining equation for D on a neighborhood U of y. Then the
function

FD : J∞(Y ) −→ Z≥0 ∪ {∞}
associated to D maps γ ∈ J∞(Y ) to FD(γ) the order of vanishing of the formal

series g(γ(z)) at z = 0. If we write D =
r∑

i=1
aiDi as a linear combination

of prime divisors then g decomposes as a product g =
∏r

i=1 gai
i of defining

equations for Di, hence FD =
r∑

i=1
aiFDi .

If X is a closed subvarieties X in Y , then F−1
X (s) is a cylinder, by Proposition

2.6. It is worth to notice that F−1
X (∞) is not a cylinder.

[Indeed, suppose the contrary, so there is a constructible subset Bm ⊆ Jm(Y )

such that F−1
X (∞) = π−1∞,m(Bm). Each arc γ ∈ F−1

X (∞) is an N -tuple of power

series whose at least one is identically zero. But each γ ∈ π−1∞,m(Bm) is an N -
tuple of power series whose terms of degree higher than m may take any complex
value, whence a contradiction.]



10 A. MOREAU

Nevertheless, we observe that

F−1
X (∞) =

⋂

k∈Z≥0

π−1
∞,m

(
π∞,m(F−1

X (∞))
)

,

since a power series is identically zero if and only if its truncation to degree m is
the zero polynomial for any m ≥ 0. Then, it is easy to see that π∞,m(F−1

X (∞))
is a constructible set, for any m. Therefore, we deduce

Proposition 2.7 ([9](Proposition 2.6)). — F−1
X (∞) is a countable inter-

section of cylinders.

We will see next section how construct an algebra in such a way that FX

is measurable. In particular the algebra B̃Y of cylinders is certainly not suffi-
cient.

3. The value ring of the motivic measure

We define in this section the value ring of the motivic measure.

3.1. We denote by K0(VarC) the Grothendieck ring of the category of va-
rieties VarC over C. Recall that it is the ring formally generated by the
isomorphism classes [S] of all the finite type complex varieties S with the
relation

[S] = [S \ S′] + [S′] ,

for any closed subvariety S′ in S. The product structure is given by

[S] · [S′] = [S × S′] .

We denote by L the class of the affine line A1 in K0(VarC) and by 1 the class
of any point. Using a stratification of S by smooth varieties, we show that
K0(VarC) is generated by smooth varieties.

Examples: 1) [C∗] = [C \ {0}] = [C]− [{0}] = L− 1.

2) [PN ] = LN + LN−1 + · · ·+ L+ 1.

3) Piecewise trivial fibration: suppose that f : S −→ B is a piecewise trivial
fibration with constant fiber F . Then [S] = [B] · [F ]. Also, if f : S −→ B is a
locally trivial fibration with fiber F , then [S] = [B] · [F ].

[ Indeed, this means that we can write B =
F

Bi as a finite union of locally closed
subsets Bi such that over each Bi, we have f−1(Bi) ∼= Bi × F and f is given
by the first projection onto Bi. Then S = f−1(B) =

F
f−1(Bi) ∼=

F
Bi × F ,

whence the equality. ]
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The map S′ 7→ [S′] from the set of closed subvarieties of S extends uniquely
in a mapping W 7→ [W ] from the set of constructible sets of S to K0(VarC).
This map satisfies [W ∪W ′] = [W ] + [W ′]− [W ∩W ′].

An additive invariant λ from the category VarC with values in a ring R is a
map satisfying:

λ(S) = λ(S′), if S ∼= S′

λ(S) = λ(S′) + λ(S \ S′), for S′ closed in S,

λ(S × S′) = λ(S) · λ(S′), for any S, S′ .

An additive invariant naturally extends to the set of constructible sets. The
map S 7→ [S′] is clearly an additive invariant with values in K0(VarC) and satis-
fies the following universal property: for any additive invariant λ : VarC −→ R
with values in a ring R, there is a unique map λ such that λ([S]) = λ(S), for
any S in K0(VarC):

VarC
λ //

[−]
²²Â
Â
Â R

K0(VarC)
λ

66mmmmmmmmmmmmmm

Example 3.1 (Hodge Polynomials). — There is an unique additive in-
variant h : VarC −→ Z[u, v], which assigns to a smooth variety S over C
its Hodge polynomial

h(S, u, v) :=
∑
p,q

(−1)p+qHp,q(S)upvq ,

where Hp,q(S) = dimHq(S, Ωp
S) is the (p, q)-Hodge number of S. The map h

factors through K0(VarC) according the universal property.

3.2. We denote by MC the localization at L of the Grothendieck ring
K0(VarC)

MC := K0(VarC)[L−1] .

Recall that B̃Y is the algebra generated by cylinders (see Definition 2.3).
First we define a “naive” measure µ̃Y on B̃Y with values in MC by setting:

µ̃Y (π−1
∞,m(Bm)) := [Bm] · L−N(m+1) ,(1)

for any constructible subset Bm in Jm(Y ). As Y is smooth, J∞(Y ) is a cylinder
and we have

µ̃Y (J∞(Y )) = [Y ] · L−N .
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Notice that Relation (1) makes sense because the right hand is independent
on the choice Bm and on the level m. This comes from the fact that cylinders
are stable sets (see Definition 2.4) in the case where Y is smooth.

[If B = π−1∞,m(Bm) = π−1
∞,m+1(π

−1
m+1,m(Bm)), then eµY (B) = [π−1

m+1,m(Bm)] ·
L−N(m+2) = [AN ] · [Bm] ·L−N(m+2) = [Bm] ·L−N(m+1), according to condition
(3) of Definition 2.4 and above example (3). On the other hand, it is easy to check

that the relation π−1∞,m(Bm) = π−1∞,m(Cm) implies the relation [Bm] = [Cm].]

Remark 3.2. — For singular spaces, we can define µ̃Y only for stable sets
by setting µ̃Y (A) := [π∞,m(A)] · L−N(m+1), for any stable set A = π−1∞,m(Am).
In this case, condition (3) of Definition 2.4 is required.

Let X be a closed subvariety in Y . By Proposition 2.6, the set F−1
X (s) is

µ̃Y -measurable for any s ∈ Z≥0. However, FX is not µ̃Y -measurable because
F−1

X (∞) is not a cylinder. To process, we extend µ̃Y to a measure µY . The
following discussion intents to motivate the definition of µY . First of all, as
[−] is additive, it is straightforward to show that

µ̃Y (
l⊔

i=1

Ci) =
l∑

i=1

µ̃Y (Ci) ,

for cylinders C1, . . . , Cl. Now, the set J∞(Y ) \F−1
X (∞) is a countable disjoint

union of cylinder sets, by Proposition 2.7:

J0(Y ) \ π−1
∞,0

(
π∞,0(F−1

X (∞))
)

t
⊔

k∈Z≥0

π−1
∞,k+1

(
Jk+1(Y ) \ π∞,k+1(F−1

X (∞))
) \ π−1

∞,k

(
Jk(Y ) \ π∞,k(F−1

X (∞))
)

.

Our goal is to define a measure µY defined on the collection of countable
disjoint unions of cylinder sets so that the set J∞(Y ) \F−1

X (∞), and hence its
complement F−1

X (∞) too, is µY -measurable. We would like to define µY so
that:

µY

(⊔

i∈N
Ci

)
:=

∑

i∈N
µY (Ci) =

∑

i∈N
µ̃Y (Ci), for cylinders Ci, with i ∈ N .(2)

The problem is that the sum
∑
i∈N

µ̃Y (Ci) is not in MC yet. Furthermore,

it is not clear that the relation (2) is independent on the choice of the Ci.
Kontsevich solved both of these problems by completing the ring MC.

3.3. We can process by analogy with p-adic integration (see [24]): K0(VarC)
is the analogue of Z and MC is the analogue of Z[p−1]. In R, p−i has limit 0
when i go to −∞. Here we expect that L−i has ”limit” 0 in M̂C.
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Let Fm(MC) be the subgroup of MC generated by the elements of the
form [S]L−i, with dimS − i ≤ −m. We have Fm+1(MC) ⊂ Fm(MC),
Fm(MC) · Fn(MC) ⊂ Fm+n(MC) and L−m ∈ Fm(MC). We denote by
M̂C the completion with respect to this filtration.

[We can explicit this completion; there is a natural notion of dimension on
K0(VarC). We say that τ ∈ K0(VarC) has dimension d if we can write τ =P

ai[Si], where ai is in Z and Si is a variety of dimension at most d for any i
and if in addition not all Si has dimension at most d − 1. We decide that the
dimension of the empty set is −∞. It is easy to check that the dimension map

dim : K0(VarC) −→ Z ∪ {∞}

satisfies dim(τ · τ ′) ≤ dim τ + dim τ ′ and dim(τ + τ ′) ≤ max{dim τ, τ ′} with
equality if and only of dim τ 6= dim τ ′. The dimension map extends to MC by
setting dim(L−1) := −1. There is a filtration induced by the dimension. Then
F m(MC) is the subgroup of elements τ in MC such that dim τ is at most −m.

Then, the convergence in cMC is quite easy. A sequence of elements τi ∈ cMC if
and only if the dimensions dim τi tend to −∞ when i goes to ∞. Then, a sum
∞P

i=1
τi converges if and only if the sequence of summands converges to zero.]

Remark 3.3. — It is not already known whether the morphism MC → M̂C
is injective. But, at the end we plan to consider the compound h ◦ µY and
we can show that h factors through the image of MC in M̂C, so it is not too
serious.

We dispose now of the values ring for our feature measure.

4. The motivic measure and the motivic integral

4.1. Motivic measure. — Denote by ϕ the natural completion map ϕ :
MC −→ M̂C. Then we still denote by µ̃Y the compound map ϕ ◦ µ̃Y with is
so in values in M̂C. For a sequence of cylinders {Ci}, there is now a meaning
to ask whether or not the sequence µ̃Y (Ci) converges to 0 when i go to −∞.
We pass over the details concerning the construction of the definitive motivic
measure. So we admit Proposition-Definition 4.1:

Definition-Proposition 4.1. — There exists an algebra BY of subsets in
J∞(Y ), which contains cylinder subsets, and an unique map µY : BY −→ M̂C
satisfying the following conditions:

1) If A = π−1∞,m(Am), with m ∈ Z≥0, is a cylinder set, then µY (A) =
[Am] · L−(m+1)N .

2) If A ∈ BY is contained in J∞(Z) where Z is a closed subvariety of Y
with dimZ < dimY , then µY (A) = 0.
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3) Let {Ai}i∈I be a sequence in BY . Assume that the Ai are pairwise distinct
and that the union A :=

⊔
i∈I

Ai is in BY . Then
∑
i∈I

µY (Ai) converges in M̂C

to µY (A).
4) If A and B are in BY , A ⊆ B, and if µY (B) belongs to the closure

Fm(M̂C) of Fm(MC) in M̂C, then µY (A) ∈ Fm(M̂C).
The measure µY is called the motivic measure on Y .

Replacing “cylinder subsets” by “stable subsets” in Proposition-Definition
4.1, all the statements still hold if Y is a singular variety (see [10](Definition-
Proposition 3.2)). Actually, in the case where Y is not necessary smooth,
the algebra BY is the algebra of semi-algebraic subsets of J∞(Y ). The main
difficulty in this case is to construct an algebra BY which contains cylinders
and define the measure on cylinders as limit of measure of stable sets. In
the case where Y is smooth, the algebra BY is the collection of countable
disjoint unions of cylinders sets

⊔
i∈I

Ci for which µ̃Y (Ci) converges to 0 when

i go to −∞, as well as the complements of such sets. Then the measure µY

maps
⊔
i∈I

Ci to
∑
i∈I

µ̃Y (Ci). The difficulty is to show that this definition in

independent on the choice of the Ci (see [10]).

Corollary 4.2. — Let Z be a closed subvariety Z of Y . We suppose that Z
is strictly contained in Y . Then µY (F−1

Z (∞)) = 0

Proof. — Let us remark that ν ∈ F−1
Z (∞) if and only if ν ∈ J∞(Z). But the

measure of J∞(Z) is zero by Definition-Proposition 4.1, (2), since Z is strictly
contained in Y .

4.2. Motivic integral. — For A in BY and α : A −→ Z ∪ {∞} a function
such that α−1(s) ∈ BY for any s ∈ Z∪ {∞} and µY (α−1(∞)) = 0, we can set

∫

A

L−α dµY :=
∑

s∈Z
µY (A ∩ α−1(s))L−s(3)

in M̂C, whenever the right hand side converges in M̂C. In this case, we say
that L−α is integrable on A.

An important example is the case where α = FZ is an order functional of a
closed subvariety Z of Y . We suppose that Z is strictly contained in Y . By
Corollary 4.2, µY (F−1

Z (∞)) = 0. Then, the formula (3) applied to FZ gives:
∫

J∞(Y )

L−FZ dµY :=
∑

s∈Z
µY (F−1

Z (s))L−s .
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Notice that the sum of the right hand side does converge since the virtual
dimension of the summands approaches negative infinity. Let us give some
examples:

Example 4.3. — Z = ∅, then FZ ≡ 0 and
∫

J∞(Y )

L−FZ dµY = µY (F−1
Z (0)) =

[Y ]L−N . Then we see now how the volume [Y ] can be expressed as a motivic
integral.

Example 4.4. — Z = D is a smooth divisor of Y . Then

F−1
D (s) = π−1

∞,s−1(Js−1(D)) \ π−1
∞,s(Js(D)) .

Moreover Js(D) is locally a A(N−1)s-bundle over D, since D is smooth of
dimension N − 1. Therefore the measure of F−1

D (s) is [D](L− 1)L−(s+N) and
we get: ∫

J∞(Y )

L−FD dµY =
∑

s∈Z
µY (F−1

D (s)) = ([Y −D] +
[D]
P1

)L−N .

[Explanation: we have
Z

J∞(Y )

L−FD dµY =
X

s∈Z
µY (F−1

D (s))L−s

= [Y −D]L−N +
X

s∈Z≥1

“
[D](L− 1)L−(s+N)

”
L−s

= [Y −D]L−N + [D](L− 1)L−N 1

L2(1− L−2)

= ([Y −D] +
[D]

L+ 1
)L−N = ([Y −D] +

[D]

P1
)L−N .

]

Example 4.5. — Z = D =
t∑

i=1
aiDi is an effective divisor of Y . We detail

this example, since it is one of the key of the theory. Moreover, we will use
it Part 2 and Part 3 for the nilpotent bicone. For J ⊆ {1, . . . , t} any subset,
define:

DJ :=





⋂
j∈J

Dj if J 6= ∅

Y if J = ∅
and D0

J := DJ \
⋃

i∈{1,...,t}\J
Di .

These subvarieties stratify Y and define a partition of the space of arcs into
cylinders sets:

Y =
⊔

J⊆{1,...,t}
D0

J and J∞(Y ) =
⊔

J⊆{1,...,t}
π−1
∞,0(D

0
J) .
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For any s ∈ Z≥0 and J ∈ {1, . . . , r}, define

MJ,s := {(m1, . . . ,mt) ∈ Z≥0 |
t∑

i=1

aimi = s with (mi > 0 ⇐⇒ j ∈ J)} .

We suppose that D =
t∑

i=1
aiDi is an effective divisor with simple normal

crossing (SNC) (see Appendix A, Definition A.1) and such that all the Di are
smooth.

Lemma 4.6. — Let J be in {1, . . . , t}, let s be in Z≥0, and let m :=
(m1, . . . ,mt) be in MJ,s. For q ≥ maxi{mi}, the subset

Sq
m := π∞,q({ ν ∈ J∞(Y ) | FDi(ν) = mi, ∀i ∈ J })

is a locally trivial fibration over D0
J with fiber (C \ {0})|J | × C

nq−P
i

mi

.

Proof. — We follow the proof of [9](Proposition 2.5). Since the divisor D =
t∑

i=1
aiDi on Y has only simple normal crossing, for any y in Y , there exists a

neighborhood U of y in Y with global coordinates z1, . . . , zN on U for which
a local defining equation for D is given by

g = za1
1 · · · zajy

jy
,(4)

for some jy ≤ N . We cover Y =
⋃

U by finitely many charts on which D

has a local equation of the form (4), and we lift to cover Jq(Y ) =
⋃

π−1
q,0(U).

Hence Sq
m is covered by the open subsets

U q
m :=

⋂

i∈J

F−1
Di

(mi) ∩ π−1
q,0(U) .

As mi is at least 1 for i ∈ J , the subset U q
m is contained in π−1

q,0(D0
J ∩ U). If

J is not contained in {1, . . . , jy} then D0
J ∩ U is empty, and so U q

m. Thus we
can suppose that J is contained in {1, . . . , jy}.

The key observation is that when we regard each arc ν ∈ π−1
q,0(U) as an

N -tuple (f1(z), . . . , fN (z)) of polynomials of degree at most q with zero con-
stant term, each condition FDi(ν) = mi is equivalent to a condition on the
truncation of fi(z) to degree mi. Indeed, since Di is cut out by zi = 0 on U ,
it follows that FDi(ν) = { order of fi(z) at z = 0}. Thus ν ∈ F−1

Di
(mi) if and

only if the truncation of fi(ν) to degree mi is of the form cmiz
mi where cmi is

different from 0. Then we obtain N − |J | polynomials of degree q with zero
constant term, and, for each j ∈ J , a polynomial of the form

fj(ν) = 0 + · · ·+ 0 + cmjz
mj + cmj+1z

mj+1 + · · ·+ cmqz
mq ,
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for cmj in C\{0} and for ck in C, for any k strictly bigger than j. So, the
space of all such N -tuples is isomorphic to

Cq(N−|J |) × (C\{0})|J | × Cq|J |−Pi∈J mi .

As a consequence, U q
m is isomorphic to

π−1
m,0(U ∩D0

J)× Cq(N−|J |) × (C\{0})|J | × Cq|J |−Pi∈J mi ,

whence the lemma.

We deduce from Lemma 4.6, the relation:

µY (π−1
∞,q(S

q
m)) = [{ ν ∈ J∞(Y ) | FDi(ν) = mi, ∀i ∈ J ]L−N(q+1)

= [D0
J ](L− 1)|J |L

−N−P
i∈J

mi

.

Notice now that π−1∞,q(S
q
m) is equal to

(
⋂

i=1,...,t
F−1

Di
(mi)

)
.

Proposition 4.7. — We suppose that D =
t∑

i=1
aiDi is an effective divisor

with SNC and such that all the Di are smooth. Then

∫

J∞(Y )

L−FD dµY =
∑

J⊆{1,...,s}
[D0

J ]


∏

j∈J

L− 1
Laj+1 − 1


L−N =

∑

J⊆{1,...,s}


∏

j∈J

[D0
J ]

Paj


·L−N .

Proof. — We observe that

γ ∈ π−1
∞,0(D

0
J) ∩ F−1

D (s) ⇐⇒ (FDi(γ), . . . , FDr(γ)) ∈ MJ,r .

As a result we produce a finite partition:

F−1
D (s) =

⊔

J⊆{1,...,t}

⊔

(m1,...,mt)∈MJ,s


 ⋂

i=1,...,t

F−1
Di

(mi)


 .(5)

Then we use partition (5) and Lemma 4.6 to compute the motivic integral...
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[Details of the computations:

Z

J∞(Y )

L−FD dµY =
X

s∈Z≥0

µY (F−1
D (s)) · L−s

=
X

s∈Z≥0

X

J⊆{1,...,t}

X

(m1,...,mt)∈MJ,s

µY

0
@ \

i=1,...,t

F−1
D (mi)

1
A · L

− P
i∈J

aimi

=
X

s∈Z≥0

X

J⊆{1,...,t}

X

(m1,...,mt)∈MJ,s

[D0
J ](L− 1)|J|L−N ·

Y

i∈J

L−(ai+1)mi

=
X

J⊆{1,...,r}
[D0

J ] ·
Y

i∈J

0
@(L− 1) ·

X

mj>0

L−(ai+1)mi

1
A · L−N

=
X

J⊆{1,...,r}
[D0

J ] ·
Y

i∈J

„
(L− 1) ·

„
1

1− L−(ai+1)
− 1

««
· L−N

=
X

J⊆{1,...,r}
[D0

J ] ·
0
@Y

i∈J

L− 1

Lai+1 − 1

1
A · L−N

=
X

J⊆{1,...,r}

0
@Y

i∈J

[D0
J ]

Pai

1
A · L−N

]

5. The transformation rule for the integral

The power of the theory resides in the existence of a formula describing how
the motivic integral transforms under birational morphism (this is the key of
the Kontsevich’s proof of Theorem 1.1).

Let γ : Y ′ −→ Y be a birational morphism between smooth varieties. Then,
for m in N ∪ {∞}, there is a canonical morphism γm : Jm(Y ′) −→ Jm(Y )
induced by γ making the following diagram commutative:
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J∞(Y ′)
γ∞ //

πY ′∞,m

²²

J∞(Y )

π∞,m

²²
Jm(Y ′) γm

//

πY ′
m,0

²²

Jm(Y )

πm,0

²²
Y ′

γ
// Y

Recall that the discrepancy divisor Wγ = KY ′ − γ∗KY of γ is the divisor of
the Jacobian determinant of f , where KY and KY ′ are the canonical divisors
of Y and Y ′ respectively, (see Appendix A, Definitions A.3 and A.4). Then
the following theorem can be view as a change of variables formula for the
motivic integral.

Theorem 5.1. — If F is an integrable functional over J∞(Y ) with respect to
µY , then ∫

J∞(Y )

L−F dµY =
∫

J∞(Y ′)

L−(F◦γ∞+FWγ ) dµY ′ .

For example, if D is an effective divisor on Y , then
∫

J∞(Y )

L−FD dµY =
∫

J∞(Y ′)

L−Fγ−1(D)+Wγ dµY ′ ,

since FD ◦ γ∞ = Fγ−1(D). We pass over the proof. We refer for instance to [5]
for a proof.

Example 5.2. — In order to check the coherence of the formula, consider
the case where Y ′ = BlZ(Y ) is a blowing-up of Y along a smooth subvariety
Z of codimension c in Y , and F = 0. Then by Appendix A(Example A.5), we
have Wp = (c − 1)E, where E is the exceptional divisor and p the morphism
of the blowing-up. Then using Theorem 5.1, we have to compute

∫

J∞(Y ′)

L−FWp dµY ′ =
∫

J∞(Y ′)

L−F(c−1)E dµY ′
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By Proposition 4.7 applied to D = (c − 1)E, we get
∫

J∞(Y ′)
L−FWp dµY ′ =

[Y ′ − E] +
[E]
Pc−1

· L−N . Since E is locally isomorphic to Z × Pc−1 and since

Y ′ \E ' Y \Z, we get
∫

J∞(Y ′)
L−FWp dµY ′ = ([Y −Z]+ [Z]) ·L−N = [Y ] ·L−N .

On the other hand
∫

J∞(Y )

L−F dµY = µY (J∞(Y )) = [Y ] · L−N !

The philosophy in most applications is to encode information in a motivic
integral, then using the transformation rule of variables change (see next sec-
tion), the computation of this integral can be reduced to the computation of
the integral of L−FD , where D is a SNC divisor. To process, we construct in
general a sequence of blowing-up and we apply Theorem A.2 (see Appendix
A). Then, by Example 4.5, this integral can be explicitly computed. This
procedure will be illustrated at least twice in the following (Part 2, Section 8,
and Part 3, Section 11).

PART II

JET SCHEMES OF LOCALLY COMPLETE INTERSECTIONS

6. Introduction

In this part, X is a complex variety of dimension d. We quick recall Ap-
pendix B what means for X to have rational singularities (see Definition B.1).
Now, we remind the result of Mustaţă:

Theorem 6.1 (Mustaţă). — If X is locally a complete intersection, then
Jm(X) is irreducible for all m ≥ 1 if and only if X has rational singularities.

The study of singularities via the space of the arcs was initiated by Nash
in [28]. He suggested that the study of the images π∞,m(J∞(X)) ⊆ Jm(X)
should give information about the fibers over the singular points in the desin-
gularization of X. Theorem 6.1 supports his predictions. It says that rational
singularities of X can be detected by the irreducibility of the jet schemes for
local intersections. Let us give some examples .

Example 6.2. — If X is smooth, connected, then by Proposition 2.2, Jm(X)
is an affine bundle over X with fiber Amn. So, in this case, Jm(X) is smooth,
connected and irreducible, and has dimension (m + 1)n.
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Example 6.3. — X ⊆ AN , X = Spec(R), where R = C[x1, . . . , xN ]/(f1, . . . , fr).
Then remember that Jm(X) is defined by the equations

fi(z0 + z1t + · · ·+ zmtm) ≡ 0 mod tm+1 ,

where zi ∈ AN . Therefore, Jm(X) is defined by (m + 1)r equations. In
particular, Jm(X) has dimension at least (N − r)(m + 1). In the case where
Jm(X) has exactly dimension (N−r)(m+1), then it is a complete intersection.
Moreover, we have an explicit description of Jm(X). To process we generalize
Example 2.1. Namely, Jm(X) is defined in Ad(m+1) by the equations f

(j)
α =

Dj(fα), where D is the derivation mapping x
(α)
i to x

(α+1)
i for α ≤ m+1. Then

one can sometimes directly test the irreducibility condition with this description
(see next Example 6.4).

Example 6.4. — Let Xc ⊂ Ars be the determinantal variety of r×s matrices
of rank at most c, that is, Xc is defined by Ic+1, the ideal of (c + 1)-minors of
a r × s matrix (xij). So an m-jet of Xc is a truncated arc

γ(t) = x0 + x1t + · · ·+ xmtm ,

where x = (xij) is in Ars, satisfying the conditions ∆(γ) ≡ 0 mod tm+1,
for any ∆ in Ic+1. Determinantal varieties have always rational singulari-
ties. We know that the determinantal variety of singular square matrices is
an hypersurface. So, by Theorem 6.1, all of its jet schemes are irreducible.
Though determinantal varieties always have rational singularities, they are
rarely complete intersections, so Theorem 6.1 is not applicable to more gen-
eral determinantal varieties. In fact, jet schemes of determinantal varieties
are not always irreducible (see [32]).

The previous example give a lot of examples of Gorenstein varieties with
rational singularities whose jet schemes are not irreducible. In particular, they
illustrate that Mustaţă’s result cannot be weakened: we may not replace the
local complete intersection hypothesis with a Gorenstein hypothesis. Mustaţă
also gave an example of a toric variety to illustrate this fact (see [27](Example
4.6)).

7. First properties of jet schemes

Let X be a lci of pure dimension d. We denote by Xreg the smooth part of
X and by Xsing the complementary of Xreg in X.

Proposition 7.1. — i) The scheme Jm(X) is pure dimensional if and only
if dimJm(X) ≤ d(m + 1).

ii) The scheme Jm(X) is irreducible if and only if dimπ−1
m,0(Xsing) < d(m+1)
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Proof. — i) It is enough to embed X into AN , then we have already seen that
Jm(X) is the nullvariety in AN(m+1) of r(m + 1) equations, if r is the number
of equations defining locally X.

ii) We have the following decomposition:

Jm(X) = π−1
m,0(Xsing) ∪ π−1

m,0(Xreg) .(6)

In general π−1
m,0(Xreg) is an irreducible component of Jm(X) of dimension d(m+

1) (see Example 6.2). So the “only if” part holds without the hypothesis of lci
(as in (i) by the way). Suppose now that dimπ−1

m,0(Xsing) < d(m + 1). Then
this implies that dimJm(X) ≤ d(m+1), so Jm(X) is pure dimensional (by (i)
since X is a lci) and the decomposition (6) shows that Jm(X) is irreducible.

As the “only if” part of both (i) and (ii) of Proposition 7.1 holds with-
out hypothesis of lci, (ii) gives a sufficient condition for Jm(X) to be re-
ducible. Concretely, if we want to show Jm(X) is reducible, it suffices to show
dimπ−1

m,0(Xsing) ≥ dimπ−1
m,0(Xreg). Let us give some examples:

Example 7.2. — Then if X is a integral curve, then for any m ≥ 1, Jm(X)
is irreducible if and only if X is non singular. Here X don’t need to be supposed
a lci.

[Indeed, if x is a singular point, then by [27](Lemma 4.1) dim π−1
m,0(x) ≥ m + 1.

Therefore π−1
m,0(x) gives an irreducible component of Jm(X).]

Example 7.3. — Come back to Example 6.4: Cornelia Yuen use this suf-
ficient condition to prove the following: “let X be the variety of r × s size
matrices of rank at most one. Assume r > s ≥ 3. Then Jm(X) has precisely[

m+1
2

]
+ 1 irreducible components.

Remark 7.4. — There are examples when Jm(X) is reducible even though
dimπ−1

m,0(Xsing) < π−1
m,0(Xreg). For example (still following [32]), if X is the

variety of 3 × 3 size matrices of rank at most one. Then dimπ−1
1,0(Xsing) =

9 < 10 = π−1
1,0(Xreg). However, the jet scheme J1(X) has two irreducible

components and is therefore reducible. But here, X is not a lci!

According to Proposition 7.1, to prove that Jm(X) is irreducible it is enough
to prove that:

1) : dim Jm(X) = dimX(m + 1),
2) : Jm(X) has only one irreducible component of maximal dimension.
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8. Irreducibility of jet schemes via motivic integration

We suppose that X is a lci. We use here motivic integration to give a
necessary and sufficient condition for X to have all the jet schemes of the
expected dimension and precisely one component of maximal dimension.

8.1. The following construction is very important in order to use arguments
from motivic integration. We will take this construction again latter for the
study of the nilpotent bicone.

We fix an embedding X ↪→ Y , where Y is a smooth variety. Let r be the
codimension of X in Y and denote by N the dimension of Y . Consider the
blowing-up

p : B := BlX(Y ) → Y

of Y along X, and let F = p−1(X) be the exceptional divisor. We review
Appendix A some results about vanishing theorems for integral divisors. By
Theorem A.2, there is a morphism p̃ : Ỹ → B which is proper, an isomorphism
over the complementary of a proper closed subset of F , and such that Ỹ is
smooth and p̃−1(F ) is a divisor with only simple normal crossings (SNC), since
the exceptional locus of p̃ is contained in p̃−1(F ). Let γ be the compound map
p ◦ p̃

γ : Ỹ
p̃ // B

p // Y

We can write γ−1(X) = p̃−1(F ) =
t∑

i=1
aiEi, where E2, . . . , Et are the ex-

ceptional divisors of p̃, and E1 is the proper transform of F . Recall that the
discrepancy Wγ of γ is defined by the formula (see Appendix A, Definition
A.4)

KeY = γ−1(KY ) + Wγ .

We write Wγ =
t∑

i=1
biEi. The following proposition, whose we pass over the

proof, gives a criterion for X to have rational singularities.

Proposition 8.1 ([27](Theorem 2.1)). — (i) With the above notations, X
has rational singularities if and only if bi ≥ rai for any i ≥ 2.

(ii) We can assume a1 = 1 and b1 = r − 1.

[The key step in the proof of Propostion 8.1 is to notice that since X is a lci, X has
rational singularities if and only if X has canonical singularities (see Appendix
B for a little bit more explanations).]

With these notations, we intend to prove the following results:

Theorem 8.2. — The following two statements are equivalent:
i) For any i ≥ 2, we have bi ≥ rai.
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ii) For any i ≥ 1, dimJm(X) = (m + 1) dimX, and Jm(X) has only one
irreducible component of maximal dimension.

Then Theorem 8.2 give Theorem 6.1, by Propositions 8.1 and 7.1.

8.2. Proof of Theorem 8.2. — Recall that the Hodge polynomials h :
VarC −→ Z[u, v] assigns to a smooth variety S over C its Hodge polynomial

h(S) :=
∑

1≤p,q≤dim S

(−1)p+qHp,q(S)upvq ,

where Hp,q(S) = dimHq(S, Ωp
S) is the (p, q)-Hodge number of S (see Subsec-

tion 3.1). We have already noticed that the map h factors through K0(VarC)
according the universal property. So we have a morphism h from K0(VarC)
to Z[u, v] such that h(S) is equal to h([S]) for any smooth variety S. In par-
ticular, h(L) = uv. Setting h(L−1) = (uv)−1, h extends to a morphism from
MC to Z[u, v][u−1, v−1]. Then by continuity, h extends in an unique way to a
morphism from M̂C to the ring Z[u, v][[u−1, v−1]] of Laurent power series in
two variables u−1 and v−1. Thus, there is a meaning to consider the compound
h ◦ µY . The “new” measure

h ◦ µY : BY → Z[u, v][[u−1, v−1]] , π−1
∞,m(S) 7→ h([S])(uv)−(m+1)N

gives the Hodge realizations of motivic integrals.

VarC

[−]

²²

h // Z[u, v][[u−1, v−1]]

K0(VarC)

²²

33fffffffffffff

MC
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µY // M̂C

h

::t
t

t
t

t
t

t
t

t
t

t
t

t
t

t
t

t
t

t
t

The most important thing for us is that h([S]) is a polynomial of degree
c(uv)dim S , where c is the number of irreducible components of S of maximal
dimension. In order to prove Theorem 8.2, we will chose a suitable function
f : N −→ N (which we extend by f(∞) = ∞) and we will integrate F :=
f ◦ FX on Y∞ with respect to the measure h ◦ µY . This is allowed since
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µY (F−1(∞)) = µY (F−1
X (∞)) = 0. Then the transformation rule gives:

I := h(
∫

J∞(Y )

L−F dµY ) = h(
∫

J∞(eY )

L−(F◦γ∞+FWγ ) dµY ′) ,

in the sense that one member exists if and only if the other one does, and in
this case they are equal. We have

F ◦ γ∞ = f ◦ Fγ−1(X) ,

and since γ−1(X) ∪ Wγ has SNC, the right-side member can be explicitly
computed by Proposition 4.7, while for a suitable choice of f , the left-hand
side contains the information we need about the dimension of Jm(X) and the
number of its irreducible components of maximal dimension.

So, let us fix a function f : N −→ N such that, for any m ≥ 0,

f(m + 1) > f(m) + dimJm(X) + C(m + 1) ,(7)

where C is a constant “well-chosen”. We extend f by setting f(∞) = ∞.

1) What is information about Jm(X) contained the integral I ?
For any m′ = f(m), we have

µY (F−1(m′)) = µY (F−1
X (m)) = π−1

∞,m−1(Jm−1(X)) \ π−1
∞,m(Jm(X)) .

Then I = h(
∑

m′≥0

µY (F−1(m′))Lm′
) = S1 − S2, with

S1 =
∑

m≥0

h([Jm−1(X)])(uv)−mN−f(m) ,

S2 =
∑

m≥0

h([Jm(X)])(uv)−(m+1)N−f(m) ,

where by convention J−1(X) = Y . For m ≥ 1, denote by cm the num-
ber of irreducible components of maximal dimension of Jm(X). Remember
that the highest degree term of h([Jm(X)]) is cm(uv)dim Jm(X). Then, we claim:

(∗) Every monomial which appears in the m-th term of S1 has degree
bounded by 2P1(m) and below by 2P2(m), where

P1(m) = dimJm−1(X)−mN − f(m) ,
P2(m) = −mN − f(m) ,

for any m ≥ 0. Moreover we have exactly one term of degree 2P1(m) whose
coefficient is cm−1.
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(∗) Every monomial which appears in the m-th term of S2 has degree
bounded by 2Q1(m) and below by 2Q2(m), where

Q1(m) = dimJm(X)− (m + 1)N − f(m) ,
Q2(m) = −(m + 1)N − f(m) ,

for any m ≥ 0. Moreover we have exactly one term of degree 2Q1(m) whose
coefficient is cm.

Remark 8.3. — Using additionally the “good” choice of f , we can deduce
from the previous discussion that F is indeed integrable.

Lemma 8.4 ([27](Lemma 1.2)). — For any proper subscheme Z ⊆ Y ,
(dimJm(Z)−N(m + 1)) → −∞.

By Lemma 8.4, the inequality dimJm(X) ≤ dimJm−1(X) + N is strict for
infinitely many m. Studying more carefully the sums S1 and S2 and their
highest degree terms, we can furthermore state:

Proposition 8.5. — (i) P1(m + 1) < min(P1(m), P2(m)) and Q1(m) ≤
P1(m)

(ii) In S1, the term cm−1(uv)P1(m) appears precisely once for any m ≥ 0.
In S2, the term cm(uv)P1(m) appears precisely at most once. It appears if and
only if m ≥ 1 and dim Jm(X) = dimJm−1 + N .

By Lemma 8.4 and Proposition 8.5, if it happens that the term cm(uv)P1(m)

appears in S2, it is at most for finitely many m.

2) Explicit computation of the integral I. As foretold, we apply
the transformation rule to F . Hence, we get:

I = h(
∫

J∞(Y )

L−F dµY ) = h(
∫

J∞(eY )

L−(F◦γ∞+FWγ ) dµY ′)

= h(
∫

J∞(eY )

L−F(f ·γ−1(X)+Wγ ) dµY ′) .

Up this form, I can be explicitly computed since f · γ−1(X) + Wγ has SNC.
We apply the proof of Proposition 4.7 to the effective divisor with SNC

f · γ−1(X) + Wγ =
t∑

i=1

(fai + bi)Ei .
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Precisely, using the second equality in this proof, we have

h(
∫

J∞(Y )

L−(F◦γ∞+FW ) dµY ′) =
∑

J⊆{1,...,t}
SJ ,

where

SJ =
∑

αi≥1,i∈J

h([E0
J ])(uv − 1)|J | · (uv)

−N−P
i∈J

αi(bj+1)−f(
P
i∈J

aiαi)

.

Similarly as 1), we can compute the exact bounds for the degree of SJ and
discuss about the terms of fixed degrees. Namely, each monomial in the term
SJ corresponding to (αi)i∈J has degree bounded above by 2R1(αi, i ∈ J) and
below by 2R2(αi, i ∈ J), where

R1(αi, i ∈ J) = −
∑

i∈J

αi(bj + 1)− f(
∑

i∈J

aiαi)

and R2(αi, i ∈ J) = R1(αi, i ∈ J) − N . This comes the fact that E0
J has

dimension N − |J |. And, arguing as in 1), we obtain:

Proposition 8.6. — The only monomial of the form (uv)P1(m) which appears
in the term corresponding to J and (αi)i∈J is for m =

∑
i∈J

aiαi.

3) The end of the proof. We leave the part “ii) ⇒ i)” of the proof out. For
the implication “i) ⇒ ii)”, suppose that bi ≥ rai, for all i ≥ 2 and suppose
that dimJm(X) > (m + 1) dimX. We expect a contradiction. Studying
more carefully the sum SJ , we see that (uv)P1(m+1) does not appear in the
sum SJ , for every J . By Proposition 8.5 this implies that dimJm+1(X) =
dimJm(X)+N . In particular dimJm+1(X) > (m+2) dimX > 0. Continuing
in this way, we get by that dimJp+1(X) = dimJp(X) + N , for any p ≥ m,
whence the expected contradiction by Lemma 8.4. Therefore we must have
dimJm(X) = (m + 1) dimX, for any m ≥ 1. It remains to prove cm = 1,
for any m ≥ 1. The coefficient of (uv)P1(m+1) in I is cm for all m ≥ 1, by
Proposition 8.5. Then we see that for all m ≥ 0 the term (uv)P1(m+1) appears
in SJ if and only if J = {1} and in this case it has coefficient 1, since E0

{1} is
irreducible. Therefore cm = 1, for every m ≥ 1.
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PART III
APPLICATIONS TO REDUCTIVE LIE ALGEBRAS

In this part g is supposed to be a complex semisimple Lie algebra of finite
dimension. Most of results can be easily extended to reductive Lie algebras.
This just allows to kill the center, that is simplifies sometimes the definitions.
We denote by G the adjoint group of g and by 〈·, ·〉 the Killing form of g.

9. The nilpotent cone

Many results of this section are proved in [18]. We refer also to [8](Chapter
3) for a review of some of these results.

Recall that an element x ∈ g is called nilpotent if ad : g → g is nilpotent,
where ad is the adjoint representation of g. This evidently agrees with the
classical notion of nilpotency when g = sln(C). We denote by N the set of all
the nilpotent elements of g. Clearly, N is a G-invariant closed cone of g. Here,
by cone, we means that N is invariants by the maps x 7→ ax, for any a ∈ C∗.
The set N is so called the nilpotent cone of g. We study in this section some
of algebraic and geometric properties of the nilpotent cone.

9.1. Let C[g] be the algebra of polynomial functions on g. The adjoint action
of G on g induces a G-action on C[g] and we denote by C[g]G the set of G-
invariant polynomial functions on g.

We fix a Borel subalgebra b in g with nilradical u. Let B the connected
subgroup of G whose Lie algebra is b. Recall that an element x ∈ g is regular
if its centralizer has minimal dimension, that is the rank of g. The following
result is due to Richardson:

Lemma 9.1 (Richardson). — The nilradical u consists in a single B-orbit,
namely B.e, where e is any regular nilpotent element contained in b.

Example 9.2. — Suppose that g = sln, the classical Lie algebra of n-size
square matrices of trace zero. Let b the Borel subalgebra of upper triangular
matrices of trace zero. Then B is the subgroup of GLn of upper triangular
matrices and u is the subspace of strictly upper triangular matrices. Lemma
9.1 says that u is the closure of the conjugation class under B of the n-size
full Jordan block, 



0 1
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 ,
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which is a well-known result.

We deduce from Lemma 9.1 that for any G-invariant polynomial p on g,
the restriction to u of p is constant, by continuity.

We denote by C[g]G+ the augmentation ideal of C[g]G, that is the set of
G-invariant polynomials without constant terms. The following result is due
to Kostant. It generalizes a classical result of linear algebra: an element
x ∈ sln(C) is nilpotent if and only if Tr(xi+1) = 0, for any i = 1, . . . , n− 1

Proposition 9.3 (Kostant). — An element x ∈ g is nilpotent if and only if
for any p ∈ C[g]G+, we have p(x) = 0.

Proof. — Let x be nilpotent. Then x belongs to u for some Borel algebra b.
By Lemma 9.1, the restriction to u of any p ∈ C[g]G+ is constant. Therefore,
p(x) = p(0) = 0.

Conversely, suppose that p(x) = 0, for any p ∈ C[g]G+. We observe that the
coefficients of the characteristic polynomial det(λ.Id − adx) except the first
one belongs to C[g]G+. Hence, they vanish and det(λ.Id − adx) = λdim g. It
follows that adx is nilpotent, so x is nilpotent.

By Proposition 9.3, the nilpotent cone is the subscheme of g corresponding
to the ideal C[g]G+, that is

N = SpecC[g]/C[g]G+ .

By Chevalley’s Theorem, the subalgebra C[g]G is polynomial in rank of
g variables. In particular, Proposition 9.3 implies that the dimension of N
is at least rkg, the rank of g. We will see next section that N has exactly
codimension rkg. In other words, we will see that N is a complete intersection.

9.2. Let B be the set of all the Borel subalgebras in g and let b be the
dimension of Borel subalgebras of g. By definition B is the closed subvariety
of the Grassmannian of b-dimensional subspaces in g consisting in all solvable
Lie subalgebras. We set

g̃ := {(x, b) ∈ g× B | x ∈ B}
and we denote by γ : g̃ −→ g the first projection. Notice that the map γ is
proper since B is a projective variety. Now we set:

Ñ := γ−1(N) = {(x, b) ∈ N× B | x ∈ B} .

Fix a Borel subalgebra b in B. If V is a finite dimensional vector space
over C and ρ : B −→ GL(V ) is a morphism of algebraic groups then (V, ρ) is
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called a B-module. The contracted product G×B V is defined as the quotient
of G× V under the right action of B given by

(g, v)b := (gb, ρ(b−1)v) ,

for all g ∈ G, v ∈ V and b ∈ B. As u is a B-module, we can define G ×B u.
The group G acts on G ×B u by the left action of G on G, while G on Ñ by
the diagonal action. Then we claim.

Lemma 9.4. — The variety G×B u is an irreducible smooth variety and we
get a G-equivariant isomorphism Ñ ' G×B u.

Proof. — The fiber of the second projection π : Ñ −→ B over any Borel sub-
algebra in B is isomorphic to the nilradical of this Borel subalgebra. Therefore
Ñ is a vector bundle over B with fiber u. In particular Ñ is a smooth variety.

On the other hand the map τ : G× u −→ Ñ, (g, x) 7−→ (g(x), g(b)) factors
through G×B u:

G× u
τ //

²²Â
Â
Â Ñ

G×B u

τ

77nnnnnnnnnnnnn

The maps τ and τ are surjective, since any nilpotent element is conjugated to
an element in u. Moreover, if (g(x), g(b)) = (g′(x′), g′(b)), for some x, x′ ∈ u
and g, g′ ∈ G, then g−1g′ stabilizes B. So g′ = gb, for b ∈ B, since the
normalizer of B is equal to B. It follows that (g(x), g(b)) and (g′(x′), g′(b))
are equal in G×B u. Hence τ is an isomorphism. At last, it is clear that τ is
G-equivariant.

The nilpotent cone N is always singular, at least at the origin. By Lemma
9.4, the morphism γ : Ñ −→ N gives a proper morphism from a smooth variety
to the nilpotent cone. Moreover, we have the following theorem:

Theorem 9.5. — The map γ : Ñ −→ N is a birational map. Thus γ is a
resolution of singularities for N.

Proof. — The map γ is proper and is surjective since any nilpotent element
is conjugated to an element in the nilradical u of b. Moreover, γ is an iso-
morphism over the Zariski open set of N formed by regular nilpotent element.
This comes from the fact that any regular nilpotent element is contained in
an unique Borel subalgebra. Thus γ is a resolution of singularities for N, since
Ñ is smooth.

The map γ : Ñ −→ N is called the Springer’s resolution.
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Example 9.6. — Let g = sl2. Then N is isomorphic to the cone in C3,

N =
{

x =
(

a b
c −a

)
| detx = −a2 − bc = 0

}
,

and Ñ is a line bundle over B ' P1 with fiber u ' C. In this case, N has an
unique singularity at the origin.

Corollary 9.7. — The nilpotent cone is irreducible and has dimension
dim g− rkg.

Proof. — By Theorem 9.5, as γ is surjective, the nilpotent cone is irreducible
since Ñ is irreducible. Moreover, as γ is surjective, the dimension of N is
smaller than

dim Ñ = 2dim u = dim g− rkg .
The other inequality is already known.

9.3. We establish in this subsection that N has rational singularities using
the Springer’s resolution. We start by proving that N is normal. We admit
the following result:

Proposition 9.8. — The number of nilpotent G-orbits in g is finite.

For sln this result is well-known; it follows from the decomposition of nilpo-
tent matrices into Jordan blocks which gives a bijection between nilpotent
G-orbits and partitions of n.

Since N is irreducible and G-stable, we deduce from Proposition 9.8, that
there is an unique dense open orbit O whose dimension is dim g − rkg. This
implies that the centralizer of any element x ∈ O has dimension rkg, that is x
is regular. Hence, we get:

Corollary 9.9. — The regular nilpotent orbit is dense in N.

Let r be the rank of g. Recall that by Chevalley’s Theorem, C[g]G is a
polynomial algebra in r variables. We denote by p1, . . . , pr homogeneous gen-
erators of C[g]G of degree d1, . . . , dr respectively. The following result is proven
in [18]:

Lemma 9.10. — Let x be in g. The differentials at x of p1, . . . , pr are linearly
independent if and only if x is regular.

Recall a Serre’s criterium for normality (we present here a simpler version of
the Serre-Cohen-Macaulay criterium): Let X be an algebraic variety satisfying
the following two conditions:
(1) X is a complete intersection,
(2) X is regular in codimension 1, that is to say, the singular locus of X has

codimension in X at least 2,
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Then, X is normal.

By Lemma 9.10, Corollary 9.9 and Proposition 9.3, N is regular in codi-
mension 1.

[Indeed, as the dimension of any G-orbit in g is even, an element x ∈ N belongs to

the singular locus of the scheme N if and only x belongs to N\Oreg = Osubreg by
Lemma 9.10. But Osubreg has dimension at most dim N− 2 (in fact has exactly
this dimension...)]

Therefore, by Serre’s criterium and Corollary 9.7, we can now state:

Proposition 9.11. — The nilpotent cone is normal.

The definition of rational singularities in recalled in Appendix B, Definition
B.1. In order to apply Theorem 6.1 to the nilpotent cone, it remains to prove
that N has rational singularities. By Theorem 9.11, the nilpotent cone N is
normal and by Theorem 9.5, γ is a resolution of singularities for N. Hence,
by the following result due to Hesselink,

Proposition 9.12 (Hesselink [14]). — We have γ∗(OeN) = ON and
Rpγ∗(OeN) = 0, for any p ≥ 1.

we deduce:

Theorem 9.13. — The nilpotent cone N is a complete intersection in g of
codimension r and it has rational singularities.

10. Jet schemes of the nilpotent cone

We present in this section a result due to D. Eisenbud and E. Frenkel (see
Appendix of [27]). In [18], B. Kostant proves:

Theorem 10.1 (Kostant). — The algebra C[g] is free over C[g]G.

[More precisely, we have C[g] = C[g]G⊗H, where H is any graded subspace such
that C[g] = C[g]G+ + H.]

This result has important applications. In particular, it implies that the
universal enveloping algebra U(g) is free over its center.

David Einsenbud and Edward Frenkel originally conjectured Theorem 6.1 in
order to extend Theorem 10.1 in the setting of jet schemes. Denote simply by
gn the n-order jet scheme Jn(g) of g. Then gn = g[t]/(tn+1) and g∞ = g[[t]].
Let Gn be the n-order jet scheme of G and let G∞ be the infinite jet scheme
of G. Then the Lie algebra of Gn is gn and the Lie algebra of G∞ is g∞.
Denote by C[gn]Gn (resp. C[g∞]G∞) the subalgebra of Gn-invariants (resp.
G∞-invariants) of C[gn] (resp. C[g∞]) under the adjoint action. The analogue
of the Kostant freeness theorem is:
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Theorem 10.2 (Eisenbud-Frenkel). — (i) C[gn] is free over C[gn]Gn.
(ii) C[g∞] is free over C[g∞]G∞.

Let N be the dimension of g and let x1, . . . , xN be a basis of g∗, which we
take as a set of generators of C[g]. Fix p1, . . . , pr homogenous generators of
C[g]G as before of degree d1, . . . , dr respectively. Recall that p

(m)
i , for m ≥ 1

and i = 1, . . . , r are defined for instance Example 6.3 by the relation:

p
(m)
i (y(t)) = pi(∂m

t y(t))|t=0
) , y(t) ∈ gn, n ≥ m, or g∞ .(8)

We have: deg p
(m)
i = di + m. Since the set {p1, . . . , pr} is algebraically inde-

pendent, it follows from relation (8) that the set {p(m)
1 , . . . , p

(m)
r }m≥0 is also

algebraically independent. Again using relation (8), the elements p
(m)
i are Gn-

invariant for n ≥ m and G∞-invariant, because the elements pi are G-invariant.
We refer to [27](Appendix) for the proof of the following proposition:

Proposition 10.3 ([4]). — The ring C[gn]Gn (resp. C[g∞]G∞) is gener-
ated by the algebraically independent elements p

(m)
1 , . . . , p

(m)
r , 0 ≤ m ≤ n

(resp. m ≥ 0). Thus, C[gn]Gn = C[p(m)
1 , . . . , p

(m)
r ]0≤m≤n and C[g∞]G∞ =

C[p(m)
1 , . . . , p

(m)
r ]m≥0.

Let C[gn]Gn
+ be the augmentation ideal of the graded ring C[gn]Gn . By

Proposition 10.3, the ideal C[gn]Gn
+ is equal to (p(m)

1 , . . . , p
(m)
r )0≤m≤n. Hence

we obtain that the n-order jet scheme Nn of the nilpotent cone N is
SpecC[gn]/C[gn]Gn

+ . Likewise, N∞ = SpecC[g∞]/C[g∞]G∞+ .
By Proposition 9.7, the nilpotent cone is a complete intersection, which is

irreducible and reduced. Moreover, by Theorem 9.13, it has rational singular-
ities. Therefore, we obtain by Theorem 6.1:

Theorem 10.4. — Nn is irreducible, reduced and a complete intersection.

In Theorem 10.4, we apply also [27](Proposition 1.5) for the reduced prop-
erty.

Corollary 10.5. — The natural map C[Nn] −→ C[Nn+1] is an embedding.

Proof. — Let Y be the open dense G-orbit of regular elements in N. By
Theorem 10.4, Nn is irreducible. Hence Yn is dense in Nn. Since Y is smooth,
the map Yn+1 → Yn is surjective. Therefore, the map Nn+1 → Nn is dominant.

We can now prove Theorem 10.2:
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Proof of Theorem 10.2. — Let us admit (i), which actually doesn’t use Corol-
lary 10.5.

ii) Set In := C[gn]Gn , for n ∈ N∪ {∞}. We use the embedding of Corollary
10.5 to construct “step by step” a basis of C[g∞] over I∞.

By (i), we can choose a graded basis Sn of C[gn] over C[gn]Gn . Then the
image S′n of Sn in C[Nn] is a C-basis of C[Nn]. By Corollary 10.5, the image
of S′n in C[Nn+1] can be extended to a C-basis of C-basis of C[Nn+1]. Hence
the image of Sn in C[gn+1] can be extended to a In+1-basis of C[gn+1].

Let S be the union of all the set Sn, n ≥ 0. Then we claim that S is the
basis of C[g∞] over C[g∞]G∞ ...

11. Dimension of the nilpotent bicone via motivic integration

11.1. Introduction. — Fix p1, . . . , pr homogenous generators of C[g]G as
before of degree d1, . . . , dr respectively. The 2-order polarizations pi,m,n of pi

are defined by the following relation:

pi(ax + by) =
∑

m+n=di

ambnpi,m,n(x, y) ,

for any (a, b) in C2 and any (x, y) in g× g.

Definition 11.1. — The nilpotent bicone N of g is by definition the nullva-
riety in g× g of the 2-order polarizations pi,m,n, 1 ≤ m + n ≤ di.

As the nilpotent cone N is the nullvariety in g of the pi by Theorem 9.3,
we deduce that the geometric locus of the nilpotent bicone is the subset of
elements (x, y) of g× g whose subspace generated by x and y is contained in
the nilpotent cone. In particular N is a G-invariant closed bicone of g× g.

By a classical result, the cardinality of the set of polarizations {pi,m,n, 1 ≤
m + n ≤ di} is equal to b + r, where b is as before the dimension of Borel
subalgebras of g. As a result, any irreducible component of N has dimension
at least 3(b− r), since g× g has dimension 2(2b− r).

Example 11.2. — Let g be the classical Lie algebra sl3 of 3-size square ma-
trices of trace zero. The rank of g is 2 and we can choose for p1 and p2 the
polynomials x 7→ Tr(x2) and x 7→ Tr(x3). Then the 2-order polarizations of
p1 and p2 are the following polynomials:

(x, y) 7−→ Tr(x2), Tr(xy), Tr(y2),Tr(x3), Tr(x2y), Tr(xy2), Tr(y3) .

In particular, the nilpotent bicone is defined by b+r = 5+2 = 7 equations. So,
any irreducible component of N has dimension at least 16− 7 = 9. Moreover,
we can describe the union of the irreducible components of N whose images
by the first and secund projections from g × g to g is equal to the nilpotent
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cone. Indeed, let X be this union and let e be the regular nilpotent element


0 1 0
0 0 1
0 0 0


. Then the fiber Xe at e in X is an union of two irreducible

components of dimension 3: u and






a b c
d −2a e
0 −d a


 | 2a3 − ad(e− b) + cd2 = 0 , 3a2 − d(e− b) = 0



 .

In a joint work with Jean-Yves Charbonnel [7], we prove the following result:

Theorem 11.3. — The nilpotent bicone N is a complete intersection (non-
reduced) of dimension 3(b − r). Moreover the images of any irreducible com-
ponents of N by the first and secund projections from g × g to g is equal to
the nilpotent cone.

The nullcone of g×g is the nullvariety of the augmentation ideal of C[g×g]G.
In [19], N. Wallach and H. Kraft conjecture:

Conjecture 11.4 (Kraft-Wallach). — The nullcone of g × g is an irre-
ducible component of Ng.

As a by-product of Theorem 11.3, we answer their conjecture affirmatively.

Other motivation: Recall that the commuting variety Cg of g is the
set of elements (x, y) of g × g such that [x, y] = 0. The commuting variety
has been studied for many years. According to a result of R.W. Richardson
[30], Cg is irreducible. In addition, Cg is the nullvariety of the ideal generated
by the elements (x, y) 7→ 〈v, [x, y]〉, where v runs through g. An old unsolved
question is to know whether this ideal is prime [23]. In other words, we want
to know if this ideal is the ideal of definition of Cg, since Cg is irreducible. It is
not easy to see but it is known that the properties of the nilpotent bicone are
very important for the understanding of the commuting variety. The study of
the commuting variety and of its ideal of definition is a main motivation for
our work.

The main difficulty encountered with the nilpotent bicone is that the sub-
scheme Ng is not reduced. In order to deal with this problem, we introduce
an auxiliary reduced variety, that we call the principal bicone (see Subsection
11.2). The nilpotent bicone and the principal bicone are closely related to
the jet schemes of the nilpotent cone and the principal cone respectively. We
apply Mustaţă’s result to the nilpotent cone and the principal cone and we
use arguments from motivic integration to study the nilpotent bicone and the
principal bicone (see Subsections 11.3 and 11.4).
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11.2. The principal cone and the principal bicone. — Let (e, h, f)
be a principal sl2-triple of g. This means that (e, h, f) satisfies the sl2-triple
relations and that e and f are regular nilpotent elements of g. Hence h is
a regular semisimple element. By a theorem of Kostant, the G-orbit of h
doesn’t depend on the principal sl2-triple choosen.

Definition 11.5. — The principal cone X is the G-invariant closed cone
generated by h.

Notice that the principal cone contains N. The following theorem is the
analogue of Theorem 9.13 for the principal cone:

Theorem 11.6. — X is a normal complete intersection of codimension r−1.
Moreover, X has rational singularities.

Denote by q1, . . . , qr−1 generators of the ideal of definition of X. We define
the principal bicone with respect to the principal cone as the nilpotent bicone
was defined with respect to the nilpotent cone. Namely:

Definition 11.7. — The principal bicone X is the nullvariety in g×g of the
2-order polarizations qi,m,n of the qi, for 1 ≤ i ≤ r− 1.

We can take for p1 the Casimir element x 7→ 〈x, x〉. Then, the nilpotent
bicone is the nullvariety in X of p1,0,1 p1,1,1 and p1,1,0, the 2-order polarizations
of p1. Denote by π1 and π2 the first and secund projections of from g × g to
g. We intend to prove:

Theorem 11.8. — (i) The images of any irreducible component of maximal
dimension of N by π1 and π2 are equal to N.

(ii) The images of any irreducible component of maximal dimension of X
by π1 and π2 are equal to X.

We admit that Theorem 11.8 implies the following Theorem:

Theorem 11.9. — (i) The principal bicone is a reduced complete intersection
of dimension 3(b− r + 1).

(ii) The nilpotent bicone is a complete intersection (not reduced) of dimen-
sion 3(b− r).

We prove Theorem 11.8 next subsections using arguments from motivic
integration, following the main ideas of [27].
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11.3. The principal bicone and the nilpotent bicone in terms of
jet schemes. — As defined, the nilpotent bicone and the principal bi-
cone can be identified to subsets of J∞(N) and J∞(X) respectively. More
precisely, (x, y) belongs to N (resp X ) if and only if the arc t → x + ty
belongs J∞(N) (resp J∞(X)). With this “naive” identification, the motivic
measure µg of the subsets obtained in this way is equal to zero according to
Definition-Proposition 4.1, (2). Then we can’t expect to obtain information
from arguments of motivic integration by this way. So we need to make a
subtler construction...

Let us explain roughly this construction. We introduce more general nota-
tions. Let V be a finite dimensional vector space. As V is a vector space, there
is a canonical injection ιm,m+1 from Jm(V ) into Jm+1(V ). The first projection
from V ×V to V is still denoted by π1. Let K be a connected closed subgroup
of GL(V ) and let X be an irreducible closed cone in V . We suppose that X is
a complete intersection in V with rational singularities and that X is a finite
union of K-orbits. Let N be the dimension of V and let r be the codimension
of X in V . Let T be a closed bicone of X × V satisfying the two following
conditions:

1) T is K-invariant under the diagonal action of K in V × V ,
2) for any (x, y) in T , y is a tangent vector of X at x,
3) The image of T by π1 is X.

We will apply this in the following to V = g, X = N or X = X and
T = TN ' J1(N) or T = TX ' J1(X).

We define by induction on m a subset Cm of Jm(V ). We explain the con-
struction of Cm in the case where X = N and T = TN by the following picture:
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C1 := TN ⊂ g1
Â Ä

1

ι12 // C′2 = ι12(C1) ⊂ g2
Â Ä ι23 //

2

²²

C′3 = ι23(C2) ⊂ g3

5

²²

__________

C2 :=
T

p≥2
π∞,2(C∞,2,p)

?Â

OOÂ
Â
Â % ¦

4

33ggggggggggg
C3 :=

T
p≥3

π∞,3(C∞,3,p)
?Â

OOÂ
Â
Â ' ¨

7

iiiiiiiiii

C∞,2,p = π−1
∞,2(C

′
2) ∩ F−1

X (≥ p), p ≥ 2

π∞,23

OO

C∞,3,p = π−1
∞,3(C

′
3) ∩ F−1

X (≥ p), p ≥ 3

π∞,36

OO

Notice that for m = 1, C1 is irreducible and has dimension 2 dimX by
Theorem 6.1. By induction, the subsets Cm are closed subsets of Jm(V ), for
any positive integer m. For m bigger than 1, we set

Dm := { (x, y) ∈ X × V | t 7→ x + ty ∈ Cm } .

Proposition 11.10. — For m big enough we have

Dm := { (x, y) ∈ T | x + ty ∈ X ,∀t ∈ C } .

In other words, for m big enough N and X are identified to a subset Cm,
for a good choices of V , X and T . Now, by Proposition 11.10, in order to
Theorem 11.8, it is enough to prove:

Theorem 11.11. — For m big enough, the image by πm,0 of any irreducible
component of maximal dimension of Cm is equal to X.

11.4. Proof of Theorem 11.11 via motivic integration. — Here we
process almost as in Section 8. We denote by Z the union of K-orbits in X
which are not of maximal dimension. Let BlX be the blowing up of V whose
center is X and let

p : BlX −→ V

be the canonical morphism from BlX to V . By the theorem of embedded
desingularization of Hironaka (see Theorem A.2), there exists a desingulariza-
tion (Ỹ , p̃) of BlX such that (p ◦ p̃)−1(X) is a SNC divisor. Let us denote by
γ the morphism p ◦ p̃. Denoting by E1, . . . , Et the irreducible components of
γ−1(X), we can assume that the following conditions are fulfilled:

a) E1 is the only prime divisor dominating X,
b) the divisor γ−1(X) is equal to

∑t
i=1 aiEi,
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c) the discrepancy Wγ of γ is equal to
∑t

i=1 biEi,
d) a1 is equal to 1 and b1 + 1 is equal to r,
e) γ−1(Z) is contained in the union of E2, . . . , Et,

since K has finitely many orbits in X. By condition (b), E1, . . . , Et are K-
invariant. Moreover, by condition (e), Z is the image by γ of the union of
E2, . . . , Et. So there exist nonnegative integers c2, . . . , ct, such that γ−1(Z) is
the divisor equal to

∑t
i=2 ciEi.

Proof of Proposition 11.11. — We warn that we voluntarily present here a
very simplified version of this proof. It contains some inaccuracies. We refer
to [7] for more explanations and more precisions.

Let C ′
m be the union of irreducible components of Cm whose image by πm,0

is equal to X. Denote by dm (resp. d′m) and cm (resp c′m) the dimension of Cm

(resp C ′
m) and the number of irreducible components of maximal dimension

of Cm (resp. C ′
m). Then, it is enough to prove: cm = c′m and dm = d′m.

Recall that the Hodge polynomial h was defined and extended to M̂C in
Section 8. We consider the motivic integral

Im,k := h

( ∫

π−1∞,m(Cm)
L−kFZ(ν)dµV (ν)

)
, k ≥ 0 .

The end of the proof consists in the following steps:

1) We claim that the highest degree term of Im,k doesn’t depend on k for
m big enough.

2) Then, with k = 0 in Im,k, we obtain the polynomial h ◦ µV (π−1∞,m(Cm))
whose highest degree cm(uv)dm term contains the information we need.

3) On the other hand, by the transformation rule for motivic integrals, we
have:

Im,k = h

( ∫

γ−1∞ (π−1∞,m(Cm))
L−FWγ (ν)−k

Pt
i=2 ciFEi

(ν)dµỸ (ν)

)
.

Since X is a lci and has rational singularities, we can use the criterium of
Proposition 8.1. Moreover, as Wγ + k

∑t
i=2 ciEi is a SNC divisor, we can

explicitely compute the intergal Im,k. Then, we are able to prove that, for
k and m big enough, the highest degree term of Im,k only depend on the
irreducible components of Cm whose image by πm,0 is X, that is C ′

m.

4) Arguing in the same way with C ′
m instead of Cm in Steps 1), 2), 3) we

deduce the two equalities: cm = c′m and dm = d′m.
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Appendix A
Vanishing Theorems

We review in this appendix some basics about vanishing theorems for
integral divisors. We intend through the results of this appendix to ex-
plain how process to use the transformation rule for motivic integrals (Section
5 (Theorem 5.1)). We refer to [21] for more details about the following results.

Let X be a non-singular variety of dimension n.

Definition A.1 (Simple Normal Crossing (SNC))
An effective divisor D =

∑
i

Di on X has simple normal crossings (and D is

a is a simple normal crossing or SNC divisor) if D is reduced, each component
Di is smooth, and D is defined in a neighborhood of any point by an equation
in local analytic coordinates of the type

z1z2 . . . zk = 0 ,

for k ≤ n. A divisor E =
∑
i

aiDi has simple normal crossings support if the

underlying reduced divisor D =
∑
i

Di has simple normal crossings.

Confronted with an arbitrary divisor, the first step in many situations is to
perform some blowing-up to bring it into normal crossing divisor. Hironaka’s
theorem on resolution of singularities guarantees that this is possible:

Theorem A.2 (Hironaka’s embedded resolutions of singularities)
Let X be an irreducible complex variety and let D ⊆ X be an effective divisor

on X.
i) There is a proper birational morphism

µ : X ′ −→ X ,

where X ′ is non-singular and µ has divisorial exceptional locus except(µ), such
that

µ∗D + except(µ)

is a divisor with SNC support, where µ∗ is the inverse image of µ.
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ii) We can construct X ′ via a sequence of blowing-up along smooth centers
supported in the singular loci of D and X. In particular, one can assume that
µ is an isomorphism over

X \ (Sing(X) ∪ Sing(D)) .

The variety X ′ is called an embedded of the pair (X,D). Recall that the
exceptional locus of µ is the set of points at which µ fails to be biregular.
When X is itself smooth — which is the case in many situations — this is the
same as the locus of points that lie on a positive dimensional fiber of µ.

Recall now some notions which come into the transformation rule for motivic
integral. Let X be a complex algebraic variety and denote by OX the structure
sheaf of X. Recall that any divisor D on X determines a line bundles OX(D).
Conversely, if X is additionally reduced or projective, then any line bundle
arises from a divisor.

Definition A.3 (Canonical divisor). — Suppose that X is a non-singular
algebraic variety of dimension n. Denote by ωX the line bundle Ωn

X , which is
the nth exterior power of the cotangent bundle ΩX on X. Then, the canonical
divisor on X, that we denote by KX , is the divisor on X defined by

OX(KX) = ωX .

Definition A.4 (Discrepancy). — Let γ : X ′ −→ X be a proper birational
map between algebraic varieties. Then the discrepancy divisor Wγ of γ is
defined by the relation

Wγ := KX′ − γ∗(KX) .

Example A.5. — Let Y be a smooth variety and let X be a smooth variety in
X of codimension r in Y . Denote by p : Y ′ = BlX(Y ) −→ Y the blowing-up
of Y along X. The morphism p is a proper birational map and by [13](II,
Exercise 8.5, (b)), we have Wp = (r− 1)D, where D is the exceptional divisor
of the blowing-up, that is p−1(X).

Appendix B
Rational singularities

We recall in this appendix some definitions about varieties and existing
relationships between them.

Let X be a complex algebraic variety of dimension d. We said that X has a
resolution of singularities if we can find a non-singular variety X ′ and a proper
birational map from X ′ to X, which is an isomorphism over the non-singular
points of X ′. (The condition that the map is proper is needed to exclude
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trivial solutions, such as taking X to be the subvariety of non-singular points
of X.)

Definition B.1 (Rational singularities). — We say that X has rational
singularities if X is normal and if there exists a resolution γ : X ′ −→ X such
that the higher right derived functors of γ∗ applied to OX′ are trivial. That is,
Riγ∗OX′ = 0, for i > 0. If there is one such resolution, then it follows that all
resolutions share this property, since any two resolutions of singularities can
be dominated by another.

We refer to [12] for the definition of canonical singularities:

Theorem B.2 ([12](Theorem 1)). — If Y is a scheme of finite type over a
field with characteristic zero with rational singularities, then Y has canonical
singularities.

Definition B.3 (Gorenstein). — (i) A local Cohen-Macaulay ring R is
called Gorenstein if there is a maximal R-regular sequence in the maximal
ideal generating an irreducible ideal.

(ii) A variety X is called Gorenstein if the local ring OX,x of regular function
at x is Gorenstein.

For example, every locally complete intersection is Gorentein and every
smooth variety is Gorenstein. If X has rational singularities. Then it is in
particular normal and Cohen-Macaulay). But Gorenstein varieties don’t need
to have rational singularities.

If X is a locally complete intersection (lci), hence Goresenstein, by a result
of Elkik, X has rational singularities if and only if it has canonical singu-
larities. As a conclusion, we present in the following diagram the relations
between all of these notions.

locally complete intersection +3 Gorenstein

®¶
Rational singularities +3

®¶

Normal +3 Cohen-Macaulay

Canonical singularities

if Gorenstein

KS
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