
CORRIGENDUM TO ”ON THE DIMENSION OF THE SHEETS OF A
REDUCTIVE LIE ALGEBRA”

ANNE MOREAU

Abstract. This note is a corrigendum to [M08]. As it has been recently pointed out to me

by Alexander Premet, [M08, Remark 3.12] is incorrect. We explain in this note the impacts

of that error in [M08], and amend certain of its statements. In particular, we verify that

the statement of [M08, Theorem 3.13] remains correct in spite of this error.

1. Introduction

Let g be a complex simple Lie algebra and G its adjoint group. We investigate in [M08]

the dimension of the subsets, for m ∈ N,

g(m) := {x ∈ g | dim(Gx) = 2m},

where Gx denotes the adjoint orbit of x ∈ g. The irreducible components of the subsets g(m)

are called the sheets of g, [BK79, B81]. Thus, for any m ∈ N,

dim g(m) = max{dim S ; S ⊂ g(m)},(1)

where S runs through all sheets contained in g(m). The sheets are known to be parameterized

by the pairs (l,Ol), up to G-conjugacy class, consisting of a Levi subalgebra l of g and a

rigid nilpotent orbit Ol in l, cf. [B81]. This parametrization enables to write the dimension

of a sheet S associated with a pair (l,Ol) as the sum of the dimension of the center of l and

the dimension of the unique nilpotent orbit contained in S, see e.g. [M08, Proposition 2.11].

In the classical case, formulas for g(m) are given in [M08, Theorems 3.3 and 3.13] in term

of partitions associated with nilpotent elements of g. As it has been recently pointed out

by Alexander Premet, Remark 3.12 in [M08] which claims that ”in the classical case, the

dimension of a sheet containing a given nilpotent orbit does not depend on the choice of

a sheet containing it” is incorrect. We give here some counter-examples (cf. Examples 3.1

and 3.2; see also [PT12, Remark 4]). This is true only for the type A where each nilpotent

element belongs to only one sheet. The error stems from the proof of [M08, Proposition 3.11];

see Section 3 for explanations. As a consequence, the proof of [M08, Theorems 3.13], partly

based on [M08, Proposition 3.11], is incorrect too. However its statement remains true. This

can be shown through a recent work of Premet and Topley, [PT12]. In more details, another

formula for g(m) in term of partitions can be traced out from [PT12, Corollary 9] and the
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equality (1). In this note, we verify (cf. Theorems 2.10) that the Premet-Topley formula for

g(m) coincides with the one of [M08, Theorem 3.13].

The note is organized as follows.

In Section 2, we recall some definitions and results of [PT12] and show that the statement

of [M08, Theorem 3.13] is correct in spite of the error in [M08, Proposition 3.11], see Theorem

2.10(ii). In Section 3, we precisely pin down the error in the proof [M08, Proposition 3.11]

and describe the impacts of that error in [M08]. As a conclusion, we list in Section 4 all

corrections which have to be taken into account in [M08].

Since the corrections in [M08] only concern the types B, C and D, we assume for the

remaining of the note that g is either so(N) or sp(N), with N > 2, and ε is 1 or −1

depending on whether g = so(N) or sp(N). Following the notations of [M08] (or [PT12]),

we denote by Pε(N) the set of partitions of N associated with the nilpotent elements of g.

For λ = (λ1, . . . , λn) ∈ Pε(N), we denote by e(λ) the corresponding nilpotent element of g

whose Jordan block sizes are λ1, . . . , λn. We will always assume that λ1 > · · · > λn.

Acknowledgments. I would like to thank A. Premet for having pointed out to me the

error in my paper, and Lewis Topley for useful discussions and explanations. I also take the

opportunity to thank Oscar Chacaltana for his interest in the subject and interesting e-mail

exchanges.

2. The main result

For the convenience of the reader, we recall here all the necessary definitions and results

of [PT12]. Given a partition λ = (λ1, . . . , λn) ∈ Pε(N) we set,

∆(λ) := {1 6 i < n ; ε(−1)λ1 = ε(−1)λi+1 = −1, λi−1 6= λi > λi+1 6= λi+2}.

Our convention is that λ0 = 0 and λi = 0 for all i > n. Recall the following result of

Kempken and Spaltenstein (also recalled in [M08] and [PT12]):

Theorem 2.1 ([K83, S82]). Let λ = (λ1, . . . , λn) ∈ Pε(N). Then e(λ) is rigid if and only if

• λi − λi+1 ∈ {0, 1} for all 1 6 i 6 n;

• the set {i ∈ ∆(λ) ; λi = λi+1} is empty.

Denote by P∗ε(N) the set of λ ∈ Pε(N) such that e(λ) is rigid. We call the elements of

P∗ε(N) the rigid partitions. We first introduce the notion of admissible sequences, see [PT12,

§3.1]. This is an extended version of the algorithm described in [M08] which takes λ ∈ Pε(N)

and returns an element of P∗ε(N) compatible for the induction process of nilpotent orbits.

Let i be a finite sequence of integers between 1 and n. The procedure of [PT12] is as follows:

the algorithm commences with input λ = λi ∈ Pε(N) where i = ∅ is the empty sequence.

At the lth iteration, the algorithm takes λi ∈ Pε(N − 2
∑l−1

j=1 ij) where i = (i1, . . . , il−1) and

returns λi
′ ∈ Pε(N − 2

∑l
j=1 ij) where i′ = (i1, . . . , il−1, il) for some il. If the output λi

′
is

a rigid partition then the algorithm terminates after the lth iteration with output λi
′

. We

shall now explicitly describe the lth iteration of the algorithm. If after the (l− 1)th iteration
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the input λi is not rigid then the algorithm behaves as follows. Let il denote any index in

the range 1 6 i 6 n such that either of the following case occur:

Case 1: λiil > λiil+1 + 2;

Case 2: il ∈ ∆(λi) and λiil = λiil+1.

Note that no integer il will fulfill both criteria. If i = (i1, . . . , il−1) then define i′ =

(i1, . . . , il−1, il). For Case 1 the algorithm has output

λi
′
= (λi1 − 2, λi2 − 2, . . . , λiil − 2, λiil+1, . . . , λ

i
n)

whilst for Case 2 the algorithm has output

λi
′
= (λi1 − 2, λi2 − 2, . . . , λiil−1 − 2, λiil − 1, λiil+1 − 1, λiil+2, . . . , λ

i
n).

Due to its definition and the classification of rigid partitions the above algorithm certainly

terminates after a finite number of steps.

Definition 2.2 ([PT12, §3.1]). We say that a sequence i = (i1, . . . , il) is an admissible

sequence for λ if Case 1 or Case 2 occurs at the point ik for the partition λ(i1,...,ik−1) for each

k = 1, . . . , l. An admissible sequence i for λ is be called a maximal admissible sequence for

λ if neither Case 1 nor Case 2 occurs for any index i between 1 and n for the partition λi.

By convention the empty sequence is admissible for any λ ∈ Pε(N).

As observed in [PT12, Lemma 6], if i is an admissible sequence for λ, then i is maximal

admissible if and only if λi is a rigid partition. We will denote by |i| := l the length of an

admissible sequence for λ.

Definition 2.3. The algorithm as described in [M08] corresponds to the special case where

in the above algorithm, we define at each step il to be the smallest integer which fulfills one

the Case 1 or Case 2 criteria, and λi is rigid. In the sequel, we will refer to the so obtained

maximal admissible sequence for λ as the canonical maximal admissible sequence for λ and

we denote it by i0. Then we set

zM(λ) := |i0|.

Remark. The integer zM(λ) corresponds to the integer z(λ) of [M08].

Definition 2.4 ([PT12, Definition 1]). If i ∈ ∆(λ) then the pair (i, i+ 1) is called a 2-step

of λ. If i > 1 and (i, i+ 1) is a 2-step of λ then λi−1 and λi+2 are referred to as the boundary

of (i, i+ 1). If 1 ∈ ∆(λ) then λ3 is referred to as the boundary of (1, 2) (if n = 2 then λ3 = 0

by convention).

We observe that ∆(λ) is the set of 2-steps of λ, and by |∆(λ)| its cardinality.

Definition 2.5 ([PT12, §3.2]). If i ∈ ∆(λ) then we say that the 2-step (i, i+ 1) has a good

boundary if λ1 and the boundary of (i, i+ 1) have the opposite parity. If the boundary of a

2-step (i, i+ 1) of λ is not good then we say that it is bad and we refer to (i, i+ 1) as a bad

2-step. Note that (i, i+ 1) is a bad 2-step of λ if and only if either i > 1 and λi−1− λi ∈ 2N,

or λi+1 − λi+2 ∈ 2N.
3



We denote by ∆bad(λ) the set of bad 2-steps of λ, and by |∆bad(λ)| its cardinality.

Definition 2.6 ([PT12, Definition 2]). A sequence 1 6 i1 < · · · < ik < n with k > 2 is

called a 2-cluster of λ whenever ij ∈ ∆(λ) and ij+1 = ij + 2 for all j. We say that a 2-cluster

i1, . . . , ik has a bad boundary if either of the following conditions holds:

• λi1−1 − λi1 ∈ 2N;

• λik+1 − λik+2 ∈ 2N.

(if i1 = 1 then the first condition should be omitted). A bad 2-cluster is one which has a bad

boundary, whilst a good 2-cluster is one without a bad boundary.

We denote by Σ(λ) the set of good 2-clusters of λ, and by |Σ(λ)| its cardinality.

Lemma 2.7 ([PT12, Lemma 11]). A good 2-cluster is maximal in the sense that it is not a

proper subsequence of any 2-cluster.

Definition 2.8 (Premet-Topley). For any λ ∈ Pε(λ), the integer zPT(λ) is defined by the

formula:

zPT(λ) := s(λ) + |∆(λ)| − |∆bad(λ)|+ |Σ(λ)|
where

s(λ) :=
n∑
i=1

[(λi − λi+1)/2] .

Remark. The integer zPT(λ) corresponds to the integer z(λ) of [PT12].

By [PT12, Theorem 8], we have that

zPT(λ) := max |i|(2)

where the maximum is taken over all admissible sequences for λ. Hence, by [PT12, Corollary

9] and the equality (1) of the introduction, we get:

Theorem 2.9 (Premet-Topley). For any m ∈ N, we have

dim g(m) = 2m+ max{zPT(λ) ; λ ∈ Pε(N) s.t dimGe(λ) = 2m}.

The main result of this note is:

Theorem 2.10. (i) For any λ ∈ Pε(N), we have zM(λ) = zPT(λ).

(ii) For any m ∈ N, we have

dim g(m) = 2m+ max{zM(λ) ; λ ∈ Pε(N) s.t dimGe(λ) = 2m}.

In other words, the statement of [M08, Theorem 3.13] is correct.

Proof. (ii) is a direct consequence of (i) and Theorem 2.9.

(i) We argue by induction on N (the statement is true for small N). Let N > 2 and assume

the statement true for any λ ∈ Pε(N
′), with 1 6 N ′ 6 N , and let λ ∈ Pε(N).

If λ ∈ P∗ε(N), then zPT(λ) = zM(λ) = 0 (see Theorem 2.1, Definition 2.2 and equality (2)).

So, we can assume that λ is not a rigid partition. In particular, zPT(λ) > 0 and zM(λ) > 0.
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To ease notation, we simply denote here by i := i0 the canonical maximal sequence for λ.

Then recall that by Definition 2.3, zM(λ) = |i|. Set λ′ := λ(i1). Clearly, zM(λ′) = zM(λ)− 1.

By the induction hypothesis, we have zPT(λ′) = zM(λ′). Hence, we have to show that:

zPT(λ′) = zPT(λ)− 1.

Our strategy is to compare the formulas for zPT(λ′) and zPT(λ) given by Definition 2.8.

Recall that i1 is the smallest integer which fulfills one of the Case 1 or Case 2 criteria for λ.

First of all, we observe that if i ∈ ∆(λ) (resp. i ∈ ∆(λ′)), then i > i1. Indeed, if i ∈ ∆(λ)

and i < i1 (if i1 = 1, it is clear), then either λi = λi+1 and then i fulfills the Case 2 which

contradicts the minimality of i1, or λi− λi+1 ∈ 2Nr {0} and then i fulfills the Case 1 which

contradicts the minimality of i1 too.

We now consider the two situations Case 1 and Case 2 separately.

Case 1: λi1 > λi1+1 + 2.

We have,

λ′ = (λ1 − 2, . . . , λi1−1 − 2, λi1 − 2, λi1+1, . . . , λn),

and

s(λ′) =

i1−1∑
i=1

[(λi − λi+1)/2] + [(λi1 − 2− λi1+1)/2] +
n∑

i=i1+1

[(λi − λi+1)/2]

= s(λ)− 1.

Compare now the other terms appearing in Definition 2.8. Note that i1 ∈ ∆(λ) (resp.

i1 ∈ ∆bad(λ)) if and only if i1 ∈ ∆(λ′) (resp. i1 ∈ ∆bad(λ′)) since the passing from λ to λ′

preserves the parities. For the same reason, i1 belongs to a good 2-cluster of λ if and only

i1 belongs to a good 2-cluster of λ′.

Then we discuss two cases depending on whether i1 + 1 is in ∆(λ) or not:

• i1 + 1 ∈ ∆(λ).

Once again, we consider two cases:

∗ λi1 − 2 6= λi1+1.

Then i1 + 1 ∈ ∆(λ′) too. Moreover, i1 + 1 ∈ ∆bad(λ′) if and only if i1 + 1 ∈ ∆bad(λ).

Hence, we conclude that |∆(λ′)| = |∆(λ)|, |∆bad(λ′)| = |∆bad(λ)| and |Σ(λ′)| =

|Σ(λ)|.
∗ λi1 − 2 = λi1+1.

Then i1 + 1 ∈ ∆bad(λ) since λi1 − λi1+1 = 2 ∈ 2N. But i1 + 1 6∈ ∆(λ′). Therefore,

|∆(λ′)| = |∆(λ)|−1 and |∆bad(λ′)| = |∆bad(λ)|−1. Moreover, if i1+1 belongs to a 2-

cluster of λ, then it is bad because λi1−λi1+1 ∈ 2N. Hence, we have |Σ(λ′)| = |Σ(λ)|.

• i1 + 1 6∈ ∆(λ).

In this case, note that i1+1 6∈ ∆(λ′). Hence, we conclude that |∆(λ′)| = |∆(λ)|, |∆bad(λ′)| =
|∆bad(λ)| and |Σ(λ′)| = |Σ(λ)|.

Case 2: i1 ∈ ∆(λ) and λi1 = λi1+1.
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By the minimality condition of i1, we have λi1−1 = λi1 + 1 (except for i1 = 1, in which case

λi1−1 = 0 by convention), and so λi1−2 = λi1−1 because ε(−1)λi1−1 = 1. We have

λ′ = (λ1 − 2, . . . , λi1−1 − 2, λi1 − 1, λi1+1 − 1, λi1+2, . . . , λn),

and

s(λ′) =

i1−2∑
i=1

[(λi − λi+1)/2] + [(λi1−1 − λi1 − 1)/2]︸ ︷︷ ︸
=0 since λi1−1=λi1+1

+ [(λi1 − λi1+1)/2] + [λi1+1 − 1− λi1+2)/2] +
n∑

i=i1+1

[(λi − λi+1)/2]

=

{
s(λ)− 1 if λi1+1 − λi1+2 ∈ 2N;

s(λ) if λi1+1 − λi1+2 6∈ 2N.

(If i1 = 0, we start at the second line and we get the same conclusion.) Also, observe that

in Case 2, we have

|∆(λ′)| = |∆(λ)| − 1.

Indeed, i1 ∈ ∆(λ) but i1 6∈ ∆(λ′) and for the indexes i 6= i1 we have here the equivalence:

i ∈ ∆(λ) ⇐⇒ i ∈ ∆(λ′).

We discuss two cases depending on the parity of λi1+1 − λi1+2.

• λi1+1 − λi1+2 ∈ 2N.

Then i1 ∈ ∆bad(λ). There are two sub-cases depending on whether i1 + 2 is in ∆(λ) or not:

∗ i1 + 2 ∈ ∆(λ).

Then, i1 + 2 ∈ ∆bad(λ) (since λi1+1 − λi1+2 ∈ 2N) and i1 + 2 ∈ ∆(λ′). Once again,

there are two sub-cases:

1) i1 + 2 6∈ ∆bad(λ′).

Then |∆bad(λ′)| = |∆bad(λ)| − 2. Moreover, (i1, i1 + 2) is a good 2-cluster of λ.

Indeed, i1 + 2 6∈ ∆bad(λ′) implies that λi1+3 − λi1+4 6∈ 2N. On the other hand,

λi1−1 − λi1 = 1 6∈ 2N (if i1 = 1 the first condition in Definition 2.6 should be

omitted). But (i1, i1 + 2) is not a 2-cluster of λ′ since i1 6∈ ∆(λ′). Hence, we

have |Σ(λ′)| = |Σ(λ)| − 1 by Lemma 2.7.

2) i1 + 2 ∈ ∆bad(λ′).

Then |∆bad(λ′)| = |∆bad(λ)|−1. The only 2-clusters of λ which are not 2-clusters

of λ′ are of the form (i1, . . . , ik) with k > 2. Assume that there is a good 2-cluster

of the form (i1, . . . , ik) for λ, with k > 2. The 2-cluster (i1, i1 + 2) of λ is bad.

Indeed, λi1+3−λi1+4 ∈ 2N since i1 +2 ∈ ∆bad(λ′) and λ′i1+1−λ′i1+2 6∈ 2N. Hence,

k > 2. Since λi1−1 − λi1 6∈ 2N and λi1+1 − λi1+2 6∈ 2N, the 2-cluster (i1, . . . , ik)

is good for λ if and only if the 2-cluster (i1 + 2, . . . , ik) is good for λ′. On the

other direction, the only possible good 2-clusters of λ′ which are not good for λ

are of the form (i2 = i1 + 2, . . . , ik) with k > 3. By the above argument, if there
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is such a good 2-cluster for λ′, then (i1, . . . , ik) is a good 2-cluster for λ. As a

consequence, |Σ(λ′)| = |Σ(λ)|.
∗ i1 + 2 6∈ ∆(λ).

Then |∆bad(λ′)| = |∆bad(λ)| − 1. Moreover, since i1 + 2 6∈ ∆(λ), then neither i1 nor

i1 + 2 belongs to a 2-cluster for λ. Hence |Σ(λ)| = |Σ(λ′)|.
• λi1+1 − λi1+2 6∈ 2N.

In this case, i1 6∈ ∆bad(λ), i1 + 2 6∈ ∆(λ) and i1 + 2 6∈ ∆(λ′). Hence |∆bad(λ′)| = |∆bad(λ)|.
Moreover, neither i1 nor i1 + 2 belongs to any 2-cluster. Hence |Σ(λ)| = |Σ(λ′)|.

In all the cases, we can check with the formula of Definition 2.8 that zPT(λ′) = zPT(λ)− 1

as desired. This concludes the proof of Theorem 2.10. �

3. Counter-examples for [M08, Proposition 3.11]

From now on, we shall denote by z(λ) the integer zM(λ) = zPT(λ) for λ ∈ Pε(N). If l is a

Levi subalgebra of g and O′ is a rigid nilpotent orbit of l, we denote by Indg
l (O

′) the induced

nilpotent orbit of g from O′ in l.

Proposition 3.11 of [M08] asserts that if a nilpotent element e associated with the partition

λ ∈ Pε(N) is induced form a nilpotent orbit in a Levi subalgebra l, then z(λ) is equal to

the dimension of the center of l. This result is actually incorrect. If it were true, it would

imply that all the sheets containing e share the same dimension (see [M08, Remark 3.12]).

But this is wrong. Below are some counter-examples (see also [PT12, Remark 4]):

Example 3.1. Assume that g = so(8) and consider the nilpotent element e of g with

partition λ = (3, 3, 1, 1) ∈ P1(8) r P∗1(8). The algorithm yields z(λ) = 2.

On the other hand, e is induced from two different ways: from the zero orbit in a Levi

subalgebra l1 of type (3, 1; 0), that is l1 ' gl3× gl1× 0 (see the definition after [M08, Lemma

3.2] for the meaning of type), and from the zero orbit in a Levi subalgebra l2 of type (2; 4),

that is l1 ' gl2 × so4. The first one, l1, has a center of dimension 2, while the second one,

l2, has a center of dimension 1. The nilpotent orbit of e has dimension 18 and e lies in

two different sheets: one of dimension dim z(l1) + dim Indg
l1

(0) = 20 and one of dimension

dim z(l2)+dim Indg
l2

(0) = 19 (here z(li) denotes the center of li for i = 1, 2). This contradicts

Proposition 3.11 of [M08], and also Remark 3.12 of the same paper.

Example 3.2. We give now a counter-example in sp(14). Consider the partition λ =

(4, 4, 2, 2, 1, 1) of P−1(14). Here, the algorithm yields z(λ) = 2.

The corresponding nilpotent element is induced from the zero orbit in l1 ' gl1×gl3×sp(6),

and from the ridid nilpotent orbit 0 × O′ in l1 ' gl2 × sp(10) where O′ corresponds to the

partition (2, 2, 2, 2, 1, 1) ∈ P∗−1(10). Again the dimensions of the centers of l1 and l2 lead to

different dimensions, 2 and 1 respectively.

The origin of the error can be pined down in the proof of [M08, Proposition 3.11]. Let us

briefly explain this. Until the end of the section, we are in the notations of [M08].

At the end of this proof, the assertion ”Consequently the smallest integer such that one

of the situations (a) or (b) of Step 1 happens in d(p) is equal to ip” is incorrect (here
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d is an element of Pε(N)). And so, the main induction argument of the proof fails. We

can see that is incorrect in general on an explicit example. Consider the partition d =

(4, 4, 3, 3, 1, 1) of P1(16). Then the corresponding nilpotent orbit is induced from the zero

orbit in l ' gl3 × gl5 × 0 and from the rigid nilpotent orbit with partition (2, 2, 1, 1, 1, 1) in

l ' gl(4) × so(8). Consider the second induction. In the notations of the proof, we have:

S = 1, i1 = 4, d(0) = f = (2, 2, 1, 1, 1, 1), d = d(1) = d̃(0) (see [M08, Proposition 3.7] for the

tilda notation). Then the smallest integer such that one of the situations (a) or (b) of Step

1 happens for d = d(1) is 3 6= i1.

4. Conclusion

To summarize, we list below all corrections which have to be taken into account in [M08]

(the numbering of [M08] is used):

• Proposition 3.11 (its proof and its statement) is incorrect.

• As a consequence Remark 3.12, the sentence ”The results of this section specify

that, in the classical case, the dimension of a sheet containing a given nilpotent orbit

does not depend on the choice of a sheet containing it” in §1.2, and the sentence

”Surprisingly, in the classical case, we will notice that if Indl1(Ol1) = Indl2(Ol2), then

dim zg(l1) = dim zg(l2)” in Remark 2.15, are also incorrect.

• The proof of Theorem 3.13 is incorrect, since it uses Proposition 3.11. Nevertheless,

its statement remains valid. In particular, Tables 3, 4 and 5 are still correct.

Remark. There are some misprints in Table 5: line 2m = 48, the partitions are

[7, 15], [5, 3, 22], [42, 3, 1] and not [43], [42, 3, 1].
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E-mail address: anne.moreau@math.univ-poitiers.fr

8


	1. Introduction
	2. The main result
	3. Counter-examples for [Proposition 3.11]M08
	4. Conclusion
	References

