CORRIGENDUM TO ”ON THE DIMENSION OF THE SHEETS OF A
REDUCTIVE LIE ALGEBRA”

ANNE MOREAU

ABSTRACT. This note is a corrigendum to [MO08]. As it has been recently pointed out to me
by Alexander Premet, [M08, Remark 3.12] is incorrect. We explain in this note the impacts
of that error in [M08], and amend certain of its statements. In particular, we verify that
the statement of [M08, Theorem 3.13] remains correct in spite of this error.

1. INTRODUCTION

Let g be a complex simple Lie algebra and G its adjoint group. We investigate in [MO0§]
the dimension of the subsets, for m € N,

g(m) ={x € g| dim(Gz) = 2m},

where Gz denotes the adjoint orbit of € g. The irreducible components of the subsets g™
are called the sheets of g, [BK79, B&1]. Thus, for any m € N,

(1) dim g™ = max{dim8 ; 8§ C g(m)}7

where 8 runs through all sheets contained in g™. The sheets are known to be parameterized
by the pairs (I, Oy), up to G-conjugacy class, consisting of a Levi subalgebra [ of g and a
rigid nilpotent orbit Oy in [, cf. [B81]. This parametrization enables to write the dimension
of a sheet 8 associated with a pair (I, Q) as the sum of the dimension of the center of [ and
the dimension of the unique nilpotent orbit contained in 8, see e.g. [M08, Proposition 2.11].

In the classical case, formulas for g™ are given in [M08, Theorems 3.3 and 3.13] in term
of partitions associated with nilpotent elements of g. As it has been recently pointed out
by Alexander Premet, Remark 3.12 in [M08] which claims that “in the classical case, the
dimension of a sheet containing a given nilpotent orbit does not depend on the choice of
a sheet containing it” is incorrect. We give here some counter-examples (cf. Examples 3.1
and 3.2; see also [PT12, Remark 4]). This is true only for the type A where each nilpotent
element belongs to only one sheet. The error stems from the proof of [M08, Proposition 3.11];
see Section 3 for explanations. As a consequence, the proof of [M08, Theorems 3.13], partly
based on [M08, Proposition 3.11], is incorrect too. However its statement remains true. This
can be shown through a recent work of Premet and Topley, [PT12]. In more details, another
formula for g™ in term of partitions can be traced out from [PT12, Corollary 9] and the
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equality (1). In this note, we verify (cf. Theorems 2.10) that the Premet-Topley formula for
g™ coincides with the one of [M08, Theorem 3.13].

The note is organized as follows.

In Section 2, we recall some definitions and results of [PT12] and show that the statement
of [M08, Theorem 3.13] is correct in spite of the error in [M08, Proposition 3.11], see Theorem
2.10(ii). In Section 3, we precisely pin down the error in the proof [M08, Proposition 3.11]
and describe the impacts of that error in [MO08]. As a conclusion, we list in Section 4 all
corrections which have to be taken into account in [MO0§].

Since the corrections in [MO08] only concern the types B, C and D, we assume for the
remaining of the note that g is either so(/N) or sp(N), with N > 2, and € is 1 or —1
depending on whether g = so(N) or sp(N). Following the notations of [MO08] (or [PT12]),
we denote by P.(NN) the set of partitions of N associated with the nilpotent elements of g.
For A = (A1,..., A\) € Po(N), we denote by e(\) the corresponding nilpotent element of g
whose Jordan block sizes are Ay,..., \,. We will always assume that \; > --- > \,.

Acknowledgments. I would like to thank A. Premet for having pointed out to me the
error in my paper, and Lewis Topley for useful discussions and explanations. I also take the
opportunity to thank Oscar Chacaltana for his interest in the subject and interesting e-mail
exchanges.

2. THE MAIN RESULT

For the convenience of the reader, we recall here all the necessary definitions and results
of [PT12]. Given a partition A = (Ay,..., \,) € P(N) we set,

AN ={1<i<n;e(=1)M =c(=1)"* = =1, it # X 2 N1 # Aiga}

Our convention is that A\g = 0 and A\; = 0 for all ¢ > n. Recall the following result of
Kempken and Spaltenstein (also recalled in [MO08] and [PT12]):

Theorem 2.1 ([K83, S82]). Let A = (A1,...,A\,) € Po(N). Then e(N) is rigid if and only if
o\ — N1 €{0,1} forall1 <i< ny;
o the set {i € A(N); N\j = N1} is empty.

Denote by P*(N) the set of A € P.(N) such that e()) is rigid. We call the elements of
P*(N) the rigid partitions. We first introduce the notion of admissible sequences, see [PT12,
§3.1]. This is an extended version of the algorithm described in [M08] which takes A € P.(N)
and returns an element of P*(N) compatible for the induction process of nilpotent orbits.

Let i be a finite sequence of integers between 1 and n. The procedure of [PT12] is as follows:
the algorithm commences with input A = A\! € P_(N) where i = @ is the empty sequence.
At the I*™® iteration, the algorithm takes \! € P.(N — 2 22;11 i;) where i = (iy,...,4_1) and
returns A\ € P (N — 22321 i;) where i" = (iy,...,4_1,4;) for some 7. If the output A g

lth

a rigid partition then the algorithm terminates after the I** iteration with output AI' . We

shall now explicitly describe the I*! iteration of the algorithm. If after the (I — 1)* iteration
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the input A! is not rigid then the algorithm behaves as follows. Let i; denote any index in
the range 1 < ¢ < n such that either of the following case occur:

Case 1: A\ >\ | +2;

Case 2: i€ A(N)and A} = A} ;.
Note that no integer ¢, will fulfill both criteria. If i = (iy,...,4,_1) then define i’ =
(41,...,%-1,7). For Case 1 the algorithm has output

A= (A =20 =2, AL =200 A
whilst for Case 2 the algorithm has output

A= (=20 =2, A 2 1A A A,

Due to its definition and the classification of rigid partitions the above algorithm certainly
terminates after a finite number of steps.

Definition 2.2 ([PT12, §3.1]). We say that a sequence i = (iy,...,4) is an admissible
sequence for X if Case 1 or Case 2 occurs at the point i, for the partition A(%-1) for each
k=1,...,I. An admissible sequence i for A is be called a mazimal admissible sequence for
A if neither Case 1 nor Case 2 occurs for any index i between 1 and n for the partition AL
By convention the empty sequence is admissible for any A € P.(N).

As observed in [PT12, Lemma 6], if i is an admissible sequence for A, then i is maximal
admissible if and only if Al is a rigid partition. We will denote by |i| := [ the length of an
admissible sequence for \.

Definition 2.3. The algorithm as described in [MO8] corresponds to the special case where
in the above algorithm, we define at each step #; to be the smallest integer which fulfills one
the Case 1 or Case 2 criteria, and Al is rigid. In the sequel, we will refer to the so obtained
maximal admissible sequence for A as the canonical maximal admissible sequence for A and
we denote it by i°. Then we set

ZM()\) = |10|
Remark. The integer z\;(\) corresponds to the integer z(\) of [MOS].

Definition 2.4 ([PT12, Definition 1]). If i € A()) then the pair (7,7 4 1) is called a 2-step
of A\. If i > 1 and (4,7 + 1) is a 2-step of A then \;_; and ;42 are referred to as the boundary
of (i,i+1). If 1 € A(X) then s is referred to as the boundary of (1,2) (if n = 2 then A3 =0
by convention).

We observe that A(\) is the set of 2-steps of A, and by |A(A)] its cardinality.

Definition 2.5 ([PT12, §3.2]). If i € A()) then we say that the 2-step (i,7 + 1) has a good
boundary if A\; and the boundary of (7,7 + 1) have the opposite parity. If the boundary of a
2-step (7,7 + 1) of A is not good then we say that it is bad and we refer to (i,7+ 1) as a bad
2-step. Note that (7,74 1) is a bad 2-step of A if and only if either i« > 1 and \;_; — \; € 2N,

or )\i+1 - )\i+2 € 2N.
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We denote by Apaa(A) the set of bad 2-steps of A, and by |Ap.a(N)]| its cardinality.

Definition 2.6 ([PT12, Definition 2]). A sequence 1 < iy < -+ < i < n with k£ > 2 is
called a 2-cluster of A whenever i; € A(X\) and ;11 = 4; + 2 for all j. We say that a 2-cluster
1,...,1 has a bad boundary if either of the following conditions holds:

o \_1— A\, €2N;

° )\ik—‘rl — /\ik+2 € 2N.
(if 74 = 1 then the first condition should be omitted). A bad 2-cluster is one which has a bad
boundary, whilst a good 2-cluster is one without a bad boundary.

We denote by X(\) the set of good 2-clusters of A, and by |X())] its cardinality.

Lemma 2.7 ([PT12, Lemma 11}). A good 2-cluster is mazimal in the sense that it is not a
proper subsequence of any 2-cluster.

Definition 2.8 (Premet-Topley). For any A € P.(\), the integer zp()) is defined by the
formula:

2pr(A) = s(A) + [AN)] = [Apaa(A)] + [E(N)]

where
n

s(A) =D [ = An)/2].

i=1
Remark. The integer zp(\) corresponds to the integer z(A) of [PT12].
By [PT12, Theorem 8], we have that

(2) zpr(A) := max|i]

where the maximum is taken over all admissible sequences for A. Hence, by [PT12, Corollary
9] and the equality (1) of the introduction, we get:

Theorem 2.9 (Premet-Topley). For any m € N, we have
dim g™ = 2m + max{zpp(\) ; A € P.(N) s.t dim Ge(\) = 2m}.
The main result of this note is:

Theorem 2.10. (i) For any A € P.(N), we have z\i(N) = zpr(N).
(ii) For any m € N, we have

dim g™ = 2m + max{zy(\) ; A € Po(N) s.t dim Ge(\) = 2m}.
In other words, the statement of [M08, Theorem 3.13] is correct.

Proof. (ii) is a direct consequence of (i) and Theorem 2.9.

(i) We argue by induction on N (the statement is true for small N). Let N > 2 and assume
the statement true for any A € P.(N'), with 1 < N’ < N, and let A € P.(N).
If A € PX(N), then zpp(N) = 2m(A) = 0 (see Theorem 2.1, Definition 2.2 and equality (2)).

So, we can assume that A is not a rigid partition. In particular, zpr(A) > 0 and zy(A) > 0.
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To ease notation, we simply denote here by i := i the canonical maximal sequence for \.
Then recall that by Definition 2.3, 2y (\) = |i]. Set X := A, Clearly, zy(X) = 2p()\) — 1.
By the induction hypothesis, we have zpr(\') = z2m(N). Hence, we have to show that:

ZPT()\/) = ZPT()\) — 1.

Our strategy is to compare the formulas for zpr(\') and zpp(A) given by Definition 2.8.
Recall that 4y is the smallest integer which fulfills one of the Case 1 or Case 2 criteria for .
First of all, we observe that if i € A(X) (resp. i € A(X)), then ¢ > 7. Indeed, if i € A(N)
and i < iy (if 47 = 1, it is clear), then either A\; = A\;;1 and then ¢ fulfills the Case 2 which
contradicts the minimality of i1, or A\; — A\;11 € 2N\ {0} and then ¢ fulfills the Case 1 which
contradicts the minimality of ; too.

We now consider the two situations Case 1 and Case 2 separately.

Case 1: >‘i1 2 )\Z’1+1 + 2.

We have,
N = (=2, A1 =20 =2, At ),
and
i1—1 n
s(N) = D I = M) /2 [N = 2= Ns)/21+ D [N — A1) /2]
i=1 i=i1+1
= s(\)— 1.

Compare now the other terms appearing in Definition 2.8. Note that i; € A(M) (resp.
i1 € Apaa(A)) if and only if i3 € A(N) (resp. i1 € Apaa(N')) since the passing from A to N
preserves the parities. For the same reason, i; belongs to a good 2-cluster of X if and only
11 belongs to a good 2-cluster of \'.
Then we discuss two cases depending on whether i; + 1 is in A()A) or not:
e i1 +1eA(N).
Once again, we consider two cases:
* Ny — 2% Nij41-
Then iy +1 € A(XN) too. Moreover, i; + 1 € Apaq(N) if and only if 43 +1 € Apaa(N).
Hence, we conclude that |[A(N)] = |[AN)], [Apaa(N)| = [Apaa(N)] and [E(N)] =
[Z(A)]-
* Nip — 2 = Njj41-
Then i1 + 1 € Apaq(A) since A;; — \jy11 = 2 € 2N. But i3 + 1 &€ A(N). Therefore,
IAN)] = |AN)|—1 and |Apag(N)| = |Apaa(A)| — 1. Moreover, if i; + 1 belongs to a 2-
cluster of A, then it is bad because \;; — A\;; 11 € 2N. Hence, we have |X(N)| = [2()N)].

In this case, note that iy +1 ¢ A(N'). Hence, we conclude that |A(N)| = |[A(N)], [Apaa(N)| =
[ Abaa(A)] and [E(X)] = [E(A)].

Case 2: i; € A(A) and X\, = A 41.



By the minimality condition of i, we have A\;; 1 = \;; + 1 (except for iy = 1, in which case
A\i;_1 = 0 by convention), and so \;, o = \;,_1 because ¢(—1)*1-1 = 1. We have

)\/ — ()\1 - 2, [P ,)\1'1,1 - 2, )\il - 1, )\/L'1+1 - 1, )\il+27 ey )\n)a

and
) = 3 [0 = Aesa)/2 (Ao = — 1)/
+ [N = Ai+)/2] + i1 — 1= Aij42) /2] + Z Ai+1)/2]

i=11+1

_ S()\) -1 if )‘il+1 — )‘i1+2 € QN,
S()\) if >\i1+1 — )\i1+2 ¢ 2N.

(If 7, = 0, we start at the second line and we get the same conclusion.) Also, observe that
in Case 2, we have

AN = 1AM - L.

Indeed, i; € A(X) but i; & A(N) and for the indexes i # i; we have here the equivalence:
i€ A(N) <= ie AN).

We discuss two cases depending on the parity of A\;; 11 — A; 2.

o Miji1— Aijg2 € 2N.
Then i; € Apaq(A). There are two sub-cases depending on whether i; + 2 is in A(\) or not:
x i1+ 2 € A(N).
Then, i; + 2 € Apag(N) (since A, 41 — Ajj42 € 2N) and iy +2 € A()N). Once again,
there are two sub-cases:
1) i1 +2 & Apaa(N).
Then |Apaa(N)| = [Apaa(A)| — 2. Moreover, (i1,i; 4+ 2) is a good 2-cluster of A.
Indeed, i1 + 2 € Apaa(N) implies that A\;; 13 — A\j;14 € 2N. On the other hand,
Ai;—1 — Ay = 1 € 2N (if 4; = 1 the first condition in Definition 2.6 should be
omitted). But (i1,7; 4+ 2) is not a 2-cluster of X since i; ¢ A(N). Hence, we
have |X(N)| = |X(A)| — 1 by Lemma 2.7.
2) 11 +2e Abad(/\/)‘
Then |Apaq(N)| = |Apaa(A)|—1. The only 2-clusters of A which are not 2-clusters
of X are of the form (iy, ..., d;) with £ > 2. Assume that there is a good 2-cluster
of the form (iy,...,i;) for A\, with k > 2. The 2-cluster (i1, + 2) of X is bad.
Indeed, ;43— Aj 44 € 2N since i1 +2 € Apaa(X) and X} | — A}, & 2N. Hence,
k> 2. Since A;;, 1 — N\, & 2N and N\, 11 — Aj; 0 & 2N, the 2-cluster (i, ..., 1)
is good for A if and only if the 2-cluster (i1 + 2,...,14) is good for A'. On the
other direction, the only possible good 2-clusters of A’ which are not good for A

are of the form (io = i; +2,...,4;) with k£ > 3. By the above argument, if there
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is such a good 2-cluster for X', then (iy,...,d) is a good 2-cluster for A\. As a
consequence, |S(X)| = [2(N)].
x i1+ 2 & A(N).
Then |Apaa(N)| = [Apaa(A)| — 1. Moreover, since iy + 2 ¢ A(A), then neither ¢; nor
i1 + 2 belongs to a 2-cluster for A. Hence |X(A)| = [2(N)].
® N1 — A2 2N
In this case, i1 & Apaa(N), i1 +2 € A(N) and i3 + 2 € A(N). Hence |Apag(N)] = [Apaa(A)]-
Moreover, neither i; nor i; + 2 belongs to any 2-cluster. Hence |X(A)| = [2(N)].
In all the cases, we can check with the formula of Definition 2.8 that zpr(\) = zpp(A) — 1
as desired. This concludes the proof of Theorem 2.10. 0

3. COUNTER-EXAMPLES FOR [M08, Proposition 3.11]

From now on, we shall denote by z(\) the integer zy(\) = zpr(A) for A € P(N). If [is a
Levi subalgebra of g and O’ is a rigid nilpotent orbit of [, we denote by Ind{(O’) the induced
nilpotent orbit of g from O’ in [.

Proposition 3.11 of [M08] asserts that if a nilpotent element e associated with the partition
A € P.(N) is induced form a nilpotent orbit in a Levi subalgebra [, then z(\) is equal to
the dimension of the center of [. This result is actually incorrect. If it were true, it would
imply that all the sheets containing e share the same dimension (see [M08, Remark 3.12]).
But this is wrong. Below are some counter-examples (see also [PT12, Remark 4]):

Example 3.1. Assume that g = s0(8) and consider the nilpotent element e of g with
partition A = (3,3,1,1) € P1(8) \ Pi(8). The algorithm yields z(\) = 2.

On the other hand, e is induced from two different ways: from the zero orbit in a Levi
subalgebra [; of type (3,1;0), that is [; ~ gly x gl; x 0 (see the definition after [M08, Lemma
3.2] for the meaning of type), and from the zero orbit in a Levi subalgebra [y of type (2;4),
that is [} ~ gl, x so4. The first one, [}, has a center of dimension 2, while the second one,
[, has a center of dimension 1. The nilpotent orbit of e has dimension 18 and e lies in
two different sheets: one of dimension dim3(l;) 4 dim Ind{ (0) = 20 and one of dimension
dim 3(Iy) 4 dim Indj (0) = 19 (here 3(1;) denotes the center of [; for i = 1,2). This contradicts
Proposition 3.11 of [M08], and also Remark 3.12 of the same paper.

Example 3.2. We give now a counter-example in sp(14). Consider the partition A =
(4,4,2,2,1,1) of P_1(14). Here, the algorithm yields z(\) = 2.

The corresponding nilpotent element is induced from the zero orbit in [; ~ gl; x gl; x sp(6),
and from the ridid nilpotent orbit 0 x Q" in [; ~ gl, x sp(10) where O" corresponds to the
partition (2,2,2,2,1,1) € P*,(10). Again the dimensions of the centers of [; and I, lead to
different dimensions, 2 and 1 respectively.

The origin of the error can be pined down in the proof of [MO08, Proposition 3.11]. Let us
briefly explain this. Until the end of the section, we are in the notations of [MO0S].
At the end of this proof, the assertion ”Consequently the smallest integer such that one
of the situations (a) or (b) of Step 1 happens in d® is equal to i,” is incorrect (here
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d is an element of P.(N)). And so, the main induction argument of the proof fails. We
can see that is incorrect in general on an explicit example. Consider the partition d =
(4,4,3,3,1,1) of P1(16). Then the corresponding nilpotent orbit is induced from the zero
orbit in [ ~ gl; x gl; x 0 and from the rigid nilpotent orbit with partition (2,2,1,1,1,1) in
[~ gl(4) x s0(8). Consider the second induction. In the notations of the proof, we have:
S=1,i;=4,d% =f=(2,2,1,1,1,1),d = dV = d© (see [M08, Proposition 3.7] for the
tilda notation). Then the smallest integer such that one of the situations (a) or (b) of Step
1 happens for d = d™ is 3 # i;.

4. CONCLUSION

To summarize, we list below all corrections which have to be taken into account in [MOS]
(the numbering of [MO8] is used):

e Proposition 3.11 (its proof and its statement) is incorrect.

e As a consequence Remark 3.12, the sentence ”"The results of this section specify
that, in the classical case, the dimension of a sheet containing a given nilpotent orbit
does not depend on the choice of a sheet containing it” in §1.2, and the sentence
”Surprisingly, in the classical case, we will notice that if Indy, (Oy,) = Ind,,(Oy,), then
dim 34(l;) = dim 34(l2)” in Remark 2.15, are also incorrect.

e The proof of Theorem 3.13 is incorrect, since it uses Proposition 3.11. Nevertheless,
its statement remains valid. In particular, Tables 3, 4 and 5 are still correct.
Remark. There are some misprints in Table 5: line 2m = 48, the partitions are
[7,1°], 5, 3,2%],[42, 3, 1] and not [43], [42, 3, 1].
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