QUASI-REDUCTIVE (BI)PARABOLIC SUBALGEBRAS IN REDUCTIVE LIE
ALGEBRAS.
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ABSTRACT. We say that a finite dimensional Lie algebra is quasi-reductive if it has a linear form
whose stabilizer for the coadjoint representation, modulo the center, is a reductive Lie algebra with a
center consisting of semisimple elements. Parabolic subalgebras of a semisimple Lie algebra are not
always quasi-reductive (except in types A or C by work of Panyushev). The classification of quasi-
reductive parabolic subalgebras in the classical case has been recently achieved in unpublished work
of Duflo, Khalgui and Torasso. In this paper, we investigate the quasi-reductivity of biparabolic
subalgebras of reductive Lie algebras. Biparabolic (or seaweed) subalgebras are the intersection of
two parabolic subalgebras whose sum is the total Lie algebra. As a main result, we complete the
classification of quasi-reductive parabolic subalgebras of reductive Lie algebras by considering the
exceptional cases.

RESUME. Une algébre de Lie de dimension finie est dite quasi-réductive si elle posséde une forme
linéaire dont le stablisateur pour la représentation coadjointe, modulo le centre, est une algébre de
Lie réductive avec un centre formé d’éléments semi-simples. Les sous-algébres paraboliques d’une
algébre de Lie semi-simple ne sont pas toujours quasi-réductives (sauf en types A ou C d’aprés un
résultat de Panyushev). Récemment, Duflo, Khalgui and Torasso ont terminé la classification des
sous-algébres paraboliques quasi-réductives dans le cas classique. Dans cet article nous étudions la
quasi-réductivité des sous-algébres biparaboliques des algebres de Lie réductives. Les sous-algébres
biparaboliques sont les intersections de deux sous-algébres paraboliques dont la somme est [’algébre
de Lie ambiante. Notre principal résultat est la complétion de la classification des sous-algébres
paraboliques quasi-réductives des algébres de Lie réductives.

INTRODUCTION

Let G be a complex connected linear algebraic Lie group. Denote by g its Lie algebra. The group G acts on the
dual g* of g by the coadjoint action. For f € g*, we denote by G(f) its stabilizer in G; it always contains the center
Z of G. One says that a linear form f € g* has reductive type if the quotient G(f)/Z is a reductive subgroup of
GL(g). The Lie algebra g is called quasi-reductive if it has linear forms of reductive type. This notion goes back to
M. Duflo. He initiated the study of such Lie algebras because of applications in harmonic analysis, see [Du82]. For
more details about linear forms of reductive type and quasi-reductive Lie algebras we refer the reader to Section 1.

Reductive Lie algebras are obviously quasi-reductive Lie algebras since in that case, 0 is a linear form of reductive
type. Biparabolic subalgebras form a very interesting class of non-reductive Lie algebras. They naturally extend
the classes of parabolic subalgebras and of Levi subalgebras. The latter are clearly quasi-reductive since they
are reductive subalgebras.. Biparabolic subalgebras were introduced by V. Dergachev and A. Kirillov in the case
g = sly,, see [DK00]. A biparabolic subalgebra or seaweed subalgebra (of a semisimple Lie algebra) is the intersection
of two parabolic subalgebras whose sum is the total Lie algebra.

In this article, we are interested in the classification of quasi-reductive (bi)parabolic subalgebras. Note that it is
enough to consider the case of (bi)parabolic subalgebras of the simple Lie algebras, cf. Remark 1.4.
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In the classical cases, various results are already known: All biparabolic subalgebras of sl,, and sp,, are quasi-
reductive as has been proven by D. Panyushev in [P05]. The case of orthogonal Lie algebras is more complicated: On
one hand, there are parabolic subalgebras of orthogonal Lie algebras which are not quasi-reductive, as P. Tauvel and
R.W.T. Yu have shown (Section 3.2 of [TY04a]). On the other hand, D. Panyushev and A. Dvorsky exhibit many
quasi-reductive parabolic subalgebras in [Dv03] and [P05] by constructing linear forms with the desired properties.
Recently, M. Duflo, M.S. Khalgui and P. Torasso have obtained the classification of quasi-reductive parabolic subal-
gebras of the orthogonal Lie algebras in unpublished work, [DKT]. They were able to characterize quasi-reductive
parabolic subalgebras in terms of the flags stabilized by the subalgebras.

The main result of this paper is the completion of the classification of quasi-reductive parabolic subalgebras of
simple Lie algebras. This is done in Section 5 (Theorem 5.1 and Theorem 5.2). Our goal is ultimately to describe all
quasi-reductive biparabolic subalgebras. Thus, in the first sections we present results concerning biparabolic subalge-
bras to remain in a general setting as far as possible. For the remainder of the introduction, g is a finite dimensional
complex semisimple Lie algebra.

The paper is organized as follows:

In Section 1 we introduce the main notations and definitions. We also include in this section a short review of
known results about biparabolic subalgebras, including the description of quasi-reductive parabolic subalgebras in the
classical Lie algebras (Subsection 1.4). In Section 2, we describe two methods of reduction, namely the transitivity
property (Theorem 2.1) and the additivity property (Theorem 2.11). As a first step of our classification, we exhibit
in Section 3 a large collection of quasi-reductive biparabolic subalgebras of g (Theorem 3.6). Next, in Section 4,
we consider the non quasi-reductive parabolic subalgebras of g, for simple g of exceptional type (Theorems 4.1, 4.3
and 4.6). This is a crucial part of the paper. Indeed, to study the quasi-reductivity, we can make explicit computations
(cf. Section 5) while it is much trickier to prove that a Lie algebra is not quasi-reductive. Using the results of
Sections 2, 3 and 4, we are able to cover a large number of parabolic subalgebras. The remaining cases are dealt with
in Section 5 (Theorem 5.6, Propositions 5.8 and 5.9). This completes the classification of quasi-reductive parabolic
subalgebras of g (Theorems 5.1 and 5.2, see also Tables 6 and 7).

At this place, we also want to point out that in [MY], O. Yakimova and the second author study the mazimal
reductive stabilizers of quasi-reductive parabolic subalgebras of g. This piece of work yields an alternative proof of
Proposition 5.9 which is not based on the computer programme GAP, see Remark 5.10.

CONTENTS
Introduction 1
1. Notations, definitions and basic facts 2
2.  Methods of reduction 6
3. Some classes of quasi-reductive biparabolic subalgebras 9
4. Non quasi-reductive parabolic subalgebras 12
5.  Explicit computations and classification 15
Appendix A. 19
References 20

Acknowledgment: We thank M. Duflo for introducing us to the subject of quasi-reductive subalgebras. We also
thank P. Tauvel and R.W.T. Yu for useful discussions. Furthermore, we thank W. de Graaf and J. Draisma for
helpful hints in the use of GAP. At this point, we also want to thank the referee for the very useful comments and
suggestions.

1. NOTATIONS, DEFINITIONS AND BASIC FACTS

In this section, we recall a number of known results that will be used in the sequel.
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1.1. Let g be a complex Lie algebra of a connected linear algebraic Lie group G. Denoting by g(f) the Lie algebra
of G(f), we have g(f) = {z € g | (ad*x)(f) = 0} where ad” is the coadjoint representation of g. Recall that a linear
form f € g* is of reductive type if G(f)/Z is a reductive Lie subgroup of GL(g). We can reformulate this definition
as follows:

Definition 1.1. An element f of g* is said to be of reductive type if g(f)/3 is a reductive Lie algebra whose center
consists of semisimple elements of g where 3 is the center of g.

Recall that a linear form f € g* is regular if the dimension of g(f) is as small as possible. By definition, the index
of g, denoted by ind g, is the dimension of the stabilizer of a regular linear form. The index of various special classes
of subalgebras of reductive Lie algebras has been studied by several authors, cf. [P03], [Ya06], [Mor06a], [Mor06b].
For the index of seaweed algebras, we refer to [P01], [Dv03], [TY04a], [TY04b], [J06] and [JOT7].

Recall that g is called quasi-reductive if it has linear forms of reductive type. From Duflo’s work [Du82, §§1.26-27]
one deduces the following result about regular linear forms of reductive type:

Proposition 1.2. Suppose that g is quasi-reductive. The set of reqular linear forms of reductive type forms a Zariski
open dense subset of g*.

1.2. From now on, g is a complex finite dimensional semisimple Lie algebra. The dual of g is identified with g through
the Killing form of g. For u € g, we denote by ¢, the corresponding element of g*. For u € g, the restriction of ¢,
to any subalgebra a of g will be denoted by (¢u)]a.

Denote by 7 the set of simple roots with respect to a fixed triangular decomposition

g=ntohon

of g, and by A, (respectively AF, A}) the corresponding root system (respectively positive root system, negative root
system). If 7’ is a subset of 7, we denote by A,/ the root subsystem of A, generated by 7’ and we set Af = A NAE
For a € A, denote by ga the a-root subspace of g and let ho be the unique element of [ga, g—a] such that a(ha) = 2.
For each a € Ar, fix T4 € ga so that the family {za,hg ; o € Ax, 8 € 7w} is a Chevalley basis of g. In particular, for
non-colinear roots a and 3, we have [za,zg] = £(p + 1)xza+p if B — pa is the source of the a-string through g.

We briefly recall a classical construction due to B. Kostant. It associates to a subset of 7 a system of strongly
orthogonal positive roots in Ar. This construction is known to be very helpful to obtain regular forms on biparabolic
subalgebras of g. For a recent account about the cascade construction of Kostant, we refer to [TY04b, §1.5] or [TY05,
§40.5].

For A in b* and a € A, we shall write (A, a") for A(ha). Recall that two roots o and 8 in A, are said to be
strongly orthogonal if neither o + 8 nor oo — B is in Ar. Let 7’ be a subset of . The cascade X, of ' is defined by
induction on the cardinality of 7" as follows:

(1) X(©@) =0,

(2) If wl,...,m. are the connected components of 7, then XK. = Kor U UK,

(3) If n’ is connected, then K, = {7’} UXr where T = {a € 7’ | {a,e),) = 0} and ¢, is the highest positive
root of A::,.

For K € K/, set
Ik ={a € Ak | {(a,ef) >0} and T% =Tk \ {ex}.

Notice that the subspace Y. g is a Heisenberg Lie algebra whose center is g, .
KeTk
The cardinality k. of X, only depends on g; it is independent of the choices of h and 7. The values of k, for the

different types of simple Lie algebras are given in Table 1; in this table, for a real number z, we denote by [z] the
largest integer < x.

For 7' a subset of 7, we denote by &£,/ the set of the highest roots ex where K runs over the elements of the
cascade of 7’. By construction, the subset €,/ is a family of pairwise strongly orthogonal roots in A,,. For the
convenience of the reader, the set £, for each simple Lie algebra of type 7, is described in the Tables 2 and 3. We
denote by E,, the subspace of h* which is generated by the elements of /.
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Ag, £>1|Bg,0>2|Cpt>3|Dp,>4| Gy | Fs | Es | Er | Es

TABLE 1. k; for the simple Lie algebras.

(e %1 s Qg1 oy . +1
Ag, £>1: oO—-o0O - oO—O0—o0 {ei=ai+ -+ aip—2it1), 1 < [T:|}
oy a Qp—1 Qy
By, £>2: o—-o0 - O——0O——>0 {e: = aic1 + 205 + -+ 2ay, i even, 1 <L} U{e; =y, i odd,i < £}
[e%) a2 Q1 Qy
Cy, £ > 3: oO—-oO - O—O—=—0 {ei =2a; + - +20p-1+ap, i<L—1}U{ep = ap}
(7]
Dy, £ even, £ > 4: {e: = ai—1 + 205 + -+ 2002+ ap—1+ap, ieven, i < £ —1}
(e %1 (e %) [eT )
O_O """ U{si:ai,iodd,i<l} @] {8[:&[}
Qp—1
(7]
Dy, £ odd, £ > 5: {ei = i1 +20; +-+20p-2+ap—1+a, ieven, i <€ —1}
(e %1 a2 [T/
o—o0- -
U{ei=oy, iodd, i <€} U {er—1 = ap_o+ap_1+ar}
Qp—1

TABLE 2. &, for the classical Lie algebras.

«aq (65
G2: =0 {e1= 23 ,e= 01 }
[e5) a a3 Qg
Fyq: O Oo——=0 O {e1 = 2342 |, eg = 0122 , e3 = 0120 , e4 = 0100 }
aq as Qg as e
Eg: O O O O O {ex = 12321 , eo = 11111 , e3 = 01110 , e4 = 00100 }
2 0 0 0
a2
a1 as oy as (0733 ar
E7: O O O O O O {e1 = 234321 , ep = 012221 , eg3 = 012100 , e4 = 000001 ,
2 1 1 0
az
es = 000000 , eg = 010000 , ez = 000100 }
1 0 0
aq as Qg as Qg a7 as
Es: O O O O O O O {e1 = 2465432 , g5 = 2343210 , e3 = 0122210 , g4 = 0121000 ,
g 3 2 1 1
a2

es = 0000010 , eg = 0000000 , e = 0100000 , eg = 0001000 }
0 1 0 0

TABLE 3. & for the exceptional Lie algebras.

1.3. A biparabolic subalgebra of g is defined to be the intersection of two parabolic subalgebras whose sum is g. This
class of algebras has first been studied in the case of sl,, by Dergachev and Kirillov [DKO00] under the name of seaweed
algebras.



For a subset 7’ of 7, we denote by p:rr, the standard parabolic subalgebra of g which is the subalgebra generated by
b" = h®nT and by g_a, for a € 7. We denote by p., the “opposite parabolic subalgebra” generated by b~ =n~ @b
and by ga, for a € 7', Set [/ = p:rr, Np_,. Then [/ is a Levi factor of both parabolic subalgebras p:, and p_, and we
can write [,/ = n:rr, ®bh@dn_, where n:f, =ntn .. Let m: (respectively m;,) be the nilradical of p:rr, (respectively
p). We denote by g, the derived Lie algebra of [/ and by 3([,) the center of [,. The Cartan subalgebra h N g
of g, will be denoted by h,.

Definition 1.3. The subalgebra qr, r, of g given as follows by the subsets 71,72 C 7
Qryima o= Pty NPy = Ny, @ H D0y,

is called the standard biparabolic subalgebra (associated to 71 and m2). Its nilpotent radical is tr, ,r, 1= (nf, Nm¥, ) ®
(nm, Nmy,) and lry x, = lr;nn, is the standard Levi factor of gy, x,-

Any biparabolic subalgebra is conjugate to a standard one, see [TY04b, §2.3] or [J06, §2.5]. So, for our purpose,
it will be enough to consider standard biparabolic subalgebras.

Remark 1.4. The classification of quasi-reductive (bi)parabolic subalgebras of reductive Lie algebras can be deduced
from the classification of quasi-reductive (bi)parabolic subalgebras of simple Lie algebras: A stabilizer of a linear form
on g is the product of its components on each of the simple factors of g and of the center of g. As a consequence, we
may assume that g is simple without loss of generality.

Let 71, m2 be two subsets of w. The dual of qr, =, is identified to qr, r, via the Killing form of g. For
a= (aK)KeXn, € (C*)*m2 and b = (br)rex,, € (C*)*m1 ) set

U’(va): Z AKT—cp + Z brae,

KeXnr, LeXr,

It is an element of ur, », and the linear form (¢u)|q,, -, i a regular element of q3, ., for any (a,b) running through
a nonempty open subset of (C*)*m2 k=1 cf. [TY04b, Lemma 3.9].

We denote by FEr, =, the subspace generated by the elements ek, for K € K, UXy,. Thus, dimFEr, -, =
kr, 4+ kny — dim(Ex, N Er,). As it has been proved in [J06, §7.16], we have

(1) ind ry,mp = (rkg —dim Eﬂlﬂm) + (kTrl + kff2 —dim E‘"'177T2)

Remark 1.5. By (1), the index of qn; x, is zero if and only if Ex, N Er, = {0} and kx, +kx, = rkg. For example, in
type Eg, there are exactly fourteen standard parabolic subalgebras p:rr, with index zero. The corresponding subsets
7' C 7 of the simple roots are the following:

{on,as};{as, a6 }; {1, cu, a5 }; {as, au, as}; {on, as, ac};
{a1, a3, a6}; {a1, a3, a5}; {as, a5, a6 }; {1, as, o }; {ou, as, a6 };
{a1, a3, a4, a5}; {as, aa, a5, a6 }; {1, a2, a3, aa}; {2, au, a5, a6}

This was already observed in the unpublished work [El] of A. Elashvili (with a small error).

In the sequel, we will often make use of the following element of iy, », on our way to construct reductive forms:

U =) @

€€Eny, egAT

If my = 7w, we simply write u,, for ur, . and, in the special case of m1 = @) and w2 = 7, we write u~ for uy . Let
B be the Borel subgroup of G whose Lie algebra is b*. We summarize in the following proposition useful results of
Kostant concerning the linear form (¢, -)|,+. They can be found in [TY05, Proposition 40.6.3].

Proposition 1.6. (i) The linear form (p,-)|p+ is of reductive type for b™. More precisely, the stabilizer of @, in

b" is the subspace [\ kerex of b of dimension tkg — k.
KEXn

(ii) Let m be an ideal of b+ contained in n*. The B-orbit of (p,-)|m in m* is an open dense subset of m*.
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1.4. We end the section by reviewing what is known in the classical case. First recall that the biparabolic subalgebras
of simple Lie algebras of type A and C are always quasi-reductive as has been shown by D. Panyushev in [P05].

The classification of quasi-reductive parabolic subalgebras of the orthogonal Lie algebras is given in the recent
work [DKT] of Duflo, Khalgui and Torrasso. Since we will use this result repeatedly, we state it below.

Let E be a complex vector space of dimension N endowed with a nondegenerate symmetric bilinear form. Denote
by son the Lie algebra of the corresponding orthogonal group. Let V = {{0} = Vo C Vi C --- C Vi = V} be a flag
of isotropic subspaces in F, with s > 1. Its stabilizer in son is a parabolic subalgebra of sonx and any parabolic
subalgebra of son is obtained in this way. We denote by pv the stabilizer of V in son.

Theorem 1.7. [DKT] Let V = {{0} = Vo C Vi € --- C Vi =V} be a flag of isotropic subspaces in E with s > 1.
Denote by V' the flag of isotropic subspaces in E which is equal to V\ {V} if dimV is odd and equal to N/2, and
equal to V otherwise.

The Lie algebra py is quasi-reductive if and only if the sequence V' does not contain two consecutive subspaces of

odd dimension.

+

!

Example 1.8. For g =Dg there are twelve standard parabolic subalgebras p = p, which are not quasi-reductive.

The corresponding subsets m’ C 7 of the simple roots are the following:

{a2}7 {044}, {041, 044}, {a27 044}, {a27 045}, {a27 aG}:
{0{1, a2, 0{4}, {0427 Qas, 064}7 {a27 Qy, 0{5}7 {0{2, Qy, a6}7
{az, a5, a6}, {az, au, as, a6}

Among these, the connected 7" are {as}, {au}, {az, as, as}.

Thus it remains to determine the quasi-reductive parabolic subalgebras of the exceptional Lie algebras. This is
our goal.

2. METHODS OF REDUCTION

In this section, we develop methods of reduction to deduce the quasi-reductivity of a parabolic subalgebra from
the quasi-reductivity of other subalgebras. We assume that w2 = 7w. Nevertheless we keep the notations of biparabolic
subalgebras where it is convenient.

2.1. The following theorem seems to be standard. As there is no proof to our knowledge, we give a short proof here:

Theorem 2.1 (Transitivity). Let 7'/, 7' be subsets of m with ©'" C «'. Suppose that K. C Kr. Then, qur 5 is
quasi-reductive if and only if qrr 1 1s.

Proof. Note that the assumption K,» C K, implies ind q, »» = ind qr » + (kr — kr/) by formula (1). Since ./
is an ideal of b contained in nt, Proposition 1.6(ii) enables to choose w’ in [/ such that both (ot pu= N

and ((pw/)|qﬂ,, ., are regular linear forms of q,~ , and g~ .+ respectively. Then one can show that Artt ot (P ) =

q"//vﬁ((pw/ﬁ»u7 ) D > Chey . By Proposition 1.2, if q, . (respectively g, /) is quasi-reductive, then we can
! KeXn\X o/

assume furthermore that (¢, - )la.. . (vespectively (¢u)lq,, ) has reductive type. Hence the equivalence of the

theorem follows. O

Suppose that g is simple and let 7 be the subset of 7 defined by X, = {n} UX5. If g is of exceptional type, 7\ 7
only consists of one simple root which we denote by a,. Note that a, is the simple root which is connected to the
lowest root in the extended Dynkin diagram.

As a consequence of Theorem 2.1, to describe all the quasi-reductive parabolic subalgebras of g, for g of exceptional
type, it suffices to consider the case of parabolic subalgebras p;r, with ar € 7’. This will be an important reduction
in the sequel.

Remark 2.2. If g has type Fu (resp. Eg¢, E7, Eg), then gz has type Cs (resp. As, D, E7). In particular, if g has type
F4 or Eg, then p;r, is quasi-reductive for any 7’ which does not contain «, because in types A and C all (bi)parabolic
subalgebras are quasi-reductive.



2.2. As a next step we now focus on a property that we call “additivity” to relate the quasi-reductivity of different
parabolic subalgebras (cf. Theorem 2.11). Throughout this paragraph, g is assumed to be simple.

Definition 2.3. Let 7', 7" be subsets of 7. We say that 7’ is not connected to 7'’ if o’ is orthogonal to o, for all
(o) in 7" x 7.

Notation 2.4. For a positive root «, we denote by K («) the only element L of X, such that o € I';,. Note
that unless a € &, K] (a) is the only element L of X, for which £; — « is a positive root. For K € K, we have
K,,Jrﬁ (EK) =K.

Remark 2.5. It can be checked that K (a) = K} (B) for a, B simple if and only if o and 3 are in the same orbit
of —wo where wq is the longest element of the Weyl group of g. This suggests that wo should play a role in these
questions, as may be guessed from a result of Kostant which says that &, is a basis of the space of fixed points of
—wp and from work of Joseph and collaborators ([J06, JOT]).

Definition 2.6. We shall say that two subsets ', 7" which are not connected to each other satisfy the condition ()
if:

(%) K@) # K@) V(a,a")en xx".

Note that if kr = rkg (that is if —wo acts trivially on 7), the condition (*) is always satisfied. Moreover, by using
Table 3, a case-by-case discussion shows:

Lemma 2.7. Assume that g is simple of exceptional type and let @' be a connected subset of ™ containing .. Then,
for any subset ©'’ of m which is not connected to ', the two subsets ', w" satisfy the condition (x), unless g = Eg,
7' ={a1,02,as, 04} and © = {as} or by symmetry 7' = {a2, a4, a5, a6} and 7" = {a1}.

Remark 2.8. If g = Eg, with 7’ = {1, a2, a3, a4} and 7”7 = {as}, then K (o) = KT (a6) = {{a1, a3, a4, a5, a6} },

+

so " and 7" do not satisfy the condition (*). As a matter of fact, the parabolic subalgebra P . Will appear as a

very special case (see Remark 2.12).

Let 7', 7" be two subsets of m which are not connected to each other and assume that 7', 7" satisfy condition
(). By Proposition 1.6(ii), we can let w’ be in [,/ such that ((pw)|p+ is regular where w = w’ 4+ u_,. Denote by

s’ be the image of p:(gaw) by the projection map from p:rr, to its derived Lie algebra g, & m: with respect to the
decomposition p}, = 3(I/) @ g ® m],. Let ' be the intersection of 3(I./) with N kere.
c€&n,cgAl,

Lemma 2.9. (i) indp;’r'/ =dims' + dim¥.
(i) [s",p 5 p] C 0L and ou(ls’, 95 0]) = {0}

Proof. (i) We have dim p7, (¢w) = indp},. Since the image of p/, (¢w) by the projection map from p¥, to g, & mF,

is &', it suffices to observe that the intersection of 3(L./) with p¥,(¢w) is ¥'. And this follows from the choice of w.
(ii) Let & be an element of p¥, (¢w); write = zo + 2’ + 27 with zo € 3(I/), 2’ € g and 27 € m},. +

lies in m},, the fact that € p}, (¢w) means [zo,u_,] + [z/,w'] + [z, u_] + [T, u,] € m},.

[z + x+7p:,uﬁ,/] - p:/. As [m'7p:,uﬁ//] C p:rr, since 7"/, 7’ are not connected, it suffices to prove that z+ € m:uﬂ,,A If

not, there are vy € A:/, K cX,,and o € A: such that

Since [z, w’]

First, we have to show

Y=gty = (@ tex), ie ety =7+ (o +ek)
Hence v,a’ € F?(ﬂa,) that is K;f (o) = K; (7). But this contradicts condition (). Thus [z’ + 2™, pf, ] Cp/.

It remains to show: npw([x'+x+,p;r,uﬁ//]) = {0} that is [’ +2T,w] € m:/uﬂ,,. If [2' + 2T, w] ¢ m;r,uﬂ,,, there must
bey € Af\ A/, K € Kr, and o € AT, such that y—ex = o”. In particular o’ € F?(+(’y) that is K (o) = Kf (7).
On the other hand, [z,w] € m:rr, implies that there exist o’ € A:, and L € X, such that

Y=gty = —(@ ter) e epr =7+ () +er)
As before, we deduce that o/ € Fi(*('v)’ ie. Kf(a') = Kf(y) = Kf(a") and this contradicts condition (*). d

Corollary 2.10. Let 7', 7" be two subsets of m which are not connected to each other and satisfy condition (x). If
Pl is quasi-reductive then pt, and pf,, are both quasi-reductive.
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Proof. Suppose that p:uﬂ,, is quasi-reductive and that any one of the other two parabolic subalgebras is not quasi-

reductive and show that this leads to a contradiction. By assumption we can choose ¢ € (p:rr,uW,,)* of reductive type

for p:rr,uﬂ,, such that ¢’ = ¢ 4 and " = 4 are p:rr,-regular and p:rr,,-regular respectively. Suppose for instance
P p

!

that p}, is not quasi-reductive. By Proposition 1.6(ii) we can suppose furthermore that ¢’ = (¢w)|,+ for some
!

w=w +u_, withw' €.
Since we assumed that p?, is not quasi-reductive, (¢ )| + contains a nonzero nilpotent element, z, which is so
L P >

contained in the derived Lie algebra of p:rr,. Then, Lemma 2.9(ii) gives [z, p:rr,UTr//] - p:rr, and {0} = gaw([x,p:,uﬂ,,]) =

o' ([, 95, ,.1]) = ¢(z,pf.n]). As a consequence, p}, ., (¢) contains the nonzero nilpotent element z. This
contradicts the choice of ¢. The same line of arguments works if we assume that p:,, is not quasi-reductive. |

Under certain conditions, the converse of Corollary 2.10 is also true as we show now. To begin with, let us
express the index of p:rr,UTr/, in terms of those of p:/ and p:/. As Exignt o = Err o + B, we get: dim B pr - =
dim B,/ . +dim B, — dim(E,/ » N Ey ). Hence, formula (1) implies
(2) indpt, ., = indpl +indpl, — (tkg + kr — 2dim(E » N Egr ) -

In case rkg = kr, the intersection E,/ . N E.n . is equal to E; and has dimension rkg. Hence, the index is additive
in that case, as (2) shows.

Theorem 2.11 (Additivity). Assume that g is simple and of exceptional type and that k. = rkg. Let n’, " be two

subsets of m which are not connected to each other. Then, p',  _,, is quasi-reductive if and only if both p:, and p:rr,,

/U
are quasi-reductive.

Remark 2.12. The conclusions of Theorem 2.11 is valid for classical simple Lie algebras, even without the hypothesis
kr = rkg. In types A or C this follows from the fact that all biparabolic subalgebras are quasi-reductive. If g is an
orthogonal Lie algebra, this is a consequence of Theorem 1.7. However, for the exceptional Lie simple algebra Eg, the
only one for which k, # rkg, the conclusions of Theorem 2.11 may fail. Indeed, let us consider the following subsets
of 7 for g of type Eg: ' = {a1, a2, as,s} and 7" = {ags}.. By Remark 1.5, p:, is quasi-reductive as a Lie algebra
of zero index. On the other hand, p:,, is quasi-reductive by the transitivity property, cf. Remark 2.2. But, it will be

shown in Theorem 4.6 that p:uﬂ,, is not quasi-reductive.
+

As a consequence of Lemma 2.7 and Corollary 2.10, even in type E¢ where rkg # kx, if ., is quasi-reductive,
then p:, and p:rr,, are both quasi-reductive.
As a by-product of our classification, we will see that the above situation is the only case which prevents the

additivity property to be true for all simple Lie algebras (see Remark 5.3).

Proof. We argue by induction on the rank of g. By the transitivity property (Theorem 2.1), Remark 2.12 and the

induction, we can assume that o, € ©’. Then, by Lemma 2.7 and Corollary 2.10, only remains to prove that if both
+

T/ Um!’*

Assume that both p:/ and p:,/ are quasi-reductive. By Proposition 1.2, we can find a linear regular form ¢ in

p:rr, and p:,/ are quasi-reductive, then so is p

(p:rr,uﬂ,,)* such that ¢’ = ol and ¢” = | 4 are regular and of reductive type for p:rr, and p:,, respectively. By

, where w = h+ w' + w”, with v’ € n},, w"” € n},, and

Proposition 1.6(ii), we can assume that ¢ = (¢4, )|,+
xlur!!

h € b. Hence, ¢’ = (<ph+w/+u7)|p+, and " = (<ph+wu+u7)|p+”.

Use the notations of Lemma 2.9. By Lemma 2.9(ii), s’ is contained in p7,

m'un’’

h be an element €. Since h € ¥, we have e(h) =0 for any ¢ € & which is not in A:rr,. On the other hand, for any

(p). Show now that ¥ is zero. Let

e€é&rN A:,, we have €(h) = 0 since h lies in the center of [,,. Hence, our assumption rkg = k, implies h = 0. As a
consequence of Lemma 2.9(i), we deduce that ind p}, = dims’. Similarly, if 5" denotes the image of p, (¢”) under the
projection from p:,/ t0 g @m:rr,,, Lemma 2.9(ii) tells us that 5" is contained in p:rr,UTr//(ga) and that ind p:rr,, = dims”.

To summarize, our discussion shows that s’ 4 s’ is contained in p:/uﬂ,,(ga) and that these two subspaces have the
same dimension by equation (2). So s’ +s” = p:,uﬂ,,(ap). But by assumption, s + s” only consists of semisimple

elements. From that we deduce that ¢ is of reductive type for p:,wr,”

8

whence the theorem. O



3. SOME CLASSES OF QUASI-REDUCTIVE BIPARABOLIC SUBALGEBRAS

In this section we show that, under certain conditions on the interlacement of the two cascades of w1 and 2, we
can deduce that g, r, is quasi-reductive (Theorem 3.6). We assume in this section that g is simple.

3.1. We start by introducing the necessary notations. Recall that for a positive root o, K (a) stands for the only
element L of X such that a € I'r,, cf. Notation 2.4. To any positive root a € A} we now associate the subset K ()
of the cascade X of all L such that the highest root €1, can be added to a:

Kri(e) = {LeXx|er+aeAt}.
Observe that the set X («) may be empty or contain more than one element.

Examples 3.1. (1) If K is in the cascade K. then X (¢x) is empty.
(2) In type E7, for o = o + as + as, the set K (o) has more than one element: €4 + «,e5 + a,e6 + « are all
positive roots.

We need also the following notation:
~ 1
Af ={aeAf, a= 5(5;{ —exr); KK €Ki}

Remark 3.2. One can check that for g a simply-laced simple Lie algebra, no positive root can be written in the way
as asked for in the definition of A}. Thus A} is empty if g is simple of type A, D or E.

We list the sets ﬁj{ in Table 4 for the simple Lie algebras of types By, C¢, G2 and F4.

B, £>2: {3(e2i —e2i-1),i=1, ..., [£]}

Co, £>3: {%(ei —eiqnt1),1<i<€-1,0<k<l—i—1}

Ga: {11 =41(e1—22)}

Fu: { 1110 =1(e1 —e2), 1111 = i(e1 —e3), 1121 = 3(e1 —e4),

3(
2
0001 = %(e2 —e3), 0011 = i(ex —e4), 0010 = J(e3 —e4)}

TABLE 4. ﬁj{ for the simple Lie algebras.

Part of the following lemma explains that for a root « in ﬁ:{ we can actually describe the two cascades involved
in the expression of a:

Lemma 3.3. (i) Whenever a € Af, then K () consists of a unique element Ky (cv).

(ii) For any element o = & (ex — ex) of AF we have K = K (o) and K' = K («).
Proof. One can deduce (i) from Table 4.

(ii) By (i), we have Ky (o) = {Kj; (a)}. Furthermore, < a,ej% >=1s0 ex — a is a root (cf. [TY05, Proposition
18.5.3(iii)]). Since ex — o = exs + «, these two are both positive roots, forcing Kf (o) = K and K; (o) = K'. O

Let m and 72 be two subsets of . We define
&Ej) ={M eXx, |em € &:]}

Thus, for M is in 9~<f£j) we have exr = 1 (e ) by Lemma 3.3(ii). Note that M is an element of the

—e
Kﬁj (em) Kz, (enr)

cascade of m; while K,jfj (em) belong to the cascade of ;.

Definition 3.4. Let 71, m2 be subsets of 7. We say that the cascades X, and X, are well-interlaced if dim(Ex, N
Ery) = #(Kmy N Kr,) + #K7 + #35Y.

Remark 3.5. The following subsets 71, w2 of 7 give rise to examples of well-interlaced cascades:
(1) m1 and 72 are such that Kx, C fKTrj or Kﬂj C Kx,;. In particular, this is the case if m1 or 72 is empty.
(2) 71 and 72 are such that the collection of all highest roots €, U &x, consists of linearly independent elements!.
These two cases have already been studied by Tauvel and Yu in [TY04b].

We mean that this collection of roots forms a set of linearly independent roots, neglecting any multiplicities that
might occur, cf. Example 3.7 below.



We are now ready to formulate the main result of this section. It will be proved in Subsection 3.2 below.

Theorem 3.6. Let qr, =, be a biparabolic subalgebra of g. Assume that the cascades K, and K, are well-interlaced.
Then qr, =, 1S quasi-reductive.
More precisely, the linear form @, q.p) s of reductive type for almost all choices of the coefficients (a,b) € Ckom Fkmy

Example 3.7. Suppose that g is simple of type Es. In the case where m = {a2, a3, s} (resp. m1 = {a2, a3, as, as},
m = {a1,2,as,a4}) and w2 = 7, the union &, U &, consists of linearly independent elements. Hence qr;,xy = p:{l
is quasi-reductive by Remark 3.5(2) and Theorem 3.6.

We now give an example which is not covered by Remark 3.5:

Example 3.8. Suppose that g is simple of type F4. The subsets m1 = {as, a4} and w2 = 7 are well-interlaced and
ey, = p:{l is quasi-reductive by Theorem 3.6. Note that Theorem 2.1 provides an alternative way to prove that
this parabolic subalgebra is quasi-reductive.

Remark 3.9. The converse of Theorem 3.6 is not true. For example, we can easily check that the assumption of
Theorem 3.6 does not hold for the parabolic subalgebra pzraz as) of Eg¢. However, it is quasi-reductive as we will show
in Subsection 5.1 (Theorem 5.6).

3.2. This subsection is devoted to the proof of Theorem 3.6. We start with two technical lemmata.
Let o € A}. Recall that by Lemma 3.3(ii), « is written as o = %(5K+(Q) - st(a)). As an abbreviation we set
_ 1
=5 (Ext (o) T K7 (@)
Thus a + @ = €k (o) and —a+a = €K ()
define the structure constants 71, 72, 73, 74 as follows:

From the relations between the four roots o, @, €K () and €t (a) WO

[Ta,T—e |l=nz_a ; [#ea,@—c _ |=Toz_7;

K (a) K (o)

[Za, Ta] = Take ; (7o, va] = Taze _

K () ()

Lemma 3.10. Assume that g is of type Be (¢ > 2), C¢ (¢ > 3) or Fy. Let « be in Af.
(i) The only roots of the form ka + la are {+a, +@, £(ata)}.
(ii) We have 11,72 € {—1,1}, 73,74 € {—2,2} and 1174 = T273.

Proof. (i) By assumption, the four linear combinations +(a + @) are all roots. The claim then follows since root
strings have at most length 2 in types B, C and F.

(ii) We explain how to obtain 71 = %1, the computations of 7; for ¢ = 2,3, 4 is completely analogous. Consider
the a-string through —Ex ()" It has the form {—5K¢(Q), —a, —5K7?(Q)}7 so in particular, p = 0 in the notation of
Subsection 1.2, whence 71 = %1.

Only remains to proof the equality 7174 = 7273. We compute the bracket [x_q, [Za, 2&]] in two different ways. We

have [z_q, zc | = —nizg (cf. [TY05, §18.2.2 and Corollary 18.5.5]). Hence [z_q, [Ta, Za]] = [T—a, 732 1=

K (a) K (o)
—T1T3Zw. On the other hand, as € gt and €y have the same length (g having type different from G2), we have:
[hav ZEE] = <a7 O‘v)xa = 0. Sor [x*OH [xav ZEEH = [l’a, [xav x*a]] + [xav [x*OH l'a” = 7[h047 ZEE] + T4[x047 xEKf(a)] =
—TaT2Zw again by using [TY05, §18.2.2 and Corollary 18.5.5]. We have so obtained 7173 = 7274. From that the claim
follows. =

From now, we let 71, m2 be two subsets of 7.

Lemma 3.11. Let M be an element of igj).
(1) EK,T]. () @NC EK;j (cny) @r€ MOt TOOtS Of T

(ii) For K € Kr;s em T ek is a root if and only if K = Kfr:j (em).

Proof. (i) Can be deduced from Tables 2, 3 and 4.

(ii) The fact that epr — €K (enn) and en +¢€ ) are roots of 7; has been observed in Lemma 3.10(i). Next, by

K (em
Lemma 3.3(i), we know that K;j (em) is the only element L of XKx; such that en + er is a root. Suppose now that
there is L € Kx;, L #* K;Lj (em), such that e — epr is a root. By Lemma 3.10(i), we have L # K;]. (em). So, the
fact that e, — e is a root forces 8 = ey — €1, to be a positive root, by definition of K:{j (em). Then the equality
10



B+ ¢er = en implies {B,e¥;) = 1. On the other hand, we have {ear,el) = (%(5 ),eL) = 0 since

Kf (en) ~ CKx(em)
L # Kfj (em). So {er,en;) = 0. As a consequence, 1 = {B,e};) = (B + €rn,e5;) = {em,exr) = 2. Hence we get a
contradiction. ]

Recall that for (a,b) € (C*)**1 %72 we have set

U(Q7Q): Z aKx—eK"F Z beEL

KeXry LeXr,

Lemma 3.12. Let (a,b) be in (C*)mitkm2 . For K € K, N Kn;y M € 929) and N € ﬂzgl), there ezist px € C*,
(Ants piar, var) € (C*)? and (Mg, s, Vi) € (C*)? such that the elements yi, zm and tn of Qny xy defined by
YK = Tey + PKL —cp

M = Zepy +AMT ey + pMTe | , T rmze
T2

(em Ko (en)

tN =x_ My NT_ Vo

N on T ANTey T+ N SN TN TRy (en)
are semisimple elements of g which stabilize Yy(q,b) N Gy, 7y -

Proof. Set u = u(a,b). For K € X, Ny, it is clear that yr is semisimple. Moreover, for pr = ax /bx, the element
yx stabilizes (©u)|qr, ,; We even have [yx,u] = 0.
Let now M be in 5252). If 5(52) # () then g cannot be of type Gz, since for Go, 5(52) = (cf. Table 4). So g is of

type Be, C¢ or F4 (Remark 5.3). Thus we are in the situation of Lemma 3.10. Let (Aar, par, var) be in (C*)3. By
definition of zar, we have:

[ev,u] = 3 ax([Tep, Toe] + AM[Tcp  Toci]) +um > bL[$5K+ ( ) Tep]
K€Ky LEXq, 72 (ear)
o Lezx:«l b [xEK;Q (e’ xEL] ~ Anrbarhey + HMaKiZ(EM)hEK:FQ(EM) + VMGK;Z(EM)hEK;Q(EM)

Note that [ze,,,T—cx] # 0 if and only if K = K, (em) by Lemma 3.3. By Lemma 3.11(i), the element v =

. . N 1
UMy, bL[:EEK+ (E JZeplFvm DY bL[xEK7 ey ] lies in Ugy -, We set 817 = 5 (e ), and
LeEXq, no (Enr) LEK mo (enr)

define the structure constants 71, 72, 73, 74 for a = epr and @ = gp7. Then, by Lemma 3.3 we have

K4 (ean) T €K, (ean)

[zm,u] = (TlaK,TZ(sM)+)‘M7-2aK;2(sM))m—W+U

,)\MthEM +F‘M‘1K¢2(5M)h +vm oa

— h
“KiE, (ean) Kag (ea) "k, (ea)

By Remark 3.2, the elements of £, form a basis of b7, since ng2) # (. So, by Lemma 3.3, we can write

hey = c+h5K¢2(5M) — c_heK;2 ) with ¢™,¢” € C*. Furthermore, €K, (enr) and €K, (ear) have the same length
(they are both long roots, cf. Table 4). So, ¢ = ¢~ (cf. [TY05, §18.3.3]). Hence
[zar,u] = (TlaKiZ(EM) + )\MTgaK;(EM))x,m + v
+ (7CAMbM + luMaK‘sz (EM))hEK:rrg (enmr) + (C)\M bar + VMaK’a(EM))hEK;g(EM)

As a result, if we take for Ay, Ay = —T1a and then for ua and pap, par = c)\MbM/aK+ (

5 (enr)
In a similar

K, (EM)/(TQG'K;Z (EM))

and vy = —cAmbar/a - () We obtain that [201,U] = U € Uny ny, P.e. that zas stabilizes (¢u)lgn ., -
w2

way, one shows that tx stabilizes (¢u)lqr, -
It remains to prove that zps is semisimple (and that ¢ is semisimple but this can be done in a similar way). By

Lemma 3.10(i), we have

eXp(tad xm)(%M + )‘Mx*EM) = Tepy T AMT_gy, + t[xmv xEM] +t)‘M[xW7x*EM]
= Tep FAMT—cy, — U3 xEK#2(5M> — t)\MT4£E5K;2 ean)
for any ¢ € C*. By Lemma 3.10(ii), we have 7174 = 7273. Therefore it is possible to choose ¢ so that
both equalities —tm3 = CAMbM/aK,g(gM) (= pm) and —t1y = _CbM/aK;z(eM) (= wvm) hold, because Ay =

7TlaKjr>2(E]M)/(T2GK;Z(5M))' With such a t, exp(tadzez;)(2e,, + AmT—c,,) = zym. Hence zy is semisimple since

Tepy + AMT—c,, Is. d
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We can now complete the proof of Theorem 3.6:

Let (a,b) € (C*)km1+*m2 guch that (Pu)lgny my 18 qmy,mp-regular where u = (@,b). The orthogonal of Er, x,
in b is contained in gr,,x(¢u). Then, by Lemma 3.12, it suffices to prove that the elements yx,zn,tn, for
K e Xey NKry, M € 3~<§2), and N € 9~<§), are linearly independent. Indeed, if so, the stabilizer of (¢u)
in gx,x, contains a (commutative) subalgebra which consists of semisimple elements of ¢, », and of dimension
(rkg — dim Er; xy) + #(Kry N Ky) + #57652) + #ﬁi{él). But the hypothesis of Theorem 3.6 tells us that # (X, N
Kry) + #3~<§2) + #5{;1) =dim(Ex, N Er,) = kx, + kn, — dim Er, », (cf. Definition 3.4). Hence, by formula (1), this
subalgebra is the stabilizer of (Yu)lqx, x,-

Now, by construction, M, N, K1, (en), K;,(enm), K, (en), K, (en) do not belong to Kx, N Kr,. Moreover,
M € Ky, \ Ky, and N € Ky, \ Kr,, whence the expected statement.

|‘17r1,7r2

4. NON QUASI-REDUCTIVE PARABOLIC SUBALGEBRAS

So far, our results (Theorem 3.6) only provide examples of quasi-reductive parabolic subalgebras. It is much
trickier to prove that a given Lie algebra is not quasi-reductive. Indeed, to prove that a given parabolic subalgebra
is quasi-reductive, one can make explicit computations, cf. Section 5. In this section we exhibit examples of non
quasi-reductive parabolic subalgebras.

4.1. We first discuss the case of the parabolic subalgebras p:/ where 7’ only consists of one simple root. For
a € 7, denote the parabolic subalgebra p?a} simply by pl. Thanks to Theorem 4.1 we have a criterion for the
quasi-reductivity of p:

Theorem 4.1. Let o be in w. Then the parabolic subalgebra p7 is quasi-reductive if and only if one of the following
two conditions holds: a € AF or {a} U &, consists of linearly independent elements.

If one of the above two conditions are satisfied, then the cascades of {a} and of 7 are well-interlaced; so, it is clear
that pJ is quasi-reductive by Theorem 3.6. Thus, Theorem 4.1 provides a converse to Theorem 3.6 for 71 = {a} and
Ty = T.

Proof. We only need to show that if p is quasi-reductive then « satisfies one of the two conditions of the theorem.
Suppose that p? is quasi-reductive. If o does not satisfy any of the above conditions, then o € E,, and « is not an
element of ﬁj{ U E&x. By Proposition 1.2, we can find w in p, such that (npw)|p$ is regular and of reductive type for p..
Moreover, by Proposition 1.6(ii), since o € €, we can suppose that w is of the form: w = ax—o + h+bxo +u~ with
a,b € C, h € h. Let us remind that the stabilizer of (¢,- )]s+ in b is the orthogonal of E, in § (Proposition 1.6(i)).
Consequently, as o € E, we have [b*(p,-),w] = {0}, whence b (p,-) C p2(¢w). In addition, by formula (1),
indpf =indb™ + 1. So, b (¢, ) is an hyperplane of pf (¢w) (cf. [TY04b, Lemma 4.5]). Now choose z in p such
that the decomposition

(3) p;r(cpw)Z(CxGB ﬂ ker e i

KeXn

holds. By the choice of w, pZ(¢w) is an abelian Lie algebra consisting of semisimple elements. In particular z must
be semisimple. Write the element x as follows: & = Ar—_o + A’ 4 pao + 2+ with A\,u € C, K’ € h and =T € m].

From the fact [z, w] € m¥, we deduce that b’ € [\ kerex. So we can assume that h’ = 0 according to (3). Hence
KeXr
A # 0, since z is semisimple.

Since « is not in &, Ext(a) — X is a (positive) root. In turn, suppose that ex — a is a root, for K € Kr.. As a is

a simple root, ex — « is necessarily a positive root, so K = K (a). Therefore, we have

el =2 Y frawo] b alraae 1+ ARz o+ (o~ BA)ha — pa(h)ze + ]
Lex (o) )
As [z,w] € m}, the bracket [x,EKﬂ ),xa] must be compensated. This bracket cannot be compensated by the term
[#T,w]. Indeed, if this were the case, then there would exist K € K and 8 € At \{a} such that Extia)y ¥ =EK—P.
But this would force K = K (a) and so a = 3, which is impossible. We deduce that there is L € X (a) such that
e —a=¢r +a. Thus, a = 1(6K+(a) —er) that is « € Aﬁ which contradicts our assumption on a. O

K,Jrr(a) 2
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B, £>3 Dy, £> 4 Go | Fu | Eg E; Es

a;i,2<i<fl—1,ieven | a;,2<1<¥f€—2 ieven | a1 | a1 | a2 | a1, a4, g | @1, a4, Qg, Qs

TABLE 5. The parabolic subalgebras p! which are not quasi-reductive.

According to Theorem 4.1, we list the simple roots «a corresponding to a non quasi-reductive parabolic subalgebra
pd (for simple g) in Table 5.

Remark 4.2. In the exceptional case, Table 5 shows that there is always at least one non quasi-reductive parabolic
subalgebra.

4.2. We now exhibit a few more parabolic subalgebras which are not quasi-reductive (Theorem 4.3 and Theorem 4.6),
all in type E.

Theorem 4.3. (i) If g is of type E7 and if ©’ is one of the subsets {a1, a3, a4}, {ou, as, a6}, or {on, a3, aa, as, a6},
then p:, is not quasi-reductive.

(ii) If g is of type Es and if ©' is one of the subsets {a1,as,as}, {4, as,a6}, {as, ar,as}, {1, a3, a4, a5, a6}
{ou, as, a6, a7, a8}, or {an, as, aq, as, as, a7, as}, then p:rr, 18 not quasi-reductive.

The indices of the parabolic subalgebras considered in Theorem 4.3 are given in Table 6. Note that for g of type
E7 or Es, and 7' = {au, a5, ac}, p:rr, is not quasi-reductive by Theorem 2.1 and Example 1.8.

In the proof of the theorem and in Lemma 4.4 below, we make use of the following notations: If 7’ is a connected
subset of m, 7 is defined to be the connected subset of 7’ satisfying X, = {7’} U X5 and u:/ is the element

> z.. Note that the element u:rr, +u_, is a semisimple element of g. Assume that g is of type Es. Set:
ece\AT,

a1l = a3 + a4, Q12 = a4 + a5, @13 = Q5 + @, Q14 = Qg + a7,
19 = a3 + g + a5, a0 = @4 + as + s, @21 = as + as + ar,
Q7 = a3 + g + a5 + Qg, Qi2g = Q4 + Q5 + Qg + 7, (35 = Q3 + Qg4 + Q5 + Qg + Q7

and denote by Iz the set of integers ¢ such that a; € Az/. Whenever «; is defined, z; and y; stand for z., and z_q,
respectively. Consider the following equations:

(E1)  pa+ 19 = 0 (Gl) pi1—ri2 = 0
(Fl) /,ng + V4 = O (Hl) 11,12 — V11 = O
(B2) —pe+rvar = 0 (G2) piz+rvia = 0
(F2) H21 — Vs = 0 (H2) M4 + v13 = 0
(E3) peo+wvs = 0 (G3) par—wvs = 0
(F3) pss+wv0 = 0 (H3) pogs—12r = 0

in the variables p; and v;. Set 7} = {1, a3, a4, a5, as}, 7 = {au4, as, as, ar,as} and 75 = {1, as, au, as, ag, oz, as}.
We now introduce subspaces ax, of gz / (for k =1,2,3) as follows:
- for k = 1,2, ai is the space of elements >,  Ache + > (piz; + viy;) with ()\E)Eegﬂﬁﬂ in C/&7"%k! and where

EGSWO%L_ iGIﬁ;C

((1i)ier,, , (v )je[;;) run through the set of the solutions of the homogeneous linear system defined by the equations

k
(Ek), (Fk), (Gk), (HE). y
- az is the space of elements > Ache+ 35 (mimi+tviyi) with (Ae)cce 7y in Clé="73l and where ((ti)ier,, , (vi)jer., )
e€erN7} ielﬁé 3 3
runs through the set of the solutions of the homogeneous linear system defined by all twelve equations.
Here is a technical lemma used in the proof of Theorem 4.3:

Lemma 4.4. Assume that g is of type Eg. Then ax, for k = 1,2,3, is the centralizer in gz of the semisimple element

u:, +u_,. It is a reductive Lie algebra and its rank is at most ind p:, —1.
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Proof. Let k € {1,2,3}. The fact that aj centralizes u_, can be checked without difficulty. As p and v play the same
role in the equations (Ek), (Fk), (Gk), (Hk), we deduce that ax centralizes u}, too; hence aj centralizes u}, +u_,.
Then ay is a reductive Lie algebra as an intersection between a reductive Lie algebra and the centralizer in g of a
semisimple element of g.

Next we show: rka; < ind p:/ — 1. We can readily verify from the equations defining aithat the center of ay is
zero. Therefore, the rank of ay is strictly smaller that the one of g7 - Indeed, if not, a; is a Levi subalgebra of 97
since 97, has type A. But any proper Levi subalgebra of g7, has a non trivial center. So, for k = 1,2, we get rka, < 2
since 1rkg;;C =ind p:},ﬂ = 3 whence the statement.

For k = 3, what foregoes yields rkas < 4 since the rank of gz, is 5. We have to show: rkas < ind p;ré = 4. The
space as has dimension 21. But there is no reductive Lie subalgebra of rank 4 and of dimension 21 since 21 — 4 is not
even. As a result, we get rkas < 4. O

Here is the proof of Theorem 4.3:

Proof of Theorem 4.3. By the transitivity property (Theorem 2.1), statement (ii) implies (i). So we only consider
the case of Eg. Let 7’ be one of the subsets as described in (ii). Assume that p:rr, is quasi-reductive. We will show
that this leads to a contradiction. Choose w € p_, such that the following two conditions are satisfied:

- ((pw)|p+/ is pf,-regular and of reductive type for p},;

- (cpw)|mﬂ+, belongs to the B-orbit of ((pufl)|

This choice of w is possible by Proposition 1.2 and Proposition 1.6(ii). By the second condition, we can assume that

m+, :

w = w' +u_, with w’ € [». Let « be an element of the stabilizer (cpw)|p+/ in p:/; we write ¢ = h + 2’ + z™, with

heh o' € n_, P n:rr, and 2T € m:rr,. The fact [z, w] € m: forces h € Wﬂ kere. From that, we deduce that h
see,,\Ajr,

belongs to the subspace of h generated by the elements h., for € € & N7’ C 7 (use Table 3). Now for « € '/, one

obtains that €RF (o) & A:Tr, and we claim that 2’ has zero coefficient in go. Otherwise, there must be 3 € A:Tr, and

K € X, such that o — €xt(a) =

possible (use Table 3). To summarize, we obtain the inclusion:

—(B + €k). One can check that for each of the subsets 7’ such an equality is not

(4) ph(pw) C gx ®H, ©ml,

where §)_, is the Heisenberg Lie algebra generated by the g_o, a € I'ys. Let t be the image of p:rr, (¢w) by the
projection map from gz & H_, & m}, to gz. As pl,(pw) is a torus of g by hypothesis, (4) shows that t is a torus of
g7 of dimension indp}, = dim p}, (¢ow).

For the first three subsets, with 7" of rank 3, p:, has index 2 but gz has rank 1. So we get a contradiction.

The remaining cases, with 7’ of rank 5 or 7, require more work. Let us describe the torus t. To do that, we
consider on one hand the roots a € A;rr, with EKF (a) o4 A: for which there exist 8 € A:rr, and K € X, such that
—Efrt(a) = —(B+¢ex). On the other hand, we consider the roots a € AZ, for which there is ¢ € £ \ A/ such
that « + ¢ is a root. All the possible roots give rise to equations describing t. Let k& € {1,2,3} and use the notations

a

introduced before Lemma 4.4. The equations what we obtained are precisely the equations (Ek), (Fk), (Gk), (Hk)
for £ = 1,2, and all twelve equations above for k = 3. Thereby t is contained in the reductive Lie algebra ai. But
the torus t has dimension ind p:, and this contradicts Lemma 4.4. O

Remark 4.5. Proceeding with the proof of Lemma 4.4, one readily obtains that ax, for & = 1,2,3, has precisely
dimension ind p:/ — 1 (note that dima; = dim a2 = 10 and dim ag = 21). Then, the proof of Theorem 4.3 shows that
the dimension of the torus part of generic stabilizers is ind p:/ — 1. This dimension is given, for each case, in the last
column of Table 6.

We end the section with an example of non quasi-reductive parabolic subalgebra in E¢. As noticed in Remark 2.12,
Theorem 4.6 shows that the additivity property fails in type Eg:

Theorem 4.6. If g if of type E¢ and if 7’ = {a1, a2, a3, a4, as}, then p:/ is not quasi-reductive.
By symmetry, if 7’ = {a1, a2, a4, as, g}, then p:rr, is not quasi-reductive, either.

Proof. Choose w € p_, such that the following two conditions are satisfied:
- ((pw)|p+ is p:,—regular;
14



- (pw)|a+ belongs to the B-orbit of (¢, )|n+-
This choice is possible by Proposition 1.2 and Proposition 1.6(ii). By the second condition, we can assume that
w=w +u~ where w' is in h ®n,. For z € p},, we write z = h+ 2’ + 2" with h € h, 2’ € n_, ®n}, and 2 € m},.
Set:
a7 = a1 + a3, ag = Q2 + a4, g = a3 + 4,
o12 = o1+ o3+ o, 03 = a2 +as + oy,
a7 =01+ o2+ a3+ ag

and let I,/ be the set of integers ¢ such that o; € A,/. Then, for i € I/, z;, y; and h; stand for za;, T_q,
6
and ha, respectively. Write 2’ = > iz + >, Mhi + Y viyi and w' = ho + > aiz; with hg € b and

i€l =1 i€l lel
(1> Ay Viy 1) gk € CHEn 176
From [z,w] € m:rr,, we first deduce that h belongs to kere for any ¢ € &, \A:rr, whence we get \1 = —X¢ and

A3 = —Xs. Next, we argue as at the end of Theorem 4.3(ii): we use the roots a € A:, such that Ex () Z A:rr, and
for which there exist 8 € A: and K € X, such that o — €xtia) = —(B + ek). This enables us to show that p; =0
for any ¢ € I+ \ {1,4,6} and that ve = u1, ue = v1. Now, we consider the terms in zo for @ € A,/ and in ha for
a € 7 of [z,w]. All these terms have to be zero; this gives us equations. Some of them involve the terms in x4 for

certain o € AF\ A: but we can eliminate these variables and obtain equations whose variables are only the (A;):’s,
(15);’s, and (vk)w’s, for i = 1,3,4, j = 1,4 and k € I,. Here are these equations:

—
~—

2a1 M1 — a1z + (a6 — as)(ho)pa + arvs + arave + airvis
—a2Aa + agva + 2v8 + a13v9 + a17v12
—aszA1 + 2a3A3 — ashyg — arv1 + agvg + aislg

2a4a — aa(ho)pa — agve — ags — a12v7

—2X4 + aa(ho)va — azvs — azvy — arviz

—2a6 1 + asAz + (01 — ac)(ho)vr + asvr + agviz + a1zviy
arA1 + arAz —arAa — azp1 + a12va + a7

asg\a + azfla — 2U9 — a13V3 — a1y

—agA1 + 2a9A3 + agAs + aspa — a12v1 — a3

a12A1 + @123 + @124 — agp1 + arpa — a17ve

—a13A1 — a17V1

a17 A1 + a17A3 — a3

aep1 — @1V1 — a7V7 — G12V12 — Q17V17

—aslvs — arvy — agly — ai12V12 — ai13Viz — airlir

—2u4 — agv2 + 2a4v4 + agvs + 2a9v9 + 2a12v12 + a13v13 + airvir =
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Using a computer algebra system, we show that for any ((a:)ier_,, (i(ho))ie~’) in an open dense subset of Cclarl %
CS, the above homogeneous linear system has rank 14, a1sa17 # 0, and any of its solution ((A;)i=1,3,4, (145)j=1,4, (l/]g)kejﬂ_,)
verifies A3 = 0. We can (and do) assume that ((ai)icr_,,(ci(ho))ics) belongs to this open subset; in particular
aizair # 0. From the equations (X13) and (X17), we obtain that any solution of this system verifies A+ =0
because A3 = 0. Since p; = 0 for any i € I+ \ {1,4,6} as observed previously, this shows that 2’ is a nilpotent element
of [./; so x is a nilpotent element of g. As a consequence, p:rr, is not quasi-reductive. |

5. EXPLICIT COMPUTATIONS AND CLASSIFICATION

We assume in this part that g is simple of exceptional type. Together with Theorem 1.7, the next two theorems
(Theorem 5.1 and Theorem 5.2) complete the classification of quasi-reductive parabolic subalgebras of simple Lie
algebras. The goal of this section is to prove these theorems.

Theorem 5.1. Assume that g is of type Gz, Fyu, E7 or Es. Let ' be a subset of 7.
(i) If g is of type Gz, then p}, is quasi-reductive if and only if 7' is different from {1 }.
(ii) If g is of type F4, then p:/ is quasi-reductive if and only if each connected component of ' is different from
{on}.
(iii) If g is of type Ez, then p:, is quasi-reductive if and only if each connected component of 7' is different from
the subsets {a1}, {aa}, {as}, {a1,as,a4}, {ou, a5, a6} and {a1, as, as, as, a6}
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(iv) If g is of type Es, then p:rr, is quasi-reductive if and only if each connected component of m' is different from
the subsets {on}, {ou}, {as}, {as}, {1, a3, a4}, {4, 05,06}, {as, a7, 08}, {0, a3, 4, a5, a6}, {4, a5, a6, a7, a8}
and {a1, as, aa, as, ag, a7, g }.

Theorem 5.2. Assume that g is of type E¢ and let 7' be a subset of m. Then p:, is quasi-reductive except in the
following three cases:

1) {a2} is a connected component of 7';

2) = {041, 2,x3,04, aa},’

3) ' = {a1, 2,4, 5,06}

Table 6 and Table 7 below summarize the results of Theorems 5.1 and 5.2 ; indeed, whenever rkg = k,, only the
cases where 7’ is connected need to be dealt with thanks to Theorem 2.11. In these tables, the last column gives
the dimension of the torus part of a generic stabilizer; we refer to Remark 4.5 for explanations in the types E7 and

Es. For the type Eg, let us roughly explain our computations : in most cases, the subspaces N kere of b
e€&rUA

yield elements of the generic stabilizers of the regular linear forms of the form (gaw,_mf)|p+ with w’ € (/. For the
7.‘./

cases {a1, a2, a6}, {a2, a3, a5} and {a1, az, as, as, as}, one can show that the generic stabilizers of these forms also

contain nonzero semisimple elements which do not belong to h. Since this is not a central point for our work, we

omit the details.

7

Type Fa: iy ind p:, dim. of torus part
{a1} 1 0
w’ ind p:, dim. of torus part
{oa} 1 0
{aa} 1 0

Type E7: | {6} 1 0
{a1,a3, a4} 2 1
{a4,as,as} 2 1
{a1, a3, a4, a5, as} 3 2
' ind p:, dim. of torus part
{oa} 1 0
{as} 1 0
{as} 1 0
{as} 1 0

Type Es: | {a1,a3,a4} 2 1
{as,as,a6} 2 1
{as, a7, a8} 2 1
{a1, a3, a4, a5, a6} 3 2
{aa,as, a6, a7, as} 3 2
{a1, as, a4, as, ag, az, ag} 4 3

TABLE 6. The non quasi-reductive parabolic subalgebras p;L, with connected 7/ in
F4, E7 and Eg and their indices.

Remark 5.3. Theorems 5.1 and 5.2 confirm what was announced in Remark 2.12: The only cases where the additivity
property fails is for g = E¢ and 7’ = {a1, a2, a3, a4, as} (where {a1, s, as,as} is not connected to {as}), resp. for
g =Es and 7’ = {a1, a2, a4, a5, a6}

By Theorem 4.1, Theorem 4.3 and Theorem 4.6, in order to prove Theorems 5.1 and 5.2, it is enough to show
that if 7’ is different from the subsets listed in Theorems 5.1 and 5.2 then p:, is quasi-reductive. This is our goal
until the end of the paper. Recall that o, is the simple root connected to the lowest root in the extended Dynkin
diagram. By Theorem 2.1, we can assume that 7’ contains . Moreover, whenever rkg = k., we can assume that
7’ is connected by Theorem 2.11.

The case where 7" has rank 1 was dealt with in Theorem 4.1. In the next subsection, we study the case where 7’
is connected and of rank 2. Then we discus the remaining cases in Subsection 5.2.
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n' Cm, = of type Eg ind p:, dim. of torus part
{az} 2
{Otl,oéz}, {04270¢6}

{as, a2}, {a2,as5}

{a1,az,as5}, {az, a3, a6}

{a1,a2,a6}

{az,a3,as}

{a1, a2, a3}, {az,as,as}
{a1,az,a3,as5}, {az, a3, a5, a6}
{a1,a2,a3,a6}, {a2,a1,as5,as}
{a1,a2,a3,as,as}
{a1,a2,a3,04, a6}, {01, 2,4, a5, a6}

=W =N WWE NN W
ONOOKFNNO

TABLE 7. The non quasi-reductive parabolic subalgebras p;r, in Eg and their indices.

5.1. Assume that g is of type F4, Eg, E7 or Es and let 7’ be a connected subset of 7 of rank 2 which contains a.
Write " = {a, , a4, } with @i, = ax. Lemma 5.4 shows that the roots of ©’ have common properties:

Lemma 5.4. The subset ' has type Ao and there are four integers jo,j1,j2,73 i {1,...,kx} and a quadruple
(co,c1,c2,c3) € C* such that the following properties are satisfied:

3
Qi = Ejy, Qg = %(Ejo —&j1 —E&jp — 513) and hf,r/ = Zk:o Ckhfjk'

Proof. We verify the properties for each type:

Type Fa: ' = {2, a1}, with a1 (= ar) = (61 —ea—e2—¢3) and az = e4. Moreover ha, 1oy = 5 (he; +he, —he, —hey).
Type Eo: 7' = {au4, as}, with aa(= ax) = 5(61784 go—e3) and au = 4. Moreover hayta, = %(h51+h54 hey —heg).
Type E7: 7' = {a1, as}, with a1 (= ax) = %(61786762783) and a3 = g6. Moreover ha4a; = %(hgl+h e —hey —Ney)-
Type Eg: 7’ = {az,as}, with as(= ax) = %(51 —e5 —e2 —e3) and ay = 5. Moreover ha,+ag = %(hEl + heg —h

ez T
hes). O
Recall that there exist a = (a1,...,ax,) € (C*)*" and b € C*, such that the linear form (Pua,p))l,+ is pli-
regular. Since e,/ = 1(gj, + &5, — €j, — €j,), the element e, — &, is a positive root. Denote by 82 and S5 the two
positive roots B2 = (gj, — €x) — €4, and B3 = (€j, — €xr) — €j5-- For A = (A2, A3, o, 11, ft2, i3, v) € (C*)7, we set
T(A) = T—c, + Xoxp, + A3, + 22:0 HrTe;, +VT—c) -
Lemma 5.5. Let (a,b) be in (C*)** x C* such that (Puian)l,+ is p., -regular.
For a suitable choice of A = (A2, A3, po, 11, 12, 3, v) € (C*)7, the element x()) lies in the stabilizer of (Pua,n)l,+

in pf,. Moreover, for such a A, we have p}, (pu@p) = [\ kerex @& Cz(A) and the element x(A) is semisimple. In
KeXr

particular o qa,p) 18 of reductive type for p:/

Proof. By definition, we have €, + €, = €, — B2, €j; + € = €5y — B3, B2 —€j; = B3 —€j, = i, and €,/ — €5, = Oy,
We define the structure constants 71, 72, 73, 74, 75, 76, 70 by the following equations:

[$327x £ ] ML — (e, r4ej5,) 5 [x—ewmx—em] =TT (e, i4ejy)
[:EBJ,:E €50 ] T3L— (e r4e5,) > [xff.,rlvxffjg] = TAT (e, 1 4¢e5,)
[x527x 5]3] = T5Ta;, ; [x537x—6j2] =T6La;, ;
[:E,EJ1 e, ] = T0Ta, -
Set u = u(a,b) and = = z(A). We have:
3
[z, u] = b[l’_g"/ ) l’g"/] + Z Mk Qg [xfjk ) x_fjk] + aj, [l’_g", ) x—gjz] + aj, [l’_g", ) m_gjg] + Asaj, [mBS7x_5j0]
k=0

+Az2a, [xﬁwx—fj ] + Vb[x—fjl ) x6.,r/] + Azaj, [x527 x_gjs] + Asaj, [xﬁmx—&m] +v
where v is in m7, - In the above notations, this gives:
[z,u] = b(—he,)+ Zukajkhsjk + (@72 + A2ajo T1)T (<, te )

+ (a]'37'4 —+ )\3a]~07’3)x,(5ﬂ,+5j3) —+ (l/bT() —+ )\2(1]'3’7'5 —+ )\3aj27—6)xai2 + v
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Set ur = (bek)/aj,, for k = 0,1,2,3. By Lemma 5.4 we get b(—he_,) + D 1_q1 23 Mkajhe;, = 0. Next, we set

»1,2, €k

A2 = —a;,m2/(az,m) and As = —a;;74/(aj,7s) so that the terms in x_(. 4., ) and T_(._,4e;.) in [z,u] are both
equal to zero. At last, we choose v so that the term in zq,, in [z, u] is 0. Then the element z stabilizes (<Pu)|p+ .

Let A be as above. We have thus obtained the inclusion (] kerex @ Cz C pl (pu). By equation (1),

KeXy
indp}, =rkg — kx 4+ 1 whence the equality (| kerex @ Cz = p}, (pu).
KeXx
We now show that & = z()) is semisimple. To start with, we prove that x is semisimple if and only if

(1275) /71 + (1a76) /73 # 0. As (2 and B3 are both different from «;,, i, and «i, + ai,, the component of = on
[+ in the decomposition p:rr, =l @m:rr, sz, + iz, +vr—c; . By what foregoes, 1 = (be1)/aj, # 0. Therefore,
x is semisimple if and only if v # 0. We have vbro + A2a;,75 + Azaj,76 = 0, that is, by the choices of A2 and As:
vb1o — (a5, 7245 75) [ (ajoT1) — (@55 7aa5,76)/(ajo7s) = 0 Hence v = 1/(b1o) X (aj,a55)/aj, X ((7275)/71 + (7a76) /73). As
a result, v # 0 if and only (7275)/71 + (7476) /73 # 0.

It remains to check that the condition (7275)/71 + (7476)/73 # 0 holds. We check the condition for the all cases
considered in the proof of Lemma 5.4. Note that the computations of the integers 7; can be done using GAP.

Type Fa: One checks that m = =1land m =7 =75 =76 = —1.

Type Eg: One checks that m = =m =7 =1and 75 =16 = —1.

Type E7: One checks that 1 = =13 =mTa =75 =76 = —1.

Type Eg: One checks that 1 = =m =17 =75 =76 = 1. 0

To summarize, this gives us:

Theorem 5.6. For simple g of exceptional type, and simple ©’ C w of rank 2 containing o, the parabolic subalgebra
p:rr, s quasi-reductive.

Using Theorem 5.6, we obtain new cases of quasi-reductive parabolic subalgebras in Eg:
Theorem 5.7. For simple g of type Eg and 7'’ = {a1, a2, a4} or {a1, a2, s, a6}, p:rr,, 18 quasi-reductive.

Note that Theorem 5.7 cannot be deduced from Theorem 2.11 even though 7' is not connected. Indeed Theo-
rem 2.11 fails in type E¢ as explained in Remark 2.12.

Proof. We approach the two cases in the same way.
Let 7" be the subset {a2,as}. Then 7’ is a connected component of 7”/. Hence, one can choose u” = u(a,b)

such that both ((pu//)lp+ and (¢,/)|,+ are regular (for pf, and pJ, respectively) where v’ = u(a,b.). Let

p
A = (A2, A3, o, 11, pi2, 3, v) be an element of C” such that @ = z()\) stabilizes (cpu/)|p+, (cf. Lemma 5.5). One
can readily check that x belongs to p:,/ (¢ur), too. On the other hand, in both cases, theﬂorthogonal of Eqr - inh
has dimension 1, is contained in p:rr,, (¢ur), and does not contain z. Hence, as z is semisimple (by Lemma 5.5), we
have found a torus a dimension 2 which is contained in p, (¢, ).

We distinguish now the two cases:
Case " = {a1,a2,4}: by (1), ind p:,/ = 2. Then, the above discussion shows that (cpuu)|p+” is of reductive type.

Case " = {a1,a2,a4,06}: by (1), indp:rr,,, = 3. So, it suffices to provide a nonzero semisimple element in
p; (¢ur) which does not lie in the preceding torus. We claim that the (semisimple) element y = (ax, /b{ag})Ta; +
(aks/biar})T—ar + (@Ks /biar})Tas + (@Ky /biag))T—as + 2T does the job, where 27 is an element of m},, and where
K; (for 1 <14 < 4) corresponds to the highest root ;. O

5.2. Using the results of Sections 2, 3 and 4, we are able to deal with a large number of parabolic subalgebras.
Unfortunately, the results obtained so far do not cover all parabolic subalgebras. There remains a small number of
cases. We consider these here. This will complete the proof of Theorems 5.1 and 5.2.

We first consider examples which do not need of the computer programme GAP.

It is well known that minimal parabolic subalgebras of a real simple (finite dimensional) Lie algebra are quasi-
reductive, see e.g. [Moo70]. Moreover, the complexified subalgebras give rise to quasi-reductive subalgebras of the
corresponding complex simple Lie algebra. In type F4 and type Eg¢ the so-obtained parabolic subalgebras of g
correspond to the subsets 7’ = {a1, a2, a3} and 7’ = {2, a3, a4, as} of m respectively. As a result, we have:

Proposition 5.8. (i) If g is of type F4 and if ' is {a1, o2, as} then p}, is quasi-reductive.
(ii) If g is of type E¢ and if ' is {a2, a3, a4, a5} then p:/ s quasi-reductive.
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We consider now the remaining cases. For all these cases, we are able to find (a,b) € C*kn+X%2) such that Pula,b)
is of reductive type for p;r,. We have used the computer programme GAP to check that the stabilizer of such a form
is a torus of g. The commands we have used are presented in Appendix A.

Proposition 5.9. (i) If g is of type B and if 7' is {a1, 2, 03, 04,5} or {2, as,u, a5, a6} then pt, is quasi-
reductive.

(ii) If g is of type By and if @' is one the subsets {a1,q2,a3,a4}, {a1, s, a3, 4, a5}, {1, a2, a3, a4, a5, a6},
{a1,as,a4,a5} or {a1, a3, a4, as, a6, a7} then p:, 18 quasi-reductive.

(iii) If g is of type Es and if ' is one the subsets {as, as, ar,as}, {as, au, as, as, ar,as}, {a2, a4, as, as, ar, as}
or {az,as, au, as, as, ar, ag} then p; 18 quasi-reductive.

This proposition completes the proof of Theorems 5.1 and 5.2; the other cases are dealt with either in Remark 1.5,
or in Example 3.7, or in Theorems 4.1, 5.6 and 5.7 (or deduced from Theorem 2.1 or Theorem 2.11 as explained
before).

Remark 5.10. As noticed in the introduction, Proposition 5.9 can be proved without the help of GAP; this is done in a
joint work of the second author and O. Yakimova, [MY] where the authors consider the mazimal reductive stabilizers
of quasi-reductive parabolic subalgebras of simple Lie algebras.

APPENDIX A

In this appendix, we explain how to use GAP to verify that for suitable « = u(a, ) and 7’ as described in Proposition
5.9 the linear form (npu)|p+ is of reductive type. We do this for the example g =E7 and 7’ = {a1, a2, a3, a4, as }, the

other cases work similarl§. First, we define the simple Lie algebra L (= g), a root system R and a Chevalley Basis

(h,x,y) of L, and then the parabolic subalgebra P (= p:,) generated by gP; its dimension is dP:
>L:=SimpleLieAlgebra("E",7,Rationals) ;;R:=RootSystem(L);;
>x:=PositiveRootVectors(R);;y:=NegativeRootVectors(R);;
>g:=CanonicalGenerators(R);;h:=g[3];;
>gP:=Concatenation(g[1],h,y{[1..5]1});;P:=Subalgebra(L,gP);;dP:=Dimension(P);

90

Next we choose numbers (al,a2,a3,a4,a5,a6,a7,bl,b2,b3,bd) € ((C*)(k”Jrkﬂ’) and we define the element u=ul+u2
(= uab) of po:

>al:=-3;;a2:=b;;a3:=7;;a4:=11;;ab:=13;;a6:=-17;;a7:=19;;

>b1:=23;;b2:=-29; ;b3:=31;;b4:=37;;

>u2:=alx*y[63]+a2x*y [49] +a3*y [28] +ad*y [7]+abx*y [2] +a6xy [3] +a7*y[5] ;;

>ul:=b1*x [37]+b2% [16] +b3* [4] +bd*x[1] ; ;u:=ul+u?2;;
We are now ready to compute the stabilizer of (¢y)[p. To start with, we calculate the vector space
V generated by the brackets uxbP[i], for ¢ = 1,...,dP, where bP is a basis of P. We obtain the
orthogonal K of V with respect to the Killing form thanks to the command KappaPerp. Then, the
stabilizer S of (py)|p is the intersection of K and P:

>bP:=List (Basis(P));; 1:=[];;for i in [1..dP] do 1[i]:=uxbP[i];od;;1;

>V:=Subspace(L,1);;K:=KappaPerp(L,V);;S:=Intersection(X,P);;dS:=Dimension(8);
4
The fact dim S=4 shows that (¢y)[p is regular, since indP = 4. It remains to check that S is a
reductive subalgebra of L.. To process, we check that the restriction of the Killing form to S x S is
nondegenerate. For that it suffices to compute the intersection between S and its orthogonal in L.
The result has to be a vector space of dimension 0:

>KS:=Intersection(KappaPerp(L,S),S);

<vector space of dimension O over Rationals>
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