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Abstract

To nonmathematicians, the three standard everyday exam-
ples of “chaos” are the weather, marriage, and the stock mar-
ket. Weather prediction led to the theory of chaos, which was
thought to be solely a nonlinear phenomenon. But in recent
years it was discovered that chaos could occur in infinite dimen-
sional linear situations. There are nice “toy” examples of this,
but these examples do not arise from a scientific context. Of
the three examples mentioned above, the first two are clearly
nonlinear. But in developing a theory of stock options in the
1970s, Black, Merton and Scholes derived an important linear
parabolic PDE that greatly advanced mathematical finance and
earned a Nobel Prize in Economics. As was typical in a Markov
process context, the governing semigroup was contractive on a
sup norm space, and hence nonchaotic as it could not have a
dense orbit. But the correct “initial value” (from their deriva-
tion) for their stock option equation was an unbounded func-
tion. So the “right” space or spaces for the problem had to be
found. We found candidates for these spaces and proved that
the corresponding BMS semigroup is chaotic on these spaces.
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< ∞. Our main theorem

is that the Black-Scholes semigroup is strongly continuous and
chaotic on Y s,τ for s > 1, τ ≥ 0, with sσ >

√
2, where σ is the

volatility. The proof uses the Godefroy-Shapiro hypercyclicity
criterion. The lecture will attempt to explain all this and more.
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