
Lectures on
Stochastic Methods for Image Analysis

Agnès Desolneux

CNRS, CMLA, ENS Cachan

4th Stochastic Geometry Days,
Poitiers, 24-26 August 2015

LAST PART : TEXTURE IMAGES AND RANDOM FIELDS

Special thanks to Bruno Galerne for giving me his slides !

Outline

Texture synthesis

Patch-based synthesis algorithms

Discrete Fourier transform of digital images

Random phase noise (RPN)

Asymptotic discrete spot noise (ADSN)

RPN and ADSN as texture synthesis algorithms

Numerical experiments

Texton for RPN and ADSN texture analysis and synthesis

What is a texture ?
A minimal definition of a texture image is an “image containing repeated
patterns” [Wei et al., 2009].
The family of patterns reflects a certain amount of randomness, depending
on the nature of the texture.
Two main subclasses :

I The micro-textures.

I The macro-textures, constitued of small but discernible objects.

Textures and scale of observation

Depending on the viewing distance, the same objects can be perceived
either as

I a micro-texture,
I a macro-texture,
I a collection of individual objects.

Micro-texture Macro-texture Some pebbles

Texture synthesis

Texture Synthesis : Given an input texture image, produce an output texture
image being both visually similar to and pixel-wise different from the input
texture.

The output image should ideally be perceived as another part of the same
large piece of homogeneous material the input texture is taken from.

Texture synthesis algorithms

Two main kinds of algorithm :

1. Neighborhood-based synthesis algorithms (or “copy-paste” algorithms) :
Algorithm :

I Compute sequentially an output texture such that each patch of the output
corresponds to a patch of the input texture.

I Many variations have been proposed : scanning orders, grow pixel by pixel
or patch by patch, multiscale synthesis, optimization procedure,. . .

Properties :
+ Synthesize well macro-textures
- Can have some speed and stability issue, hard to set parameter...

2. Texture synthesis using statistical constraints :
Algorithm :
2.1 Extract some meaningful “statistics” from the input image (e.g. distribution of

colors, of Fourier coefficients, of wavelet coefficients,. . .).
2.2 Compute a “random” output image having the same statistics : start from a

white noise and alternatively impose the “statistics” of the input.
Properties :

+ Perceptually stable
- Generally not good enough for macro-textures
+ Allows mathematical computations !

Texture synthesis algorithms

Two main kinds of algorithm :

1. Neighborhood-based synthesis algorithms (or “copy-paste” algorithms) :
Algorithm :

I Compute sequentially an output texture such that each patch of the output
corresponds to a patch of the input texture.

I Many variations have been proposed : scanning orders, grow pixel by pixel
or patch by patch, multiscale synthesis, optimization procedure,. . .

Properties :
+ Synthesize well macro-textures
- Can have some speed and stability issue, hard to set parameter...

2. Texture synthesis using statistical constraints :
Algorithm :
2.1 Extract some meaningful “statistics” from the input image (e.g. distribution of

colors, of Fourier coefficients, of wavelet coefficients,. . .).
2.2 Compute a “random” output image having the same statistics : start from a

white noise and alternatively impose the “statistics” of the input.
Properties :

+ Perceptually stable
- Generally not good enough for macro-textures
+ Allows mathematical computations !

Texture synthesis algorithms

Two main kinds of algorithm :

1. Neighborhood-based synthesis algorithms (or “copy-paste” algorithms) :
Algorithm :

I Compute sequentially an output texture such that each patch of the output
corresponds to a patch of the input texture.

I Many variations have been proposed : scanning orders, grow pixel by pixel
or patch by patch, multiscale synthesis, optimization procedure,. . .

Properties :
+ Synthesize well macro-textures
- Can have some speed and stability issue, hard to set parameter...

2. Texture synthesis using statistical constraints :
Algorithm :
2.1 Extract some meaningful “statistics” from the input image (e.g. distribution of

colors, of Fourier coefficients, of wavelet coefficients,. . .).
2.2 Compute a “random” output image having the same statistics : start from a

white noise and alternatively impose the “statistics” of the input.
Properties :

+ Perceptually stable
- Generally not good enough for macro-textures
+ Allows mathematical computations !

Efros-Leung algorithm

Important main paper : “Texture synthesis by non-parametric sampling” by
Efros and Leung, 1999.

I First paper with patch-based algorithm
I Concept of redundancy of patches in images
I Strong influence for many applications

I Inpainting
I Image editing
I Denoising

Back to Shannon’s work on English text

Shannon’s approach for text synthesis : a Markov chain model.

1. Draw an initial n-gram from the marginal distribution on n-grams P(n)

(learnt from a large database of texts).

2. Add characters sequentially using the conditional distribution on n-grams
given the first n− 1 characters :

P(n)(an | a1 . . . an−1) =
P(n)(a1 . . . an−1an)∑

b P(n)(a1 . . . an−1b)

Samples from the n-gram distributions

I Random characters (Sample from P(0)) :
XFOML RXKHRJFFJUJ ZLPWCFWKCYJ FFJEYVKCQSGXYD
QPAAMKBZAACIBZLHJQD

I Sample from P(1)

OCRO HLI RGWR NMIELWIS EU LL NBBESEBYA TH EEI
ALHENHTTPA OO BTTV

I Sample from P(2)

ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY ACHIN D
ILONASIVE TUCOOWE FUSO
TIZIN ANDY TOBE SEACE CTISBE

I Sample from P(3)

IN NO IST LAY WHEY CRATICT FROURE BERS GROCID
PONDENOME OF DEMONSTURES OF THE REPTAGIN IS
REGOACTIONA OF CRE

I Sample from P(4)

THE GENERATED JOB PROVIDUAL BETTER TRAND THE
DISPLAYED CODE ABOVERY UPONDULTS WELL THE CODERST IN
THESTICAL IT TO HOCK BOTHE

Shannon’s approach for Texture Synthesis ?

Differences between texture images and texts for applying Shannon’s
approach :

I No natural order in a 2D pixel grid.
I Pixel similarity : two close pixel values can be exchanged without

degrading the texture while it is not possible for udys (=text +/- 1).
I Computation of conditional probabilities becomes uneasy.

But Markov modeling is still OK !

General idea of Efros-Leung algorithm

Assuming Markov property, one wants to estimate Prob(I(p)|I(N (p))).

Just search in the input original image all similar neighborhoods - that’s an
estimate of the probability distribution of I(p) knowing its neighborhood.

To sample from this probability distribution, just pick one match at random.

Efros-Leung algorithm

Let I0 be an original input image.
Input : size of the ouput image I, size of the neighborhood, precision
parameter ε (= 0.1 in general).

1. Initialize with a random patch from I0

2. While the output I is not filled
2.1 Pick an unknown pixel p in I with maximal known neighbor pixels, denoted
N (p).

2.2 Compute the set of q in I0 such that

d(I0(N (q)), I(N (p))) ≤ (1 + ε) min
x

d(I0(N (x)), I(N (p)))

2.3 Randomly pick one of this q and set I(p) = I0(q).

Non-parametric Sampling

!"#"$%&'()"%'

*++,-.#/'0%$123'4$24"$567'82-4,5"'9:4;!:4<<'
(#+5"%)7'="'+"%$8>'5>"'.#4,5'.-%/"'?2$'%&&'+.-.&%$'
#"./>@2$>22)+' ' 5>"'4)?'?2$'4'
A2'+%-4&"'?$2-'5>.+'4)?7'B,+5'4.81'2#"'-%58>'%5'
$%#)2-"
!

'
'

CD'

4'

#2#E4%$%-"5$.8'
+%-4&.#/'

(#4,5'.-%/"''
F6#5>"+.G.#/'%'4.H"&'

Influence of the size of the neighborhood

!"#$%&'(%'')*+#,"*

-.*

input

Examples of results

!"#$%&'(')*&'+,$')

-.)

Homage to Shannon

!"#$%&'("')*$++"+'

,-'

Failure examples : « Garbage » or « Verbatim copy »

!"#$%&'()"*'*(

+,(
!"#$%&'(')"*)'+((,+"*)-%.(/#01%&'(

Influence of the size of the neighborhood

!"#$%&'()*%'+,-#+--.(/%0*(

12(

Heeger-Bergen algorithm [Heeger and Bergen, 1995]
Statistical constraints :

I Histogram of colors.
I Histogram of wavelet coefficients at each scale.

Algorithm : Alternating projections into the constraints starting from a white
noise image.

Texture synthesis by phase randomization

What about the Random Phase Noise (RPN) and
Asymptotic Discrete Spot Noise (ADSN) presented today ?

[Galerne, Gousseau and Morel, 2011 (a)]
[Galerne, Gousseau and Morel, 2011 (b)]

I It belongs to the first category : texture synthesis by statistical
constraints.

I Here the “statistics” are the moduli of the Fourier coefficients.

Texture synthesis by phase randomization

I Successful examples with micro-textures

Texture synthesis by phase randomization

I Failure examples with macro-textures

Framework

I We work with discrete digital images u ∈ RM×N indexed on the set
Ω = {0, . . . ,M − 1} × {0, . . . ,N − 1}.

I Each image is extended by periodicity :

u(k, l) = u(k mod M, l mod N) for all (k, l) ∈ Z2.

I Consequence : Translation of an image :

Discrete Fourier transform of digital images

I Image domain : Ω = {0, . . . ,M − 1} × {0, . . . ,N − 1}
I Fourier domain Ω̂ : the frequency 0 is placed at the center :

Ω̂ =

{
−M

2
, . . . ,

M
2
− 1
}
×
{
−N

2
, . . . ,

N
2
− 1
}
.

Definition :
I The discrete Fourier transform (DFT) of u is the complex-valued image

û defined by :

û(s, t) =
1

MN

M−1∑
k=0

N−1∑
l=0

u(k, l)e−
2iksπ

M e−
2iltπ

N , (s, t) ∈ Ω̂.

I |û| : Fourier modulus of u.
I arg (û) : Fourier phase of u.

Symmetry property :
I Since u is real-valued, û(−s,−t) = û(s, t).
⇒ the modulus |û| is even and the phase arg (û) is odd.

Discrete Fourier transform of digital images

I Image domain : Ω = {0, . . . ,M − 1} × {0, . . . ,N − 1}
I Fourier domain Ω̂ : the frequency 0 is placed at the center :

Ω̂ =

{
−M

2
, . . . ,

M
2
− 1
}
×
{
−N

2
, . . . ,

N
2
− 1
}
.

Definition :
I The discrete Fourier transform (DFT) of u is the complex-valued image

û defined by :

û(s, t) =
1

MN

M−1∑
k=0

N−1∑
l=0

u(k, l)e−
2iksπ

M e−
2iltπ

N , (s, t) ∈ Ω̂.

I |û| : Fourier modulus of u.
I arg (û) : Fourier phase of u.

Symmetry property :
I Since u is real-valued, û(−s,−t) = û(s, t).
⇒ the modulus |û| is even and the phase arg (û) is odd.

Discrete Fourier transform of digital images

I Image domain : Ω = {0, . . . ,M − 1} × {0, . . . ,N − 1}
I Fourier domain Ω̂ : the frequency 0 is placed at the center :

Ω̂ =

{
−M

2
, . . . ,

M
2
− 1
}
×
{
−N

2
, . . . ,

N
2
− 1
}
.

Definition :
I The discrete Fourier transform (DFT) of u is the complex-valued image

û defined by :

û(s, t) =
1

MN

M−1∑
k=0

N−1∑
l=0

u(k, l)e−
2iksπ

M e−
2iltπ

N , (s, t) ∈ Ω̂.

I |û| : Fourier modulus of u.
I arg (û) : Fourier phase of u.

Symmetry property :
I Since u is real-valued, û(−s,−t) = û(s, t).
⇒ the modulus |û| is even and the phase arg (û) is odd.

Discrete Fourier transform of digital images

Symmetry property :
I |û| : Fourier modulus of u is even.
I arg (û) : Fourier phase of u is odd.

Visualization of the DFT :

Image u Modulus |û| Phase arg (û)

Computation :
I The Fast Fourier Transform algorithm computes û in O(MN log(MN))

operations.
I Efficient FFT implementation : FFTW library, a C/C++ library (used in

Matlab).

FFTW = Fastest Fourier Transform in the West

Discrete Fourier transform of digital images

Symmetry property :
I |û| : Fourier modulus of u is even.
I arg (û) : Fourier phase of u is odd.

Visualization of the DFT :

Image u Modulus |û| Phase arg (û)

Computation :
I The Fast Fourier Transform algorithm computes û in O(MN log(MN))

operations.
I Efficient FFT implementation : FFTW library, a C/C++ library (used in

Matlab).

FFTW = Fastest Fourier Transform in the West

Modulus and phase of a digital image

Exchanging the modulus and the phase of two images :
[Oppenheim and Lim, 1981]

Image 1 Image 2

Modulus of 1
& phase of 2

Modulus of 2
& phase of 1

I Geometric contours are mostly contained in the phase.

Modulus and phase of a digital image

Exchanging the modulus and the phase of two images :
[Oppenheim and Lim, 1981]

Image 1 Image 2

Modulus of 1
& phase of 2

Modulus of 2
& phase of 1

I Geometric contours are mostly contained in the phase.

Modulus and phase of a digital image

Exchanging the modulus and the phase of two images :
[Oppenheim and Lim, 1981]

Image 1 Image 2

Modulus of 1
& phase of 2

Modulus of 2
& phase of 1

I Textures are mostly contained in the modulus.

Modulus and phase of a digital image

Exchanging the modulus and the phase of two images :
[Oppenheim and Lim, 1981]

Image 1 Image 2

Modulus of 1
& phase of 2

Modulus of 2
& phase of 1

I Geometric contours are mostly contained in the phase.
I Textures are mostly contained in the modulus.

Random phase textures

I We call random phase texture any image that is perceptually invariant to
phase randomization.

I Phase randomization = replace the Fourier phase by a random phase.
I Definition : A random field θ : Ω̂→ R is a random phase if

1. Symmetry : θ is odd :

∀(s, t) ∈ Ω̂, θ(−s,−t) = −θ(s, t).

2. Distribution : Each component θ(s, t) is
I uniform over the interval]− π, π] if (s, t) /∈

{
(0, 0) ,

(M
2 , 0
)
,
(

0, N
2

)
,
(M

2 ,
N
2

)}
,

I uniform over the set {0, π} otherwise.

3. Independence : For each subset S ⊂ Ω̂ that does not contain distinct
symmetric points, the r.v. {θ(s, t)|(s, t) ∈ S} are independent.

I Property : The Fourier phase of a Gaussian white noise X is a random
phase.

I (Lazy) simulation : In Matlab, theta = angle(fft2(randn(M,N))).
I Random phase textures constitute a “limited” subclass of the set of tex-

tures.

Random Phase Noise (RPN)

I Texture synthesis algorithm : random phase noise (RPN) : [van Wijk, 1991]

1. Compute the DFT ĥ of the input h.

2. Compute a random phase θ using a pseudo-random number generator.

3. Set Ẑ =
∣∣∣ĥ∣∣∣ eiθ (or Ẑ = ĥeiθ).

4. Return Z the inverse DFT of Ẑ.

Original image h Modulus
∣∣∣ĥ∣∣∣ RPN associated with h

Discrete spot noise [van Wijk, 1991]

I Let h be a discrete image called spot.
I Let (Xk) be a sequence of random translation vectors which are i.d.d.

and uniformly distributed over Ω.
I The discrete spot noise of order n associated with h is the random

image

fn(x) =
n∑

k=1

h(x− Xk).

(translations with periodic boundary conditions)

Spot h n = 10 n = 102 n = 103 n = 104 n = 105

Limit of the DSN model ?

?

Spot h n = 104 n = 105 n = +∞

I For texture synthesis we are more particularly interested in the limit of the
DSN : the asymptotic discrete spot noise (ADSN).

I The DSN of order n, fn(x) =
∑

k h(x−Xk), is the sum of the n i.i.d. random
images h(· − Xk).

I Central limit theorem for random vectors :

The sequence of random images
(

fn − nE(h(· − X1))√
n

)
n∈N∗

converges in

distribution towards the Gaussian random vector Y = (Y(x))x∈Ω with
zero mean and covariance Cov(h(· − X1)).

Asymptotic discrete spot noise (ADSN)

Expectation of the random translations :

E(h(x− X1)) =
∑
y∈Ω

h(x− y)P(X1 = y)

=
∑
y∈Ω

h(x− y)
1

MN

=
1

MN

∑
z∈Ω

h(z)

= mean of h.

I E(h(x− X1)) = m, where m is the mean of h.

Asymptotic discrete spot noise (ADSN)

Covariance of the random translations : Let x, y ∈ Ω,

Cov(h(x− X1), h(y− X1)) = E((h(x− X1)− m)(h(y− X1)− m))

=
∑
z∈Ω

(h(x− z)− m)(h(y− z)− m)P(X1 = z)

=
1

MN

∑
z∈Ω

(h(x− z)− m)(h(y− z)− m)

= Ch(x, y).

I Cov(h(x−X1), h(y−X1)) = Ch(x, y) where Ch is the autocorrelation of h :

Ch(x, y) =
1

MN

∑
t∈Ω

(h(x− t)− m) (h(y− t)− m) , (x, y) ∈ Ω.

Asymptotic discrete spot noise (ADSN)

I For texture synthesis we are more particularly interested in the limit of the
DSN : the asymptotic discrete spot noise (ADSN).

Expectation and covariance of the random translations :

I E(h(x− X1)) = m, where m is the arithmetic mean of h.
I Cov(h(x− X1), h(y− X1)) = Ch(x, y) where Ch is the autocorrelation of h :

Ch(x, y) =
1

MN

∑
t∈Ω

(h(x− t)− m) (h(y− t)− m) = Ch(0, y− x).

Definition of ADSN :

I The ADSN associated with h is the Gaussian vector N (0,Ch).

Simulation of the ADSN
Definition of ADSN : the ADSN associated with h is the Gaussian vector
N (0,Ch).

Gaussian white noise :
pixels are independent
and have Gaussian dis-
tribution

Gaussian vector :
pixels have Gaussian
distribution and are
correlated

Convolution product : (f ∗ g) (x) =
∑
y∈Ω

f (x− y)g(y), x ∈ Ω.

Simulation of the ADSN :
I Let h ∈ RM×N be a an image, m be the mean of h and X be a Gaussian

white noise image.
I The random image

1√
MN

(h− m) ∗ X is the ADSN associated with h.

Spot h DSN, n = 105 ADSN

ADSN Simulation
Proof of Y =

1√
MN

(h− m) ∗ X ' N (0,Ch).

I Y is obtained from X by applying a linear mapping. Since X is a
Gaussian vector, Y is also a Gaussian vector.

I One just needs to show that E(Y(x)) = 0 and Cov(Y(x), Y(y)) = Ch(x, y).

I By linearity, E(Y(x)) =
1√
MN

(h− m) ∗ E(X)(x) = 0.

I Let x, y ∈ Ω,

Cov(Y(x), Y(y)) = E(Y(x)Y(y))

=
1

MN
E

∑
s∈Ω

(h(s− x)− m)X(s)
∑

t∈ΩM,N

(h(t − y)− m)X(t)


=

1
MN

∑
s,t∈Ω

(h(s− x)− m)(h(t − y)− m) E(X(s)X(t))︸ ︷︷ ︸
= 1 if s = t and 0 otherwise

=
1

MN

∑
s∈Ω

(h(s− x)− m)(h(t − y)− m)

= Ch(x, y)

ADSN Simulation
Proof of Y =

1√
MN

(h− m) ∗ X ' N (0,Ch).

I Y is obtained from X by applying a linear mapping. Since X is a
Gaussian vector, Y is also a Gaussian vector.

I One just needs to show that E(Y(x)) = 0 and Cov(Y(x), Y(y)) = Ch(x, y).

I By linearity, E(Y(x)) =
1√
MN

(h− m) ∗ E(X)(x) = 0.

I Let x, y ∈ Ω,

Cov(Y(x), Y(y)) = E(Y(x)Y(y))

=
1

MN
E

∑
s∈Ω

(h(s− x)− m)X(s)
∑

t∈ΩM,N

(h(t − y)− m)X(t)


=

1
MN

∑
s,t∈Ω

(h(s− x)− m)(h(t − y)− m) E(X(s)X(t))︸ ︷︷ ︸
= 1 if s = t and 0 otherwise

=
1

MN

∑
s∈Ω

(h(s− x)− m)(h(t − y)− m)

= Ch(x, y)

ADSN Simulation
Proof of Y =

1√
MN

(h− m) ∗ X ' N (0,Ch).

I Y is obtained from X by applying a linear mapping. Since X is a
Gaussian vector, Y is also a Gaussian vector.

I One just needs to show that E(Y(x)) = 0 and Cov(Y(x), Y(y)) = Ch(x, y).

I By linearity, E(Y(x)) =
1√
MN

(h− m) ∗ E(X)(x) = 0.

I Let x, y ∈ Ω,

Cov(Y(x), Y(y)) = E(Y(x)Y(y))

=
1

MN
E

∑
s∈Ω

(h(s− x)− m)X(s)
∑

t∈ΩM,N

(h(t − y)− m)X(t)


=

1
MN

∑
s,t∈Ω

(h(s− x)− m)(h(t − y)− m) E(X(s)X(t))︸ ︷︷ ︸
= 1 if s = t and 0 otherwise

=
1

MN

∑
s∈Ω

(h(s− x)− m)(h(t − y)− m)

= Ch(x, y)

ADSN Simulation
Proof of Y =

1√
MN

(h− m) ∗ X ' N (0,Ch).

I Y is obtained from X by applying a linear mapping. Since X is a
Gaussian vector, Y is also a Gaussian vector.

I One just needs to show that E(Y(x)) = 0 and Cov(Y(x), Y(y)) = Ch(x, y).

I By linearity, E(Y(x)) =
1√
MN

(h− m) ∗ E(X)(x) = 0.

I Let x, y ∈ Ω,

Cov(Y(x), Y(y)) = E(Y(x)Y(y))

=
1

MN
E

∑
s∈Ω

(h(s− x)− m)X(s)
∑

t∈ΩM,N

(h(t − y)− m)X(t)


=

1
MN

∑
s,t∈Ω

(h(s− x)− m)(h(t − y)− m) E(X(s)X(t))︸ ︷︷ ︸
= 1 if s = t and 0 otherwise

=
1

MN

∑
s∈Ω

(h(s− x)− m)(h(t − y)− m)

= Ch(x, y)

Differences between RPN and ADSN
Proposition :

I RPN and ADSN both have a random phase.
I The Fourier modulus of RPN is the one of h.
I The Fourier modulus of ADSN is the pointwise multiplication between

∣∣∣ĥ∣∣∣
and a Rayleigh noise.

Spot h RPN Modulus ADSN Modulus

I RPN and ADSN are two different processes.

Spot h RPN An ADSN
realization

Another ADSN
realization

RPN and ADSN associated to texture images

I We add the original mean to RPN and ADSN realizations.
I Some textures are relatively well reproduced by RPN and ADSN.

Original image RPN ADSN

I ... But several developments are necessary to derive texture synthesis
algorithms from sample.

Extension to color images
I We use the RGB color representation for color images.
I Color ADSN : The definition of Discrete Spot Noise extends to color

images h = (hr, hg, hb).
I The color ADSN Y is the limit Gaussian process obtained in letting the

number of spots tend to +∞. It is simulated by :

Y =
1√
MN

(hr − mr1) ∗ X
(hg − mg1) ∗ X
(hb − mb1) ∗ X

 , X a Gaussian white noise.

I One convolves each color channel with the same Gaussian white noise
X.

Spot h n = 10 n = 102 n = 103 n = 104 color
ADSN

I Phase of color ADSN : The same random phase is added to the Fourier
transform of each color channel.

Extension to color images

I Color RPN : By analogy, the RPN associated with a color image h =
(hr, hg, hb) is the color image obtained by adding the same random phase
to the Fourier transform of each color channel.

Original image h Color RPN
“Wrong RPN” : each channel
has the same random phase

ĥ =

|ĥR|eiϕR

|ĥG|eiϕG

|ĥB|eiϕB

 Ẑ =

|ĥR|ei(ϕR+θ)

|ĥG|ei(ϕG+θ)

|ĥB|ei(ϕB+θ)

 ẐW =

|ĥR|eiθ

|ĥG|eiθ

|ĥB|eiθ



Extension to color images
I Another example with a real-world texture.

Original image h Color RPN “Wrong RPN”

I Preserving the original phase displacement between the color channels
is essential for color consistency.

I ...however for most monochromatic textures, there is no huge difference.

Original image h Color RPN “Wrong RPN”

Avoiding artifacts due to non periodicity

I Both ADSN and RPN algorithms are based on the fast Fourier transform
(FFT).
=⇒ implicit hypothesis of periodicity

I Using non periodic samples yields important artifacts.

Spot h

ADSN

Avoiding artifacts due to non periodicity

I Our solution : Force the periodicity of the input sample.
I The original image h is replaced by its periodic component p = per(h),

see L. Moisan’s course [Moisan, 2011].
I Definition of the periodic component p of h : p unique solution of{

∆p = ∆ih
mean(p) = mean(h)

where, noting Nx the neighborhood of x ∈ Ω for 4-connexity :

∆f (x) = 4f (x)−
∑
y∈Nx

f (y) and ∆if (x) = |Nx ∩ Ω| f (x)−
∑

y∈Nx∩Ω

f (y).

These two Laplacians only differ at the border :
I ∆ : discrete Laplacian with periodic conditions
I ∆i : discrete Laplacian without periodic conditions (index i for interior)

I p is “visually close” to h (same Laplacian).
I p is fastly computed using the FFT. . .

FFT-based Poisson Solver
Periodic Poisson problem : Find the image p such that{

∆p = ∆ih
mean(p) = mean(h)

In the Fourier domain, this system becomes :{(
4− 2 cos

(2sπ
M

)
− 2 cos

(2tπ
N

))
p̂(s, t) = ∆̂ih(s, t), (s, t) ∈ Ω \ {(0, 0)},

p̂(0, 0) = mean(h).

Algorithm to compute the periodic component :

1. Compute ∆ih the discrete Laplacian of h.

2. Compute m = mean(h).

3. Compute ∆̂ih the DFT of ∆ih using the forward FFT.

4. Compute the DFT p̂ of p defined byp̂(s, t) = ∆̂ih((s,t))
−4+2 cos(2sπ

M)+2 cos(2tπ
N)

for (s, t) 6= (0, 0)

p̂(0, 0) = m

5. Compute p using the backward FFT (if necessary).

Periodic component : effects on the Fourier modulus

I p is “visually close” to h (same Laplacian).

Image h
Periodic component

p = per(h)
Smooth component

s = h− p (+m)

Images

Fourier
modulus

I The application per : h 7→ p filters out the “cross structure” of the
spectrum.

Avoiding artifacts due to non periodicity

Spot h

ADSN(h)

ADSN(p)

Synthesizing textures having arbitrary large size

Ad hoc solution : To synthesize a texture larger than the original spot h, one
computes an “equivalent spot” h̃ :

I Copy p = per(h) in the center of a constant image equal to the mean of h.
I Normalize the variance.
I Attenuate the transition at the inner border.

Spot h Equivalent spot h̃ RPN(h) RPN
(

h̃
)

- Not really rigorous... The envelope changes the covariance.

Properties of the resulting algorithms

I Both algorithms are fast, with the complexity of the fast Fourier transform
[O (MN log (MN))].

I Visual stability : All the realizations obtained from the same input image
are visually similar.

Spot h RPN 1 RPN 2 RPN 3

I [ON LINE DEMO]

http://mw.cmla.ens-cachan.fr/megawave/demo/random_phase_noise/

Numerical results : similarity of the textures
I In order to compare both algorithms, the same random phase is used for

ADSN and RPN.

Image h ADSN RPN

I Both algorithms produce visually similar textures.

Numerical results : non random phase textures
Image h ADSN RPN

Some other examples of well-reproduced textures...

I We only display the RPN result.

Image h RPN Image h RPN

I Much more examples of success and failures on the IPOL webpage :
http://www.ipol.im/pub/algo/ggm_random_phase_texture_
synthesis/

http://www.ipol.im/pub/algo/ggm_random_phase_texture_synthesis/
http://www.ipol.im/pub/algo/ggm_random_phase_texture_synthesis/

Texton associated with a texture

We work here with gray-level images.

I RPN and ADSN models associated with h only depends of the Fourier
modulus of h.

I Definition : The texton th associated with h is the image with the same
modulus as h and with zero phase [Desolneux et al, 2012].

Input h Texton th (log scale) Texton th (thresholded)

I Concentrated in zero : Compact representation of the texture model
I Interesting tool for analysis :

Same texton = same Gaussian texture

Texton for synthesizing textures having arbitrary large size

I One computes an extended texton (the texton is smallest at the
boundary than the original image) :

t̃h = m + r(th − m)1Ω

Texton th Extended texton t̃h ADSN(th) ADSN(̃th)

Mixing of Gaussian textures

I Using optimal transport distance, one can define barycenters between
Gaussian texture models.

I This gives a practical and rigorous solution for Gaussian texture
mixing [Xia et al., 2014].

I For gray-level images, this is simply obtained in averaging the textons...

Conclusion

Summary :
I Random phase noise and asymptotic discrete spot noise have been ma-

thematically defined and theoretically compared.
I Both corresponding texture synthesis algorithms are fast, visually stable,

and produce visually similar results.
I Both algorithms reproduce relatively well a certain class of textures : the

micro-textures.

Limitations :
I The models are limited to a restrictive class of textures.
I The algorithms are not robust to non stationarities, perspective effects, ...
I The method is global : the whole texture image has to be computed (in

constrast with noise models from computer graphics).

Bibliographic references I

A. Desolneux, L. Moisan, and S. Ronsin, A compact representation of random
phase and Gaussian textures, in ICASSP’12

B. Galerne, Y. Gousseau, and J.-M. Morel, Random phase textures : Theory and
synthesis, IEEE Trans. Image Process., 2011

B. Galerne, Y. Gousseau, J.-M. Morel, Micro-Texture Synthesis by Phase
Randomization, Image Processing On Line, 2011

D. J. Heeger and J. R. Bergen, Pyramid-based texture analysis/synthesis,
SIGGRAPH ’95, 1995

L. Moisan, Periodic plus smooth image decomposition, J. Math. Imag. Vis., 2011

A. V. Oppenheim and J. S. Lim, The importance of phase in signals, Proceedings
of the IEEE, 1981

L.-Y. Wei, S. Lefebvre, V. Kwatra, and G. Turk. State of the art in example-based
texture synthesis, Eurographics 2009, 2009.

J. J. van Wijk, Spot noise texture synthesis for data visualization, SIGGRAPH ’91,
1991.

G.-S. Xia, S. Ferradans, G. Peyre, J-F. Aujol, Synthesizing and mixing stationary
Gaussian texture models, SIAM Journal on Imaging Science (SIIMS), 2014.

	Texture synthesis
	Patch-based synthesis algorithms
	Discrete Fourier transform of digital images
	Random phase noise (RPN)
	Asymptotic discrete spot noise (ADSN)
	RPN and ADSN as texture synthesis algorithms
	Numerical experiments
	Texton for RPN and ADSN texture analysis and synthesis

