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LECTURE 3

STOCHASTIC GEOMETRY FOR
THE DETECTION OF VANISHING POINTS



PART I : VANISHING POINTS



What’s a vanishing point ?
In a « pinehole » camera model, parallel straight lines in 3D are projected on
the image plane as 2D lines that intersect at a single point.

This principle is used to create perspective effects in images. The
intersection points are called vanishing points.

Why is it useful to detect vanishing points ?
I Camera calibration
I Photogrammetry (the science of making measurements from

photographs)
I 3D Reconstruction of a scene
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Example 2

The Ideal City, Piero della Francesca, 1475.



Example 3

Piazza d’Italia, Giorgio de Chirico, 1913.



A contrario detection of vanishing points
Principle : We start from elementary straight segments detected in the
image (by the LSD algorithm for instance), and then we look for regions in the
image plane (inside or outside the image domain), such that a « lot of »
segments converge towards these regions.

How to determine what « a lot of » means ?
=⇒ Use the a contrario methodology : we look for events that are unlikely to
happen by chance.
We start with a noise model H0 : “The N segments are i.i.d. uniform”. Then,
we look for regions that are intersected by significantly more segments than
the number that could be expected under H0.

A. Almansa, A. Desolneux and S. Vamech, Vanishing Point Detection without Any A
Priori Information, IEEE Transactions on Pattern Analysis and Machine Intelligence,
25(4), 2003.
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Mathematical Formulation
Let Ω be the image domain and let N be the number of elementary segments
detected in the image.
Let D1, . . .DN be the support lines of the N segments.
We start from a partition of the image plane R2 into M regions :

R2 =
M⋃

j=1

Vj.

Definition
Let Vj be a region and let kj = #{Di s.t. Di ∩ Vj 6= ∅}. The Number of False
Alarms of Vj is defined by

NFA(Vj) := M · B(N, kj, pj) = M ·
N∑

k=kj

(
N
k

)
pk

j (1− pj)
N−k,

where pj is the probability that a random line going through Ω also meets Vj.
When NFA(Vj) 6 ε, then we say that the region Vj is ε-meaningful.

Proposition
Under H0, the expected number of ε-meaningful regions is less than ε.

Question : Determine a “good partition” of the plane, and compute pj.
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Computing pj : a question of stochastic geometry

What means « a random line » ?

Not an obvious question, as shown by Bertrand’s Paradox.

FIGURE: Bertrand’s Paradox. Let us consider an equilateral triangle of side length a
and let C be its circumscribed circle. What is the probability that a random line
interesecting the circle defines a chord of length > a ?



FIGURE: From left to right, depending on the definition of « random line meeting the
circle », the answer is respectively 1/2, 1/3 or 1/4.

−→What is the « right » answer ?



Measure on the set of lines

A line G of the plane is parametrized by its two polar coordinates : ρ > 0 and
θ ∈ [0, 2π).

G(ρ, θ) = {(x, y) ∈ R2 s.t. x cos θ + y sin θ = ρ}.

Then, there exists a unique (up to a positive multiplicative constant) measure
on the set of lines that is invariant under translations and rotations. It is the
Poincaré measure given by

dµ = dρ dθ.

L. Santalo, Integral Geometry and Geometric Probability, Cambridge University Press,
Second Edition, 2004.



Properties

- Let K ⊂ R2 be a bounded closed convex set with non-empty interior. Then

µ ({G s.t. G ∩ K 6= ∅}) = Per(K),

where Per(K) is the perimeter of K (= length of the boundary).

- Let K1 and K2 be two bounded closed convex sets with non-empty interior.
Then

µ ({G s. t. G ∩ K1 6= ∅ and G ∩ K2 6= ∅}) =
Per(K1) if K1 ⊂ K2,
Li − Le if K1 ∩ K2 = ∅,
Per(K1) + Per(K2)− Le otherwise.



Choice of the plane partition

We want to satisfy two constraints :

1. pj = constant. All regions are « equally detectable », meaning that they
require the same minimal number of lines passing through them in order
to become meaningful.

2. Constraint of angular precision :

For a segment of length l, its support line is rather a « cone » of angle

dθ = arcsin
1
l
' 1

l
.



Construction of the regions
We consider that the image domain is given by Ω = D(0,R). We fix an angle
θ. The exterior regions are defined as portions of circular sectors with angle
2θ.

For a region Vd,d′ , portion of a circular sector between the distances d and d′,
then

pVd,d′ =
Li − Le

Per(Ω)
=

1
π

(
tanβ − tanβ′ +

1
cosβ′

− 1
cosβ

+ β′ − β + 2θ
)
,

where β = arccos
(

R
d cos θ

)
and β′ = arccos

(
R
d′ cos θ

)



The interior regions are simply chosen as squares of side length 2R sin θ. This
implies that

pj =
Per(Vj)

Per(Ω)
=

4 sin θ
π

:= pθ.

We can now exactly determine the exterior regions :
- we start with d1 = R,
- then set d2 > d1 such that pVd1,d2

= pθ,
- then d3 > d2 such that pVd2,d3

= pθ,
- and so on, until being larger than d∞, that is finite and characterized by

∀d′ > d∞, pVd∞,d′ < pθ.

The last region is thus infinite and its probability is < pθ.



Multi-scale approach

How to choose θ ?
−→ Use several values !
This is also necessary in order to have a good balance between detectability
and localization.

We choose n angular values θs = 2π
2s with s = 4, 5, . . . , n + 3.

For each θs, we have a “partition” of the image plane : ∪Ms
j=1Vj,s. The number of

false alarms of a region is then defined as

NFA(Vj,s) = n ·Ms · B(Ns, k, pθs ),

where Ns is the number of segments having a precision at least θs.

The region Vj,s is said ε-meaningful iff NFA(Vj,s) 6 ε.



Maximality

When « a lot of « lines pass through a region Vj,s, then the neighbouring
regions are also intersected by « a lot of » lines.
−→ Need to select the « best regions ».

Definition
The region Vj,s is said maximal ε-meaningful if it is ε-meaningful and if

∀s′ ∈ [s1, . . . , sn], ∀j′ ∈ [1, . . . ,Ms′ ], Vj′,s′∩Vj,s = ∅ =⇒ NFA(Vj,s) 6 NFA(Vj′,s′).



Example of results (1)





Exclusion Principle

The problem : Some maximal meaningful regions are the « mixture » of two
sets of lines that converge to two different vanishing points.

Proposed solution : an exclusion principle
I Each line votes only for one maximal meaningful region : the one that

has the minimal NFA.
I We compute again the NFA of maximal meaningful regions by counting

only the number of lines that have voted for them.
I If the maximal meaningful regions still satisfy the test “NFA 6 ε”, then

they are said EP-meaningful.

In the following we will only show the EP-meaningful regions.



Example of results (2)



The masking phenomenon



Example of results (3)



Example of results (4)



FIGURE: Left : the 3rd and last EP-meaningful region. Right : masked region (it is not
meaningful but becomes meaningful when we remove the lines that have votes for the
EP-meaningful regions).



PART II : CHANGING THE A CONTRARIO NOISE MODEL



Anisotropic detection of convergence points

In some images, a main convergence point is « normal », and we don’t want
to detect it as meaningul, we rather want to include it in the a contrario noise
model.

Example : a mammogram



An anisotropic distribution on lines

Given a main point of convergence M, and a « width » σ, we can define a
Gaussian law on lines by

dµg =
1

π
√

2πσ
e−(ρ−xM cosθ+yM sin θ)2/2σ2

dρ dθ

=
1

π
√

2πσ
e−(ρ−rM cos(θ−θM))2/2σ2

dρ dθ

This is equivalent to say that the signed distance from a random line to the
point M, that is equal to ρ− rM cos(θ − θM), follows a N (0, σ2) distribution.

A. Desolneux and F. Doré, An anisotropic a contrario framework for the detection of
convergences in images, submitted, 2015.



Uniform versus Gaussian law on lines
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FIGURE: Left column : a set of 200 lines sampled from the uniform measure conditioned
to meet the image domain Ω. Right column : a set of 200 lines sampled from the
Gaussian law on lines conditioned to intersect Ω with σ = 20 and (xM , yM) = (286, 306).



Support function of a convex set

Definition
Let K be a closed bounded convex set. The support function of K is defined
for all ϕ ∈ [0, 2π) by

sK(ϕ) = sup
x∈K
〈x, eϕ〉,

where eϕ is the unit vector having an angle ϕ with the horizontal axis, and
〈·, ·〉 is the usual Euclidean scalar product in R2.

Link with the Perimeter :

Per K =

∫ 2π

0
sK(ϕ)dϕ.



Useful Formulas

Proposition
Let K be a closed bounded convex set and let sK denote its support function.
The measure under the law µg of the set of lines meeting K is given by

µg(D ∩ K 6= ∅) =
1
π

∫ π

ϕ=0

[
Φ

(
sK(ϕ)− rM cos(θM − ϕ)

σ

)

− Φ

(
− sK(ϕ+ π)− rM cos(θM − ϕ)

σ

)]
dϕ,

where Φ is the cumulative distribution function of the standard normal
distribution, i.e.

∀t ∈ R, Φ(t) :=

∫ t

−∞

1√
2π

e−u2/2 du.

We can also compute a similar formula for two convex sets, i.e. for

µg(D ∩ K1 6= ∅ and D ∩ K2 6= ∅).
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FIGURE: (a) We simulated N = 300 straight lines with a parametric mixture model with
two Gaussian terms and one uniform term : the main convergence is centered in
(xM , yM) = (−100, 14) with a standard variation σ = 20 and a weight p = 0.4, and the
secondary convergence has center (xM′ , yM′ ) = (114, 28), p′ = 0.2 and σ′ = 10. The
uniform term has thus weight 1− p− p′ = 0.4. (b) Image of the log-likelihood as a
function of p and σ. It is maximal for (p̂, σ̂) = (0.37, 17). (c) Image of − log NFA1. (d)
Image of − log NFAf̂p,M,σ̂ .



PART III : WHEN THE A CONTRARIO APPROACH BECOMES GENERATIVE



Some questions about the a contrario methodology

In short, the a contrario methodology works like this :

• Observe Ntest geometric events E1,. . . ENtest (special arrangements of
elementary objects).

• Define a noise model H0 on the elementary objects (generally, the i.i.d.
uniform distribution).

• Compute for each event Ej, NFA(Ej) := Ntest · PH0 (Ej) and declare the
event Ej as being ε-meaningful when NFA(Ej) 6 ε.

Some questions :

I What happens if we change H0 ?
I Given the observed events, are there distributions H0 under which no

events are meaningful ?
I If yes, which one is at the same time « as random » as possible ?
I What does a sample from this distribution look like ?
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The Line Segment Detector framework

The framework of the LSD (Line Segment Detector) Algorithm of Grompone
et. al is the following :

Let us consider a grey level image I0 defined on a discrete domain
Ω = {1, . . . ,M} × {1, . . . ,N}. We compute its orientation field θ0 : Ω→ S1 by

∀x ∈ Ω, θ0(x) =
π

2
+ Arg

∇I0(x)

‖∇I0(x)‖ ,

where ∇I0 is the gradient computed on a 2× 2 window.

For a rectangle r in Ω with principal orientation ϕ(r), we define the number of
aligned points it contains, up to a precision p, by

k(r; θ0) :=
∑
x∈r

1I|θ0(x)−ϕ(r)|6pπ.

We denote n(r) = #r the total number of pixels in the rectangle r.



- Let us define a « noise model », that is a probability distribution P on
orientation fields Θ : Ω→ S1.

- We define the Number of False Alarms of the rectangle r in θ0, under the
noise model P by

NFAP(r; θ0) = Ntests · PP[k(r; Θ) > k(r; θ0)],

where Ntests is the number of tests, that is the number of rectangles in an
image of size M × N (it is of the order of (MN)5/2).

- In this definition, Θ is random orientation field following the distribution P
and k(r; Θ) is therefore a random variable given by

k(r; Θ) :=
∑
x∈r

1I|Θ(x)−ϕ(r)|6pπ.

- When NFAP(r; θ0) < ε, we say that the rectangle r is (ε)-P-meaningful in θ0.



In the LSD algorithm :

I The noise model is P = U, the i.i.d. uniform distribution (i.e. we assume
that the Θ(x) are independent and uniformly distributed on S1).

I The result of the LSD algorithm is a list of U-rectangles, denoted by
r1, . . . , rm.

I Several precision values p are tested in the LSD algorithm, but one can
notice that in most images, at least 95% of the meaningful rectangles are
obtained for the precision p = 1/8. In all the following, we will use only
this fixed value for p.

I The obtained meaningful rectangles r1, . . . , rm are disjoint (it is almost
true, since in practice less than 1% of the pixels belong to two
meaningful rectangles at the same time).



Changing the noise model

Definition
Let θ0 : Ω→ S1 be an orientation field. Let r1, . . . , rm be the (disjoint)
U-meaningful rectangles, results of the LSD Algorithm on θ0. We define the 3
following sets of distributions :

I Let P be the set of distributions P on Θ such that none of the regions
r1, . . . , rm are P-meaningful in θ0. That is :

P ∈ P ⇐⇒ ∀1 6 j 6 m, NFAP(rj; θ
0) > ε.

I Let Q be the set of distributions Q on Θ such that if an orientation field θ
is sampled from Q, then, « in most cases, we have the same detections
as in θ0 ». That is :

Q ∈ Q ⇐⇒ ∀1 6 j 6 m, MedQ(NFAU(rj; Θ)) 6 NFAU(rj; θ
0).

I Finally, let I be the set of distributions on Θ such that the Θ(x) are
independent (but not necessarily identically distributed).



Proposition

1. The distribution P0 ∈ P ∩ I that has maximal entropy is given by the
following probability density : fP0 (θ) =

∏
x f (x)

P0
(θx) with

f (x)
P0

(θx) =


1

2π if x /∈ ∪m
j=1rj

1
2pπB−1

n(rj),k(rj;θ0)
( ε

Ntests
) if x ∈ rj and |θx − ϕ(rj)| 6 pπ

1
2(1−p)π (1− B−1

n(rj),k(rj;θ0)
( ε

Ntests
)) if x ∈ rj and |θx − ϕ(rj)| > pπ

2. The distribution Q0 ∈ Q ∩ I that has maximal entropy is given by a
formula analoguous to the one of P0, where

we just replace B−1
n(rj),k(rj;θ0)

(
ε

Ntests

)
by B−1

n(rj),k(rj;θ0)

(
1
2

)
' k(rj; θ

0)

n(rj)
.



Example 1

Original image I0 Results of the LSD



Example 1

Original image I0 Rectangles of the LSD



Example 1

Orientation field θ0 Sample from P0



Example 1

Orientation field θ0 Sample from Q0



Example 2

Original image I0 Results of the LSD
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Orientation field θ0 Sample from P0



Example 2

Orientation field θ0 Sample from Q0



Example 3

Original image I0 Results of the LSD



Example 3

Original image I0 Rectangles of the LSD



Example 3

Orientation θ0 Sample from P0



Example 3

Orientation θ0 Sample from Q0



Reconstructing an image from an orientation field

Question : How to reconstruct an image from an orientation field θ ?

−→We do like in the so-called « Poisson editing » method of Perez et. al. :
we look for an image u defined on Ω such that∫

Ω

|∇u(x)− R(x)eiθ(x)|2 dx is minimal ,

where the R(x) are given amplitudes.

Solution : just solve ∆u = div(Reiθ) (very easily with the discrete Fourier
transform)



Results on example 1

Original image I0 Reconstruction from P0 and Rrand



Results on example 1

Original image I0 Reconstruction from P0 and R100



Results on example 1

Original image I0 Reconstruction from Q0 and Rrand
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Results on example 1

Reconstruction from Q0 and R100



Results on example 2

Original image I0 Reconstruction from P0 and Rrand
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Reconstruction from Q0 and R100



Results on example 3

Original image I0 Reconstruction from P0 and Rrand
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Results on example 3

Reconstruction from Q0 and R100
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