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LECTURE 2

A CONTRARIO DETECTION
OF GEOMETRIC STRUCTURES IN IMAGES



PART I : DETECTION OF ALIGNMENTS IN AN IMAGE



Meaningful Alignments : Introduction

Let {u(i, j)}16i,j6N be a grey level image of size N × N pixels.

A discrete oriented segment S of length l is a sequence of l pixels,
determined by its starting point (pixel) x1 and its ending point (pixel) xl.

The image domain contains a finite number of segments.

Let m(l) be the number of discrete oriented segments of length l > 1, then

lmax∑
l=1

m(l) = N2(N2 − 1) ' N4.

A. Desolneux, L. Moisan and J.-M. Morel, Meaningful Alignements, International Journal of

Computer Vision, 2000.



The direction at a point (i, j) is

~d(i, j) =
∇u⊥

‖∇u‖ ,

where

∇u = 1
2

(
X2 − X1 + X4 − X3

X3 − X1 + X4 − X2

)
.

Exercise : show that it is the gradient of the second-order interpolation at the
center of the 2× 2 window.

We say that a point M is aligned with a direction ~v up to precision p if

|Angle(~d(M),~v)| 6 pπ.



Null Hypothesis

Hypothesis H0

The directions at the pixels of the image are independent and uniformly
distributed on [0, 2π).

This hypothesis is satisfied in a white noise image if we only consider pixels
at distance > 2.

PH0 [dir. at a point is aligned with dir. ~v up to precision p] =
2πp
2π

= p.
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Grouping principle
Principle
On a given segment S of length l, we count the number of points of S that are
aligned with S up to precision p. Let k be this number. If this number is high
enough to be very unlikely under the null hypothesis H0, we keep the
segment.

Let S = {x1, . . . xl} be a discrete segment of length l (counted in independent
points, i.e. at distance 2) in an image of Gaussian white noise of size N × N.

Let Xi be the random variable that has value 1 if xi is aligned with S up to
precision p, and 0 otherwise. The random variable Xi follows a Bernoulli
distribution of parameter p.

Let Sl =
∑l

i=1 Xi = number of aligned points with the direction of S, then :

PH0 [Sl = k] =

(
l
k

)
pk(1− p)l−k

and then PH0 [Sl > k] = B(l, k, p) :=
∑
j>k

(
l
j

)
pj(1− p)l−j.
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ε-meaningful segment

Definition
A segment S of length l in a N × N image is said ε-meaningful if it contains at
least k(l) aligned points, where

kmin(l) := min{k ∈ N, B(l, k, p) 6
ε

N4 }.

Rk : B(l, k, p) is the tail of the binomial distribution of parameters l and p, and
it is a decreasing function of k.



Expectation of the number of detections under H0

Proposition
The expectation of the number of ε-meaningful segments in a random image
of size N × N pixels following the null hypothesis H0, is less than ε.

−→ On the average, the number of detected ε-meaningful segments in a
Gaussian white noise image is less than ε.

Proof :
Let ei = 1 if the i-th segment of the image is ε-meaningful, and 0 otherwise.

Let R be the number of ε-meaningful segments in the image. Then

EH0 [R] =

Nseg∑
i=1

E[ei] =

Nseg∑
i=1

PH0 [Sli > kmin(li)] =

Nseg∑
i=1

B(li, kmin(li), p) 6 Nseg× ε

N4 6 ε.



Number of false alarms

Definition
Let S be a segment of length l(S) containing k(S) aligned points. The number
of false alarms (NFA) of S is defined by

NFA(S) = NFA(l(S), k(S)) := N4B(l(S), k(S), p) = N4
l(S)∑

k=k(S)

(
l(S)

k

)
pk(1−p)l(S)−k.

→ it measures the degree of confidence, or the “meaningfulness” of an
observed alignment.

The smaller NFA(S) is, the more meaningful the segment S is.

Link between NFA and meaningfulness :

S is ε-meaningful⇐⇒ k(S) > kmin(l(S))⇐⇒ NFA(S) 6 ε.
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Some properties of the NFA

Using elementary properties of the binomial distribution, we have :

1. NFA(l, 0) = N4

2. NFA(l, l) = N4pl

3. NFA(l, k + 1) < NFA(l, k)

4. NFA(l, k) < NFA(l + 1, k) →→ • →→ •
5. NFA(l + 1, k + 1) < NFA(l, k) →→ • →→→

Proof : exercise !

Remark : If a segment S of length l(S) is ε-meaningful, then

ε > NFA(S) > N4pl(S),

and therefore
l(S) >

4 log N − log ε
− log p

.

For instance for N = 512, p = 1/16 and ε = 1, we have l(S) > 9.



Sufficient Conditions of meaningfulness

We assume that p < 0.5.

Proposition (sufficient condition)
Let S be a segment of length l, containing k aligned points. If

k > pl +

√
4 log N − log ε

h(p)

√
l,

where p 7→ h(p) is the function given by

h(p) =
1

1− 2p
log

1− p
p

then S is ε-meaningful.

Proof : Use Hoeffding Inequality, to get for any 1 > r > p > 0,

B(l, rl, p) 6 e−l[r log r
p +(1−r) log 1−r

1−p ] 6 e−l(r−p)2h(p).



Necessary Conditions of meaningfulness

Proposition (Necessary condition 1)
Assume that pN4 > 1 (Rk : not very restrictive !). Let S be a segment of length
l, containing k aligned points. If S is 1-meaningful then

k > pl + (1− p).

Proposition (Necessary condition 2)
Assume that p 6 1

4 and pN4 > 1. Let S be a segment of length l, containing k
aligned points. If S is ε-meaningful then

k > pl + α(N, ε)
√

lp(1− p),

where α(N, ε) is defined by 1√
2π

∫ +∞
α(N,ε) e−x2/2dx = ε

N4 .

Proof of Condition 2 : Consequence of Slud’s Theorem (1977), stating that
if p 6 1

4 and pl 6 k 6 l, then

B(l, k, p) >
∫ +∞

k−pl√
lp(1−p)

e−x2/2dx.



Asymptotique behavior of k(l)

We have kmin(l) ' pl +
√

Cl log N4

ε
, with 2p(1− p) 6 C 6 1

2 .

→ Notice that kmin(l) depends on log(ε) and log(N). Choice ε = 1 is generally
satisfying in experiments.

Middle curve : kmin(l) for N = 512, ε = 1 and p = 1
16 . Top curve : Sufficient

condition. Bottom curve : Necessary condition 2.



Dependence in ε

ε = 0.1.



Dependence in ε

ε = 0.01.



Dependence in ε

ε = 0.001.



Maximality

Generally, S meaningful =⇒ Many segments containing S or being contained
in it are also meaningful.

Definition
A segment S is said maximal meaningful if it is meaningful and if

∀B ⊂ S, NFA(B) > NFA(S),

∀B ⊃ S, NFA(B) > NFA(S).

Properties of maximal meaningful segments :
I The two ending points of S are aligned with S,
I The two points, one before and one after S, are not aligned with S.
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Maximality

Conjecture
If S1 and S2 are two distinct maximal meaningful segments lying on the same
straight line, and such that S1 ∩ S2 6= ∅, the

min(NFA(S1 ∪ S2),NFA(S1 ∩ S2)) < max(NFA(S1),NFA(S2)).

Consequence :
Two maximal meaningful segments lying on the same straight line cannot
meet.

Remark : The above conjecture is equivalent to say that

min(B(l1 + l2 − l∩, k1 + k2 − k∩, p),B(l∩, k∩, p)) < max(B(l1, k1, p),B(l2, k2, p)).



Maximality

ε = 10−3.



Maximality

ε = 10−3.



Example of maximal meaningful segments



Meaningful Segments : defaults of the method

The main defaults of the method are :
I It is very slow !
I We often get « bundles « of segments.

−→ Solution : make « thick » segments.



LSD : Line Segment Detector [Grompone et al. 2008]

LSD Algorithm

I Partition of the image into Line-Support Regions (connected sets of
pixels sharing the same orientation up to precision pπ) ;

I Approximation of these sets by rectangular regions ;
I Computation of the NFA of each region : for a region (rectangle) r

containing l points with k of them aligned with it, define

NFA(r) = N5
l∑

j=k

(
l
j

)
pj(1− p)l−j.

I The regions such that NFA < 1 are kept.

R. Grompone von Gioi, J. Jakubowicz, J.-M. Morel, G. Randall, A Fast Line Segment Detector with

a False Detection Control, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010.



Examples



Examples



PART II : DETECTION OF CONTRASTED OR SMOOTH CURVES



Meaningful Boundaries : Introduction

I Classical problem in Image Processing : find the boundaries (contours)
in an image (also called edge detection problem).

I Dual problem : image segmentation (= segment the image into
homogeneous regions).

I Principle of color (or grey level) constancy in Gestalt Theory.
I Perception is invariant under contrast changes.
I What are the « interesting curves » in an image ?

I All possible curves ? (pb of computation time !)
I Natural candidates : the level lines of the image (or pieces of them).

A. Desolneux, L. Moisan and J.-M. Morel, Edge Detection by Helmholtz Principle, Journal of
Mathematical Imaging and Vision, 2001.



Level sets

Definition
The (upper) level sets of an image u : Ω→ R are the sets

χλ(u) = {x ∈ R2; u(x) > λ}, where λ ∈ R.

These sets are « decreasing » : ∀λ 6 µ, χµ ⊂ χλ.
The knowledge of all these sets is enough to reconstruct u by

u(x) = sup{λ; x ∈ χλ}.

Definition
The lower level sets of an image u : Ω→ R are the sets

χλ(u) = {x ∈ R2; u(x) 6 λ}, where λ ∈ R.

These sets are « increasing » : ∀λ 6 µ, χλ ⊂ χµ.

If g is a change of contrast (increasing function), then u and g(u) globally
have the same level sets (∀λ ∃µ s.t. χλ(u) = χµ(g(u))).

⇒ Def. level lines of u = topological boundaries of its level sets
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Examples

Level lines for levels λ that are multiples of 5.



Examples

Level lines for levels λ that are multiples of 20.



Examples

Level lines for levels λ that are multiples of 50.



Contrasted Boundaries

Let u be a discrete grey level image of size N × N and let Nll be the (finite)
number of level lines it contains.

Let L be a level line of u with (discrete) length l measured with points at
distance 2, that is L = {x1, . . . xl}.

We define the contrast of u at a point x by c(x) = |∇u(x)|.

Definition
A meaningful boundary is a level line that is « long enough » and « contrasted
enough » not to appear just by chance.

What a contrario noise model (hypothesis H0) on the contrast ?
I uniform ?
I empirical : H(µ) = 1

N2 #{x ; |∇u0|(x) > µ}
I To avoid flat regions artefacts, take H(µ) = #{x ; |∇u0|(x)>µ}

#{x ; |∇u0|(x)6=0}
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Contrasted Boundaries

Let Xi be the contrast at a point xi.
The hypothesis H0 is that the Xi are i.i.d.
Under H0, we have

PH0 [∀i, Xi > µ] = PH0 [X1 > µ]l.

Definition
Let H be the empirical distribution of P[|∇u| > µ]. We define the Number of
False Alarms of a level line L with discrete length l and minimal contrast
µ = minx∈L |∇u(x)| by

NFA(L) = Nll H(µ)l.

The level line L is said to be an ε-meaningful boundary iff NFA(L) 6 ε.

Proposition
The ε-meaningful level lines are invariant under affine contrast changes.



Examples

Image and the distribution of the norm of the gradient.



Properties

Let F(µ, l) = H(µ)l.

I If l 6 l′ and µ fixed, then F(µ, l) > F(µ, l′) (because H(µ) 6 1).
I If µ 6 µ′ and l fixed, then F(µ, l) > F(µ′, l) (because H is decreasing).
I A level line with minimal contrast µ is ε−meaningful iff its length is larger

than
lmin(µ) =

log ε− log Nll

log H(µ)
.

I A level line with length l is ε−meaningful iff its minimal contrast µ is
larger than

µmin(l) = H−1

((
ε

Nll

) 1
l
)
.



Maximality

The set of all meaningful level lines of an image is organized in a tree
structure.

Definition
A monotonic branch in the tree of level lines is a branch along which the
grey level is monotonic and such that each level line has a unique child. A
monotonic branch is maximal if it is not contained in another monotonic
branch.

Definition
A level line is a maximal meaningful boundary if it is meaningful and if its
NFA is minimal in its maximal monotonic branch of the tree of level lines.



Examples

On the left, the original image. In the middle, all meaningful boundaries with
ε = 1. On the right, all maximal meaningful boundaries with ε = 1.



Meaningful good continuations

Goal : Look for « smooth » curves in the image, without considering the
contrast.

Let Γ = (p0, . . . , pl+1) be a discrete curve of length l, and let κ be its maximal
discrete curvature :

κ = max
16i6l

|Angle(pi+1 − pi, pi − pi−1)|.

θi
pi pi

�
1

pi � 1

From : F.Cao. “Application of the Gestalt principles to the detection of good
continuations and corners in image level lines”, Computing and Visualization in
Science, 2004.



A contrario noise model H0 : the angles are i.i.d. with uniform law on
[0, 2π), i.e. the curve is a discrete » random walk ».
Let Nc be the number of considered curves (in practice, it will be the number
of pieces of level lines of the image).

Definition (Meaningful Good Continuation)
We say that a discrete curve Γ is an ε-meaningful good continuation if

κ <
π

2
and NFA(Γ) = Nc

(κ
π

)l
6 ε.

Definition of maximality : a meaningful good continuation Γ is maximal
meaningful if : ∀Γ′ ⊂ Γ, NFA(Γ′) > NFA(Γ) and ∀Γ′ ) Γ, NFA(Γ′) > NFA(Γ).

Property : if Γ and Γ′ are two maximal meaningful good continuations lying
on the same level line then Γ ∩ Γ′ = ∅. (Exercise !)



FIGURE: Original image : Kandinsky.



FIGURE: « All » level lines.



FIGURE: Maximal meaningful good continuations.



FIGURE: Image (INRIA) of the Church of Valbonne.



FIGURE: Maximal meaningful good continuations.



FIGURE: Maximal meaningful contrasted boundaries.



Another example

Original image



Another example

Meaningful segments (LSD algorithm of Grompone et. al)



Another example

Maximal meaningful contrasted boundaries



Another example

Maximal meaningful good continuations



PART III : OTHER A CONTRARIO DETECTIONS AND DISCUSSION



Similarity of a scalar attribute

For a uniform scalar attribute (gray level, orientation, etc.)
Assume we have M “objects”, and each of them has an attribute
q ∈ {1, 2, . . . , L}. Let a group of k of them has their scalar attribute q such that
a 6 q 6 b. Define its Number of False Alarm by

NFA([a, b]) =
L(L + 1)

2
· B
(

M, k,
b− a + 1

L

)

For a scalar attribute with decreasing distribution (area, length, etc.)
Define its Number of False Alarm by

NFA([a, b]) =
L(L + 1)

2
·max

p∈D
B

(
M, k,

b∑
i=a

p(i)

)
where D is the set of decreasing probability distributions on {1, ..., L}.



A first example

A first application is the study of an image grey-level histogram. Looking for
the maximal meaningful intervals is a way to obtain an automatic gray level
quantization.



A second example : recursivity

Uccello’s painting : maximal meaningful alignments and histogram of
orientations. Two maximal meaningful modes are found corresponding
respectively to the horizontal and vertical segments.



Gestalt grouping principles at work for building an “order 3” gestalt (alignment of blobs
of the same size). First row : original DNA image (left) and its maximal meaningful
boundaries (right). Second row : left, barycenters of all meaningful regions whose area
is inside the only maximal meaningful mode of the histogram of areas ; right,
meaningful alignments of these points.



Conclusion

I Helmholtz principle combined with Gestalt grouping laws can become a
powerful computational tool.

I Many applications in detection problems, but also in shape recognition
[Musé, Sur, Cao, Gousseau] ; image matching [Rabin, Delon,
Gousseau] ; epipolar geometry [Moisan, Stival], motion detection and
analysis [Cao, Veit, Bouthemy] ; clustering [Cao et al.] ; stereovision
[Sabater et al.] ; image denoising (by grain filters) ; etc.

I Automatic computation of thresholds. Link with human visual perception
thresholds ?
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Open questions

1. How to deal with the “over-determination” of images (i.e. the fact that
visual objects usually have several qualities at the same time) ?

2. How to define a computational tool (like the NFA) for more than one
attribute ?

3. How to deal with “conflicts” of qualities ?
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Examples of conflicts (1)

FIGURE: Smooth convex sets or alignments ?

The casual alignments in the Cheetah fur are caused by the presence of
many oval shapes. Such alignments are perceptually masked and should be
computationally masked !



Examples of conflicts (2)

A dense cluster of points creates a meaningful amount of dots in many strips
and the result is the detection of obviously wrong alignments. Again, the
detection of a cluster should inhibit such alignment detections.

FIGURE: One cluster or several alignments ?



Cooperation of attributes of objects



PART IV : MAKE SOME EXPERIMENTS BY YOURSELF



Reproducible Research in Image Processing

IPOL Journal = Image Processing On Line

« IPOL is a research journal of image processing and image analysis which
emphasizes the role of mathematics as a source for algorithm design and the
reproducibility of the research. Each article contains a text on an algorithm and its
source code, with an online demonstration facility and an archive of experiments. Text
and source code are peer-reviewed and the demonstration is controlled. IPOL is an
Open Science and Reproducible Research journal. »

Let’s go to http://www.ipol.im/

http://www.ipol.im/
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