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LECTURE 1

VISUAL PERCEPTION :
GESTALT THEORY AND THE NON ACCIDENTALNESS PRINCIPLE



PART 0 : INTRODUCTION



Introduction



Helmholtz Principle (non-accidentalness principle)

Helmholtz Principle, also called the non-accidentalness principle, can be
stated in two different ways :

1. The first way is common sensical. It simply states that “we do not
perceive any structure in a uniform random image”.
(In this form, the principle was first stated by Attneave in 1954).

2. In its stronger form, the Helmholtz principle states that whenever some
large deviation from randomness occurs, a structure is perceived. In
other words : “we immediately perceive whatever has a low likelihood of
resulting from accidental arrangement”.
(Stated in Computer Vision by S.-C. Zhu or D. Lowe)









What’s make an image an image and not noise ?



What structures are we looking for ?

contains ?

I Not all possible structures are relevant for visual perception.

I They have to be fixed before - and not after the observation.
I The relevant structures for visual perception have been studied by the

Gestalt School of Psychophysiology.
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Visual Perception

How do we perceive geometric objects in images ?

What are the laws and principles of visual construction ?
In other words, how do you go from pixels (or retina cells) to visual objects
(lines, triangles, etc.) ?



PART I : GESTALT THEORY OF VISUAL PERCEPTION



Before Gestalt Theory : optic-geometric illusions

The aim of these illusions is to ask : “what is the reliability of our visual
perception ?”

A first example : Zoellner’s Illusion (1860)



Other examples of optic-geometric illusions

Hering’s Illusion (1861)

Are lines a and b straight ?



Other examples of optic-geometric illusions

Müller-Lyer’s Illusion (1889)



Other examples of optic-geometric illusions

Sander ’s Illusion



Gestalt Theory

I Gestalt theory does not continue on the same line. The question is not
why we sometimes see a distorted line when it is straight ; the question
is why we do see a line at all. This perceived line is the result of a
construction process whose laws it is the aim of Gestalt theory to
establish.

I Gestalt theory (Wertheimer, Metzger, Kanizsa) starts with the
assumption of (a small list of) active grouping laws in visual perception :
vicinity, same attribute (like colour, shape, size or orientation), alignment,
good continuation, symmetry, parallelism, convexity, closure, constant
width, amodal completion, T-junctions, X-junctions, Y-junctions.

I The above listed grouping laws belong, according to Kanizsa, to the so
called primary process, opposed to a more cognitive secondary process.

- M. Wertheimer Unterzuchungen zur lehre der gestalt, Psychologishe Forshung (1923).
- G. Kanizsa, Grammatica del Vedere / La Grammaire du Voir, Éditions Diderot, arts et sciences,
1980 / 1997.

- W. Metzger, Gesetze des Sehens, Kramer, 1953.
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Seeing and thinking

Figure : Grammatica del Vedere, Gaetano Kanizsa.
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Elementary grouping laws

Vicinity



Elementary grouping laws

Same color/size/orientation



Elementary grouping laws

Closure



Elementary grouping laws

Symmetry



Elementary grouping laws

Good continuation



T- and X- junctions

T-junctions
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T- and X- junctions

X-junctions



Amodal Completion
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Amodal Completion



Impossible Figures

Visual grouping laws are stronger than physical sense.

Perspective effect is created by Y-junctions.

Penrose Triangle



Impossible Figures

Visual grouping laws are stronger than physical sense.

Perspective effect is created by Y-junctions.

Penrose Fork



... and past experience ?
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... and past experience ?



Recursivity

All grouping Gestalt laws are recursive : they can be applied first to atomic
inputs and then in the same way to partial Gestalts already constituted.

The same partial Gestalt laws namely alignment, parallelism, constant width
and proximity, are recursively applied not less than six times.



Conflicts between grouping laws
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Conflicts between grouping laws



Masking phenomenon

Masking by texture

“The whole masks its parts”.



Masking phenomenon

Masking by addition



Masking phenomenon

Masking by subtraction

A masking is efficient if a new grouping law appears.



Masking phenomenon

Masking by articulation shape/background

Kanisza : “il fondo non é forma” (« The background has no shape »).



PART II : THE NON-ACCIDENTALNESS PRINCIPLE



Helmholtz Principle (or Non-accidentalness Principle)

Helmholtz Principle :
I « We don’t perceive any structure in a noise image » (Attneave).
I « We immediatly perceive any structure that is too regular to be there

just by chance » (Zhu, Lowe)

Examples :

I parallel straight lines in 2D are perceived as the projection of parallel 3D
lines.

I if you play dice and you obtain a sequence 6,6,6,6,6 - you will certainly
notice it !

−→ The principle is used to compute detectability thresholds.



Example : Birthdays in a class

Question : In a class of 30 students, is it surprising if n of them have the
same birthday ?

Hypothesis : birthdays = random variables, independent and identically
uniformly distributed on the 365 days of the year.

Let Cn be the number of groups of n students having the same birthday.
Let Pn = P[Cn > 1] and pn = P[Cn > 1 and Cn+1 = 0].

We have E[Cn] = expected value of the number of groups of n students having
the same birthday.

−→What are the values of P2, E[C2]? And more generally of Pn, E[Cn]?

One can compute : P2 = 1− 365×364...336
36530 ' 0.706.

−→ it’s not a big surprise to have two students with the same birthday !
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Birthdays in a class

We can also compute :

P3 = P2 − p2 = P2 − 1
36530

∑15
i=1

[∏i−1
j=0 (

30−2j
2 )

i!

∏29−i
k=0 (365− k)

]
≈ 0.028.

→ As n grows, Pn is more and more uneasy to compute.

But the expectation is much simpler :

E[Cn] = E

 ∑
16i1<···<in630

1{i1,... in have the same birthday}


=

∑
16i1<···<in630

P[i1,...,in have the same birthday] =
1

365n−1

(
30
n

)
.

Thanks to Markov Inequality, we always have Pn 6 E[Cn].

Numerical computations give :

P2 = 0.706, and E[C2] = 1.192 ;
P3 = 0.0285, and E[C3] = 0.0347 ;

P4 = 5.3× 10−4, and E[C4] = 5.6× 10−4 .
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PART III : COMBINING GESTALT THEORY
AND THE NON-ACCIDENTALNESS PRINCIPLE



General formulation of a contrario methods

Given : n geometric objects O1, . . .On. Let Xi be a random variable describing
an attribute of the Oi (for instance : position, color, orientation, size, etc...).

Hypothesis H0 (also called background distribution or noise model or a
contrario model) : X1, . . .Xn are independent identically distributed.

Observed event E on X1, . . .Xk (ex : X1, . . .Xk are similar).
Can this observed event happen by chance ? (= how likely is it under the null
hypothesis H0 ?)

Test :
NFA(E) := EH0 [nb of occurrences of E] 6 ε

If the test is positive, then the oberved event E is said to be an ε-meaningful
event.

A. Desolneux, L. Moisan and J.-M. Morel, From Gestalt Theory to Image Analysis : A
Probabilistic Approach, Springer-Verlag, 2008.



Example : A black square in a Bernoulli noise

Hypothesis H0 : binary image of size L× L, pixels i.i.d. ∼ Bernoulli of
parameter p.

Observation : we observe a black square of size l0 × l0 pixels somewhere in
the image.

P[a given square of side length l is all black] = pl2 .

E[Nb of black squares with side length l in the image] = pl2(L− l)2.

E[Nb of black squares with side length l > l0] =
∑

l>l0
pl2(L− l)2.

Questions :

I How to fix the value of p ?
I Why considering only squares ?



Example : A black square in a Bernoulli noise

L = 256, p = 0.5
l0 = 3. NFA = 125.9



Example : A black square in a Bernoulli noise

L = 256, p = 0.5
l0 = 5. NFA = 0.001



EXERCISES



Exercise 1 : Gestalt comment of this figure



Exercise 2 : Gradient orientation in noise image

The gradient in a (discrete) image u is computed at a pixel of coordinates
(x, y) by

∇u(x, y) =
1
2

(
u(x + 1, y + 1) + u(x + 1, y)− u(x, y + 1)− u(x, y)
u(x + 1, y + 1) + u(x, y + 1)− u(x + 1, y)− u(x, y)

)
= ‖∇u(x, y)‖eiθu(x,y)

1) What is the law of θu(x, y) when u is a Bernoulli noise image ?

2) What is the law of θu(x, y) when u is a white noise image (meaning that the
grey levels are i.i.d. N (0, σ2)) ?


	Gestalt Theory

