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Notations

Let Ω be the space of locally finite subsets of R2 × R+ embedded
with the classical σ-algebra F .
For a configuration ω ∈ Ω and a bounded subset Λ of R2, ωΛ

denotes the subset ω ∩ (Λ× R+).
For a positive real number z and a probability measure Q on R+,
πz,Q denotes the law of a Poisson point process of intensity
measure zλ(2) ⊗ Q, and πz,QΛ is it restriction to the set Λ× R+.
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Local number of connected components

Let Λ be a bounded subset of R2 and ω a configuration. We define

NΛ
cc(ω) = lim

∆→R2
Ncc(ω∆)− Ncc(ω∆\Λ),

where

Ncc is number of connected components, defined only for
finite configurations.

The limit is taken along any increasing sequence converging to
R2.
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Definition 1

A probability measure P is a CRCM(z ,Q, q) if, for every bounded
Λ and every measurable bounded function f we have∫

fdP =

∫ ∫
f (ω′Λ + ωΛc )

qNΛ
cc(ω′

Λ+ωΛc )

ZΛ(ωΛc )
πz,QΛ (dω′)P(dω).

Theorem 2

If Q has bounded support then for every z > 0 and q > 0,
there exists a stationary CRCM(z ,Q, q).

If
∫

R2Q(dR) is finite then for every z > 0 and q ≥ 1, there
exists a stationary CRCM(z ,Q, q).

Theorem 3

If
∫

R2Q(dR) =∞ then there exists a zc > 0 such that for every z
positive and every q positive integer, we have the existence of a
stationary CRCM(z ,Q, q) different from πz,Q .
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Theorem 2 : Sketch of the proof

Step 1 : Finding a good ”candidate”.
For Λn =]− n, n]2 we define

Pn(dω) =
qNcc(ω)

Zn
πz,QΛn

(dω).

From this sequence we define a stationary sequence (P̄n).

Definition 4

A sequence of measure (νn) converge to ν for the local
convergence topology if for all local bounded function f we have∫

f dνn −→
n→∞

∫
f dν.

(A function is local if there exists a bounded ∆ such that
f (ω) = f (ω∆) for every ω)
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Definition 5

For a stationary probability measure ν, the specific entropy is

Iz(ν) = lim
n→∞

1

|Λn|
IΛn(ν|πz,Q), where

IΛn(ν|πz,Q) =

{ ∫
f ln(f ) dπz,QΛn

if νΛn � πz,QΛn
, f =

dνΛn

dπz,Q
Λn

,

+∞ else .

Theorem 6 (Georgii)

For any C > 0, the set

{ν stationary probability measure, Iz(ν) ≤ C}

is compact for the local convergence topology.

Using Theorem 6, we have the existence of a cluster point P̄ of the
sequence (P̄n).
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Step 2 : Proving the DLR equations∫
f dP̄ =

∫ ∫
f (ω′Λ + ωΛc )

qNΛ
cc(ω′

Λ+ωΛc )

ZΛ(ωΛc )
πz,QΛ (dω′)P̄(dω).

Idea : Since each P̄n satisfies those equations, we get the result by
passing through the limit.
Problem : We can take f local, but qNΛ

cc(ω′
Λ+.) and ZΛ are not

local functions.
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Idea :∫
f 1Hk

dP̄ =

∫ ∫
1Hk

f (ω′Λ + ωΛc )
qNΛ

cc(ω′
Λ+ωΛc )

ZΛ(ωΛc )
πz,QΛ (dω′)P̄(dω),

where (Hk) is a good sequence of ”localizing” events.

NΛ
cc is local on each Hk .

P̄(Hk)→ 1.

Sometimes we also need supn P̄n(Hk)→ 1.
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Proposition 7

With P̄-probability one, we have at most one infinite connected
component.
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We need a control for the radii. We obtain this control by
stochastic comparison, using a result from the paper of
Georgii,Küneth.
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Theorem 3 : Sketch of the proof

Method :

Widom-Rowlinson model
forgetting−−−−−→
the colors

Continuum Random Cluster Model
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Let Ω̃ be the space of colored configurations, ie the space of locally
finite subsets of R2 × R+ × {1, . . . , q}, embedded with the
classical σ-algebra F̃ .
π̃z,Q,q denotes the law of the ”colored” Poisson point process of
intensity measure zλ(2) ⊗ Q ⊗ Uq.
A denotes the event of authorized configurations, where balls of
different color do not overlap.

Definition 8

A probability measure ν on Ω̃ is a WR(z ,Q, q) if

ν(A)=1.

For every measurable bounded function f and every bounded
subset Λ of R2, we have∫

f dν =

∫ ∫
f (ω̃′Λ + ω̃Λc )

1A(ω̃′Λ + ω̃Λc )

Z̃Λ(ω̃Λc )
π̃z,Q,qΛ (dω̃′)ν(dω̃)
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Proposition 9

If
∫

R2Q(dR) =∞ then there exists a zc > 0 such that for every
z < zc , there exists a stationary WR(z ,Q, q) for which there is at
least two phases (two colors).

Step 1 (as before) : νn(dω̃) = 1A(ω̃)

Z̃n
π̃z,Q,qΛn

(dω̃).

With this sequence we construct a sequence (ν̄n). With the
specific entropy we can prove that this sequence has a cluster point
ν̄ for the local convergence topology.
Step 2 : ν̄(A) = 1.
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Step 3 : We want to prove∫
f d ν̄ =

∫ ∫
f (ω̃′Λ + ω̃Λc )

1A(ω̃′Λ + ω̃Λc )

Z̃Λ(ω̃Λc )
π̃z,Q,qΛ (dω̃′)ν̄(dω̃)

knowing that this equation is realize by each ν̄n.
Problem : 1A is not a local function.
Idea : Same as before, using localizing events.
Remark : since ν̄(A) = 1, we have ω̃Λc ∈ A and so to determine
the value 1A(ω̃′Λ + ω̃Λc ) we have to look at

balls of of ω̃′Λ.

balls of of ω̃Λc which intersect balls of ω̃′Λ.
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Problem : In order to have ν̄(”shield”) −→
k→∞

1, we need

ν̄({ω̃ having at least two colors}) = 1,

but it is (probably) not true.
Idea : If this event has a not zero probability, then by conditioning
we will get this property.
Method : We prove that ν̄ is different from every stationary
”monochromatic” probability measures, by comparing there specific
entropy.

Iz(”monochromatic measures”) ≥ q−1
q z .

For z smaller than some positive zc we have

Iz(ν̄) <
q − 1

q
z .
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Dereudre, Houdebert : Infinite Volume Continuum Random
Cluster Model

Georgii : Gibbs Measures and Phase Transitions

Georgii, Küneth : Stochastic comparison of point random
fields
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