Finite variance of the number of stationary points of a Gaussian random field.

Julie Fournier, joint work with Anne Estrade

MAP5 - Université Paris Descartes

- d a positive integer
- ullet $X:\Omega imes\mathbb{R}^d\longrightarrow\mathbb{R}$ a stationary, Gaussian random field.
- Almost every realization of X is of class C^2 .
- ullet $T\subset\mathbb{R}^d$ a bounded rectangle
- $v \in \mathbb{R}^d$
- $N(v) = \#\{t \in T : X'(t) = v\}$ $\in L^1(\Omega)$

N(0): number of stationary points of X in T

Problem:
$$N(v) \in L^2(\Omega)$$
?

• $r: t \longmapsto \operatorname{Cov}(X(t), X(0))$: covariance function of X

Former results

$$d=1$$

• Cramér and Leadbetter, [1], 1967: if there exists $\delta > 0$ such that :

$$\int_0^{\delta} \frac{r^{(4)}(0) - r^{(4)}(t)}{t} dt < +\infty,$$

then $N(0) \in L^2(\Omega)$ (Geman condition).

- Geman, [2], 1972: this condition is also necessary.
- Kratz and León, [4], 2006: the same condition is also necessary and sufficient for N(v) to belong to $L^2(\Omega)$, for any level $v \in \mathbb{R}$.

$d \ge 1$

- Elizarov, [3], 1985: a sufficient condition for N(0) to belong to $L^2(\Omega)$.
- Estrade and León, [6] 2015: if X is an isotropic field of class \mathcal{C}^3 , then for any $v \in \mathbb{R}^d$, $N(v) \in L^2(\Omega)$.

400400450450

A sufficient condition

Theorem

Suppose $X: \Omega \times \mathbb{R}^d \longrightarrow \mathbb{R}$ a stationary, Gaussian random field satisfying assumption (H) and that its covariance function r satisfies the following condition:

(G)
$$\exists \delta > 0 \ / \int_{\|t\| < \delta} \frac{\|r^{(4)}(0) - r^{(4)}(t)\|}{\|t\|^d} dt < +\infty,$$

then for any $v \in \mathbb{R}^d$, $N(v) \in L^2(\Omega)$.

$$\textbf{(H)} \begin{cases} \text{Almost every realization of } X \text{ is of class } \mathcal{C}^2, \\ \\ \forall t \neq 0, \ \operatorname{Cov} \left(X'(0), X'(t), (X''_{i,j}(0))_{1 \leq i \leq j \leq d}), (X''_{i,j}(t))_{1 \leq i \leq j \leq d}) \right) \\ \\ \text{is of full rank.} \end{cases}$$

WLOG, we assume that r(0)=1 and $r''(0)=-I_d$.

Rice Formulas

First moment :
$$\mathbb{E}[N(v)] = \int_{T} \mathbb{E}[|\det X''(t)| / X'(t) = v] p_{X'(t)}(v) dt$$

$$= \int_{T} \mathbb{E}[|\det X''(t)|] p_{X'(t)}(v) dt$$

$$= |T| |\det(X''(0))| p_{X'(0)}(v),$$

where |T| is the Lebesgue measure of T.

Second factorial moment :
$$\mathbb{E}[N(v)(N(v)-1)]$$

= $\int_{T \times T} \mathbb{E}[|\det X''(s)| \det X''(t)| / X'(s) = X'(t) = v] p_{X'(s),X'(t)}(v,v) ds dt$
= $\int_{T_{c}} |T \cap (T-t)| \mathbf{F}(\mathbf{v},\mathbf{t}) p_{X'(0),X'(t)}(v,v) dt$,

where
$$F(v,t) = \mathbb{E}[|\det X''(0) \det X''(t)| / X'(0) = X'(t) = v]$$
; $v,t \in \mathbb{R}^d$, $T_0 = \{t - t', (t,t') \in T^2\}$.

$$\mathbb{E}[N(v)(N(v)-1)] = \int_{T_0} |T \cap (T-t)| \; \mathbf{F}(\mathbf{v},\mathbf{t}) \; \underbrace{\rho_{X'(0),X'(t)}(v,v)}_{\leq c \, \|\mathbf{t}\|^{-d}} \; dt$$

$$F(v,t) = \mathbb{E}\left[\left|\det X''(0)\det X''(t)\right|/X'(0) = X'(t) = v\right]$$

$$F(t, v) \le (G(v, t) G(v, -t))^{1/2}$$

where
$$G(v,t) := \mathbb{E}\left[\det X''(0)^2 / X'(0) = X'(t) = v\right]$$
.

Notation: If $g: \mathbb{R}^d \to \mathbb{R}^{d'}$,

$$g\in L^1(\mathcal{V}_0,\|t\|^{-d}dt)\quad\Leftrightarrow\quad\exists\delta>0\;:\;\int_{\|t\|<\delta}\|g(t)\|\,\|t\|^{-d}\,dt<+\infty.$$

Lemma

If X satisfies **(H)**, $G(v,\cdot) \in L^1(\mathcal{V}_0, ||t||^{-d}dt) \Rightarrow N(v) \in L^2(\Omega)$.

Gaussian regression

$$(X''(0)_{i,j})_{1 \leq i,j \leq d} \longrightarrow (X''(0))_{1 \leq i \leq j \leq d}$$
 vector of size $K = \frac{d(d+1)}{2}$

$$X''(0) = A(t)X'(0) + B(t)X'(t) + Z(t),$$

with

- A(t), B(t) matrices of size $K \times d$ depending on $r^{(3)}(0)$ and r''(t)
- Z(t) Gaussian centered vector of size K independent of (X'(0),X'(t)), its covariance depends on r''(t), $r^{(4)}(0)$ and $r^{(3)}(t)$.

$$X''(0) / (X'(0) = X'(t) = v) \sim \mathcal{N}\left((A(t) + B(t))v, \Gamma^{Z}(t)\right)$$

Study of G(v, t) and relationship with G(0, t)

$$G(v,t) := \mathbb{E}\left[\det X''(0)^2 / X'(0) = X'(t) = v\right]$$

$$G(v,t)=\mathbb{E}\left[\det\left(\left(A(t)+B(t)
ight)v+Z(t
ight))^2
ight].$$
 $A(t)+B(t)=O(\|t\|) \ ext{and} \ \Gamma^Z(t)=O(1) \ ext{as } t o 0.$ So $G(v,t)=\mathbb{E}\left[\det Z(t)^2
ight]+o(\|t\|).$

Lemma

Let us assume that X fulfills condition **(H)** and let $\mathcal{V} \subset \mathbb{R}^d$ be a compact set. Then

- (i) for any $v \in \mathcal{V}$, G(v,t) = G(0,t) + o(||t||) as $t \to 0$;
- (ii) there exists a homogeneous polynomial $Q_{(d)}$ of degree d, that does not depend on X, such that $G(0,t)=Q_{(d)}(\Gamma^Z(t))$.

An auxiliary function $t \longmapsto \gamma(t)$

For $t \neq 0$, let us introduce $\gamma(t) := (\gamma(t)_{\mathbf{k},\mathbf{l}})_{\substack{1 \leq \mathbf{k} \leq K \\ 1 \leq \mathbf{l} \leq K}}$ the covariance matrix of

$$X''(0) / (X'(0) = X''(0)t = 0)$$

A property of symmetric positive matrices:

$$\det\left(X''(0)^2\right) \leq \left\langle X''(0)^2 \frac{t}{\|t\|}, \frac{t}{\|t\|} \right\rangle \det(S) = \|t\|^{-2} \left\langle X''(0)t, X''(0)t \right\rangle \det(S).$$

So
$$0 = \mathbb{E}\left[\det X''(0)^2 / X'(0) = X''(0)t = 0\right] = \mathbf{Q_{(d)}}(\gamma(\mathbf{t})).$$

$$G(0,t) = \mathbb{E}\left[\det X''(0)^2 / X'(0) = X'(t) = 0\right] = \mathbf{Q_{(d)}}(\mathbf{\Gamma^Z(t)})$$

Conclusion

$$G(v,t) = Q_{(d)}(\Gamma^{Z}(t)) + o(\|t\|) = Q_{(d)}(\Gamma^{Z}(t)) - Q_{(d)}(\gamma(t)) + o(\|t\|)$$

We deduce from Taylor expansions that

(G)
$$\Leftrightarrow t \mapsto r^{(4)}(0) - r^{(4)}(t) \in L^1(\mathcal{V}_0, ||t||^{-d}dt)$$

 $\Rightarrow \Gamma^{\mathcal{Z}}(t) - \gamma(t) \in L^1(\mathcal{V}_0, ||t||^{-d}dt)$
 $\Rightarrow G(v,.) \in L^1(\mathcal{V}_0, ||t||^{-d}dt)$
 $\Rightarrow N(v) \in L^2(\Omega).$

Open questions

• Is the Geman condition a necessary condition for N(v) to belong to $L^2(\Omega)$ in dimension d>1 too?

• If $\phi: \mathbb{R}^d \to \mathbb{R}^d$, what about the second moment of the random variable

$$N(\phi) := \{ t \in T : X'(t) = \phi(t) \}$$
?

Main references

- Cramér H., Leabetter, M.R. Stationary and Related Stochastic Processes. Wiley, New York (1967).
- Geman, D., On the Variance of the Number of Zeros of a Stationary Gaussian Process, The Annals of Mathematical Statistics, Vol. 43, 977-982 (1972).
- Elizarov A.I. On the Variance of the Number of Stationary Points of a Homogeneous Gaussian Field. Theory of Probability & Its Applications, Vol. 29, No. 3, 569-570 (1985).
- Kratz M., León J.R. On the second moment of the number of crossings by a stationary Gaussian process. Ann. Probab., Vol. 34, 1601-1607 (2006).
- Adler R.J., Taylor J.E. *Random Fields and Geometry*. Springer Monographs in Mathematics. Springer (2007).
- Estrade A., León J.R. *A central limit theorem for the Euler characteristic of a Gaussian excursion set*, Preprint hal-00943054 (2015).